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Tailoring the statistics of light emitted from two interacting quantum emitters
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The interaction between quantum emitters leads to the formation of superradiant and subradiant states with
possible applications in quantum technologies. To improve the characterization of light emission from these sys-
tems, we present here a systematic theoretical analysis of the intensity correlation from two strongly interacting
quantum emitters at cryogenic temperatures as a function of the frequency and intensity of the excitation laser.
This analysis effectively accounts for the effect of vibrational modes of the emitters and of phonons of the envi-
ronment through the combined Debye-Waller/Franck-Condon factor. First, we analyze the color-blind intensity
correlation and show that it can be tailored from strong antibunching to strong bunching by tuning the laser from
the two-photon resonance to the transition frequency of the superradiant state. We also find a particularly complex
behavior of the intensity correlation when the laser frequency is tuned to that of the transition of the subradiant
state, giving raise to the possibility of emitting bunched and antibunched light depending on the laser intensity
and the detuning between the two emitters. The numerical results are supported by analytical equations that can
be used for the experimental characterization of the interacting emitters. Additionally, by selecting photons of
particular frequencies, we analyze the rich landscape of frequency-resolved intensity correlations, which also
depend on the laser detuning and intensity. The analysis of the frequency-resolved correlations provides further
information about the different relaxation processes underlying the photon emission, unveiling one-photon and
two-photon emission processes that cannot be resolved neither in the emission spectrum nor in the color-blind
intensity correlation. These results show that two interacting emitters are a versatile and practical source of
quantum light and highlight the usefulness of the intensity correlation to unveil complex dynamics in this system.

DOI: 10.1103/PhysRevResearch.6.023207

I. INTRODUCTION

Quantum emitters that behave as two-level systems (TLSs)
constitute efficient single-photon sources [1], which are key
ingredients in quantum cryptography [2–4], quantum telepor-
tation [5,6], and quantum computing [7,8]. Some examples
of this kind of emitters are organic molecules at cryogenic
temperatures [9–12] and solid-state emitters [13–17], among
others [1]. The control and manipulation of these emitters
is thus of great interest in quantum information and quan-
tum communication. Additionally, the interaction between
quantum emitters leads to cooperative effects that modify
the resonant frequencies and the coherence times of the in-
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dependent emitters, with the emergence of subradiant and
superradiant states [18]. In this context, recent experiments
have demonstrated the capability to manipulate the degree of
delocalization between two organic molecules [19,20], as well
as the capacity to couple two quantum emitters via a waveg-
uide or a microresonator [21–23]. These interacting systems
can be further characterized by analyzing their light emission.

A fundamental tool to interrogate the nature of light emit-
ted from two interacting emitters is the (color-blind) intensity
correlation g(2)(τ ) [24,25]. This quantity can be measured
with a Hanbury-Brown Twiss interferometer [26], as schemat-
ically illustrated in Fig. 1(a) (without including the optical
filters in the scheme). g(2)(τ ) provides information on the
statistical properties of the light emitted, allowing for distin-
guishing between antibunched, coherent, and bunched sources
of light [24]. For example, intensity correlation has been
used to demonstrate that single organic molecules and single
quantum dots can be efficient single-photon sources, since
they exhibit a strongly antibunched emission [9–17]. On
the other hand, if two quantum emitters are coherently and
strongly coupled, experiments have shown that the light emit-
ted can be either bunched or antibunched depending on the
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(a) Hanbury-Brown Twiss interferometer

(b) noninteracting (c)     interacting

FIG. 1. Hanbury-Brown Twiss interferometer and electronic
eigenstates of two TLS-like emitters. (a) Scheme of the Hanbury-
Brown Twiss interferometer, where two optical filters (surrounded by
dashed boxes) are included to obtain the frequency-resolved intensity
correlation g(2)(ω1, ω2; τ ) of light emitted from two interacting emit-
ters, such as polycyclic aromatic hydrocarbon molecules embedded
in a naphthalene film. The color-blind intensity correlation g(2)(τ )
can be calculated by removing the optical filters. [(b),(c)] Schematic
representation of the energy levels of the undriven emitters (b) when
they are not interacting and (c) when they do interact. The emit-
ters have transition dipole moments μi, which are assumed to be
identical, and transition frequencies ωe,i from the ground state |gi〉
to the excited state |ei〉. The transition frequencies are detuned by
δ = ωe,1 − ωe,2 from each other for the noninteracting system, and
the spontaneous decay rate γ0 is identical for both emitters. When the
dipole-dipole coupling V is included, the energy splitting between
the delocalized states |�+〉 (higher energy) and |�−〉 (lower energy)
becomes 2� = √

4V 2 + δ2 and the delocalized states in general have
different decay rates γ+ and γ−. For the configuration considered in
the calculations (molecular J-aggregate like, with the dipoles aligned
and parallel), |�−〉 is the superradiant state and |�+〉 is the subradiant
state.

laser frequency and intensity [19,27]. However, the theoretical
analyses of the intensity correlation from two coupled emitters
have focused on the case of a laser tuned to the two-photon
resonance, and usually the effect of emitter vibrations and of
phonons of the environment are not included in the description
[28–33].

Further insights into the emission of the system can
be gained with the frequency-resolved intensity correlation
(FRIC) g(2)(ω1, ω2; τ ) [34]. This quantity measures the cor-
relation between pairs of photons of particular frequencies ω1

and ω2 by incorporating optical filters in the Hanbury-Brown
Twiss interferometer [see Fig. 1(a)]. The direct calculation
of this quantity is difficult since it involves complicated

four-dimensional time integrals [35,36], but it can be simpli-
fied assuming a Lorentzian transmission of the optical filters
[36,37], as obtained with Fabry-Pérot filters. In this way,
g(2)(ω1, ω2; τ ) has been investigated for different systems
such as a single quantum dot [38], a biexciton quantum dot
in a cavity [39], and cavity optomechanics systems [40]. FRIC
has been calculated for two interacting TLSs, for the particular
case where they are identical and the laser is tuned to the
two-photon resonance [41].

Here, we present a detailed analysis of the color-blind
and the frequency-resolved intensity correlation of light emit-
ted from two strongly interacting TLS-like emitters. Notably,
we include in this theoretical analysis the combined Debye-
Waller/Franck-Condon factor α, which accounts for the
proportion of photons that are emitted in the purely electronic
transition [19,42], i.e., it accounts in an effective manner for
the internal vibrations of the emitter as well as for the phonons
of the environment. We demonstrate in Sec. III that a very rich
landscape of color-blind intensity correlations can be obtained
by considering different detunings between the emitters, as
well as different laser frequencies and intensities. In partic-
ular, we analyze the dependence of the intensity correlation
on the emitters detuning and laser intensity for three different
values of laser frequency corresponding to (i) the laser tuned
to the two-photon resonance, (ii) the transition frequency of
the superradiant state, and (iii) the transition frequency of
the subradiant state. We show that the intensity correlation is
drastically different for the three laser detunings, which allows
for tailoring the statistics of the emission from extreme anti-
bunching to extreme bunching. The results are analyzed with
the help of analytical equations, which could be applied to
experimentally estimate parameters such as the distance and
the detuning between the two emitters. We then investigate in
Sec. IV the FRIC for these three laser detunings and for weak,
moderate, and strong laser intensities. We discuss how the
FRIC unveils emission processes that are hidden both in the
emission spectrum and in the color-blind intensity correlation.

II. THEORETICAL MODEL

In this section, we introduce the theoretical framework
used to describe the dynamics of two interacting TLS-like
quantum emitters under laser illumination and at cryogenic
temperatures. We consider the emitters at fixed positions ri,
where i ∈ {1, 2} labels each of them. The emitters are de-
scribed as simple TLS with transition frequencies ωe,1 and
ωe,2 = ωe,1 − δ, where δ is the detuning between them. These
transition frequencies contain the self-energy shifts induced
by the vacuum field (see Refs. [43,44]). The ground and
the excited states of emitter i are denoted as |gi〉 and |ei〉,
respectively, and the transition dipole moment as μi. The
Hamiltonian of the uncoupled emitters can be written as

Ĥ0 = h̄
ωe,1

2
σ̂z,1 + h̄

ωe,2

2
σ̂z,2, (1)

where σ̂z,i = |ei〉 〈ei| − |gi〉 〈gi| is the z-Pauli matrix in the
Hilbert space of the emitter i. The corresponding energy
scheme is shown in Fig. 1(b).

