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Strange metal to insulator transitions in the lowest Landau level
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We study the microscopic model of electrons in the partially-filled lowest Landau level interacting via the
Coulomb potential by the diagrammatic theory within the GW approximation. In a wide range of filling fractions
and temperatures, we find a homogeneous non-Fermi liquid (nFL) state similar to that found in the Sachdev-Ye-
Kitaev (SYK) model, with logarithmic corrections to the anomalous dimension. In addition, the phase diagram
is qualitatively similar to that of SYK: a first-order transition terminating at a critical end-point separates the nFL
phase from a band insulator that corresponds to the fully filled Landau level. This critical point, as well as that of
the SYK model—whose critical exponents we determine more precisely—are shown to both belong to the Van
der Waals universality class. The possibility of a charge density wave (CDW) instability is also investigated, and
we find the homogeneous nFL state to extend down to the ground state for fillings 0.2 � ν � 0.8, while a CDW
appears outside this range of fillings at sufficiently low temperatures. Our results suggest that the SYK-like nFL
state should be a generic feature of the partially filled lowest Landau level at intermediate temperatures.
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I. INTRODUCTION

Two-dimensional electrons subject to strong magnetic
fields exhibit an extreme variety of highly correlated quantum
phases. Key examples are the fractional quantum Hall (FQH)
states [1,2], whose strong correlations are manifest in the
emergence of low-energy quasiparticles possessing fractional
charge and statistics [3,4], which arise due to strong Coulomb
interactions within a flat band. Being an inherently nonpertur-
bative phenomenon, the development of a microscopic theory
of the FQH states—based solely on the electronic degrees of
freedom and their Coulomb interactions—remains an impor-
tant open problem. An understanding has been achieved using
trial wave functions [5,6] and effective field theories of emer-
gent fermions—such as composite fermions (CFs) [6–11]. At
mean-field level, the CFs, which are bound states of elec-
trons and an even number of flux quanta, move in a partially
canceled magnetic field, resulting in insulating behavior at
odd-denominator filling fractions and metallic properties at
even denominators. While the existence of emergent fermions
that experience a weaker magnetic field has been confirmed
spectacularly by experiments at low temperatures [12–18],
the nature of the state of the system at higher temperatures
remains unknown.

Owing to the strong coupling nature of the problem, con-
trolled solutions of the electronic Hamiltonian have been
limited to exact diagonalization [19–25] and DMRG calcula-
tions [26–32] at finite system size. These methods allow exact
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calculation of the ground and excited state properties, but are
limited to small system sizes. In the thermodynamic limit,
no method has yielded results consistent with experiment.
Hartree-Fock calculations were performed early-on [33–35]
and yielded charge density wave (CDW) states for all fill-
ing fractions. In addition, using the (partially self-consistent)
GW approximation, Tao and Thouless considered a periodic
occupation of the lowest Landau level single-particle wave
functions and found the existence of a gap to all excitations
at all integer-denominator filling fractions ν = 1

m [36,37].
A fully self-consistent homogeneous solution of the GW
equations was obtained by Haussmann [38] in an effort to
understand the nature of the pseudogap in the single-electron
density of states observed in experiments [39–44]. Since a
metallic state was observed instead, its physical implications
and relevance to the lowest Landau level physics as well as
related models was not realized.

In this paper, we revisit the GW theory for this problem and
analyze it in full detail without further approximations. We ob-
tain the phase diagram in the full space of parameters, which
reveals two distinct types of metal-to-insulator transition. We
pay particular attention to the metallic non-Fermi liquid (nFL)
state found in a wide range of parameters at intermediate
temperatures, as well as the critical point of its transition to
a fully filled Landau level band insulator. As a byproduct, we
reconcile the different diagrammatic results, and discuss the
shortcomings and successes of each.

We start from the microscopic model of electrons in
the lowest Landau level (LLL) interacting via the long-
range Coulomb potential in the thermodynamic limit. At
partial-filling of the LLL, the noninteracting limit yields
a macroscopically degenerate ground state, thus render-
ing an approach based on an expansion around it very
challenging. The lowest-order terms, corresponding to the
mean-field (Hartree-Fock) theory, have been understood for
some time [33–35], and yield CDW band insulator ground
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states for all filling fractions. This, however, contradicts
the experimental observation that FQH states possess no
long-range order [45]. Moreover, the expansion in the bare
interaction cannot be properly justified in the thermodynamic
limit since terms beyond first-order are divergent due to the
long range of the Coulomb interaction. For this reason, an
expansion in the screened interaction is necessary. We access
nonperturbative physics by formulating a diagrammatic se-
ries that is renormalized self-consistently to infinite order in
both the one-electron (G) and screened Coulomb interaction
(W ) channels. In this study, the diagrammatic expansion is
truncated at the level of the GW approximation, in which the
electronic self-energy � is given by the GW diagram and the
polarization � renormalizes the interaction by GG [46]. We
note that our approach is the same as that used by Hauss-
mann [38], but differs from the approach of Tao and Thouless,
which uses only partial self-consistency. Importantly, we find
that the Tao Thouless states are in fact not (fully) self-
consistent solutions of the GW equations (this point will be
further discussed in Sec. III). We envisage that this theory
will be systematically extended to sufficiently higher orders in
the future by means of advanced diagrammatic Monte Carlo
techniques [47–51], which could enable a priori control of
the potential systematic error. Our GW results, however, are
a necessary starting point for such extensions. Most impor-
tantly, being controlled in the high temperature limit, they
already suggest a nontrivial and rich physical picture of the
LLL at finite temperatures.

In particular, we demonstrate that the CDW physics ob-
tained at the mean-field level is altered fundamentally: there
is no continuous transition to density-wave ordering down to
(and including, at the GW level) T = 0 for 0.2 � ν � 0.8, and
the resulting metallic state is an nFL of the type described by
the prototypical Sachdev-Ye-Kitaev (SYK) model [52–54]—
a model with random all-to-all q-fermion coupling, denoted
SYKq (with q = 4 in the original case). Specifically, this nFL
phase displays quantum criticality, characterized by a power-
law low-frequency scaling of the fermion self-energy,

�(iω) = λe−isign(ω)(π/2+θ )|ω|1−2	, for ω → 0, (1)

with the so-called anomalous dimension 0 < 	 < 1/2, con-
stant λ > 0, and particle-hole asymmetry parameter θ , which
controls the filling fraction of the LLL and which must satisfy
−π	 < θ < π	. A solution of this form is relevant to the
normal state of high temperature superconductors [55–57] and
is closely related to extremal black-holes due to the emergent
low-energy conformal symmetry and the saturation of the
chaos bound on the Lyapunov exponent [58–60]. Physically,
it describes a compressible metal without coherent electronic
quasiparticle excitations. In certain SYK-inspired models in
nonzero spatial dimension, it is known that Eq. (1) leads to
linear-in-temperature resistivity [61–64], which is the main
signature of the ubiquitous strange metal phase [65–67].

Our nFL solution is described by Eq. (1) with 	 = 1
4 in the

theoretical limit ω → 0; however, at any practically relevant
frequency, the long-range nature of the Coulomb interaction
gives rise to appreciable logarithmic corrections to 	. This
state is found in a broad range of filling fractions centered
around one-half, as summarized in the phase diagram in

FIG. 1. Phase diagram of the model (3) within the GW approx-
imation in the temperature (T , in units of e2/
B which at typical
magnetic fields B = 13 T corresponds to ∼200 K) against filling
fraction (ν) plane. The non-Fermi liquid (nFL) phase of quantum-
critical fermions exists down to low T and for a broad range of ν, and
below the free fermion thermal state to nFL crossover temperature
TnFL (orange dash-dot line). At some transition filling νnFL-BI(T ),
the nFL undergoes a first-order transition to a band-insulating (BI)
phase corresponding to the fully filled LLL (solid black line). Phase
separation occurs inside this region, in which the nFL and BI phases
coexist, while metastable phases exist between the solid black and
grey dashed lines. The second-order critical point of this transi-
tion is labeled by (νc, Tc ) (red point). In addition, a second-order
charge-density wave (CDW) transition is observed from the nFL
phase at low temperatures TCDW(ν ) (red line). Inside the phase-
separation region, the location of the CDW transition is unknown,
and the boundary of the CDW phase is indicated by the blurring. The
metastable nFL phase undergoes a CDW transition shown by the red
dashed line. Experimental CDW transition temperatures reported in
Ref. [68] are shown for both heterojunction (dots) and quantum well
(crosses) samples. Also shown is the Hartree-Fock charge-density-
wave temperature T HF

CDW obtained in Ref. [33].

Fig. 1, and emerges from the high-temperature (free fermion)
thermal state at the crossover temperature TnFL ∼ 0.1 e2/
B.
Similarly to the SYK model [69,70], as the filling fraction
is increased at low temperatures, the nFL state undergoes a
first-order transition to a fully filled-LLL band insulator, with
the transition line ending at a critical point (νc, Tc) (see Fig. 1).

