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Delay-induced spontaneous dark-state generation from two distant excited atoms
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We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to
a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known
superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is
a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic
separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent
to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between
distant quantum emitters.
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I. INTRODUCTION

Large-scale interconnected quantum systems offer promis-
ing applications in quantum information processing and
distributed quantum sensing [1–3]. As the experimental ca-
pabilities for directly interconnecting distant quantum nodes
grow [4], we have yet to develop the theoretical toolbox to
efficiently analyze systems of multiple qubits collectively ex-
changing photons over large distances, where delay effects
cannot be neglected. Such many-body systems exhibit rich
non-Markovian and nonlinear dynamics, arising from delayed
and multiphoton interactions. Given the complexity associ-
ated with such systems, even the simplest scenarios, e.g., the
spontaneous decay of two fully excited distant atoms, remains
unexplored.

The most studied cases of coupled emitters consider nearby
atoms, neglecting the delay time the field needs to propagate
between them. This scenario is a landmark of quantum optics
across platforms, such as atoms in free space [5,6], inside a
leaky cavity [7], and near waveguides [8]. In all of these cases,
ensembles of initially fully excited two-level atoms decay into
their ground state. As atoms decay, correlations among them
spontaneously and momentarily emerge, leading to the well-
known collective phenomenon of superfluorescence [6,9–12].
Such atom-atom correlations, which are absent in the initial
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state, emerge without external driving fields or postselection
[5].

Platforms based on waveguide QED present an effective
way to go beyond the zero-delay approximation, enabling
tunable, efficient, and long-ranged interactions in the optical
and microwave regime [13–21]. For example, state-of-the-art
experiments allow one to tune out dispersive dipole-dipole
interactions by strategically positioning the atoms along
a waveguide [22–24] while highly reducing coupling to
nonguided modes [25–29]. Furthermore, waveguide-coupled
quantum emitters enable chiral interactions due to strong
spin-momentum coupling and directional routing of photons
[30–35].

When the time taken by a photon to propagate be-
tween two distant emitters becomes comparable to their
characteristic lifetimes, the system exhibits surprisingly rich
delay-induced non-Markovian dynamics even in the single-
photon regime [32,36–40]. Some examples of such dynamics
include collective spontaneous emission rates exceeding those
of Dicke superradiance and formation of highly delocalized
atom-photon bound states [41–50]. In addition, time-delayed
feedback can assist in preparing photonic cluster states [51]
and single-photon sources with improved coherence and in-
distinguishability [52]. (See Fig. 1.)

Recent studies of the effects emerging from delayed inter-
actions considered either many atoms with a single photon
[41,45,53–55], many photons with a single atom [44,56–58],
or numerical exploration of three photons and three atoms
[50], inviting us to revisit the theoretical description of other
canonical quantum optical phenomena, such as superfluo-
rescence, in the context of waveguide-coupled emitters in a
large-scale quantum network.

In this paper, we show that a system of two atoms, with two
excitations, and delayed interactions exhibits non-Markovian
collective dynamics. In particular, for fully inverted atoms, the
instantaneous decay can be faster than in superfluorescence
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FIG. 1. Schematic of the system: two excited atoms with a tran-
sition frequency ω0 near a waveguide at positions z1,2 = ±d/2. The
emission rate of each atom into the waveguide is γ and the propaga-
tion delay of the field between the two atoms is τ = d/v, with v as
the velocity of the EM field in the waveguide.

and steady-state entanglement can suddenly emerge. In the
latter case, the electromagnetic (EM) field can have two pho-
tons trapped between the two atoms, an effect that cannot
be captured by Markovian dynamics. We refer to this phe-
nomenon, which leads to the spontaneous generation of a
dark state, as delayed-induced subfluorescence—the subradi-
ant counterpart of the well-known superfluorescence effect.
The resulting steady state is a delocalized hybrid atom-
photon state, requiring a description beyond the usual Born
and Markov approximations and qualitatively different from
the case without delay, where the system always ends in
the ground state. The rich and unique dynamics in such a

seemingly simple system demonstrates non-Markovian delay
as a mechanism for trapping light, entanglement generation,
and stabilization in long-distance interacting quantum nodes.

II. THEORETICAL MODEL

We consider two two-level atoms, with transition fre-
quency ω0 between the ground |g〉 and excited |e〉 states,
coupled through a waveguide. In this work, our empha-
sis is on the case of perfectly coupled atoms; the free
Hamiltonian of the total atoms+field system is given by
H0 = (h̄ω0/2)

∑2
r=1 σ̂ (r)

z +∑
α,η h̄ωα â†

α,ηâα,η. The interac-
tion Hamiltonian in the interaction picture is (having made
the electric-dipole and rotating-wave approximations)

Ĥint = −ih̄
2∑

r=1

∑
α,η

gασ̂
(r)
+ âα,ηe−i�αt eikαηzr + H.c., (1)

where gα is the coupling between atoms and the guided mode
α with frequency ωα , �α = ωα − ω0, and kαη = ηωα/v, with
η = ±1 specifying the direction of propagation. The position
of the atoms is z1, 2 = ±d/2, σ̂ (r)

z = |e〉r〈e|r − |g〉r〈g|r and the
raising and lowering operators for the rth atom are defined as
σ̂

(r)
+ = (σ̂ (r)