The coherent interaction of the quantum emitters through
the vacuum field is incorporated via the interaction
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Hamiltonian [45]

Ĥint = h̄V (σ̂ †
1 σ̂2 + σ̂1σ̂

†
2 ), (2)

here σ̂
†
i = |ei〉 〈gi| and σ̂i are the raising and lowering Pauli

operators of the emitter i, respectively. The coupling strength
between the two emitters is given by the dipole-dipole cou-
pling as

V = 3αγ0
(μ1 · μ2) − 3(μ1 · r12)(μ2 · r12)/r2

12

4μ1μ2(kr12)3
, (3)

where the spontaneous decay rate γ0 of both emitters is
assumed to be identical, r12 = r2 − r1 is the relative po-
sition vector between both emitters and k = nω0/c is the
wavenumber corresponding to the mean frequency ω0 =
(ωe,1 + ωe,2)/2, with n the refraction index of the medium
and c the speed of light in vacuum. The dipole-dipole cou-
pling in Eq. (3) is valid for molecules at short distances
(in comparison to the wavelength of light), i.e., kr12 � 1
[44,45]. Figure 1(c) shows an schematic representation of
the energy levels of the coupled emitters for no illumina-
tion. The energy difference between the ground state |G〉 =
|g1g2〉 and the doubly excited state |E〉 = |e1e2〉 is given
by the sum of the frequencies of the two excited states
2ω0. The energy difference between the two single-excitation
states |�+〉 (higher energy) and |�−〉 (lower energy) is given
by 2� = √

4V 2 + δ2. These single-excitation states corre-
spond to delocalized states that result from the dipole-dipole
coupling and they can be written as |�+〉 = cos θ |g1e2〉 +
sin θ |e1g2〉 and |�−〉 = − sin θ |g1e2〉 + cos θ |e1g2〉, where
the angle θ fulfills sin 2θ = V/� and cos 2θ = δ/(2�).
These |�−〉 and |�+〉 delocalized states correspond to
the superradiant and subradiant states (which one is the
superradiant state depends on sin 2θ ) and are discussed
below.

Additionally, we consider that the two quantum emitters
are illuminated by a laser of frequency ωlas and intensity I .
The coherent illumination is introduced through the Hamilto-
nian

Ĥlas = h̄
∑

i∈{1,2}

μi · E
2h̄

(σ̂ie
iωlast + σ̂

†
i e−iωlast ), (4)

where E is the amplitude of the electric field, which is as-
sumed to be the same at the position of the two emitters.
Equation (4) does not include any spatial phase because we
consider that both emitters are located in the same plane
and that the illumination impinges normally to this plane.
Additionally, we assume that both emitters have identical
transition dipole moments (μ1 = μ2) and that the elec-
tric field is linearly polarized in the same direction than
the transition dipole moments. In this configuration, both
Rabi frequencies become equal 
 = −μ1 · E/h̄ = −μ2 ·
E/h̄. The laser intensity I and the Rabi frequency 
 are
related as I = 
2h̄ω3

0n2/(6πc2γ0) = 2Isat

2/γ 2

0 as we do not
consider incoherent dephasing processes [46]. Here, Isat =
h̄ω3

0γ0n2/(12πc2) is the saturation intensity of a single TLS-
like emitter with transition frequency ω0 and decay rate γ0.

The total Hamiltonian Ĥ = Ĥ0 + Ĥint + Ĥlas can be written
in the interacting basis {|E〉 , |�+〉 , |�−〉 , |G〉} and in the

rotating frame of the laser as

Ĥ = h̄�0(|E〉 〈E | − |G〉 〈G|)+ h̄�(|�+〉 〈�+|− |�−〉 〈�−|)

− h̄
∑

k∈{+,−}


k

2
(σ̂Gk + σ̂kE + σ̂kG + σ̂Ek ), (5)

where we have introduced the laser detuning �0 = ω0 − ωlas

with respect to the mean frequency ω0 and the effective
pumping rates 
± = 
(cos θ ± sin θ ). The pumping rate 
+
corresponds to the driving strength of the transitions |G〉 →
|�+〉 and |�+〉 → |E〉, whereas 
− to the driving strength
of the transitions |G〉 → |�−〉 and |�−〉 → |E〉. We have
also introduced the operator notation σ̂G± = |G〉 〈�±|, σ̂E± =
|E〉 〈�±|, σ̂±G = |�±〉 〈G|, and σ̂±E = |�±〉 〈E |, for conve-
nience. The terms in the first line of Eq. (5) represent the
undriven Hamiltonian, including the dipole-dipole interaction
between the two emitters, while the terms in the second line
account for the driving of the system.

We incorporate the incoherent losses of the system using
the standard Lindblad master equation [47]. The dynamics of
the density matrix ρ̂ that describes the state of the composite
system is given by [45]

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] + Lincρ̂, (6)

where the superoperator

Linc = γ0

2

⎛
⎝ ∑

i∈{1,2}
D[σ̂i]

⎞
⎠ + γ̃

2
(D[σ̂1, σ̂2] + D[σ̂2, σ̂1]) (7)

accounts for the incoherent dynamics, with D[â, b̂]ρ̂ =
2âρ̂b̂† − {b̂†â, ρ̂} and D[â]ρ̂ = D[â, â]ρ̂ the crossed and the
standard Lindblad dissipators, respectively. The first term (the
summation) on the right-hand side of Eq. (7) corresponds to
the spontaneous emission of photons of each emitter and the
decay rate is given by γ0 = k3|μi|2/(3πε0 h̄n2) [45,48], with
ε0 the vacuum permittivity. The second term (proportional to
γ̃ ) stands for the dissipative coupling between the emitters
induced by the vacuum field [45,48]. Assuming kr12 � 1,
the strength of this crossed decay is given by γ̃ = αγ0μ1 ·
μ2/(μ1μ2) [19,45], which for parallel transition dipole mo-
ments becomes γ̃ = αγ0. Equation (7) neglects the thermal
population of the electronic excited states |ei〉 and, addition-
ally, does not contain dephasing Lindblad operators, as we
focus on quantum emitters at cryogenic temperatures.

The decay rates γ± of the delocalized states |�+〉 and
|�−〉 are obtained by writing the superoperator Linc in
the interacting basis (see Appendix A), which gives γ± =
γ0(1 ± α sin 2θ ). Thus, the delocalized states have different
decay rates if the interaction between the emitters is non-
negligible (sin 2θ �= 0). If this condition is fulfilled, one of
the delocalized states has a larger decay rate than the spon-
taneous decay rate of the noninteracting emitters γ0, i.e.,
it couples more efficiently with light. This state is usually
called superradiant state. In contrast, the other delocalized
state has a smaller decay rate than γ0 and is known as sub-
radiant state. As the subradiant state has a longer coherence
time, it could turn into a good candidate for applications in
quantum information storage [49–51]. Notably, the combined
Debye-Waller/Franck-Condon factor has a strong impact on
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the decay rates of the superradiant and subradiant states, e.g.,
in the case of identical emitters (δ = 0) the decay rates of the
superradiant and subradiant states are no longer 2γ0 and 0,
respectively, but they are γ0(1 ± α).

Hereafter, as an example of application of our system, we
focus on two dibenzanthanthrene (DBATT) molecules im-
mersed in a naphthalene film with n = 1.5 in a J-aggregate
configuration, i.e., we assume that r12 is parallel to the dipole
moments. In this configuration, the lower-energy delocalized
state |�−〉 is the superradiant state and the higher-energy
delocalized state |�+〉 is the subradiant state. We also as-
sume the following parameters, based on the experiments in
Ref. [19]: (i) the mean frequency is ω0/(2π ) 	 485 THz,
corresponding to a wavelength of 618 nm; (ii) the sponta-
neous decay rate is γ0/(2π ) = 21.5 MHz; (iii) the combined
Debye-Waller/Franck-Condon factor is α = 0.3; and (iv) the
dipole-dipole coupling is V = −20γ0, i.e., r12 ≈ 18.5 nm. We
emphasize that the resulting intensity correlations are also
valid for any other quantum emitters having the same coupling
strength V and combined Debye-Waller/Franck-Condon fac-
tor α. Additionally, equivalent results are obtained for the case
of a molecular H-aggregate configuration (r12 is perpendicular
to the transition dipole moments), with the only difference
that in this case the superradiant state is the higher-energy
delocalized state |�+〉 and the subradiant state is the lower-
energy delocalized state |�−〉.