We study the critical point specifically, calculating the criti-
cal exponents and comparing them to those in the SYK model.
To this end, we reconsider the critical point of the SYK4

model, and demonstrate that the corresponding critical expo-
nents actually differ from those reported previously [69,70].
Instead, the values we obtain for SYK4 agree with those found
recently in the q → ∞ limit in Ref. [71]. Remarkably, we find
precisely the same exponents for the LLL model, indicating
that the critical points of the LLL and the SYKq models for
all q belong to the same universality class: the Van der Waals
universality class, also describing an extremal black hole. This
answers in the affirmative the question raised in Ref. [71] of
whether the critical points of the SYK4 and SYKq=∞ models
are the same.
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Compared to the SYK model, the phase diagram is
enriched by the presence of the CDW insulating state. Exper-
imentally, CDW phases are known to exist only for extremal
Landau level filling fractions ν � 0.25 and ν � 0.75 [72–77],
and our results predict a CDW ground state in qualitative
agreement with these observations (the ν � 0.25 range is a
mirror image of ν � 0.75 due to the particle-hole symmetry).
At larger filling fractions close to the nFL-to-band insulator
transition and at low temperature, we find that the transition
to the CDW phase is continuous. In addition, the corre-
sponding critical temperatures TCDW(ν) are the same order
of magnitude as those observed in experiments performed on
GaAs/AlGaAs heterojunctions and AlGaAs/GaAs/AlGaAs
quantum wells [68,77,78] (data from Ref. [68] are shown in
Fig. 1 for both types of sample).

Although the GW approximation is controlled in the high
temperature limit, the observed nFL state exists only at low
temperatures, for which the higher-order terms cannot be ne-
glected a priori. Nonetheless, additional observations allow
us to suggest that the nFL physics predicted by GW should
indeed describe the normal phase from which the fractional
quantum Hall states emerge as the temperature is lowered.
Specifically, the GW results are in qualitative agreement with
the exact results in the thin-torus (TT) limit, in which the
ground states are the Tao-Thouless states [79–82]. We find
that the low-temperature GW solution in this limit is indeed a
TT state, while at intermediate temperatures it transforms to a
nFL phase that is qualitatively similar to that observed in the
thermodynamic limit. Thus, since GW gives correct physics
both in the limit of high temperatures and in the TT limit
at low temperatures, by continuity we expect that it captures
the physics in the thermodynamic limit at some intermediate
temperatures as well, where the nFL state is predicted.

Our finding of the nFL at intermediate temperatures within
the LLL is also consistent with empirical evidence from other
systems where interactions completely dominate the kinetic
energy. One example is the twisted bilayer graphene near the
magic angle, in which nFL quantum critical states have been
found experimentally [83–85]. There, the normal state preced-
ing the low-temperature fractionally filled insulator is also an
nFL state [83,86,87]. In addition, it has been proposed [88,89]
that a graphene flake subject to a strong perpendicular mag-
netic field could serve as an experimental realization of SYK
physics, due to the absence of any dispersion and the spatial
randomness of the interaction stemming from the irregular
shape of the boundary. More generally, it is known that the
generic class of Hamiltonians which conserve both center of
mass momentum and center of mass position cannot possess
gapless ground states that are ordinary metals (here defined
as phases which possess a nonzero Drude weight) [90]. Since
the LLL Hamiltonian belongs to this class, any metallic state
must be an nFL in nature. Experimental work on the high
temperature properties of the partially filled LLL, which is
currently lacking, would be crucial to verify our predictions
experimentally.

This paper is organized as follows. In Sec. II, we derive
the microscopic Hamiltonian and discuss the single-particle
physics. In Sec. III, we present the diagrammatic formula-
tion of this problem and the GW approximation. In Sec. IV,
we consider translationally symmetric solutions of the GW

equations. The nFL solution is discussed in detail, as well as
the phase diagram displaying the nFL to band insulator transi-
tion. The corresponding critical point is also analysed, with
particular focus on calculation of the critical exponents. In
Sec. V, continuous phase transitions to density wave ordered
solutions are discussed. Finally, we put the GW results in a
broader context and discuss their relevance to the LLL physics
in Sec. VI.

II. MODEL

The two-dimensional electron system is subject to a
large homogeneous and perpendicular magnetic field B =
(0, 0,−B). The strong magnetic field implies that the elec-
trons are spin polarized and thus only one spin component is
considered. We work in Landau gauge, in which the vector
potential is A = (0,−Bx, 0). This choice of gauge explicitly
breaks the translation invariance in the x direction. Since,
however, the y-translation symmetry is preserved, the y com-
ponent of momentum k is a good quantum number and can be
used to label the single-particle states.

The lowest Landau level (LLL) eigenfunctions are

ψk = 1√

B

√
π

eikye
− 1

2
2
B

(x−k
2
B )2

, (2)

where 
B =
√

h̄
eB is the magnetic length, k = 2πn/Ly, and

Lx and Ly are the system sizes in the x and y direction.
Notably, the wave functions are localized in the x direction
at the position x = k
2

B, with localization width 
B. This is a
manifestation of the explicitly broken x-translation symme-
try in Landau gauge. The corresponding eigenenergies are
independent of k and are equal to E = h̄ωB/2 with ωB =
eB/m the cyclotron frequency. Therefore the LLL contains
a macroscopic number of states D = LxLy

2π
2
B
, all of which are

degenerate. The higher Landau levels are separated from the
LLL by a gap ∝ B, which allows us to ignore them entirely. In
the following we set E = 0, and consider the thermodynamic
limit Lx, Ly → ∞, in which the momentum k is continuous.

In the basis of single-electron states (2), the Hamiltonian in
terms of the corresponding creation (c†

k ) and annihilation (ck)
operators is

H1 = 1

2

∑
m

∑
kq

Vkqmc†
m+qc†

m+kcm+q+kcm −
∑

m

μc†
mcm, (3)

where the momentum summations are a shorthand for
∑

k =∫
dk
2π

(we use this notation throughout), and

Vkqm ≡ Vkq =
∫

d p

2π

2π√
p2 + q2

e− 1
2 (p2+q2 )
2

B eipk
2
B (4)

is the Coulomb potential V (r) = 1
r projected onto the LLL

and represented diagrammatically as

(5)

023210-3



BEN CURRIE AND EVGENY KOZIK PHYSICAL REVIEW RESEARCH 6, 023210 (2024)

In the following, we use units in which 
B = 1, and measure
all energies in units of e2/
B.

In realistic systems, a uniform positive background charge
density is required to ensure charge-neutrality and hence ther-
modynamic stability. In two dimensions and in a nonzero
external magnetic field, the stability of interacting electrons is
very fragile because of the large exchange energy, which can
lead to negative compressibility κ [91–94]. In the inversion-
layer materials used in experiments, the two-dimensional
plane in which the electrons reside is located at the inter-
face between two semiconductors with differing band-gaps,
and the plane of positive background charge (here the donor
ions) is separated from this electron plane by a small distance
d [95]. While the d = 0 case leads to κ < 0 for generic
densities, nonzero d introduces a positive capacitance energy,
which can offset and nullify the (negative) exchange energy
for large enough separation d . This ensures κ > 0 for all
electron densities. In this paper, for simplicity, we consider
a separation such that the (homogeneous) exchange term is
canceled exactly, which allows us to simply set the spatially
uniform components of this term to zero. We note that while
dynamical properties of the nFL phase are unchanged by
the value of d , the thermodynamic properties—for example,
the compressibility—are altered. Therefore the parameters at
which phase transitions occur at nonzero d will in general
differ from those reported here at d = 0.

III. DIAGRAMMATIC FORMULATION AND GW
APPROXIMATION

Our main observable, containing the information about the
state of the system and its excitation properties, is the finite-
temperature (Matsubara) Green’s function of the electrons in
the LLL, which is defined as [96]

Gk (τ ) = −〈T ck (τ )ck (0)†〉, (6)

where T is the time-ordering operator for the imaginary time
τ . It can be obtained through a calculation of the electronic
self-energy �, which contains the combined effect of electron
interactions on one-particle excitations, via the Dyson equa-
tion [96]

Gk (iω) = 1

iω + μ − �k (iω)
, (7)

where ω is the Matsubara frequency. In the diagrammatic
theory, � is formulated as an expansion in the powers of the
coupling vertex, with each term represented graphically by
the corresponding number of vertices (5) connected by the
Green’s functions and integrated over all internal variables.
In particular, the first-order self-energy diagrams yield

�k (iω) = 1

β

∑
ν

∫
dq

2π
(Vq,0 − V0,q)Gk−q(iω − iν), (8)

where the first and second terms correspond to the Hartree
and Fock contributions of the mean-field theory, respectively.
In the homogeneous high-temperature phase, the Hartree-
Fock self-energy is a trivial (i.e., momentum and frequency
independent) energy shift. However, as discussed in the in-
troduction, it develops an instability towards CDW order at

intermediate temperatures T HF
CDW ∼ 0.1e2/
B for all LLL fill-

ings (blue dotted curve in Fig. 1: see Appendix A for more
details). Since the first order gives no new physics in the
homogeneous phase, which is of primary interest to us here,
we now move on to higher-order.