− )† = |e〉r〈g|r .
We consider the initial state with both atoms excited and

the field in the vacuum state, |e1e2, {0}〉. As a consequence of
the rotating-wave approximation, the total number of atomic
and field excitations are conserved, suggesting the following
ansatz for the state of the system at time t :

|ψ (t )〉 =
⎧⎨
⎩a(t )σ̂ (1)

+ σ̂
(2)
+ +

2∑
r=1

∑
α,η

b(r)
αη(t )σ̂ (r)

+ â†
α,η +

∑∑
α,η �=β,η′

cαη,βη′ (t )

2
â†

α,ηâ†
β,η′ +

∑
α,η

cαη(t )√
2

â†
α,ηâ†

α,η

⎫⎬
⎭|g1g2, {0}〉, (2)

where |g1g2, {0}〉 is the ground state of the system. The complex coefficients a(t ), b(r)
αη(t ), and cαη,βη′ (t ) correspond to the

probability amplitudes of having an excitation in both the atoms, rth atom and field mode {α, η}, and field modes {α, η} and
{β, η′}, respectively. The coefficients cαη(t ) represent the probability amplitude of exciting two photons in modes {α, η}. The
Hamiltonian in Eq. (1) models two emitters interacting via the quantized electromagnetic field; their distance, codified in the
phase eikαηzr , has the effect of introducing a delay in the equations of motion for the quantum state coefficients. This delayed
interaction between the emitters results from the finite propagation speed of light.

Defining B(r)
αη = b(r)

αη(t )e−i�αt and Cαη = cαη(t )e−2i�αt , and formally integrating the equation for cαη,βη′ (t ), the Schrödinger
equation yields the following system of delay-differential equations for the excitation amplitudes:

ȧ(t ) = −
∑
α,η

2∑
s=1

gαB(s)
αη(t )e−ikαηzs , (3)

Ḃ(r)
αη (t ) = −

(
i�α + γ

2

)
B(r)

αη (t ) −
√

2gαCαη(t )eikαηzr + g∗
αa(t )eikαηzr − γ

2
eiφe−i�αt B(s)

αη(t − τ )�(t − τ ), (4)

Ċαη(t ) = − 2i�αCαη(t ) +
√

2gα
∗

2∑
s=1

B(s)
αη(t )e−ikαηzs , (5)

where γ is the decay rate of the emitters into the guided modes. We present a detailed derivation in Appendix A. We solve the
system of equations via Laplace transforms considering the initial conditions a(0) = 1 and Bαη(0) = Cαη(0) = 0.

III. SYSTEM DYNAMICS

The Laplace transform of a(t ) is (see Appendix B)

ã(s) ≈
⎧⎨
⎩s −

∑
α,η

|gα|2 s + i�α + γ

2 − γ

2 eiφe−sτ e−i�ατ cos(ωατ )[
γ

2 eiφe−sτ e−i�ατ + s + i�α + γ

2

][
γ

2 eiφe−sτ e−i�ατ − s − i�α − γ

2

]
⎫⎬
⎭

−1

, (6)

where φ = ω0τ is the resonance field propagation phase.
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FIG. 2. Probability P(1)(t ) of having only one of the atoms
excited for a delay of γ τ = 0.895 in comparison with that for coin-
cident and independent atoms (γ τ = 0 and γ τ → ∞, respectively).
We note that for a propagation phase of φ = nπ , there is a formation
of a steady atom-photon bound state as indicated in Eq. (10).

We write the sum over modes on the right-hand side
(RHS) of Eq. (6) as an integral over frequencies by intro-
ducing the density of modes ρ(ωα ). Additionally, we use
the Wigner-Weisskopf approximation and set ρ(ωα ), gα ≈
ρ(ω0), g0, evaluated at the atomic resonance frequency, a
good approximation in the presence of delay effects in waveg-
uide QED [40]. With these considerations we obtain ã(s) =
1/(s + γ ) for all τ . Taking the inverse Laplace transform we
get a(t ) = e−γ t , which gives the time-dependent probability
of having two atomic excitations

P(2)(t ) = |a(t )|2 = e−2γ t . (7)

We remark that the probability of having two atomic excita-
tions is independent of the delay between atoms.

The probability of having only one of the atoms excited is

P(1)(t ) ≈ ρ(ω0)
∑

r=1,2

∑
η

∫ ∞

0
dωα

∣∣b(r)
αη(t )

∣∣2, (8)

where the time-dependent solutions b(1,2)
αη (t ) are derived in

Appendix B and given by (B21). In the limits of two co-
incident atoms with τ = 0, and two infinitely distant atoms
with τ → ∞, we obtain the expected Markovian dynamics
[59,60]:

P(1)(t ) =
{

2γ t e−2γ t for τ = 0,

2 e−γ t (1 − e−γ t ) for τ → ∞.
(9)

Figure 2 shows P(1)(t ) for different values of the delay
τ and the propagation phase φ. For times t < τ , the atoms
decay independently. At the time t = τ , the field emitted
by one atom reaches the other, modifying their decay dy-
namics depending on the value of the propagation phase φ.
Their instantaneous decay rate, given by the negative slope of
P(1)(t ), could momentarily exceed that of standard superflu-
orescence (τ = 0). The delay condition γ τ ≈ 0.375 and φ =
nπ maximizes the instantaneous decay rate. This phenomenon
is a signature of superduperradiance, reported in Ref. [41].
Notably, in this case the atom-atom coherence that is

necessary to modify the instantaneous decay emerges spon-
taneously.