III. COLOR-BLIND INTENSITY CORRELATION

In this section, we examine the color-blind intensity cor-
relation, which considers all the photons emitted from the
interacting molecules and is defined as [24,52,53]

g(2)(τ ) = 〈Ê (−)(0)Ê (−)(τ )Ê (+)(τ )Ê (+)(0)〉ss

〈E (−)(0)E (+)(0)〉ss 〈E (−)(τ )E (+)(τ )〉ss
. (8)

In this expression, 〈Ô〉ss = Tr(Ôρ̂ss) denotes the expected
steady-state value (with ρ̂ss the steady-state density matrix)
and Ê (+)(t ) and Ê (−)(t ) represent the standard positive-
frequency and negative-frequency electric field operators in
the Heisenberg picture at time t , respectively. We consider that
light is detected in a direction normal to the orientation of the
transition dipole moments and, thus, Ê (+)(t ) ∝ σ̂1(t ) + σ̂2(t )
[43,54,55]. Hereafter, we focus on the intensity correlation at
zero delay g(2)(0). Let us remind that a coherent source of
light has Poissonian statistics and fulfills g(2)(0) = 1. When
g(2)(0) < 1 the statistics of light is sub-Poissonian, but fol-
lowing a usual convention we call it antibunched. In contrast,
if g(2)(0) > 1 the statistics of light is super-Poissonian and the
emission is said to be bunched.

We plot in Figs. 2(a)–2(c) the dependence of g(2)(0) on the
molecular detuning δ (which can be tuned experimentally via
the Stark effect [19,20,22,23]) and the laser intensity I for dif-
ferent laser frequencies. We find that g(2)(0) exhibits a broad
range of values, ranging from almost perfect antibunching
[g(2)(0) ≈ 0] to extreme bunching [g(2)(0) � 1].

First, in Fig. 2(a) the laser frequency is chosen to enable the
resonant excitation of the doubly excited state |E〉 through a
two-photon process (2ωlas = 2ω0). For this laser detuning and
under weak illumination, g(2)(0) is strongly bunched, which
reveals that the emission of photons in cascade is strongly

enhanced with respect to light emission obeying Poissonian
statistics. Additionally, the difference between the laser fre-
quency ωlas = ω0 and the resonance frequencies ω0 ± � of
the single-excitation states |�±〉 increases with the molecular
detuning. Thus, the ratio between two-photon emission pro-
cesses and single-photon emission processes grows with the
molecular detuning. As a consequence, g(2)(0) also increases
with the molecular detuning δ, as shown in Fig. 2(a). In
Appendix B, we provide a more extensive analysis of the
light statistics for this laser detuning, supported by analytical
expressions valid for arbitrary laser intensity.

Furthermore, Fig. 2(b) indicates that the emission is
strongly antibunched when the laser is tuned to the transition
frequency of the superradiant state |�−〉 and under weak
illumination. Consequently, the two coupled molecules act as
a single-photon source for this laser frequency, as occurs for
a single molecule, but with a larger decay rate γ0(1 + α) and
larger transition dipole moment (i.e., the emission of single
photons is accelerated by a factor 1 + α with respect to the
case of a single emitter). In Appendix C, we analytically
quantify the small deviation of the light statistics from that
of an ideal single photon source [with g(2)(0) = 0] for this
laser detuning, as well as the increase of g(2)(0) observed in
Fig. 2(b) for larger laser intensities.

Moreover, a more complex dependence of g(2)(0) on the
laser intensity and on the molecular detuning is found for
a laser tuned to the transition frequency of the subradiant
state |�+〉 in Fig. 2(c). In this case, when the two molecules
are very far of resonance (|δ| � 30γ0), the system behaves
again similar to a single TLS and the emission is strongly
antibunched under weak illumination. In the opposite case,
if the molecules are identical (δ = 0) the light emitted can
have approximately Poissonian statistics [g(2)(0) ≈ 1]. Inter-
estingly, if the molecules are slightly off-resonance, then both
bunched and antibunched emission can be obtained for reso-
nant excitation of the subradiant state, depending on the laser
intensity I , as discussed below.

We further note that, for any laser frequency and molecular
detuning, the intensity correlation converges to g(2)(0) = 1
for strong enough laser intensity because the molecules sat-
urate and thus become uncorrelated [56–59]. Additionally, we
investigate in Appendix D the impact of the combined Debye-
Waller/Franck-Condon factor α on the intensity correlation
g(2)(0) for the three different laser frequencies analyzed in
Fig. 2. We find that g(2)(0) is particularly sensitive to α when
the laser is tuned to the transition frequency of the subradiant
state.

To summarize the broad range of color-blind intensity cor-
relations that can be obtained by tuning the laser frequency
and intensity, we fix δ = 10γ0 in Fig. 2(d) and plot the de-
pendence of g(2)(0) on the laser intensity for a laser tuned to
(red line) the two-photon resonance, (blue line) the transition
frequency of the superradiant state and (green line) the transi-
tion frequency of the subradiant state. We have checked that
the intensity correlations shown in Fig. 2 are robust against
misalignment in the laser polarization and in the orientation
of the transition dipole moments.

Furthermore, Fig. 2 indicates different ways to tune the
emission from antibunching to bunching. For example, for
two slightly detuned emitters and a laser tuned to the transition
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(d)

(a)

(c)

(b)

FIG. 2. Dependence of the color-blind intensity correlation g(2)(0) on the laser intensity I and molecular detuning δ. In (a) the laser is
tuned to the two-photon resonance (2ωlas = 2ω0), which leads to bunched emission. In (b) the laser excites resonantly the superradiant state
|�−〉 (ωlas = ω0 − �) giving raise to antibunched emission. In (c) the laser is tuned to the transition frequency of the subradiant state |�+〉
(ωlas = ω0 + �) and g(2)(0) shows a more complex dependence on the laser intensity and molecular detuning. In (a)–(c), color blue represents
antibunched emission [g(2)(0) < 1], red bunched emission [g(2)(0) > 1], and white Poissonian statistics [g(2)(0) = 1]. Cuts of the results in
(a)–(c) for δ = 10γ0 (along the dashed-black lines) are plotted in (d), where the red line corresponds to a laser tuned to the two-photon
resonance, the blue line is obtained for a laser tuned to the superradiant state and the green line corresponds to a laser tuned to the subradiant
state. In (d), red and blue shaded background correspond to bunched and antibunched statistics, respectively. The insets illustrate the different
laser detunings considered. The dipole-dipole coupling is fixed as V = −20γ0 and the combined Debye-Waller/Franck-Condon factor as
α = 0.3.

frequency of the subradiant state, we can obtain both types
of light statistics by modifying the laser intensity. Addition-
ally, we can use weak illumination and tune the laser either
to the two-photon resonance or to the superradiant state in
order to obtain extreme values of bunching and antibunch-
ing, respectively. This level of controlled crossover between
bunched and antibunched emission depending on a reasonable
variation of experimental parameters can be of potential tech-
nological interest in engineering photon sources. Alternative
physical configurations have been already proposed to achieve
this crossover, such as tuning the relative phase between the
light scattered coherently and incoherently by an ensemble of

trapped ions in a nanofiber [60], manipulating the position of
the detector for the case of two trapped ions [61], controlling
the temperature of a thermal atomic vapor in a cell [62] or
tailoring the laser polarization and the material gain of a
plasmonic nanosphere close to two quantum emitters [63].