Systematically going beyond the mean-field by including
higher order in V terms is plagued by Dyson’s collapse [97]
in the LLL model as at B = 0, which renders the expan-
sion in the bare V divergent with zero convergence radius.
There are currently a number of ways to address the problem,
such as, e.g., by an arbitrary dressing of the interaction with
the explicit inclusion of the corresponding counter-terms in
the expansion [50,98,99], or by a more general homotopy
of the microscopic model [100]. Both methods, however,
are only supposed to yield physically meaningful results at
sufficiently high orders of the expansion. We thus adopt the
standard approach of reformulating the expansion in terms
of the interaction W that is self-consistently screened by the
electron polarization � [46]:

Wk1,k2;q(iν) = V(k1−k2 )q +
∑

k3

V(k1−k3 )q �k3;q(iν) Wk3,k2;q(iν),

(9)
where ω and ν are fermionic and bosonic Matsubara
frequencies, respectively. Here, the self-energy � and po-
larization � are irreducible (skeleton) expansions in terms
of G and W which themselves are to be computed self-
consistently [46,96]. This formulation is formally exact and
could in principle be evaluated to high expansion orders
by bold-line DiagMC techniques [47–49,101,102] to yield
results with controlled error bars. However, the DiagMC ap-
proach with self-consistency in two channels poses substantial
technical challenges and typically builds upon an accurate
deterministic solution of the problem at the lowest order of
the diagrammatic expansion [49], which we derive here. This
is the so-called self-consistent GW approximation, where

�k (iω) = − 1

β

∑
iν

∫
dq

2π
Wk−q,k−q;q(iν)Gk−q(iω − iν) (10)

and

�k3;q(iν) = 1

β

∑
iω

Gk3+q(iω + iν)Gk3 (iω). (11)

Equations (7), (9) (10), and (11) form a closed set, which
we solve here by iterations without any additional ap-
proximations. For this we utilize the discrete Lehmann
representation [103], which enables compact representation of
the frequency dependence of all quantities.

While the truncation to GW is uncontrolled in general, it
can be shown that at high temperature, the GW diagram is
leading order in T . This is a consequence of the long-range
nature of the Coulomb interaction, and is similar to the domi-
nance of the same diagrams in the zero magnetic field electron
gas [104]. The same is true for large μ, and hence also for
large (and small) filling fractions.

Tao and Thouless solved the GW equations at zero tem-
perature, by approximating the self-energy to be frequency
independent [36,37]. This is similar to the quasiparticle self-
consistent GW approximation [105–107]. The resulting states,
named TT states, were found to have microscopic (in the sense
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that their wavelength λ 
 
B) periodic modulations of the
charge density, and a charge gap for all fractional fillings,
including those with even denominators. Details of the TT
approach, and the related thin-torus limit in which the TT
states are the exact ground states, are given in Appendix B.
We find, however, that including the full dynamics due to the
frequency dependence destroys the TT states in the thermody-
namic limit, as shown below.

IV. HOMOGENEOUS SOLUTION

In this section, we confine ourselves to the generic case of
transitionally symmetric solutions and consider the possibility
of breaking this symmetry separately in the next section. Due
to our choice of the gauge, the y component of the momen-
tum k plays an unusual role. The lack of the translational
invariance in the x direction implies that the system becomes
inhomogeneous whenever G features a nontrivial dependence
on k. This can be seen by considering the density operator in
the momentum space

ρ(q) =
∫

d2r e−iq·rφ†(r)φ(r), (12)

where φ(r) = ∑
k ψk (r)ck , which yields

ρ(q) = e− 1
4 q2
2

B

∫
dk

2π
e−iqxk
2

B c†
k−qy/2ck+qy/2. (13)

If the y-translational symmetry is unbroken, then 〈c†
k+qy/2

ck−qy/2〉 = nk2πδ(qy), where nk = 〈c†
kck〉 is the momentum

distribution. This leads, e.g., for a single mode along the x
axis nk = eiQkn to

〈ρ(q)〉 = 2πne− 1
4 q2

x 

2
Bδ(qy)δ

(
qx


2
B − Q

)
(14)

which corresponds to a state which is uniform in the y-
direction but has CDW order with wavevector Q in the
x-direction.

If the solution is translationally invariant, the result-
ing momentum independence of G substantially simplifies
Eqs. (9)–(11). Since in this case W depends only on the
difference between the leg momenta k = k1 − k2,

Wkq(iν) =
∫

d p e−ipk U (p, q)

1 − �(iν)U (p, q)
(15)

with U (p, q) = 1√
p2+(q
2

B )2
e
− 1

2
2
B

(p2+(q
2
B )2 )

, the polarization and

self-energy become

�(iν) = 1

β

∑
iω

G(iω + iν)G(iω) (16)

and

�(iω) = − 1

β

∑
iν

G(iω − iν)W (iν), (17)

where

W (iν) = 
2
B

∫ ∞

0
dρ ρ

U (ρ)

1 − �(iν)U (ρ)
(18)

is a totally momentum independent effective interaction with
U (ρ) = e− 1

2 ρ2
2
B/ρ
2

B.

Let us first show that all solutions of Eqs. (7), (16), (17),
and (18) are necessarily gapless in the T = 0 limit. Closely
following the argument of Ref. [52] developed for the SYK
model, let us assume that the Green’s function has a gap
	, i.e., that the corresponding spectral function ρ(ω) =
− 1

π
Im G(ω + iη) satisfies ρ(ω) = 0 in some range of fre-

quencies |ω| < 	/2. By performing a spectral decomposition
of Eqs. (16) and (17), it follows that W has a gap 2	 and
that � has a gap 3	, but then the Dyson equation (7) implies
that the Green’s function must have a gap 3	. Hence the only
consistent value is 	 = 0 and the solution is gapless.

Tunnelling experiments indicate that at low temperature,
the electron spectral function exhibits a pseudogap (i.e., a
strong suppression) at low frequencies [39–44]. This behavior
has been found theoretically within the composite fermion
picture, which yields an exponential suppression of the spec-
tral function, ρ(ω) ∝ e−ω0/|ω|, with some energy scale ω0 >

0 [108,109]. Following a similar argument to that given above,
it is possible to show that this spectral function is also incon-
sistent with the GW equations.

A. Non-Fermi liquid solution

The set of equations (7), (16), (17), and (18) can be
solved analytically for low frequencies and T → 0, result-
ing in the nFL solution of the form (1). It corresponds to a
broad singularity in the spectral function ρ(ω) = A|ω|2	−1 at
low frequencies, which indicates an absence of well-defined
electron-like quasiparticles, or, equivalently, an infinitesimally
short quasiparticle lifetime. This self-energy, and thus the
corresponding single-electron excitation spectrum, is the same
as that of the nFL solution realized in the SYK model.

For ω → 0 the exponent 	 solves the equation (the calcu-
lation is outlined in Appendix C)

f (	) + g(	) ln(ω) = 1 (19)

with f (	) and g(	) being functions of 	 only, and

g(	)= (4	 − 1)2

(2	 − 1)[sec(2π	) − 1]

sin(π	)2

sin(π	 − θ ) sin(π	 + θ )
.

(20)

Thus g(	) → 0 for ω → 0, which yields 	 = 1/4 (and
f (	) = 0) for all θ . The independence of 	 on the filling
fraction is a nontrivial result, and in this case, is a consequence
of the logarithmic corrections. To see this, note that the loga-
rithm in the second term on the RHS of Eq. (19) implies that
the solutions to Eq. (19) are given by the roots of the function
g(	), which are robust with respect to variations of θ . Without
the logarithmic term in Eq. (19), the solution 	 is no longer a
root of the function g(	), and therefore it acquires some weak
dependence on θ .

In practice, the asymptotic form Eq. (19) is applicable only
for frequencies as small as ω 
 10−6. In more practical fre-
quency regimes we must solve the GW equations numerically.
To this end, we examine the functions

	� (iω) = ∂ ln (|�(iω)|)
∂ ln(ω)

, 	G(iω) = ∂ ln (|G(iω)|)
∂ ln(ω)

(21)
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FIG. 2. The exponent 	 estimated from the functions 	G (blue
curve) and 	� (red curve) defined in Eq. (21) at half-filling ν = 1/2
(μ, θ = 0). This is shown for temperature T = 2 × 10−5. Finite tem-
perature effects are seen at small frequencies T � ω � 10T as rapid
up-turns. As ω → 0, the two curves approach asymptotically. Also
shown (green curve) is the value of 	 that solves Eq. (19). At ar-
bitrarily low-frequency, all three curves will coincide, and approach
the value 	 = 1/4 as ω → 0.

against frequency at the lowest accessible temperatures (in
practice, T = 2 × 10−5) and at half-filling (μ = θ = 0).
Since G and � are related by the Dyson equation (7), 	G

and 	� will lead to the same estimate of 	 for sufficiently
small ω.

The result is shown in Fig. 2. It is clear that, for realistic
frequencies, the deviation of the apparent 	(ω) from 1/4
due to the logarithmic in frequency corrections is substantial,
meaning that the asymptotic value 	 = 1/4 is not observable
in practice. There are also notable differences between the
estimates of 	 from the asymptotics of G(iω) and �(iω),
stemming from G0 in the Dyson equation. As the frequency
is lowered, however, this difference is seen to eventually be-
come less important compared to the remaining logarithmic
corrections.

The nFL character [i.e., the anamolous scaling of �(iω)]
of the solution will only be present at sufficiently low tem-
peratures. At sufficiently high temperature, the system is in
a free-fermion thermal state. To estimate the crossover tem-
perature to the nFL regime, we consider the function δ� =
Im �(iω0) − Im �(iω1), where ω0 = πT and ω1 = 3πT are
the lowest and first Matsubara frequencies, respectively, and
adopt the convention in which a metallic state corresponds
to δ� < 0, while the thermal state has δ� > 0. In these
terms, the crossover temperature TnFL is defined by the
equation δ� = 0, which yields TnFL ∼ 0.1e2/
B roughly in-
dependent of the filling fraction, as indicated in Fig. 1.