In the late-time limit, the following steady state appears
when φ = nπ for any delay τ between the atoms (see
Appendix C):

|ψ (t → ∞)〉 =
∑∑
α,η �=β,η′

cαη,βη′ (t → ∞)

2
|g1g2, {1α,η1β,η′ }〉

+ |e1g2〉
∑
α,η

b(1)
αη |1α,η〉 + |g1e2〉

∑
α,η

b(2)
αη |1α,η〉,

(10)

where we have removed the explicit time dependence of the
steady-state coefficients. The steady-state amplitude for mode
{α, η} is

b
(1
2)

αη = ∓η e±iηnπ/2 g∗
α

1 + γ τ

2

i sin (�ατ/2)

γ − i�α

, (11)

and cαη,βη′ is given in Eq. (C4) in Appendix C. The last two
terms in Eq. (10) represent a bound state in the continuum
(BIC) that corresponds to having one shared excitation be-
tween the atoms and one propagating photon mode in between
them [44]. Using the Born rule and Eq. (11), we obtain that its
probability is 2P(1)(t → ∞), where

P(1)(t → ∞) = sinh
(

γ τ

2

)
(
1 + γ τ

2

)2
e

γ τ

2

. (12)

We note that the probability of ending up in a BIC state is
maximum for γ τ ≈ 0.895 with a probability of 0.282.

The fact that the atoms+field state is nonseparable shows
that one cannot use the Born-Markov approximation to solve
for the dynamics of the system. Using Eqs. (10) and (11) we
obtain the following reduced density matrix for the atomic
subsystem:

ρ̂±
A (t → ∞) = P(1)|�±〉〈�±| + (1 − P(1) )|g1g2〉〈g1g2|,

(13)
with + corresponding to the case when n is odd and −
when it is even and |�±〉 = (|e1g2〉 ± |g1e2〉)/

√
2 are single

excitation Bell states. As the initially inverted atoms evolve
into a superposition of radiative and nonradiative states upon
delayed interactions, the atoms decay into a superposition of
ground state and an entangled dark steady state. For a field
propagation phase φ = 2nπ [φ = (2n + 1)π ], the dark state
that appears in the late-time limit corresponds to the antisym-
metric state |�−〉 (symmetric state |�+〉).

Delayed interactions create quantum correlations between
the atoms. We quantify it using the concurrence C(t ) of the re-
duced density matrix of the atoms ρ̂A(t ) = TrF [|ψ (t )〉〈ψ (t )|]
[61]. For τ → ∞, the concurrence is zero throughout the
evolution since the initially uncorrelated atoms evolve inde-
pendently. Remarkably, when τ = 0, the concurrence is also
zero throughout the evolution, even when atoms transition
to a superradiant behavior. This case exemplifies that entan-
glement is not necessary for superradiance. For intermediate
values of τ , we numerically study the dynamics of concur-
rence, shown in Fig. 3(a). We begin studying its behavior
for γ τ ≈ 0.895 [corresponding to the maximum value of
P(1)(t → ∞)] and γ τ ≈ 0.375 (corresponding to the largest
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FIG. 3. (a) Concurrence as a function of time. The atoms do not
have initial correlations C(0) = 0; after some time tSBE there is a
sudden birth of entanglement. For φ = (m + 1/2)π C(t ) = 0 for all
time. If φ = mπ concurrence reaches a stationary value Css, given by
Eq. (12). (b) Correlation between atomic dipoles. The atoms decay
independently for times t < τ . At t = τ , we observe an emergence of
quantum correlations between the atoms. When φ = mπ , the atoms
reach a dark steady state for all delays τ . The maximum concurrence
is ≈0.141 at γ τ ≈ 0.895.

instantaneous decay rate). Since the system lacks initial cor-
relations, the concurrence is zero from t = 0 to a certain time,
tSBE, when there is a sudden birth of entanglement (SBE)
[62–68]. For φ = nπ , the concurrence increases until reaching
a stationary value, whereas for φ = (n + 1

2 )π , it always re-
mains zero. In general, for other values of φ, the concurrence
suddenly departs from zero and slowly decays after reaching
a maximum value. For γ τ ≈ 0.895, we obtain the maximum
value for the concurrence. Figure 3(b) shows the emergence
of atom-atom correlations defined by Tr[ρ̂A(t )σ̂ (1)

+ σ̂
(2)
− ]. We

note that the atom-atom correlations develop as soon as the
atoms “see” each other, while the concurrence takes longer
to emerge. Delayed atom-atom interactions couple the fully
excited state of the atoms to both single excitation symmetric
and antisymmetric states. After the buildup of correlations, the
most radiative state collectively decays, while the nonradiative
atomic state remains. The system, therefore, spontaneously
evolves into an entangled dark state in the presence of retar-
dation. Such appearance of quantum correlations is a striking
example of environment-assisted spontaneous entanglement
generation.
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FIG. 4. Second order correlation function as a function of the
distance between the atoms. The vertical lines serve to show the
location of the atoms.

IV. FIELD DYNAMICS

We now focus on the dynamics of the field sourced by
the non-Markovian behavior of the atoms. Field operators
are often described through mode expansion, as shown in
Eq. (D1), or Green’s functions [69]. Its expectation values
involve integrating over all the modes or knowing the Green’s
function for the field, which for waveguides is usually given
by a mode expansion [70]. When the system is Markovian, an
input-output relation simplifies the calculation of field observ-
ables and the sum over field modes is replaced by a sum over
atomic operators: Ê+(r) = Ê+

input(r) +∑
i f (r, ri )σ̂ i

−, where

the positive part of the field operator, Ê+(r), at r, is propor-
tional to the input field, Ê+

input(r), plus the field sourced by
the atomic operators σ̂ i

−. Here ri is the position of atom i and
f (r, ri ) is a complex function that depends on the modes of
the system [14,71].