A. Analytical insights

A better understanding of the intensity correlations in
Fig. 2 can be obtained from the steady-state populations and
coherences of the interacting system. Substituting Ê (+)(0) ∝
σ̂1 + σ̂2 into Eq. (8) yields

g(2)(0) = 4ρE

[2ρE + (1 + sin 2θ )ρ�+ + (1 − sin 2θ )ρ�− − cos 2θReρ+−]2
, (9)
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Numerical
Eq. (10)

laser

(c)(b)

P
o
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u
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Analytical
Numerical

(a)

FIG. 3. Color-blind intensity correlation and steady-state populations and coherences when the laser is tuned resonantly to the subradiant
state |�+〉. (a) Dependence on the laser intensity of the color-blind intensity correlation g(2)(0). The solid-black line is obtained numerically
using the exact expression in Eq. (9), whereas the dashed-blue line is calculated numerically using the approximate Eq. (10). The inset illustrates
the laser frequency used. (b) Dependence on I of the steady-state populations of (blue) the superradiant state |�−〉, (green) the subradiant state
|�+〉, (red) the doubly excited state |E〉, and (pink) the absolute value of the real part of the steady-state coherence ρ+− = 〈�+|ρ̂ss|�−〉. Solid
lines correspond to the exact numerical calculations, whereas dots represent the analytical results obtained using Eqs. (E2), (E5), and (E7)
derived in Appendix E. Black-dashed lines represent the linear and quadratic scaling of ρE with laser intensity. (c) Dependence on the laser
intensity of the coherences (dashed-orange line) −
−

2γ0
ImρE− and (solid-purple line) 
+

2γ0
ImρE+, whose difference corresponds to (red-solid line)

the population of the doubly excited state according to Eq. (12). The inset corresponds to a zoom (within the interval from I/Isat = 7 × 10−2

to I/Isat = 10−1) showing that −
−
2γ0

ImρE− is slightly larger than 
+
2γ0

ImρE+. We have fixed the values V = −20γ0, α = 0.3, and δ = 10γ0 in
all panels.

where we have introduced the steady-state populations
ρk = 〈k| ρ̂ss |k〉, with |k〉 a state of the interacting ba-
sis {|E〉 , |�+〉 , |�−〉 , |G〉}, and the coherence ρ+− =
〈�+| ρ̂ss |�−〉.

For weak laser intensities (I � Isat) and for the three laser
detunings considered in this paper, we find numerically that
the population ρE of the doubly excited state |E〉 and the
coherence ρ+− are much smaller than the populations ρ�± of
the delocalized states |�±〉. Thus, the intensity correlation can
be approximated under weak illumination as

g(2)(0)

∣∣∣∣
I�Isat

= 4ρE

[(1 + sin 2θ )ρ�+ + (1 − sin 2θ )ρ�−]2
. (10)

The numerator in Eq. (10) accounts for the probability of
emitting two photons, which is proportional to the steady-
state population of the doubly excited state. Similarly, the
denominator is related the probability of single-photon emis-
sion and is given by the steady-state populations of the
single-excitation delocalized states. Equation (10) indicates
that if the population of the doubly excited state is much
smaller than the square of the steady-state populations of
the delocalized states, then the intensity correlation becomes
strongly antibunched. In the opposite limit, strong bunching
occurs.

In the following, we discuss in more detail the light emis-
sion processes behind the complex behavior of the intensity
correlation when the laser is tuned to the transition frequency
of the subradiant state |�+〉 (ωlas = ω0 + �) and the molecu-
lar detuning is fixed at δ = 10γ0. For this value of molecular
detuning, sin 2θ = −0.97 and cos 2θ = 0.24 in Eqs. (9) and
(10). The intensity correlation for the other two laser detun-
ings at the same molecular detuning is analyzed in detail in
Appendices B and C, where we provide analytical expressions
of g(2)(0) that are valid for arbitrary laser intensity.

B. Laser tuned to the subradiant state

When the laser is tuned to the transition frequency of the
subradiant state there is an important competition between
two excitation mechanisms: (i) the resonant excitation of the
subradiant state |�+〉, a state that couples very inefficiently to
light; and (ii) the nonresonant excitation of the superradiant
state |�−〉, which couples very well to light. As a conse-
quence, we obtain a complex dependence of the intensity
correlation g(2)(0) on the laser intensity, as shown in Fig. 3(a)
[corresponding to the green line in Fig. 2(d)].

The light emitted is antibunched for weak laser intensities
(I � Isat), but g(2)(0) remains larger than 0.25, much larger
than the minimum value of g(2)(0) when a laser of the same in-
tensity is tuned to the transition frequency of the superradiant
state |�−〉, see Fig. 2(d). This larger value indicates that the
coupled molecules cannot be approximated as a single TLS
for this laser frequency and molecular detuning (δ = 10γ0).

Moreover, for weak enough laser intensities (I � Isat),
the steady-state populations in Fig. 3(b) can be obtained
from the populations of two independent three-level systems,
and g(2)(0) becomes independent of the laser intensity (see
Appendix E for the detailed derivation of the subsequent
equations). One of these three-level systems consists of the
states |G〉 , |�+〉 , |E〉 and the other one of |G〉 , |�−〉 , |E〉,
which accounts for the two competing processes to excite
the doubly excited state |E〉. In this manner, the populations
ρ�+ and ρ�− of the single-excitation delocalized states |�+〉
and |�−〉 scale linearly with the laser intensity as ρ�+||�+〉

I�Isat
=

I
Isat

γ 2
0 (1+sin 2θ )

γ 2+
and ρ�−||�+〉

I�Isat
= I

Isat

1−sin 2θ
8η2 , where η = (2�)/γ0

and we have assumed � � γ0 to further simplify these ex-
pressions. The population of the subradiant state |�+〉 [green
line in Fig. 3(b)] is two orders of magnitude larger than that
of the superradiant state |�−〉 (blue line), since the former is
driven resonantly and the later nonresonantly (with laser de-
tuning equal to 2�). On the other hand, in the denominator of
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g(2)(0) in Eq. (10) the population ρ�− of the superradiant state
|�−〉 is multiplied by a factor 1 − sin 2θ ≈ 1.97, which is two
orders of magnitude larger than the factor 1 + sin 2θ ≈ 0.03
multiplying the population ρ�+ of the subradiant state |�+〉,
since the superradiant state couples much more efficiently to
light. Both delocalized states thus contribute comparably to
the denominator of Eq. (10) and need to be taken into account
in the calculation of g(2)(0).

Further, for these laser intensities (I � Isat), the doubly
excited state |E〉 is populated through two independent two-
photon processes (one via the subradiant state and another
one via the superradiant state) and thus its population ρE [red
line in Fig. 3(b)] scales quadratically with the laser intensity

as ρE ||�+〉
I�Isat

= I2

I2
sat

[ (1+sin 2θ )γ 2
0

8�γ+
]2 + I2

I2
sat

[ 1−sin 2θ
8η2 ]2, where the first

term of the right-hand side accounts for the population ex-
cited via the subradiant state |�+〉 and the second term via
the superradiant state |�−〉. According to Eq. (10), g(2)(0)
therefore becomes independent of the laser intensity under
weak illumination and can be obtained as

g(2)(0)

∣∣∣∣
|�+〉

I�Isat

= 4

(
1−sin 2θ

(4�)2

)2 + (
1+sin 2θ

4�γ+

)2

[(
1−sin 2θ

4�

)2 + (
1+sin 2θ

γ+

)2]2 . (11)

However, for this laser detuning the intensity correlation has
a larger value [g(2)(0)||�+〉

I�Isat
≈ 0.25] than when the laser is

tuned to the transition frequency of the superradiant state
[g(2)(0)||�−〉

I�Isat
≈ 2.5 × 10−4], which emphasizes that the dy-

namics of the coupled molecules is now more complex than
that of a single TLS-like emitter.

Additionally, Eq. (11) can be used to estimate molec-
ular parameters in experiments. For example, the distance
between the two emitters r12 and the molecular detuning δ

could be simultaneously estimated through the measurement
of g(2)(0)||�+〉

I�Isat
and the splitting 2� = √

4V 2 + δ2 between
the transition frequencies of the superradiant and subradiant
states. Alternatives to extract r12 are based on superresolution
imaging techniques [19,27], which are time demanding.