The appearance of SYK physics in the microscopic de-
scription of the LLL could be seen as surprising. Qualitatively,
a connection can be made in terms of the constraints placed
on the Green’s function by the requirement of a homogeneous
charge-density—which imply that all single particle proper-
ties are momentum independent—and the flat band nature of
the noninteracting physics. Mathematically, the form of the

FIG. 3. Chemical potential μ against filling ν for various tem-
peratures. The dashed lines, obtained using Maxwell’s construction,
show the value of μ at which the density jumps discontinuously as μ

is varied in equilibrium.

SYK self-energy

�SYK(iω) = −U 2

β

∑
ν

G(iω − iν)�(iν), (22)

where U is the SYK interaction strength and � is the polar-
ization defined in Eq. (16), corresponds to that for the LLL,
Eq. (17), with the single particle-hole bubble � in place of
the full screened Coulomb interaction W . Therefore the SYK
character of the GW solution can be understood in terms of
the dominance of the effect of the single-bubble contribution
in W , up to the logarithmic corrections due to the long-range
nature of the bare Coulomb potential. Our preliminary cal-
culations suggest that a similar nFL state is also present for
the Trugman-Kivelson potential, for which the Laughlin wave
function is the exact ground state [110]. A more focused study
for this potential is left for future work.

While we have demonstrated that the single-particle ex-
ciation spectrum is (nearly) identical to that of the SYK
model, it is possible that the multi-particle excitation spec-
trum, which is not investigated here, is distinct from that
of the SYK model. For example the diagrammatic expan-
sion for the density-density correlator—which determines the
spectrum of two-particle excitations—that is thermodynam-
ically consistent (in the Baym-Kadanoff sense [111]) with
the GW self-energy contains vertex corrections, while for the
SYK model the vertex corrections vanish due to the large-N
limit [52,112]. Investigation of the two-particle spectrum for
the current model is however beyond the scope of the present
work.

B. Phase diagram

Similarly to the SYK model [69,70], we find that a first-
order transition to a band insulating phase, corresponding to
a fully filled LLL, is triggered at some finite value μnFL-BI.
In Fig. 3, we show the chemical potential against density for
different temperatures. The curves are obtained by fixing the
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FIG. 4. Phase diagram in the T -μ plane. The solid black line
marks the first order transition between the non-Fermi liquid and
band-insulator phases at chemical potential μnFL-BI(T ), which ter-
minates at a critical end-point (μc, Tc ) (red point). In the spinodal
region, bounded by the dotted lines, both phases can be realized,
however one is metastable. The second-order transition from the
nFL to a charge-density wave is seen at low temperatures. On the
band-insulator side, we expect the CDW to also be present, and for
this to emerge from the band-insulator phase via a first-order phase
transition. We have not determined the location of this transition, but
indicate its presence by the blurred region.

charge density ν and calculating the corresponding value of μ.
We observe the typical behavior of a first-order transition: be-
low some critical temperature, we find a range of μ values for
which three different solutions ν(μ) exist. The solution with
the intermediate charge density has a negative compressibility
K ∝ dν

dμ
< 0 and is therefore thermodynamically unstable.

The chemical potential μnFL-BI, at which ν jumps discontin-
uously, is found via Maxwell’s construction (see Appendix D
for details), depicted in Fig. 3 as the horizontal dashed line.

The phase diagram in the T − μ plane is shown in Fig. 4
(black solid and dotted curves). We focus solely on positive
μ, since the negative μ behavior can be inferred from the
particle-hole symmetry. In the small-μ region, we find the
nFL phase discussed in the previous section. In the large-
μ region, the Green’s function is exponential in imaginary
time, G(τ > 0) ∼ −eμτ , for μ/T � 1, which corresponds to
a band-insulating phase with filling close to unity (at zero
temperature the BI has strictly unit filling, while at finite
temperature this phase exists for narrow range of fillings near
unity due to thermal broadening effects). The two phases are
separated by a first-order transition line, which ends at the
second-order critical end point (μc, Tc). At all temperatures
below Tc, there is some finite range of μ, bounded by the
dotted curves and labeled the spinodal region, in which both
the nFL and BI solutions are found, but one is metastable.
The critical parameters are Tc = 0.04735(2), μc = 0.3190(1),
which correspond to νc = 0.979(1).

The phase diagram in the T -ν plane is shown in Fig. 1.
The solid black curve delimits the phase-separation region in
which the nFL and band-insulating phases coexist. The critical
point lies at the top of the phase-separation “dome.”

FIG. 5. Estimate of the susceptibility critical exponents γ̃±. The
function γ̃ (t ), defined in Eq. (25), is plotted against the reduced
temperature t = (T − Tc )/Tc at the critical chemical potential μc

for the lowest Landau level model (blue) and SYK model (red).
The dashed lines are the fits by Eq. (26), revealing that the critical
exponents for both LLL and SYK models and positive and negative t
are identical, and are in perfect agreement with the value γ̃ = 2/3
obtained analytically for the SYKq model in the q → ∞ limit in
Ref. [71]. The fitting parameters for ffit (t ), defined in Eq. (26),
are shown next to their respective curves. The corrections to the
critical scaling are asymmetric around t = 0, and γ̃ (t ) approaches
the limiting value γ̃ with infinite slope.

C. Critical point of the LLL and SYK models

We now focus on the critical point of the continuous tran-
sition, determine its universality class and compare the results
to those for the SYK model. To this end, we calculate the
critical exponents γ̃± of the compressibility χ (T, μ) = ∂n

∂μ
as

a function of temperature, defined as

χ (t, μc) ∼ |t |−γ̃± for t → 0± (23)

where t = (T − Tc)/Tc is the reduced temperature, as well as
the exponents q± for the density

|ν(T, μc) − ν(Tc, μc)| ∼ |t |q± for t → 0±. (24)

The critical exponents can be evaluated by considering
their temperature-dependent estimates

γ̃ (t ) = ∂ ln χ (t, μc)

∂ ln t
, (25)

and similarly for q(t ). In previous studies of the critical point
in the SYK model [69,70], the exponents γ̃±, q± were ob-
tained by a linear extrapolation of γ̃ (t ), q(t ) to t → 0±. Since
we have very small error bars on the critical values μc, Tc, νc,
we are able to approach the critical point much more closely,
observing that the limiting values of the critical exponents are
actually approached with infinite slope (see Fig. 5). This re-
sults in significant error in the estimate if a linear extrapolation
is performed, and indicates that leading-order corrections to
the dominant power law are playing a significant role in the
small-t limit. We therefore use instead the fitting ansatz

ffit(t ) = a±|t |α± + b±|t |β± for t → 0±, (26)
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TABLE I. Critical parameters (Tc, μc, νc ), critical exponents (γ̃+, γ̃−, q+, q−) and the corresponding sub-leading correction exponents
(γ̃ c

+, γ̃ c
−, qc

+, qc
−) for both SYK4 and LLL models. The subscript on the exponents specifies the direction in which the crtical point is approached.

Tc μc νc γ̃+ γ̃− q+ q− γ̃ c
+ γ̃ c

− qc
+ qc

−

SYK4 0.068372(2) 0.344713(3) 0.9498(2) 0.66(1) 0.66(1) 0.33(1) 0.33(1) −0.30(2) −0.35(4) −0.6(1) −0.65(5)
LLL 0.04735(2) 0.3190(1) 0.3190(1) 0.66(1) 0.66(1) 0.33(1) 0.33(1) −0.29(2) −0.35(5) −0.65(5) −0.6(2)

which is the simplest extension of a single power-law, and
which includes the leading-order corrections to the critical
behavior. To further reduce systematic errors from the use
of a finite range of t in the fit, we extract the fit parameters
(including the value of Tc) for a set of different ranges of t
(with order of magnitude roughly t ∼ 10−4) and choices of
μc within its error bar, and extrapolate the resulting values
to the t → 0 limit; the uncertainty of this extrapolation to-
gether with the spread of the data with μc is the source of
the claimed error bars. An example of such a fit in the range
t ∈ [2 × 10−4, 2 × 10−3] is shown in Fig. 5. In this way, we
obtain the critical exponents with high accuracy, as well as the
exponents characterising the leading-order corrections. Since
in Refs. [69,70] the exponents for the SYK model have been
found to differ on the two sides of the transition, we calculate
both independently.

The location of the critical point, as well as the criti-
cal exponents and subleading exponents for the LLL and
SYK4 models are summarized in Table I. For the LLL
model we find the values γ̃+ = 0.66(1), γ̃− = 0.66(1) and
q+ = 0.33(1), q− = 0.33(1). These exponents are different
from those reported previously for the SYK4 model. How-
ever, by evaluating the SYK4 critical parameters with error
bars at least two orders of magnitudes smaller than the pre-
vious estimates [T SYK

c = 0.068372(2), μSYK
c = 0.344713(3),

and νSYK
c = 0.9498(2)], and using the fit (26), we find

the SYK4 exponents γ̃ SYK
+ = 0.66(1), γ̃ SYK

− = 0.66(1), and
qSYK

+ = 0.33(1), qSYK
− = 0.33(1), which are identical to our

LLL exponents. Interestingly, while the exponents (both crit-
ical and correction) as well as the leading coefficients are
symmetric around the critical point, we find that the coeffi-
cients of the sub-leading terms are asymmetric. This is likely
the cause of the apparent asymmetry of the critical exponents
obtained previously by linear fitting.