The probability of measuring two photons at the same time
at position z is proportional to the second-order correlation
function [72]

g(2)(z) = 〈Ê(+)(z)Ê(+)(z)Ê(−)(z)Ê(−)(z)〉
maxγ τ

{∫
dz 〈Ê(+)(z)Ê(−)(z)〉}2 , (14)

where we take the maximum over the distance between the
atoms, in the normalization constant, in order to be able
to compare the second order correlation function for differ-
ent delays. By substituting the input-output relation for the
Markovian case into g(2) and replacing it with the stationary
solution, Eq. (10), we see that the dynamics does not lead to
a two-photon bound state. However, the system under con-
sideration is non-Markovian and one must calculate the field
observables from the full expression for the field operator.

Figure 4 shows the second order correlation function in
the stationary regime (t → ∞) (see Appendix D for details),
for different distances between the atoms. It can be seen that
two photons are trapped between the atoms, a result that is
distinctly non-Markovian, demonstrating the rich interplay
of non-Markovianity and nonlinear atom-photon interactions.
Although the maximum probability of having the atoms ex-
cited is given at a distance γ τ ≈ 0.895, the probability of
having two photons excited at a particular z is lager at
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FIG. 5. Probability of detecting two photons in the same posi-
tion, between the atoms, as a function of the delay, for the steady
state case φ = nπ .

γ τ ≈ 0.375, where the instantaneous decay is maximum.
This is explained by the fact that the probability of having
two photons trapped in a particular position increases when
the probability of the atomic excitation diminishes, because
the energy from the atomic excitation should go to the field.

A salient question pertains to the maximum probability
of having two photons between the atoms. This probability
depends on the value of the autocorrelation function and the
distance between the two atoms. Figure 5 depicts γ τ g(2)(zin),
which is proportional to the probability of having two photons
in the waveguide region separating the two atoms as a func-
tion of the delay. The distance between the atoms where the
probability of having two photons is maximum is γ τ ≈ 1.0.

Note that we chose a normalization that does not depend
on the transverse profile (see Appendix D for details). To ob-
tain the actual probability that two photon detection happens
at the same time and position, it is useful to calculate the
field energy in the guided field modes, in the limit t → ∞
(see Appendix C)

Etot = vε0

∫
d3r〈Ê(+)(r)Ê(−)(r)〉

= h̄ω0[2 − P(1)(t → ∞)], (15)

where P(1)(t → ∞) is the probability of having one atomic
excitation in the long time limit [see Eq. (12)]. This re-
sult states that the total field energy corresponds to the
energy of two photons with frequency ω0 (the total energy)
minus the energy accumulated in the atoms that has not
been emitted into the waveguide. The normalization constant,∫

dz〈Ê(+)(z)Ê(−)(z)〉, is given by the total energy around the
fiber, Etotal [see Eq. (15)] multiplied by the square of the mode
profile at the atomic frequency transition ω0.

V. SUMMARY AND OUTLOOK

We have analyzed the spontaneous decay of two fully in-
verted atoms coupled through a waveguide in the presence
of retardation effects. A remarkable result is the sponta-
neous creation of a steady delocalized atom-photon bound
state, with sudden birth of entanglement between the atoms.
Furthermore, we demonstrate that such a delay can create

two-photon bound states, wherein one can have two photons
in the waveguide region between the two atoms. Such states
appear as a result of the non-Markovian time-delayed feed-
back of the spontaneously radiated EM field acting on the
emitters. Additionally, the collective decay of the two atoms
can be momentarily enhanced beyond standard superfluo-
rescence and subsequently inhibited, demonstrating the rich
non-Markovian dynamics of such a system.

Such delay-induced spontaneous steady state entanglement
generation can have implications in the rapidly growing field
of waveguide QED, a field with promising applications in
quantum information processing [3,73–79] that benefit from
preparing and manipulating long-lived dark states. In this
context, there have been several proposals to generate a steady
entangled state; compared to delay-induced subfluorescence,
these schemes necessitate extra degrees of control, such as
external driving fields [36,80–82], initial entanglement [41],
or chiral emission in front of a mirror [39,83].

It is not only the generation [84] but also the stabilization
of entangled states that are critical to developing efficient
quantum devices. In contrast to the idea that the interaction of
quantum systems with their environment leads to decoherence
and can degrade the entanglement between the components of
a quantum system [85], the environment can also be proposed
as a generator [86,87] and stabilizer of entanglement [88].
Our results demonstrate that non-Markovian time-delayed
feedback can be a mechanism for environment-assisted en-
tanglement generation and stabilization.