The value of the intensity correlation g(2)(0) increases for
stronger laser intensities (10−1 � I/Isat � 101). In this range
of laser intensity, the slope of the population ρE of the doubly
excited state |E〉 scales superquadratically, which indicates
that the excitation of the doubly excited state |E〉 can no
longer be understood as due to two independent two-photon
processes (i.e., its population ρE does not correspond to the
population given by two independent three-level systems). In
contrast, the excitation of |E〉 via the resonantly driven subra-
diant state |�+〉 and via the nonresonantly driven superradiant
state |�−〉 coherently interfere. This effect is revealed, on
the one hand, in the increase in the slope of the real part
of the coherence ρ+− = 〈�+|ρ̂ss|�−〉 between the superradi-
ant and subradiant states [represented with a pink-solid line
in Fig. 3(b)]. On the other hand, the interference between
the excitation of the doubly excited state from the superra-
diant state and from the subradiant state also has an effect
in the complex interplay between the imaginary part of the
coherence ρE+ = 〈E |ρ̂ss|�+〉 (related to the excitation of the
doubly excited state via the subradiant state |�+〉) and the
imaginary part of the coherence ρE− = 〈E |ρ̂ss|�−〉 (related
to the excitation via the superradiant state |�−〉). These latter

coherences contribute to the population of the doubly excited
state as

ρE = −
+
2γ0

ImρE+ − 
−
2γ0

ImρE−. (12)

Figure 3(c) shows that the two terms on the right-hand side
of Eq. (12) are of opposite sign and are comparable in
magnitude. Under very weak illumination, both terms scale
quadratically with the intensity and thus so does ρE , as the
negative term is slightly smaller in magnitude than the positive
one [see inset in Fig. 3(c)]. For increasing laser intensities
the slope of the negative term starts to decrease and thus its
cancellation with the larger positive term is reduced, which
leads to the superquadratic behavior of ρE with the laser in-
tensity. Additionally, the populations of the single-excitation
delocalized states |�+〉 and |�−〉 still depend linearly on
the laser intensity [see Fig. 3(b)] and thus the superquadratic
scaling of the doubly excited state leads to an increase in the
intensity correlation [see Fig. 3(a)], according to Eq. (10).
Importantly, g(2)(0) eventually crosses from antibunching to
bunching, which indicates that the correlation can be of either
one type or the other for this laser detuning and molecular
detuning (δ = 10γ0), depending on the intensity of the laser.
This crossover is also captured by Eq. (10) [dashed-blue line
in Fig. 3(a)], which shows a good agreement with the results
obtained with the exact Eq. (9) for I � Isat.

For laser intensities larger than 10Isat, the population ρ�+
of the subradiant state |�+〉 reaches a maximum value of
0.33. Additionally, the population of the doubly excited state
|E〉 becomes linearly dependent on the laser intensity due to
the large population of the subradiant state for these laser
intensities. The intensity correlation then reaches a maximum
of value 3.71. For even larger laser intensities (I � 103Isat),
all populations converge to 0.25 (i.e., both molecules become
saturated and thus uncorrelated) and the intensity correlation
converges to g(2)(0) = 1. Notably, the evolution of g(2)(0)
from its maximum value to 1 is not a simple decay, but it
reaches a minimum before growing again, which highlights
the complexity of the excitation and emission processes be-
tween states for this laser detuning.

IV. FREQUENCY-RESOLVED INTENSITY CORRELATION

The color-blind intensity correlation g(2)(τ ) analyzed in
the previous section measures the correlation between all the
photons emitted from the molecules, without any discrimina-
tion on their frequency. In contrast, the frequency-resolved
intensity correlation (FRIC) g(2)(ω1, ω2; τ ) addresses the
correlation between pairs of photons emitted at particular
frequencies ω1 and ω2. g(2)(ω1, ω2; τ ) provides information
about the different emission processes of the molecules and
can unveil processes that are not revealed in the emission
spectrum. For example, it is known that FRIC can unveil
two-photon transitions through virtual states [34,38–40]. Ad-
ditionally, we show in this section that FRIC can also unveil
one-photon transitions that are not revealed in the one-photon
spectrum.

The FRIC of light emitted from two interacting emit-
ters was investigated in Ref. [34] for the case of incoherent
driving. We consider here coherent illumination instead, and
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show that the FRIC maps exhibit significant differences
depending on the laser frequency. In particular, we investigate
the FRIC of the same two-molecule system as in the previous
section (i.e., with molecular detuning δ = 10γ0, dipole-dipole
coupling V = −20γ0 and combined Debye-Waller/Franck-
Condon factor α = 0.3). We analyze the cases in which the
laser is tuned to the transition frequency of the superradiant
state and to the transition frequency of the subradiant state.
The FRIC for a laser tuned to the two-photon resonance is
discussed in Appendix H and the results are similar to those
reported in Ref. [41].

A. Methodology

The FRIC can be measured experimentally by incorpo-
rating two Fabry-Pérot filters centered at frequencies ω1

and ω2 in the Hanbury-Brown Twiss interferometer [see
Fig. 1(a)], with each filter placed in the path of one of
the light beams that emerge from the beam splitter to-
wards the detectors. In this paper, Lorentzian filters are
assumed and g(2)(ω1, ω2; τ ) is calculated theoretically us-
ing the positive-frequency and negative-frequency electric
field operators filtered at frequency ω [64], Ê (±)

ω (t ) =
(�/2)

∫ ∞
0 e−(iω+�/2)t ′

Ê (±)(t − t ′)dt ′, where � represents the
linewidth of the filters. In terms of these operators, the FRIC
is obtained as

g(2)(ω1, ω2; τ ) =
〈
T:

[
Ê (−)

ω1
(0)Ê (−)

ω2
(τ )Ê (+)

ω2
(τ )Ê (+)

ω1
(0)

]〉
ss〈

E (−)
ω1 (0)E (+)

ω1 (0)
〉
ss

〈
E (−)

ω2 (τ )E (+)
ω2 (τ )

〉
ss

,

(13)
where T: denotes the product of the time-ordered and normal-
ordered operators.

The direct calculation of the FRIC through Eq. (13) in-
volves complicated time integrals [35,36,64–67]. However,
this computation is simplified by coupling weakly two TLSs
to the system of interest [36,37,68]. These additional TLSs
act as the two Fabry-Pérot filters in the experiment (at fre-
quencies ω1 and ω2) and the corresponding Hamiltonian is
Ĥ f l = ∑2

i=1 h̄ωiζ̂
†
i ζ̂i, where fl stands for filter, ζ̂

†
i and ζ̂i rep-

resent the raising and lowering operators of filter i, and ωi

the corresponding central frequency. The interaction of the
filters with the system is modeled by the Hamiltonian Ĥ f l

int =∑2
i=1 h̄ε[ζ̂i(σ̂

†
1 + σ̂

†
2 ) + H.c.], with the coupling strength ε

weak enough not to disturb the dynamics of the system. The
linewidth of the filters is incorporated via the additional Lind-
blad operators L f l ρ̂ = �

2 D[ζ̂1]ρ̂ + �
2 D[ζ̂2]ρ̂. FRIC can then

be calculated with the normalized two-time correlations of the
steady-state populations of the two filters [36], i.e.,

g(2)(ω1, ω2; τ ) = lim
ε→0

〈ζ̂ †
1 ζ̂1(0)ζ̂ †

2 ζ̂2(τ )〉ss

〈ζ̂ †
1 ζ̂1(0)〉ss 〈ζ̂ †

2 ζ̂2(τ )〉ss

. (14)

We focus here on the FRIC at τ = 0 and follow the numer-
ical methodology proposed in Ref. [37] to calculate Eq. (14).
This methodology is based on perturbation theory, valid for
small values of ε, and leads to expressions that ultimately
depend only on the dynamics of the system of interest, i.e., the
Hilbert space does not increase in the numerical calculations
due to the incorporation of the filters. Additionally, within

this methodology, the results do not depend on the particular
choice of the coupling strength ε.

B. Laser tuned to the superradiant state

We analyze first the FRIC when the laser frequency cor-
responds to the transition frequency of the superradiant state
|�−〉 (ωlas = ω0 − �), for weak, moderate, and strong laser
intensities.

1. Weak laser intensity

We fix I = 0.1Isat and show the normalized emission spec-
trum (top) and the FRIC map (bottom) in Fig. 4(a). In the
FRIC map, the x and y axis correspond to the normalized
laser detuning of the photons arriving at detector 1, (ω1 −
ωlas )/�, and at detector 2, (ω2 − ωlas )/�, respectively. We
use the standard color convention [34,38–41], where the blue
color represents antibunched emission [g(2)(ω1, ω2; 0) < 1],
red bunched emission [g(2)(ω1, ω2; 0) > 1], and white Poisso-
nian statistics [g(2)(ω1, ω2; 0) = 1]. To improve the visibility
of the antibunched emission as well as of the bunched
emission, we additionally make use of a linear scale in
the range 0 � g(2)(ω1, ω2; 0) � 1 and a logarithmic scale in
the range 1 � g(2)(ω1, ω2; 0) � 100. Regarding the emission
spectrum S(ω) ∝ ∫ ∞

−∞ dτ 〈δÊ (−)(τ )δÊ (+)(0)〉ss e−iωt , we cal-
culate it using the fluctuation operators [e.g., δÊ (−)(τ ) =
Ê (−)(τ ) − 〈Ê (−)(τ )〉ss] to avoid the Dirac delta peak at ω =
ωlas and we normalize it in such a way that the integration
over the complete range of frequencies gives the inten-
sity of the incoherently emitted light, i.e.,

∫ ∞
0 dωS(ω) =

γ0 〈δσ̂ †
1 δσ̂1 + δσ̂

†
2 δσ̂2〉ss + γ̃ 〈δσ̂ †

1 δσ̂2 + δσ̂
†
2 δσ̂1〉ss [48].