Very recently, an analytical study of the generalized SYKq

model has been performed in the q → ∞ limit [71]. The
resulting exponents are identical to those obtained here for

the LLL and SYK (SYK4 in these notations) models, and
were found to belong to the Van der Waals/Ising mean-field
universality class. It is emphasized by the authors of Ref. [71]
that the critical exponents depend upon the direction in the
T, μ plane along which the critical point is approached. This
is the reason for the difference between the exponents given
here and those usually quoted for this universality class (for
more details on this topic, the reader is referred to Ref. [71]).
Therefore we also conclude that both the LLL and the SYK4

models belong to this universality class, and it is very likely
that this is also true for all possible q by continuity. A proper
investigation of all SYKq critical points is beyond the present
scope.

V. GW CDW INSTABILITY

Having established the nature of the homogeneous phase,
we now analyze the possibility of CDW instabilities within the
GW approximation. We detect the occurrence of a continuous
phase transition to a charge-ordered phase by the divergence
of the charge susceptibility χp at the relevant wavevector
p. We obtain χp via the Bethe-Salpeter equation, which is
expressed in terms of the two-particle irreducible vertex �

(see Appendix A for the definition of the susceptibility). Since
the GW approximation is �-derivable, calculating � via the
functional derivative

� = 1

T

δ�

δG
(27)

ensures thermodynamic consistency [111]. Determining the
vertex in this way also allows a different interpretation of
the divergence of the susceptibility: it signals the switch-
over from iterative stability to instability of a self-consistent
solution of the Dyson equation. This is easily seen by lin-
earising the Dyson equation around a solution. This viewpoint
has also been adopted within dynamical mean field theory,
wherein the variation with respect to the hybridization is
considered [113,114]. Therefore our expression for the irre-
ducible vertex within the GW approximation is represented
diagrammatically as

(28)
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FIG. 6. (a) Schematic illustration of the variation of the grand
potential � with the chemical potential at constant (arbitrary) tem-
perature T . The CDW curve must intersect the band-insulator (BI)
curve at a chemical potential μCDW-BI � μnFL-BI, thus justifying the
existence of the blurred region in Fig. 4 wherein the CDW exists.
(b) The momentum p∗ at which the susceptibility is a maximum as
a function of filling fraction ν at fixed temperature T = 0.005. In
the shaded region, there are CDW transitions from the metastable
nFL phase. In the pure nFL phase, there are no CDW transitions
at this temperature. This shows no special features of the density
fluctuations as the filling is varied.

where the dotted line represents W . In this expression, we set
the transfer frequencies and momenta to zero since only these
components are required to study the charge-density ordering
instability. The index k corresponds to position in the x direc-
tion, and therefore we study the susceptibility as a function
of the wave number p, which is the Fourier conjugate to k.
Since we have a translation-invariant normal phase, implying
dependence on only the difference k − k′, the Bethe-Salpeter
equation for χ is diagonal in the wave-number basis.

The obtained critical temperature for the nFL-to-CDW
transition as a function of the chemical potential is shown in
Fig. 4 (red curve). We observe a small region at low tempera-
ture adjacent to the nFL-to-BI transition in which CDW order
emerges. For μ � 0.18 (corresponding to 0.5 � ν � 0.8), we
find that the susceptibility roughly behaves as χ−1 ∼ aT + C,
where a,C are positive constants (with C → 0 as μ → 0.18
or ν → 0.8), at the momentum at which χ−1 is the smallest.
This suggests that no CDW transition takes place down to
zero temperature below μ ≈ 0.18 (ν ≈ 0.8). Within the BI
phase at μ � 0.2 (ν ≈ 1, almost independently of μ) and at
low temperatures, charge fluctuations are strongly suppressed,
which eliminates the possibility of a continuous transition
to a CDW in this region of the phase diagram. However,
generically, the CDW should be present here too, separated
from the BI phase by a first-order transition. This can be seen
by considering the grand potentials of all three phases [nFL,
CDW and BI, see an illustration in Fig. 6(a)]. At the nFL-to-
CDW transition [red dashed line in Fig. 6(a) and red line in
Fig. 4], the grand potential �CDW of the CDW phase emerges
below that of the nFL phase �nFL. This means �CDW must be
smaller than the BI grand potential, �BI, at the location of the
first-order nFL-BI transition, where �nFL = �BI [blue dashed
line in Fig. 6(a) and black line in the inset of Fig. 4]. This
implies that in general the CDW will persist into the BI region,
undergoing a first-order transition to the BI phase at some
chemical potential μCDW-BI [gray dashed line in Fig. 6(a)].
Detecting first-order transitions is beyond the present study,
and thus we indicate the corresponding boundary of the CDW
region only roughly by blurring in Figs. 1 and 4.

The CDW transition line is also shown in the temperature-
density plane in Fig. 1. Between roughly ν = 0.8 and 0.82, the
CDW emerges from the pure nFL phase via a second order
phase transition. In the phase separation region ν ≈ 0.82 to
ν ≈ 1, our calculated Green’s functions, which correspond to
a pure phase, do not capture the equilibrium properties of the
system. Within the metastable nFL phase, the transition to the
CDW is shown in Fig. 1 by the dashed red line. Generically,
from the analysis of the grand potentials of the corresponding
phases [Fig. 6(a)], we expect that the ground state in the
phase-separation region is a CDW, with a (first-order) tran-
sition temperature that depends on the filling fraction.

We have investigated the wave-number dependence of χ at
fixed temperature, by plotting the wave number p∗ at which
χ is maximum as a function of ν, as shown in Fig. 6(b) at
temperature T = 0.005. Note that at this temperature, there
are no CDW transitions from the pure nFL phase. However,
transitions do occur from the metastable nFL phase at certain
filling fractions, as marked in Fig. 6. This shows no special
features as ν is varied, but we note that in contrast to Hartree-
Fock, p∗ depends on ν and that where the CDW phase exists,
the dependence of the ordering wave vector is very weak.

The phase diagram obtained in the Hartree-Fock approx-
imation [33] is drastically different from our self-consistent
GW theory: the Hartree-Fock ground state is a CDW at all fill-
ing fractions, with a typical transition temperature an order of
magnitude higher than that of the CDW state in GW . Because
of its dynamically fluctuating nature, the nFL state, which
dominates the phase diagram and suppresses the possibility
of ordering, is entirely missed by the Hartree-Fock theory.

We also compare our results to the experimental critical
temperatures [68]. We find that the values of filling and tem-
perature for the onset of the CDW phase are in qualitative
agreement with experiment. Therefore, while the GW approx-
imation does not capture the low-temperature FQH states at
odd-denominator fillings in the range 0.2 � ν � 0.8, qualita-
tive agreement with experiment is achieved outside this range
of ν. An explanation for this agreement could lie in the fact
that GW , being controlled in the large-μ limit, is intrinsically
more accurate at larger filling fractions.

VI. DISCUSSION

We have analysed the microscopic model of electrons in
the lowest Landau level interacting via the Coulomb po-
tential by the self-consistent (skeleton) diagrammatic theory
truncated at the level of the GW approximation. Our central
observation is a peculiar finite-temperature nFL state, realized
in a wide range of LLL filling fractions, 0.2 � ν � 0.8. The
state is qualitatively similar to that found in the paradigmatic
SYK model and features a power-law—rather than linear as
in a Fermi liquid—frequency dependence of the self-energy
at low frequencies. We demonstrate that the anomalous di-
mension, which characterizes this power-law, deviates from
that in the SYK model by sizable logarithmic corrections due
to the Coulomb interaction. The SYK-like nFL state exhibits
transitions to different insulating states at low temperatures.
At large (or small, by particle-hole symmetry) fillings, we
observe a first-order transition from the nFL state to a band
insulator phase corresponding to a full (or empty) LLL, with
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a critical end point. The critical point is found to belong to the
same universality class as its counterpart in the SYKq models
for all q, which itself is determined to be in the Van der Waals
universality class. Near the nFL-BI transition, the nFL state
also exhibits a second-order instability towards CDW order in
a narrow range of filling fractions 0.8 � ν � 0.82 and at low
temperatures, which are qualitatively consistent with those
observed for CDW ordering experimentally.

Notably, in the wide range 0.2 � ν � 0.8, the nFL phase
remains stable down to the ground state and the fractional
quantum Hall (FQH) states at odd denominator fillings are
not observed within the GW theory. In fact, we demonstrate
that the fully self-consistent GW approximation necessarily
gives a gapless phase if the solution is assumed translation-
symmetric, as is the case for a FQH state. One implication of
this fact is that the Tao-Thouless states [36,37], found earlier
by a GW theory similar to the quasiparticle self-consistent
GW approximation [105–107], are in fact not valid in the fully
consistent case.

At even-denominator filling fractions, experiments indicate
a metallic state at low temperatures, which at first glance
seems consistent with our observations at these fillings. How-
ever, the nFL state we observe is of a fundamentally different
character to the experimentally observed Fermi liquid states of
composite fermions. This is clear from the studies of tunneling
between two parallel electron planes in the high magnetic
field limit [39–44], which directly probe the spectral function
ρ(ω) of the electrons in the partially filled LLL. It was found
that, for the even-denominator compressible states, ρ(ω) ex-
hibits an ‘orthogonality catastrophe’ at low temperature, i.e.,
a strong (exponential) suppression of ρ(ω) at ω → 0. Sim-
ilar features are obtained theoretically using the composite
fermion approach [108,109], by a classical treatment of the
electron liquid [115] and by approximating the system as a
Wigner crystal (which is thought to accurately capture the
short-range correlations) [116], as well as numerically for
small numbers of electrons [117]. Despite the suppression
of ρ(0), the system exhibits metallic transport properties be-
cause the conducting quasiparticles are not the microscopic
electrons but rather the composite fermions, which have little
overlap with the electrons [118]. From these considerations,
it is evident that extending the microscopic theory beyond the
GW approximation is necessary to capture the experimentally
observed behavior of the partially filled LLL at very low
temperatures.