Adding delay to the most straightforward collective system
of two two-level atoms leads to different phenomenology,
breaking the Born and Markov approximations, nontriv-
ially modifying the dynamics, and spontaneously creating
steady-state quantum correlations between the atoms and mul-
tiphoton bound states. Our results further the understanding
of the significant role delay plays in quantum optics and
present the outset of studying more complex phenomena in-
volving many-body interactions [6,89,90]. However, studying
this scenario is challenging as the complexity of the problem
increases with the number of emitters, and known methods
based on master equation approaches fail because neither the
Markov nor the Born approximations are valid. Furthermore,
although we neglect dispersive dipole-dipole interactions and
coupling to nonguided modes to highlight the consequences of
delay-induced non-Markovianity, all these effects can coexist,
creating richer dynamics that will increase in complexity as
the system scales up.
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APPENDIX A: EQUATIONS OF MOTION: DERIVATION

Using Schrödinger equation with the Hamiltonian (1) and the state ansatz (2), we get the following differential equations for
the probability amplitudes:

ȧ(t ) = −
2∑

r=1

∑
α,η

gae−i�αt b(r)
αη(t )e−ikαηzr , (A1)

ḃ(r)
αη(t ) = g∗

αei�αt a(t )eikαηzr −
∑
β,η′

gβe−i�β t cαη,βη′ (t )eikβη′ zr −
√

2gαe−i�αt cαη(t )eikαηzr , (A2)

ċαη,βη′ (t ) = 2g∗
αei�αt

2∑
r=1

b(r)
βη′ (t )e−ikαηzr + 2g∗

βei�β t
2∑

r=1

b(r)
αη(t )e−ikβη′ zr , (A3)

ċαη(t ) =
√

2g∗
αei�αt

2∑
r=1

b(r)
αη(t )e−ikαηzr , (A4)

where we consider atomic positions such that z1 = −z2.
We integrate (A3) with cαη,βη′ (0) = 0, and substitute in (A2), obtaining

ḃ(r)
αη(t ) = g∗

αei�αt a(t )eikαηzr − 2g∗
α

2∑
s=1

∫ t

0
dT ei�α (t−T )e−ikαηzs

∑
β,η′

gβe−i�β t b(s)
βη′ (t − T )eikβη′ zr

−
√

2gαe−i�αt cαη(t )eikαηzr − 2
2∑

s=1

∫ t

0
dT b(s)

αη(t − T )
∑
β,η′

|gβ |2e−i�β T eikβη′ (zr−zs ).

For t �= 0, the second term of the RHS can be approximated as zero assuming gβ constant and bβη′ (t ) evolving slowly, which is
consistent with the Wigner-Weisskopf approximation. We transform the sum over frequencies to integrals by using the densities
of modes ρ(wα ) [91]. For guided modes kαη = ηωα

v
with v being the phase velocity of the field inside the waveguide and η = ±1

labels forward or backward propagation direction of the field along the waveguide. Thus
∑

α,η → ∑
η=±1

∫∞
0 dωα ρ(ωα ). To

study the non-Markovian effects due only to delay and not to a structured reservoir, we assume a flat spectral density of field
modes around the resonance of the emitters such that ωα ≈ ω0 in the evaluation of ρ(ωα ) and gα functions.

Taking into account all the considerations above we obtain

∑
β,η′

|gβ |2e−iωβ T eikβη′ (zr−zs ) =
∫ ∞

0
dωβ ρ(ωβ )|gβ |2{e−iωβ (T −τrs ) + eiωβ (T +τrs )} ≈ ρ(ω0)|g0|2

∫ ∞

0
dωβ{e−iωβ (T −τrs ) + eiωβ (T +τrs )},

where τrs = zr−zs
v

. We make use of the Sokhotski-Plemelj theorem∫ ∞

0
dωβ e−iωβ a = −iPV

(
1

a

)
+ πδ(a), (A5)

where PV refers to the Cauchy principal value. Absorbing the contribution of the principal value (which corresponds to the Lamb
shifts) into the atomic transition frequency [5] we obtain

∑
β,η′

|gβ |2e−i�β T eikβη (zr−zs ) = γ eiω0T

2

δ(T − τrs) + δ(T + τrs)

2
, (A6)

where the single atom decay rate to guided modes is defined as γ ≡ 4πρ(ω0)|g0|2.
Using (A6) we obtain the equation of motion for ḃ(r)

αη(t )

ḃ(r)
αη(t ) = g∗

αei�αt a(t )eikαηzr −
√

2gαe−i�αt cαη(t )eikαηzr − γ

2
b(r)

αη(t ) − γ

2
eiφb(s)

αη(t − τ )�(t − τ ), r �= s,

with τ = |τ12| = |z1−z2|
v

, φ = ω0τ , and � is the Heaviside step function.

APPENDIX B: EQUATIONS OF MOTION: SOLUTION

We use the Laplace transform to solve the delayed differential equations of motion (3)–(5). As an intermediate step, we define
the variables

B̃(±)
αη (s) = B̃(1)

αη (s)e−ikαηz1 ± B̃(2)
αη (s)e−ikαηz2 . (B1)
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Thus

s ã(s) − 1 = −
∑
α,η

gαB̃(+)
αη (s), (B2)

[
s + i�α + γ

2
+ 4|gα|2

s + 2i�α

]
B̃(+)

αη (s) = 2g∗
α ã(s) − γ

2
eiφe−i�ατ−sτ

{
cos(kαηd )B̃(+)

αη (s) + i sin(kαηd )B̃(−)
αη (s)

}
, (B3)[

s + i�α + γ

2

]
B̃(−)

αη (s) = γ

2
eiφe−i�ατ−sτ

{
cos(kαηd )B̃(−)

αη (s) + i sin(kαηd )B̃(+)
αη (s)

}
, (B4)

where we use that

C̃αη(s) =
√

2g∗
α

B̃(+)
αη (s)

s + 2i�α

,

with a(0) = 1, B(1,2)
αη (0) = 0, and Cαη(0) = 0 as initial conditions.