The FRIC map in Fig. 4(a) is characterized by a strongly
antibunched background, which can be understood from
the very small value of the color-blind intensity correlation
for these laser parameters [g(2)(0) ≈ 10−3]. On top of this
strongly antibunched background we observe a vertical line
at ω1 = ωlas, a horizontal line at ω2 = ωlas (marked by solid-
gray arrows) and a bunched antidiagonal line (dashed-gray
arrow) at ω1 + ω2 = 2ωlas. These lines constitute a signa-
ture of the mechanisms of photon emission and to analyze
them is convenient to account for the quantum nature of the
illumination [34]. The eigenstates of the full quantized sys-
tem are distributed in infinite rungs, with the eigenstates that
belongs to the same rung having equal number of total ex-
citations (i.e., molecular excitations plus photons in the laser
field). For example, the eigenstates in the rung with n excita-
tions (rung n) under weak illumination are the hybrid states
{|G, n〉 , |�−, n − 1〉 , |�+, n − 1〉 , |E , n − 2〉}, with |n〉 the
n-Fock state of the laser field. Notably, for this laser detun-
ing and intensity, the states |�−, n − 1〉 and |G, n〉 become
degenerate in energy. In the same way, the states |E , n − 2〉
and |�+, n − 1〉 are also degenerate in energy. Thus, for these
laser parameters, each rung is composed by two doubly de-
generate states. The eigenstates of three subsequent rungs are
depicted in the level scheme in Fig. 4(b).

On the one hand, the frequencies at which the horizontal
and vertical lines emerge in the FRIC map correspond to the
frequencies of the one-photon transitions between eigenstates
of the system, e.g., from the superradiant state |�−, n〉 in
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laser

FIG. 4. FRIC for a laser tuned to the transition frequency of the superradiant state |�−〉, ωlas = ω0 − �. [(a),(c),(e)] Normalized emission
spectra (top panel) and FRIC maps (bottom panel) for laser intensity (a) I = 0.1Isat, (c) I = 50Isat, and (e) I = 1000Isat. The inset in (a) illustrates
the molecular energy levels |G〉 and |�−〉 and the resonant excitation of the superradiant state. In the FRIC maps we use the standard color
convention, where blue color represents antibunched emission, while red color bunched emission and white Poissonian statistics. In the color
bar, we use a linear scale in the interval 0 � g(2)(ω1, ω2; 0) � 1 and a logarithmic scale in the range 1 � g(2)(ω1, ω2; 0) � 100. We consider
the filter linewidth � = γ0/10. [(b),(d),(f)] Schematic representation of the eigenstates (accounting for the quantum nature of the laser field) in
rungs n − 1, n, and n + 1 for laser intensity (b) I = 0.1Isat, (d) I = 50Isat, and (f) I = 1000Isat. Each rung contains four eigenstates with equal
number of excitations. Solid arrows are used to mark the horizontal and vertical lines in the FRIC maps and the one-photon transitions in the
diagrams of the eigenstates, whereas dashed arrows are used for the antidiagonal lines and the two-photon processes through virtual states.
The dipole-dipole coupling is fixed as V = −20γ0, the combined Debye-Waller/Franck-Condon factor as α = 0.3 and the molecular detuning
as δ = 10γ0.

the rung n + 1 to the ground state |G, n〉 in the rung n. We
use solid arrows in Figs. 4(a) and 4(b) to depict these one-
photon transitions in the level scheme as well as to mark the
corresponding horizontal and vertical lines (the same arrow
convention is used in the rest of the FRIC maps). The emission
of one photon of energy ωlas (here, ωlas = ω0 − �) due to
these transitions does not influence the frequency of the next
emitted photon. As a consequence, the correlation g(2)(ω1 =
ωlas, ω2 = ω′; 0) and g(2)(ω1 = ω′, ω2 = ωlas; 0) is mostly in-
dependent of the frequency ω′ of the second photon, which
gives raise to vertical and horizontal lines at ωlas = ω0 − �

of almost constant value (except at the positions that cross
the antidiagonal lines discussed below). These one-photon
transitions can also be identified by the peaks in the emission
spectrum of the system, shown on top of Fig. 4(a).

On the other hand, the antidiagonal line in the FRIC map at
ω1 + ω2 = 2ωlas is a signature of relaxation processes known
as leapfrog [34]. These leapfrog processes consist in the emis-
sion of a photon of frequency ω1 (ω2) due to the transition
from an initial eigenstate in the rung n + 1 to a virtual state
and the emission of a photon of frequency ω2 (ω1) due to the

relaxation from the virtual state to another eigenstate in the
rung n − 1. The energy difference between the initial and final
eigenstates determines the value of ω1 + ω2 satisfied along
the antidiagonal line. This antidiagonal line as well as the
corresponding two-photon transition are marked with dashed
arrows in Figs. 4(a) and 4(b) and hereafter. Additionally, as
these antidiagonal lines correspond to the correlated emis-
sion of two photons, they are usually characterized by strong
bunching. Importantly, these two-photon processes cannot be
unveiled in the emission spectrum, and neither in the color-
blind intensity correlation, which stresses the advantages of
the FRIC to gain additional information about the transitions
in the system.

Moreover, the FRIC map in Fig. 4(a) resembles that of
a TLS under weak illumination [34,69], which we review
in Appendix F. This similarity confirms that for these laser
parameters the system behaves almost as a TLS. The impact
of the subradiant state and the doubly excited state on the
FRIC is thus very weak for this laser intensity and detuning.
For example, the decay from the weakly populated subra-
diant state |�+, n〉 to the ground state |G, n〉 is reflected in
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the emission spectrum with the emergence of a very small
peak at frequency ωlas + 2� = ω0 + � (solid-pink arrow).
The corresponding lines are not appreciated in the FRIC map
in Fig. 4(a) because the associated increase of g(2)(ω1, ω2; 0)
is too small.

2. Moderate laser intensity

Figure 4(c) shows the FRIC map for I = 50Isat. This laser
intensity is strong enough to modify the eigenstates of the
system, which are now referred to as dressed eigenstates
[46,53]. For example, the rung n consists of four dressed
eigenstates |E (n)

i 〉 (with i ∈ {1, 2, 3, 4}), which can be
written as different linear combinations of the bare states
{|G, n〉 , |�−, n − 1〉 , |�+, n − 1〉 , |E , n − 2〉}. In particular,
for the laser parameters used here, the two lowest-energy
dressed eigenstates |E (n)

1 〉 and |E (n)
2 〉 in the rung n can be accu-

rately described as antisymmetric |A(n)
G−〉 and symmetric |S(n)

G−〉
combinations of the states |G, n〉 and |�−, n − 1〉 (which are
degenerate in energy under weak illumination), i.e., |E (n)

1 〉�

|A(n)
G−〉 =(|G, n〉 − |�−, n − 1〉)/

√
2 and |E (n)

2 〉 � |S(n)
G−〉 =

(|G, n〉+ |�−, n − 1〉)/
√

2. Similarly, |E (n)
3 〉 � |S(n)

E+〉 =
(|E , n − 2〉 + |�+, n − 1〉)/

√
2 and |E (n)

4 〉 � |A(n)
E+〉 =

(|E , n − 2〉 − |�+, n − 1〉)/
√

2 are symmetric and
antisymmetric combinations of |E , n − 2〉 and |�+, n − 1〉.
We remark that the photon field occupation is assumed large
enough so that the energy splitting between the different
eigenstates within the same rung are identical for the rungs
n − 1, n, and n + 1 in Fig. 4(d).