Calculations that would systematically include diagrams
beyond GW , e.g., by means of diagrammatic Monte Carlo
techniques [47–51], are also needed to evaluate the systematic
errors of our results. Nonetheless, since the GW approxi-
mation is controlled in the limit of high temperatures and
correctly captures the thin-torus limit at all temperatures, we
expect that the nFL phase found here at intermediate tem-
peratures should be observable in the LLL system. It would
exist within an intermediate range of temperatures below the
free-fermion thermal state to non-Fermi liquid crossover tem-
perature TnFL ∼ 0.1e2/
B ∼ 20 K, but above the temperature
at which the correlations present in the FQH state begin to
develop, which roughly could be taken as at most the gap
scale Tgap ∼ 0.05e2/
B ∼ 10 K [119], where the temperatures
in kelvin are shown for the typical magnetic field strength

B = 13 T. If this is the case, then the FQH states, and indeed
the metallic states at even denominators, could emerge from
this state of incoherent electrons as the temperature is lowered.
While direct calculation of the resistivity for the LLL model
is left for future studies, we conjecture that, experimentally, a
signature of this nFL phase could be an anomalous scaling of
the resistivity with temperature of the form ρdc(T ) ∼ T 2−4	

with 	 the anomalous dimension defined in Eq. (1), as is
found for models of itinerant electrons exhibiting an SYK-like
phase [112]. In the LLL model, the value 	 = 1/4 is only
valid in the strict ω → 0 limit, meaning that at finite tempera-
tures the substantial logarithmic corrections to 	 would likely
lead to observable deviations from the linear-in-T behavior
expected for 	 = 1/4. While experimental results exist for
the variation of the resistivity with the temperature [45,120],
the temperatures ranges are low and the system is in the FQH
regime. As far as we are aware, experimental data at higher
temperatures does not yet exist in the literature. Our results
suggest that the physics at these intermediate temperatures is
potentially very rich and its further investigation can shed new
light on the nature of the FQH states.
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APPENDIX A: HARTREE-FOCK CDW INSTABILITY

1. Detecting CDW instability

The susceptibility of the system can be defined by consid-
ering the following extra term in the Hamiltonian:

H ′(τ ) = −
∑

k

ζk (τ )c†
k (τ )ck (τ ), (A1)

where ζk (τ ) is an momentum dependent external field. Since
this is an imaginary-time dependent perturbation, its action is
to bring the system out of equilibrium. However, we are only
interested in the limit ζ → 0, which restores thermodynamic
equilibrium. The relevant susceptibility is the density-density
correlator

χk−k′ (τ − τ ′) = 1

β

δ〈nk (τ )〉
δζk′ (τ ′)

∣∣∣∣
ζk′→0

= 〈nk (τ )nk′ (τ ′)〉 − 〈nk〉〈nk′ 〉 (A2)

[the numerator 〈nk (τ )〉 is time-dependent because we have not
yet taken the limit ζ → 0]. The static part of the Fourier trans-
form (with respect to k − k′) χp(iν = 0) with wave number
p diverges at the (second-order) phase transition between the
homogeneous and CDW phases.

We calculate the static response χk−k′ (iν = 0) by consid-
ering the generalized susceptibility, which in particle-hole
notation for the frequency dependence can be expressed in
terms of the (particle-hole) irreducible vertex �ph via the
following Bethe-Salpeter equation

χωω′ν = χωω′ν
0 − 1

β2

∑
ω1ω2

χ
ωω1ν
0 �

ω1ω2ν
ph χω2ω

′ν, (A3)
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where χωω′ν
0 = −βG(iω)G(iω′ + iν)δωω′ is the bare suscep-

tibility and we have suppressed momentum indices for now
(we use similar notations and definitions to those found in
Ref. [121]). Since the CDW response function is static we
will only consider the ν = 0 components of χ . As a matrix
equation, Eq. (A3) becomes

χ = χ0

1 + T 2χ0�
. (A4)

The vertex �kk′ can be written in terms of G and � as (consid-
ering only the ν = 0, q = 0 components)

�ωω′,kk′ = 1

T

δ�k,ω

δGk′,ω′
. (A5)

Since the normal phase is translation invariant and in the LLL
model the momentum k corresponds to position (in the x di-
rection), we have �kk′ = �k−k′ , which can be seen by explicit
calculation. Therefore the inverse susceptibility can be written
in terms of the wave number p as

(χ−1)ωω′,p = −T
1

G(iω)2
[δω,ω′ − T G(iω)2�ωω′,p]. (A6)

If (χ−1)ωω′,p has a zero eigenvalue, then this implies that the
response function

χp = 1

β2

∑
ω,ω′

χωω′,p (A7)

is divergent. We can therefore calculate the eigenvalues of
(χ−1)ωω′,p and determine the critical point as the point at
which an eigenvalue vanishes.

2. CDW in the Hartree-Fock approximation

At the level of the Hartree-Fock (mean-field) approxi-
mation, it is possible to find the critical point analytically
without considering the eigenvalues. Since the self-energy is
frequency-independent, the self-energy (8) only depends on
momentum:

ξk =
∫

dq

2π
(Vk−q,0 − V0,k−q )nF (ξq − μ) (A8)

where nF (x) = (eβx + 1)−1 is the Fermi function. Introducing
a wave-number label p and Fourier transforming this equa-
tion gives

ξp = Upnp, (A9)

where

np =
∫

dq

2π
eipqnF (ξq − μ) (A10)

and the effective potential is

Up = 1

|p|e
− p2

2
2
B −

√
π

2
2
B

e
− p2

4
2
B I0

(
p2

4
2
B

)
, (A11)

where I0 is the modified Bessel function of the first kind. We
therefore have a set of decoupled modes, which correspond
to different wavelength charge density waves, as discussed in
Section II. Specifically, �ωω′,p = Up in the Hartree-Fock ap-
proximation, and we can write the Bethe-Salpeter equation for

χ in terms of the wave number p as

χωω′,p = −βG2(iω)δωω′ + 1

β

∑
ω1

G(iω)2Upχω1ω′,p (A12)

from which it follows that the physical response χp =
1
β2

∑
ωω′ χωω′,p is

χp = βν(1 − ν)

1 + βUpν(1 − ν)
, (A13)

which is the usual expression for the RPA density-density
response. Since Up has a negative minimum at p∗ = 1.568
with value Up∗ = −0.557, we have a critical temperature

Tc = 0.557ν(1 − ν) (A14)

below which the system is unstable to the formation of a CDW
with wave vector p∗.

Using the fact that the critical temperature is Tc =
−Upν(1 − ν), we can rewrite Eq. (A13) as

χp = ν(1 − ν)

T − Tc
, (A15)

which gives the critical exponent γ+ = 1 where χp ∼ |T −
Tc|−γ+ for T → T +

c .
In addition to this second order phase transition, it is

known that Hartree-Fock also gives first order transitions
with a slightly higher transition temperature away from half-
filling [33]. In addition, the ordering momentum is lowered as
one moves away from half-filling.

APPENDIX B: TAO-THOULESS THEORY AND TT LIMIT

Equations (7), (9) (10), and (11) were solved approxi-
mately by Tao and Thouless [36,37]. For filling fraction ν =
1
q , they approximate the self-energy to be frequency indepen-
dent and periodic in momentum with period q in units of the
momentum spacing (it is not clear how to interpret this in the
thermodynamic limit, since then the spacing vanishes). Under
these assumptions, it is shown that the system is gapped for all
q, including for q even. This shortcoming of the theory as well
as some others [122,123] meant that this picture was quickly
abandoned as a correct description. In addition, their solution
is not fully self-consistent, but instead relies on a quasiparticle
type self-consistency, which approximates the full self-energy
by its lowest-frequency value. By extending their calcula-
tion to include full self-consistency, we have found that the
frequency dependence of � destroys the gap and leads to solu-
tions that are momentum independent. Therefore we conclude
that the TT-type ansatz is not a valid solution at the level of
fully self-consistent GW .

The Tao-Thouless theory is now known to be relevant for
the quantum Hall system in the so-called thin torus (TT)
limit [79–82]. On a torus with small circumference Ly → 0,
the Hamiltonian can be solved exactly and one obtains gapped
CDW states for the odd-denominator filling ν = 1/q. These
states have the same qualitative properties as the Laughlin
states, such as fractionally charged excitations and ground
state degeneracy q on the torus. These CDW states are also ob-
served for even denominators in the strict Ly → 0, but as Ly is
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increased (to roughly Ly = 5) they are seen to undergo a quan-
tum phase transition to a metallic state of neutral fermions that
suggests a one-dimensional luttinger liquid description [79].
The CDW states for odd q and the Luttinger liquid states for
even q are then conjectured to be adiabatically connected to
the states in the experimentally relevant limit Ly → ∞, which
is also supported numerically [90].