The solutions of the previous equations are

B̃(+)
αη (s) = −2g∗

α ã(s)

[
s + i�α + γ

2
− γ

2
eiφe−(s+i�α )τ cos(kαηd )

][{
γ

2
eiφe−(s+i�α )τ sin(kαηd )

}2

+
{

s + i�α + γ

2
− γ

2
eiφe−(s+i�α )τ cos(kαηd )

}{
s + i�α + γ

2
+ γ

2
eiφe−(s+i�α )τ cos(kαηd ) + 4|gα|2

s + 2i�α

}]−1

, (B5)

B̃(−)
αη (s) = −2g∗

α ã(s)

[
i
γ

2
eiφe−(s+i�α )τ sin(kαηd )

][{
γ

2
eiφe−(s+i�α )τ sin(kαηd )

}2

+
{

s + i�α + γ

2
− γ

2
eiφe−(s+i�α )τ cos(kαηd )

}{
s + i�α + γ

2
+ γ

2
eiφe−(s+i�α )τ cos(kαηd ) + 4|gα|2

s + 2i�α

}]
, (B6)

and

ã(s) =
[

s − 2
∑
α,η

|gα|2
[

s + i�α + γ

2
− γ

2
eiφe−(s+i�α )τ cos(kαηd )

][{
γ

2
eiφe−(s+i�α )τ sin(kαd )

}2

+
{

s + i�α + γ

2
− γ

2
eiφe−(s+i�α )τ cos(kαηd )

}{
s + i�α + γ

2
+ γ

2
eiφe−(s+�α )τ cos(kαηd ) + 4|gα|2

s + 2i�α

}]]−1

. (B7)

In order to find the inverse Laplace transform of Eqs. (B5)–(B7) we use that |gα|2/γ ∼ 10−4 for EM modes in the visible range
[92] to neglect the contribution of the term 4|gα|2/(s + i�α ) in the denominator. This corresponds to neglecting the probability
of exciting two equal α modes traveling in the same direction compared to the probability of exciting two different modes.
Considering this, we get Eq. (6) and

B̃
(1
2)

α (s) ≈ −g∗
α ã(s)e±ikαηd/2 s + i�α + γ

2 − γ

2 eiφe−sτ e−i�ατ e∓ikαηd[
γ

2 eiφe−sτ e−i�ατ + s + i�α + γ

2

][
γ

2 eiφe−sτ e−i�ατ − s − i�α − γ

2

] . (B8)

1. Solving the integrals for ã(s)

Equation (6) with the sum approximated as an integral is

ã(s) �
{

s − γ

π

∫ ∞

−ω0

s + i�α + γ

2 − γ

2 eiφe−sτ e−i�ατ cos(�ατ + φ)[
γ

2 eiφe−sτ e−i�ατ + s + i�α + γ

2

][
γ

2 eiφe−sτ e−i�ατ − s − i�α − γ

2

]d�α

}−1

=
{

s − γ

π
I (s, γ , τ, φ)

}−1

, (B9)

where we extend the lower limit in the integral to −∞ as an approximation. We rewrite the denominator inside the integral using
the poles for the �α variable, determined by the characteristic equation

γ

2
eiφe−sτ e−i�ατ − σ

(
s + i�α + γ

2

)
= 0 �⇒ �

(σ )
k = i

{
s + γ

2
− 1

τ
Wk (σ r)

}
, (B10)
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with Wk denoting the kth branch of Lambert W function [93] and σ = ±1. For simplicity, we introduce r = γ τ

2 eγ τ/2+iφ . Using
partial fraction decomposition [94] we obtain

1[
γ

2 eiφe−sτ e−i�ατ + s + i�α + γ

2

][
γ

2 eiφe−sτ e−i�ατ − s − i�α − γ

2

] = τ

2

∞∑
k=−∞

∑
σ=±1

1

Wk (σ r) + W 2
k (σ r)

i

�α − �
(σ )
k

. (B11)

Using Cauchy’s integral formula we get

∫ ∞

−∞

s + i�α + γ

2

�α − �
(σ )
k

d�α = 2π i
Wk (σ r)

τ
, (B12)

∫ ∞

−∞

e−i�ατ cos(�ατ + φ)

�α − �
(σ )
k

d�α = 2π i eiφ. (B13)

For the second integral we use that Im(�(σ )
k ) > 0 because we can take Re(s) as large as we need, obtaining

I (s, γ , τ, φ) = −π

∞∑
k=−∞

∑
σ=±1

1

1 + Wk (σ r)

(
1 + τ eiφ

2Wk (σ r)

)
. (B14)

Using the following identities of the Lambert functions [95]

∞∑
k=−∞

1

1 + Wk (z)
= 1

2
, (B15)

∞∑
k=−∞

1

Wk (z) + W 2
k (z)

= 1

z
, (B16)

we obtain I (s, γ , τ, φ) = −π .