The dressed states |S(n)
G−〉 and |A(n)

G−〉 have a significant
energy splitting equal to |(cos θ − sin θ )
| ≈ 0.11� (see Ap-
pendix G), in contrast to the case of weak illumination where
they are degenerate in energy. The one-photon transitions
|S(n)

G−〉 → |S(n−1)
G− 〉 and |A(n)

G−〉 → |A(n−1)
G− 〉 [marked with solid

gray arrows in Fig. 4(d)] lead to the emission of photons
of frequency ωlas = ω0 − �, whereas the one-photon transi-
tions |S(n)

G−〉 → |A(n−1)
G− 〉 and |A(n)

G−〉 → |S(n−1)
G− 〉 give raise to the

emission of photons of frequencies ωlas + |(cos θ − sin θ )
|
and ωlas − |(cos θ − sin θ )
|, respectively. As a consequence,
three peaks emerge in the emission spectrum on top of
Fig. 4(c), which are analogous to the Mollow triplet in the
emission spectrum of a single TLS under strong enough
illumination (see Appendix F). In the FRIC map, these one-
photon transitions lead to a broad vertical line and a broad
horizontal line, which emerge due to the overlapping of three
vertical and horizontal lines at frequencies ωlas and ωlas ±
|(cos θ − sin θ )
|.

Moreover, new antidiagonal lines emerge in the FRIC map
satisfying ω1 + ω2 = 2ωlas ± |(cos θ − sin θ )
| [see the light
green and dark green dashed arrows in Fig. 4(c)]. These new
lines unveil additional two-photon transitions through virtual
states and emerge due to the energy splitting between the
dressed states |S(n)

G−〉 and |A(n)
G−〉, which are linear combinations

of the superradiant and ground molecular states. These lines
are also analogous to the ones emerging in a single TLS under
the same laser intensity (see Appendix F).

On the other hand, we observe additional lines in the FRIC
map that are due to the non-negligible effect of the subradiant
state and of the doubly excited state for this laser intensity.
First, we observe two horizontal and vertical lines centered

at frequency ωlas + 2�, which corresponds to the one-photon
transitions from one of the dressed states |A(n)

E+〉 and |S(n)
E+〉

to one of the dressed states |S(n−1)
G− 〉 and |A(n−1)

G− 〉 in a lower
rung. The FRIC map also exhibits two additional antidiag-
onal lines corresponding to the two-photon transitions from
|A(n+1)

E+ 〉 and |S(n+1)
E+ 〉 to one of the dressed states |S(n−1)

G− 〉 and
|A(n−1)

G− 〉 through an intermediate virtual state. In summary, the
FRIC map in Fig. 4(c) again mostly resembles the FRIC map
of a TLS consisting of the ground and the superradiant state
and driven resonantly under the same laser intensity, but with
additional lines accounting for the impact of the subradiant
state and the doubly excited state on the light emission.

Remarkably, not all the transitions between eigenstates are
reflected in the FRIC map. In particular, we do not observe
horizontal and vertical lines centered at frequency ωlas −
2� = ω0 − 3� corresponding to the one-photon transitions
from |S(n)

G−〉 or |A(n)
G−〉 to |A(n−1)

E+ 〉 or |S(n−1)
E+ 〉. Similarly, no peak

appears at frequency ωlas − 2� = ω0 − 3� in the emission
spectrum on top of Fig. 4(c). To understand this effect we cal-
culate the probability of these transitions using Fermi’s golden
rule, which states that the transition probability between a
initial eigenstate |i〉 and a final eigenstate | f 〉 is proportional
to | 〈 f | (σ1 + σ2) |i〉 |2. The emission operator can be written
in the interacting basis as

σ1 + σ2 = (cos θ + sin θ )(|G〉 〈�+| + |�+〉 〈E |)
+ (cos θ − sin θ )(|G〉 〈�−| + |�−〉 〈E |). (15)

As a consequence, 〈S(n−1)
E+ | (σ1 + σ2) |S(n)

G−〉 = 〈A(n−1)
E+ | (σ1 +

σ2) |S(n)
G−〉 = 〈S(n−1)

E+ | (σ1 + σ2) |A(n)
G−〉 = 〈A(n−1)

E+ | (σ1 + σ2)
|A(n)

G−〉 = 0, which means that all the one-photon transitions
with energy difference ωlas − 2� = ω0 − 3� are forbidden.
Finally, we note that the FRIC map does not show
antidiagonal lines corresponding to two-photon transitions
from the states |S(n+1)

G− 〉 or |A(n+1)
G− 〉 to any of the states |S(n−1)

E+ 〉
or |A(n−1)

E+ 〉, which indicates that these transitions are also
forbidden.

3. Strong laser intensity

Last, we plot in Fig. 4(e) the FRIC map for intense laser
illumination, I = 103Isat. For this laser intensity, we obtain the
dressed eigenstates |E (n)

i 〉 numerically.
One of the main differences with the case of moderate laser

intensity is that the three Mollow-like vertical, horizontal, and
antidiagonal lines (marked with light green, gray, and dark
green arrows) in the FRIC map do not overlap and can be
clearly distinguished. The reason is that the energy splitting
between the dressed states |E (n)

1 〉 and |E (n)
2 〉 is much larger

than for the case of moderate laser intensity.
Another noticeable effect of the increase of laser intensity

is that we observe a wider variety of vertical, horizontal,
and antidiagonal lines in the FRIC map. There are two main
factors involved in the emergence of new lines. The first one
is the larger energy splitting between |E (n)

3 〉 and |E (n)
4 〉, which

was negligible in the case of moderate intensity, and allows for
resolving new transitions. The second factor responsible of the
emergence of new lines in the FRIC map is that the forbidden
transitions for moderate laser intensities now become allowed
due to the more complex nature of the dressed eigenstates,
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FIG. 5. FRIC for a laser tuned to the transition frequency of the subradiant state |�+〉, ωlas = ω0 + �. [(a),(c),(e)] Normalized emission
spectra (top panel) and FRIC maps (bottom panel) for laser intensity (a) I = 0.1Isat, (c) I = 50Isat, and (e) I = 1000Isat. We depict the molecular
energy levels |G〉 and |�+〉 and the resonant excitation of the subradiant state in the inset in (a). We follow the standard color convention in the
FRIC maps and use blue color to represent antibunched emission, red for bunched emission, and white for Poissonian statistics. We make use of
a linear scale in the range 0 � g(2)(ω1, ω2; 0) � 1 and a logarithmic scale in the interval 1 � g(2)(ω1, ω2; 0) � 100 in the color bar. We assume
a filter with linewidth � = γ0/10. [(b),(d),(f)] Diagrams of the eigenstates, with the laser field quantized, in the rungs n − 1, n, and n + 1 for
laser intensity (b) I = 0.1Isat, (d) I = 50Isat, and (f) I = 1000Isat. Each of the rungs have four eigenstates with equal number of excitations. We
use solid arrows to mark the horizontal and vertical lines in the FRIC maps and to indicate the one-photon transitions in the diagrams of the
eigenstates, while we use dashed arrows for antidiagonal lines related to leapfrog processes. We have fixed the values V = −20γ0, α = 0.3,
and δ = 10γ0.

which under strong illumination are not simple symmetric and
antisymmetric combinations of two states of the interacting
basis {|G, n〉 , |�−, n − 1〉 , |�+, n − 1〉 , |E , n − 2〉}.

Finally, we remark that the diagonal bunched line at ω1 =
ω2 corresponds to the simultaneous detection of two identical
photons. The intensity correlation along this diagonal is twice
that of at the nearby points in the map [34,36,70]. The reason
is that a coincidence is counted no matter which photon arrives
to detector 1 and which one does it to the detector 2, in
contrast to the case in which ω1 �= ω2, which doubles the
probability of a coincidence in the detectors.

C. Laser tuned to the subradiant state

Next, we analyze the FRIC for a laser tuned to the tran-
sition frequency of the subradiant state |�+〉 (i.e., ωlas =
ω0 + �). For this laser frequency, the FRIC maps become
more complex than for the previous detuning due to the emer-
gence of additional lines and also to the possibility of having
FRIC maps with both antibunched or bunched background
depending on the laser intensity. However, we emphasize that
the general principles governing the eigenstates of the system

are very similar to the case of the previous section, where the
laser was tuned to the transition frequency of the superradiant
state (see Appendix G).

1. Weak laser intensity

For I = 0.1Isat, we plot the FRIC map in Fig. 5(a)
and a scheme of the energy levels in Fig. 5(b). As in
the case of weak illumination in the previous section,
the eigenstates of the full quantized system are {|G, n〉 ,

|�−, n − 1〉 , |�+, n − 1〉 , |E , n − 2〉}. Now, the states |G, n〉
and |�+, n − 1〉 in the rung n are degenerated in energy and,
in the same way, so are the states |�−, n − 1〉 and |E , n − 2〉.