APPENDIX C: NON-FERMI LIQUID SOLUTION

To solve Eqs. (7), (16), (17), and (18) we assume a power-
law form of the self-energy

�(iω) = λe−isign(ω)(π/2+θ )|ω|1−2	, ω → 0 (C1)

with 0 < 	 < 1/2, λ > 0 and particle-hole asymmetry pa-
rameter −π	 < θ < π	. For this range of 	, � dominates
the bare Green’s function in the Dyson equaton, and hence the
corresponding Green’s function is

G(iω) = −1

λ
eisign(ω)(π/2+θ )|ω|−(1−2	), ω → 0. (C2)

In the time-domain, this corresponds to

G(τ ) = −�(2	) sin(π	 − sign(τ )θ ) sign(τ )

πλ|τ |2	
(C3)

and hence

�(τ ) = −�(2	)2 sin(π	 − θ ) sin(π	 + θ )

π2λ2

1

|τ |4	
. (C4)

Noting the identity∫ ∞

−∞

1

|x|α eiωxdx = 2 sin
(

πα
2

)
�(1 − α)

|ω|1−α
for 0 < α < 1,

(C5)
we see that if 0 < 	 < 1

4 , then

�(iν) =
∫ ∞

−∞
dτ eiντ�(τ ) = − 1

λ2
C	|ν|4	−1, ν → 0

(C6)

with the constant

C	 = 4

π2
sin(π	) sin(π	 − θ ) sin(π	 + θ ) cos(π	)

× �(1 − 4	)�(2	)2. (C7)

Note that in order for Re �(iν) to be strictly negative (as
required by the spectral representation), C	 must be positive

which is consistent with the restriction 0 < 	 < 1/4. Note
that this also implies �(iν → 0) → −∞.

Equation (9) can be rewritten as

W (iν) = λ2

C	|ν|4	−1

∫ ∞

0
dρ ρ

λ−2C	|ν|4	−1

e
1
2 ρ2

ρ + λ−2C	|ν|4	−1
.

(C8)
At small ν, the term λ−2C	|ν|4	−1 in the denominator dom-
inates the other term for values of ρ 
 � where �e

1
2 �2 =

λ−2C	|ν|4	−1. The integrand for ρ � � is vanishingly small.
Therefore, we utilize � as a hard UV cutoff as follows:

W (iν) = λ2

C	|ν|4	−1

∫ �

0
dρ ρ = λ2

C	|ν|4	−1

�2

2
. (C9)

In the limit ν → 0, the equation �e
1
2 �2 = λ−2C	|ν|4	−1 has

the asymptotic solution

�2 = ln

⎛
⎜⎝ (C	|ν|4	−1)2

2λ4 ln
(

C	|ν|4	−1

λ2

)
⎞
⎟⎠. (C10)

Ignoring the double-log term, which is sub-leading as ν → 0,
this yields

W (iν) = λ2

C	|ν|4	−1
ln

(
C	|ν|4	−1

λ2

)
, ν → 0. (C11)

Moving to the real-frequency axis, we find

Im W (ν + iη) = −λ2B	ν1−4	 − λ2D	(4	 − 1)ν1−4	 ln(ν),
(C12)

where

B	 = sin
(

π
2 (1 − 4	)

)
ln

(C	

λ2

)
C	

+ π

2C	

(1 − 4	) cos
(π

2
(1 − 4	)

)
, (C13)

D	 = sin
(

π
2 (1 − 4	)

)
C	

. (C14)

On the real-frequency axis, the imaginary-part of the self-
energy is given by

Im �(ω) =
∫ ω

0
d� Im W (ω − �)ρ(�) (C15)

where ω > 0. Performing the integration yields

Im �(ω) = −λ sin(π	 − θ )ω1−2	 �(2 − 4	)�(2	)

π�(2 − 2	)

[
B	 + D	(4	 − 1)

(
�′(2 − 4	)

�(2 − 4	)
− �′(2 − 2	)

�(2 − 2	)
+ ln(ω)

)]
(C16)

for ω > 0. Comparing this to Eq. (C1) on the real frequency axis then gives the equation

f (	) + g(	) ln(ω) = 1 (C17)

with g(	) defined in Eq. (20) and

f (	) = �(2 − 4	)�(2	)

π�(2 − 2	)

[
B	 + D	(4	 − 1)

(
�′(2 − 4	)

�(2 − 4	)
− �′(2 − 2	)

�(2 − 2	)

)]
. (C18)
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In the limit ω → 0, Eq. (C17) is solved by g(	) = 0, yielding
	 = 1

4 . Note, for this to be a good approximation, the cutoff
needs to satisfy � � 2. This corresponds to a frequency of
around ν 
 10−6 for the expected values of 	.

APPENDIX D: MAXWELL CONSTRUCTION

We find the chemical potential μnFL-BI of the coexistence
of the nFL and BI phases across the first-order transition as
follows. Equilibrium between point A in one phase and point
B in the other phase occurs when the grand potentials of
the two phases are equal: �A = �B. Considering the points
A and B to be at the same temperature T and volume V ,
the equilibrium condition can be expressed via an integral of
(d�)T,V = −Ndμ from A to B. However, since the function

N (μ) is multivalued, we first Legendre transform � to the
free energy F = � + μN , and compute its (isothermal and
isochoric) change as

FB − FA =
∫ NB

NA

μ(N )dN, (D1)

where the equilibrium between the two phase requires
μ(NA) = μ(NB) ≡ μnFL-BI. Thus, going back to the grand po-
tential, we obtain

�B − �A = FB − FA − μ(NB)NB + μ(NA)NA

=
∫ NB

NA

(μ(N ) − μnFL-BI)dN = 0, (D2)

the solution to which determines μnFL-BI.
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[31] B. Estienne, Z. Papić, N. Regnault, and B. A. Bernevig, Matrix
product states for trial quantum Hall states, Phys. Rev. B 87,
161112(R) (2013).

[32] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Topologi-
cal characterization of fractional quantum Hall ground states
from microscopic hamiltonians, Phys. Rev. Lett. 110, 236801
(2013).

[33] H. Fukuyama, P. M. Platzman, and P. W. Anderson, Two-
dimensional electron gas in a strong magnetic field, Phys. Rev.
B 19, 5211 (1979).

[34] D. Yoshioka and H. Fukuyama, Charge density wave state of
two-dimensional electrons in strong magnetic fields, J. Phys.
Soc. Jpn. 47, 394 (1979).

[35] D. Yoshioka and P. A. Lee, Ground-state energy of a two-
dimensional charge-density-wave state in a strong magnetic
field, Phys. Rev. B 27, 4986 (1983).

[36] R. Tao and D. J. Thouless, Fractional quantization of Hall
conductance, Phys. Rev. B 28, 1142 (1983).

[37] R. Tao, Fractional quantization of Hall conductance. II, Phys.
Rev. B 29, 636 (1984).

[38] R. Haussmann, Electronic spectral function for a two-
dimensional electron system in the fractional quantum Hall
regime, Phys. Rev. B 53, 7357 (1996).

[39] R. C. Ashoori, J. A. Lebens, N. P. Bigelow, and R. H. Silsbee,
Equilibrium tunneling from the two-dimensional electron gas
in GaAs: Evidence for a magnetic-field-induced energy gap,
Phys. Rev. Lett. 64, 681 (1990).

[40] R. C. Ashoori, J. A. Lebens, N. P. Bigelow, and R. H. Silsbee,
Energy gaps of the two-dimensional electron gas explored
with equilibrium tunneling spectroscopy, Phys. Rev. B 48,
4616 (1993).

[41] J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Coulomb
barrier to tunneling between parallel two-dimensional electron
systems, Phys. Rev. Lett. 69, 3804 (1992).

[42] K. M. Brown, N. Turner, J. T. Nicholls, E. H. Linfield, M.
Pepper, D. A. Ritchie, and G. A. C. Jones, Tunneling between
two-dimensional electron gases in a strong magnetic field,
Phys. Rev. B 50, 15465 (1994).

[43] J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Evidence for
an interlayer exciton in tunneling between two-dimensional
electron systems, Phys. Rev. Lett. 74, 1419 (1995).

[44] J. P. Eisenstein, T. Khaire, D. Nandi, A. D. K. Finck, L. N.
Pfeiffer, and K. W. West, Spin and the Coulomb gap in the
half-filled lowest Landau level, Phys. Rev. B 94, 125409
(2016).

[45] A. M. Chang, M. A. Paalanen, D. C. Tsui, H. L. Störmer,
and J. C. M. Hwang, Fractional quantum Hall effect at low
temperatures, Phys. Rev. B 28, 6133 (1983).

[46] L. Hedin, New method for calculating the one-particle Green’s
function with application to the electron-gas problem, Phys.
Rev. 139, A796 (1965).

[47] K. Van Houcke, E. Kozik, N. Prokof’ev, and B. Svistunov,
Diagrammatic Monte Carlo, Phys. Proc. 6, 95 (2010).

[48] E. Kozik, K. Van Houcke, E. Gull, L. Pollet, N. Prokof’ev,
B. Svistunov, and M. Troyer, Diagrammatic Monte Carlo for
correlated fermions, Europhys. Lett. 90, 10004 (2010).

[49] K. Van Houcke, F. Werner, T. Ohgoe, N. V. Prokof’ev, and
B. V. Svistunov, Diagrammatic Monte Carlo algorithm for the
resonant Fermi gas, Phys. Rev. B 99, 035140 (2019).

[50] K. Chen and K. Haule, A combined variational and diagram-
matic quantum Monte Carlo approach to the many-electron
problem, Nat. Commun. 10, 3725 (2019).

[51] E. Kozik, Combinatorial summation of Feynman diagrams:
Equation of state of the 2D SU(N) Hubbard model,
arXiv:2309.13774.

[52] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a ran-
dom quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339
(1993).

[53] A. Kitaev, A simple model of quantum holography, Pro-
ceedings of the KITP Program: Entanglement in Strongly-
Correlated Quantum Matter (KITP, 2015).