2. Inverse Laplace transform of B̃(1,2)
αη

To obtain B(1,2)
αη (t ) we apply the inverse Laplace transform of Eq. (B8). First, similar to what is done in Appendix B 1, we

rewrite the result using the poles of the denominator but for s variable. Defining

s(σ )
k,α

= −γkσ

2
− i�α, with γkσ = γ − 2

τ
Wk (σ r), (B17)

and using that kαηd = η(�ατ + φ) and ã(s) = 1/(s + γ ), we obtain

B
(1
2)

αη (t ) = −g∗
ατ

2

∑
σ=±1

∞∑
k=∞

e±ikαηd/2

Wk (σ r) + W 2
k (σ r)

[
L−1

(
s + i�α + γ

2

(s + γ )
(
s − s(σ )

k,α

)
)

− γ

2
eiφ∓kαηdL−1

(
e−sτ

(s + γ )
(
s − s(σ )

k,α

)
)]

, (B18)

where L−1 denotes the inverse Laplace transform. Using that

L−1

(
s + i�α + γ

2

(s + γ )
(
s − s(σ )

k,α

)
)

=
γ

2 − i�α

s(σ )
k,α

+ γ
e−γ t +

γ

2 + i�α + s(σ )
k,α

s(σ )
k,α

+ γ
es(σ )

k,α
t , (B19)

L−1

(
e−sτ

(s + γ )
(
s − s(σ )

k,α

)
)

=
(

es(σ )
k,α

(t−τ ) − e−γ (t−τ )
)�(t − τ )

s(σ )
k,α

+ γ
(B20)

and taking b(r)
αη = B(r)

αη (t )ei�αt we get

b
(1
2)

αη (t ) = −g∗
ατ

2
ei�αt e±iη(�ατ+φ)/2

∑
σ=±1

∞∑
k=−∞

1

Wk (σ r) + W 2
k (σ r)

e−γ t

γ − γkσ

2 − i�α

×
[
γ

2
− i�α + Wk (σ r)

τ
e[γ−γkσ /2−i�α ]t + γ

2
ei(1−η)φ−i(1+η)�ατ+γ τ�(t − τ )

{
1 − e[γ−γkσ /2−i�α ](t−τ )

}]
, (B21)

where Wk represents the kth branch of the Lambert W function.
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3. Solution for cαη,βη′ (t )

Applying the Laplace transform to Eq. (A3) and defining Cαη,βη′ (t ) = cαη,βη′ (t )e−i(�α+�β )t we get

C̃αη,βη′ (s) = 2g∗
α

2∑
r=1

B̃(r)
βη′ (s)e−ikαηzr

s + i(�α + �β )
+ 2g∗

β

2∑
r=1

B̃(r)
αη (s)e−ikβη′ zr

s + i(�α + �β )
. (B22)

To find the function in the time domain, we substitute Eq. (B8) and use the poles (B17). Then, applying the inverse Laplace
transform we arrive at the expression

cαη,βη′ (t ) = 2τg∗
αg∗

β

∑
σ=±1

∞∑
k=−∞

ei(�α+�β )t

Wk (σ r) + W 2
k (σ r)

[
cos[(kαη − kβη′ )d/2]

{
M (k,σ )

α,β (t ) + M (k,σ )
β,α (t )

}

−γ

2
eiφ cos[(kαη + kβη′ )d/2]

{
N (k,σ )

α,β (t )e−i�ατ + N (k,σ )
β,α (t )e−i�βτ

}]
, (B23)

where we have defined the functions

M (k,σ )
α,β (t ) = γ − 2i�α[

�α + i
(
γ − γkσ

2

)]
[�α + �β + iγ ]

e−γ t

2
− γ − 2i�β[

�β + i γkσ

2

]
[�α + �β + iγ ]

e−i(�α+�β )t

2

+Wk (σ r)

τ

e−γkσ t/2−i�αt[
�α + i

(
γ − γkσ

2

)][
�β + i γkσ

2

] , (B24)

N (k,σ )
α,β (t ) = −

(
e−γ (t−τ )[

�α + i
(
γ − γkσ

2

)]
[�α + �β + iγ ]

+ e−i(�α+�β )(t−τ )[
�β + i γkσ

2

]
[�α + �β + iγ ]

− e−γkσ (t−τ )/2−i�α (t−τ )[
�α + i

(
γ − γkσ

2

)][
�β + i γkσ

2

]
)

�(t − τ ). (B25)

These functions are not invariant to the interchange of the labels α, β.

APPENDIX C: STATIONARY VALUES

In the late-time limit γ t → ∞ we have for (B21) the value

b
(1
2)

αη (t ) ≈ −g∗
ατ

2

∑
σ=±1

∞∑
k=∞

e±iη(�ατ+φ)/2

Wk (σ r) + W 2
k (σ r)

e−[ 1
2 − 1

γ τ
Wk (σ r)]γ t

γ

2 − i�α + 1
τ
Wk (σ r)

[
Wk (σ r)

τ
− γ

2
ei(1−η)φe−iη�ατ e−[ 1

2 − 1
γ τ

Wk (σ r)]γ τ

]
.

The above expression does not decay to zero if

Re

[
1

2
− 1

γ τ
Wk

(
σ

γ τ

2
eγ τ/2eiφ

)]
= 0. (C1)

Thus the terms of the expression that will be nonzero in the long time limit are k = 0, and {σ = +1, φ = 2πn} or {σ = −1, φ =
(2n + 1)π}, with n ∈ N0, because

W0

(γ τ

2
eγ τ/2

)
= γ τ

2
.