[54] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev,
Sachdev-Ye-Kitaev models and beyond: Window into non-
Fermi liquids, Rev. Mod. Phys. 94, 035004 (2022).

[55] I. Esterlis and J. Schmalian, Cooper pairing of incoherent elec-
trons: An electron-phonon version of the Sachdev-Ye-Kitaev
model, Phys. Rev. B 100, 115132 (2019).

[56] Y. Wang, Solvable strong-coupling quantum-dot model with
a non-Fermi-liquid pairing transition, Phys. Rev. Lett. 124,
017002 (2020).

[57] D. Hauck, M. J. Klug, I. Esterlis, and J. Schmalian,
Eliashberg equations for an electron–phonon version of the
Sachdev–Ye–Kitaev model: Pair breaking in non-Fermi liquid
superconductors, Ann. Phys. 417, 168120 (2020), eliashberg
theory at 60: Strong-coupling superconductivity and beyond.

[58] S. Sachdev, Bekenstein-Hawking entropy and strange metals,
Phys. Rev. X 5, 041025 (2015).

[59] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-
Kitaev model, Phys. Rev. D 94, 106002 (2016).

[60] K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117,
111601 (2016).

[61] X.-Y. Song, C.-M. Jian, and L. Balents, Strongly correlated
metal built from Sachdev-Ye-Kitaev models, Phys. Rev. Lett.
119, 216601 (2017).

[62] D. Chowdhury, Y. Werman, E. Berg, and T. Senthil, Transla-
tionally invariant non-Fermi-liquid metals with critical Fermi
surfaces: Solvable models, Phys. Rev. X 8, 031024 (2018).

[63] A. A. Patel, J. McGreevy, D. P. Arovas, and S. Sachdev,
Magnetotransport in a model of a disordered strange metal,
Phys. Rev. X 8, 021049 (2018).

[64] P. Cha, N. Wentzell, O. Parcollet, A. Georges, and E.-A. Kim,
Linear resistivity and Sachdev-Ye-Kitaev (SYK) spin liquid
behavior in a quantum critical metal with spin-1/2 fermions,
Proc. Natl. Acad. Sci. USA 117, 18341 (2020).

[65] S. Martin, A. T. Fiory, R. M. Fleming, L. F. Schneemeyer,
and J. V. Waszczak, Normal-state transport properties of
Bi2+xSr2−yCuO6+δ crystals, Phys. Rev. B 41, 846 (1990).

[66] H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava,
J. J. Krajewski, and W. F. Peck, Systematic evolution of
temperature-dependent resistivity in La2−xSrxCuO4, Phys.
Rev. Lett. 69, 2975 (1992).

[67] T. Valla, A. V. Fedorov, P. D. Johnson, Q. Li, G. D. Gu, and
N. Koshizuka, Temperature dependent scattering rates at the

023210-14

https://doi.org/10.1103/PhysRevB.86.245305
https://doi.org/10.1016/j.physleta.2012.05.031
https://doi.org/10.1103/PhysRevB.87.161112
https://doi.org/10.1103/PhysRevLett.110.236801
https://doi.org/10.1103/PhysRevB.19.5211
https://doi.org/10.1143/JPSJ.47.394
https://doi.org/10.1103/PhysRevB.27.4986
https://doi.org/10.1103/PhysRevB.28.1142
https://doi.org/10.1103/PhysRevB.29.636
https://doi.org/10.1103/PhysRevB.53.7357
https://doi.org/10.1103/PhysRevLett.64.681
https://doi.org/10.1103/PhysRevB.48.4616
https://doi.org/10.1103/PhysRevLett.69.3804
https://doi.org/10.1103/PhysRevB.50.15465
https://doi.org/10.1103/PhysRevLett.74.1419
https://doi.org/10.1103/PhysRevB.94.125409
https://doi.org/10.1103/PhysRevB.28.6133
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1209/0295-5075/90/10004
https://doi.org/10.1103/PhysRevB.99.035140
https://doi.org/10.1038/s41467-019-11708-6
https://arxiv.org/abs/2309.13774
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/RevModPhys.94.035004
https://doi.org/10.1103/PhysRevB.100.115132
https://doi.org/10.1103/PhysRevLett.124.017002
https://doi.org/10.1016/j.aop.2020.168120
https://doi.org/10.1103/PhysRevX.5.041025
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevLett.117.111601
https://doi.org/10.1103/PhysRevLett.119.216601
https://doi.org/10.1103/PhysRevX.8.031024
https://doi.org/10.1103/PhysRevX.8.021049
https://doi.org/10.1073/pnas.2003179117
https://doi.org/10.1103/PhysRevB.41.846
https://doi.org/10.1103/PhysRevLett.69.2975


STRANGE METAL TO INSULATOR TRANSITIONS IN THE … PHYSICAL REVIEW RESEARCH 6, 023210 (2024)

Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ , Phys.
Rev. Lett. 85, 828 (2000).

[68] Y. P. Chen, G. Sambandamurthy, Z. H. Wang, R. M. Lewis,
L. W. Engel, D. C. Tsui, P. D. Ye, L. N. Pfeiffer, and K. W.
West, Melting of a 2D quantum electron solid in high magnetic
field, Nat. Phys. 2, 452 (2006).

[69] T. Azeyanagi, F. Ferrari, and F. I. Schaposnik Massolo, Phase
diagram of planar matrix quantum mechanics, tensor, and
sachdev-Ye-Kitaev models, Phys. Rev. Lett. 120, 061602
(2018).

[70] F. Ferrari and F. I. Schaposnik Massolo, Phases of melonic
quantum mechanics, Phys. Rev. D 100, 026007 (2019).

[71] J. C. Louw and S. Kehrein, Shared universality of charged
black holes and the complex large-q Sachdev-Ye-Kitaev
model, Phys. Rev. B 107, 075132 (2023).

[72] R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
West, and K. W. Baldwin, Termination of the series of frac-
tional quantum Hall states at small filling factors, Phys. Rev.
B 38, 7881 (1988).

[73] H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N.
Pfeiffer, and K. W. West, Quantum liquid versus electron solid
around ν=1/5 Landau-level filling, Phys. Rev. Lett. 65, 633
(1990).

[74] V. J. Goldman, M. Santos, M. Shayegan, and J. E.
Cunningham, Evidence for two-dimentional quantum Wigner
crystal, Phys. Rev. Lett. 65, 2189 (1990).

[75] H. W. Jiang, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and
K. W. West, Magnetotransport studies of the insulating phase
around ν=1/5 Landau-level filling, Phys. Rev. B 44, 8107
(1991).

[76] F. I. B. Williams, P. A. Wright, R. G. Clark, E. Y. Andrei, G.
Deville, D. C. Glattli, O. Probst, B. Etienne, C. Dorin, C. T.
Foxon, and J. J. Harris, Conduction threshold and pinning
frequency of magnetically induced Wigner solid, Phys. Rev.
Lett. 66, 3285 (1991).

[77] M. A. Paalanen, R. L. Willett, R. R. Ruel, P. B. Littlewood,
K. W. West, and L. N. Pfeiffer, Electrical conductivity and
Wigner crystallization, Phys. Rev. B 45, 13784 (1992).

[78] I. V. Kukushkin, N. J. Pulsford, K. von Klitzing, R. J. Haug, K.
Ploog, and V. B. Timofeev, Wigner solid vs. incompressible
laughlin liquid: Phase diagram derived from time-resolved
photoluminescence, Europhys. Lett. 23, 211 (1993).

[79] E. J. Bergholtz and A. Karlhede, Half-filled lowest landau
level on a thin torus, Phys. Rev. Lett. 94, 026802 (2005).

[80] E. J. Bergholtz and A. Karlhede, ‘One-dimensional’ theory of
the quantum Hall system, J. Stat. Mech.: Theory Exp. (2006)
L04001.

[81] E. J. Bergholtz, T. H. Hansson, M. Hermanns, and A.
Karlhede, Microscopic theory of the quantum Hall hierarchy,
Phys. Rev. Lett. 99, 256803 (2007).

[82] E. J. Bergholtz and A. Karlhede, Quantum Hall system in tao-
thouless limit, Phys. Rev. B 77, 155308 (2008).

[83] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
Strange metal in magic-angle graphene with near Planckian
dissipation, Phys. Rev. Lett. 124, 076801 (2020).

[84] R. Lyu, Z. Tuchfeld, N. Verma, H. Tian, K. Watanabe, T.
Taniguchi, C. N. Lau, M. Randeria, and M. Bockrath, Strange
metal behavior of the Hall angle in twisted bilayer graphene,
Phys. Rev. B 103, 245424 (2021).

[85] A. Jaoui, I. Das, G. Di Battista, J. Díez-Mérida, X. Lu, K.
Watanabe, T. Taniguchi, H. Ishizuka, L. Levitov, and D. K.
Efetov, Quantum critical behaviour in magic-angle twisted
bilayer graphene, Nat. Phys. 18, 633 (2022).

[86] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated
insulator behaviour at half-filling in magic-angle graphene
superlattices, Nature (London) 556, 80 (2018).

[87] S. Zhang, X. Lu, and J. Liu, Correlated insulators, density
wave states, and their nonlinear optical response in magic-
angle twisted bilayer graphene, Phys. Rev. Lett. 128, 247402
(2022).

[88] A. Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M. Franz,
Quantum holography in a graphene flake with an irregular
boundary, Phys. Rev. Lett. 121, 036403 (2018).
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