Taking into account the above, we get a stationary value given by

b
(1
2)

αη, ss = −g∗
α

2

e±iη(�ατ+nπ )/2

1 + γ τ

2

1 − e∓iη�ατ

γ − i�α

. (C2)

Then, we obtain

P(1)(t → ∞) = ρ(ω0)|g0|2
2
(
1 + γ τ

2

)2

∑
η=±1

∫ ∞

−∞
d�α

∣∣∣∣1 − e−iη�ατ

γ − i�α

∣∣∣∣
2

,

which leads to Eq. (12).
For correlations between atomic dipoles, we find the stationary value

Tr[ρ̂A(t → ∞)σ̂ (1)
+ σ̂

(2)
− ] = ρ(ω0)|g0|2 cos(nπ )

4
(
1 + γ τ

2

)2

∑
η=±1

∫ ∞

−∞
d�α

(1 − e−iη�ατ )2

|γ − i�α|2 = −cos(nπ )

2

sinh
(

γ τ

2

)
(
1 + γ τ

2

)2
e

γ τ

2

. (C3)

Therefore, Tr[ρ̂A(t → ∞)σ̂ (1)
+ σ̂

(2)
− ] = P(1)(t → ∞)/2.
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Finally, the function cαη,βη′ (t ) from (B23) has a simplified expression in the long-time limit γ t → ∞ and φ = nπ . In this
scenario, the value is equal to

cαη,βη′ (t → ∞) = g∗
αg∗

β

∑
u=±1

2∑
r=1

e−i(η+uη′ )φz̄r e−i(η�α+uη′�β )z̄rτ

[
Ā(u)

1 + γ τ

2

(
ei�αt

�α[�β + iγ ]
+ ei�β t

�β[�α + iγ ]

)

−
∑

σ=±1

∞∑
k=−∞

A(u)
kσ

1 + Wk (σ r)

(
eδu,1i�ατ

[�α + �β + iγ ]
[
�α + i γk,σ

2

] + eδu,1i�βτ

[�α + �β + iγ ]
[
�β + i γk,σ

2

])], (C4)

where we have the auxiliary value u = ±1 and the coefficients Ā(−1) = 1, Ā(+1) = −eiφ , A(−1)
kσ

= 1, and A(+1)
kσ

= −γ τ eiφ/

[2Wk (σ r)]. In addition, we introduced the normalized position of atoms z̄1,2 = z1,2/d = ±1/2.

APPENDIX D: SECOND-ORDER CORRELATION FUNCTION

We can write the field operator, in cylindrical coordinates, as [8]

Ê(+)(z, t ) = i
∑
α,η

Eα êα (r, ϕ)â†
α,ηe−ikαηz, (D1)

with Eα = √
h̄ωα/(4πvε0) and eα (r, ϕ) the transverse profile function, which satisfies the normalization condition∫ 2π

0
dϕ

∫ ∞

0
|eα|2n2(r)r dr = 1, (D2)

where n2(r) is the refractive index of the cylindrical waveguide.
To calculate the correlation function G(2)(z, z) = 〈Ê(−)(z, t )Ê(−)(z, t )Ê(+)(z, t )Ê(+)(z, t )〉, for the position z along the waveg-

uide and in the long-time limit, we use the Wigner-Weisskopf approximation (see Appendix A) to evaluate Eα ≈ E0 and eα ≈ e0

and the state (10). We get

G(2)(z, z) = |E0|4|e0|4
∣∣∣∣∑

α,η

∑
β,η′

cαη,βη′ (t → ∞)e−i(kαη+kβη′ )z

∣∣∣∣
2

.

Introducing Eq. (C4) and performing the integrals in �α , �β we obtain

G(2)(z, z)

ρ2
0 |E0|4|e0|4 = π2γ 2

∣∣∣∣∣
∑

u=±1

2∑
r=1

∑
η,η′

∞∑
k=−∞

A(u)
kσ

1 + Wk (σ r)
[e−η[z̄+z̄r ]γ τ�(η[z̄ + z̄r])

× e−(z̄[η′−η]+z̄r [uη′−η]−δu,1 )γkσ τ/2�(z̄[η′ − η] + z̄r[uη′ − η] − δu,1) + e−η′[z̄+uz̄r ]γ τ�(η′[z̄ + uz̄r])

× e−(z̄[η−η′]+z̄r [η−uη′]−δu,1 )γkσ τ/2�(z̄[η − η′] + z̄r[η − uη′] − δu,1)]|2, (D3)

with z̄ = z/d . To normalize this function, we use∫ ∞

−∞
dz 〈Ê(+)(z)Ê(−)(z)〉 = |E0|2|e0|2

∫ ∞

−∞
dz
∑
α,η

∑
β,η′

e−i(kαη−kβη′ )z〈â†
β,η′ âα,η〉.

Again, we have considered Eα ≈ E0 and eα ≈ e0. Then, using the identity∫ ∞

−∞
dz e−i(kαη−kβη′ )z = 2π [δ(η − η′)δ(ωα − ωβ ) + δ(η + η′)δ(ωα + ωβ )],

we arrive at the expression

1

ρ0|E0|2|e0|2
∫ ∞

−∞
dz 〈Ê(+)(z)Ê(−)(z)〉 = 4π

∑
α,η

⎛
⎝ 2∑

r=1

∣∣b(r)
αη, ss

∣∣2 +
∑
β,η′

|cαη,βη′ (t → ∞)|2
⎞
⎠

= 4π [2 − P(1)(t → ∞)], (D4)

where we have used ∑
α,η

∑
β,η′

|cαη,βη′ (t )|2
2

= 1 − P(2)(t ) − P(1)(t ).
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