The background of the FRIC map is antibunched, which
is consistent with the value of the color-blind intensity
correlation g(2)(0) ≈ 0.3 for these laser parameters. Over
this background, three horizontal, three vertical, and three
antidiagonal lines emerge. Thus, in contrast with the previ-
ous section, this FRIC map does not resemble the one of a
TLS under weak illumination. The reason is the competition
between the resonant excitation of the subradiant state and
the nonresonant excitation of the superradiant state (which
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couples very efficiently to light), as discussed for the color-
blind intensity correlation in Sec. III B. Both excitation
pathways lead to the emission of photons of frequency ωlas =
ω0 + � giving raise to the central horizontal and vertical lines
in the FRIC map. Additionally, the central antidiagonal line in
the FRIC map corresponds to the emission of two photons of
frequencies ω1 and ω2, via an intermediate virtual state, fulfill-
ing ω1 + ω2 = 2ωlas, so that the final state is the same as the
initial one but two rungs down. Further, photons of frequency
ωlas − 2� = ω0 − � can be also emitted [lines marked with
solid red arrows in the FRIC map and also in Fig. 5(b)], as
well as leapfrog processes fulfilling ω1 + ω2 = 2ωlas − 2�

can take place (red-dashed arrows).
Remarkably, the excitation of the subradiant state |�+, n〉

in rung n can lead to the emission of photons of frequency
ωlas + 2� = ω0 + 3� due to the transition to any of states
|E , n − 2〉 or |�−, n − 1〉 in rung n − 1, which gives raise
to the horizontal and vertical lines marked with purple solid
arrows in the FRIC map in Fig. 5(a). However, the emission
of these photons is not reflected in the emission spectrum
on top of Fig. 5(a) and, additionally, these lines should not
appear in the FRIC map according to the Fermi’s golden rule
(following similar arguments than in the previous section).
We attribute the emergence of these lines in the map as a
consequence of the very small modification of the eigen-
states {|G, n〉 , |�−, n − 1〉 , |�+, n − 1〉 , |E , n − 2〉} due to
the weak illumination (see Appendix G), so that the transi-
tion is no longer strictly forbidden. Therefore, for this laser
detuning, the FRIC map reveals one-photon transitions that
occur with very low probability and which are hidden in the
emission spectrum. Similarly, two-photon transitions via in-
termediate virtual states satisfying ω1 + ω2 = 2ωlas + 2� are
also allowed due to the very small dressing of the eigenstates
(marked wit the dashed-purple arrows).

Furthermore, we analyze the impact of the combined
Debye-Waller/Franck-Condon factor α on the FRIC map at
this laser frequency and intensity in Appendix D. We find
that the FRIC map can be drastically different when α = 1,
as typically assumed in the literature, which emphasizes the
importance of accounting for α in the description of the emit-
ters when intensity correlations are investigated.

2. Moderate and strong laser intensities

We present in Fig. 5(c) the FRIC map for a laser
of intensity I = 50Isat. For these laser parameters,
the dressed eigenstates can be approximated again
as symmetric and antisymmetric combinations of the
states that are degenerate under weak illumination, i.e.,
|E (n)

1 〉 � |A(n)
E−〉 = (|E , n − 2〉 − |�−, n − 1〉)/

√
2, |E (n)

2 〉 �

|S(n)
E−〉 = (|E , n − 2〉 + |�−, n − 1〉)/

√
2, |E (n)

3 〉 � |S(n)
G+〉 =

(|G, n〉 + |�+, n − 1〉)/
√

2, and |E (n)
4 〉 � |A(n)

G+〉 = (|G, n〉 −
|�+, n − 1〉)/

√
2.

In contrast to the case in which we tune the laser to the
transition frequency of the superradiant state with the same
laser intensity, we observe that the FRIC map in Fig. 5(c) is
bunched g(2)(ω1, ω2; 0) > 1 for most pairs of filtered frequen-
cies ω1 and ω2. This general bunching can be expected from
the bunched color-blind intensity correlation for these laser
parameters [see Fig. 3(b)].

Over this general bunched background, a variety of hori-
zontal, vertical, and antidiagonal lines are observed. Similar to
the case of moderate laser intensity for the previous detuning,
this wide variety of lines emerge again due to the signifi-
cant energy splitting |
(cos θ − sin θ )| = 0.11� between the
dressed states |S(n)

E−〉 and |A(n)
E−〉. This energy splitting increases

the number of different transitions that lead to emission of
photons [see Fig. 5(d)], with respect to the case of weak laser
intensity.

Finally, we present in Fig. 5(e) the FRIC map for I =
1000Isat, which also exhibits a significant bunching for almost
every pair of filtered frequencies. For this intensity, the numer-
ical calculation of the dressed eigenstates |E (n)

i 〉 in rung n is
again necessary. The energy splittings between all the dressed
eigenstates |E (n)

i 〉 become significant, as schematically repre-
sented in Fig. 5(f). As a consequence, in the FRIC map we
observe more horizontal, vertical, and antidiagonal lines than
in the case of moderate laser intensity, with the corresponding
one-photon and two-photon transitions depicted in Fig. 5(f).

V. CONCLUSIONS

We have investigated light emission from two strongly
interacting TLS-like quantum emitters. In particular, we
have analyzed the dependence of color-blind and frequency-
resolved intensity correlations on the laser intensity for a
laser tuned to (i) the two-photon resonance, (ii) the transition
frequency of the superradiant state, and (iii) the transition
frequency of the subradiant state.

We have first demonstrated that the color-blind intensity
correlation can be tailored from extreme bunching to strong
antibunching by modifying the laser parameters. We have
also shown how this dependence can be altered by changing
the frequency detuning between the two emitters. For weak
enough laser intensities, the color-blind intensity correlation
is characterized by an extreme bunching if the laser is tuned
to the two-photon resonance. In contrast, if the laser is tuned
to the transition frequency of the superradiant state, the in-
tensity correlation becomes strongly antibunched, so that the
system behaves as an efficient single-photon source (with
larger decay rate than that of a single emitter). For these
two laser detunings, we have derived analytical expressions
(in Appendix A), valid for nonidentical molecules, α �= 1
and arbitrary laser intensity, which accurately reproduce the
intensity correlation.

Additionally, we have found that the color-blind intensity
correlation shows a more complex dependence on the laser
intensity and on the detuning between the emitters when the
laser is tuned to the transition frequency of the subradiant
state. For this laser detuning, light can be either bunched,
antibunched or Poissonian, which is a signature of the com-
plexity of the excitation and emission processes at this laser
frequency. These emission and excitation processes may be-
come even more complex in the presence of dephasing effects,
which have been neglected in this work and require a more
sophisticated description [71,72]. Besides, we have derived
an analytical expression of g(2)(0) when the laser is tuned
resonantly to the subradiant state at weak laser intensities.
This expression, as well as analogous expressions for the
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other laser detunings, can help to determine experimentally
the distance and detuning between the emitters.

Furthermore, we have also explored the frequency-
resolved intensity correlation (FRIC) for the three laser
detunings and shown that they provide further information
onto a variety of relaxation processes of the driven coupled
molecules. More specifically, the FRIC accounts for the pho-
tons emitted via one-photon transitions between eigenstates
of the system and also via two-photon transitions through
intermediate virtual states.

For a laser tuned to the transition frequency of the super-
radiant state, we have demonstrated that the FRIC generally
resembles that of a resonantly driven TLS, but it also exhibits
some differences due to the influence of the subradiant state
and the doubly excited state. Interestingly, for weak and mod-
erate laser intensities, the FRIC maps indicate that some of
the transitions are forbidden (absence of lines at certain fre-
quencies), which is consistent with the peaks in the emission
spectrum. On the other hand, when the laser is tuned to the
transition frequency of the subradiant state the FRIC becomes
more complex due to the important competition between the
resonant excitation of the subradiant state and the nonresonant
excitation of the superradiant state. We find that the FRIC can
unveil one-photon transitions that have such low probability
to occur that are not resolved by the emission spectrum. Thus,
the FRIC manifests a stronger sensitivity to reveal transitions
that occur with very low probability. These results stress the
interest of the intensity correlations to better characterize and
understand the emission from coupled quantum emitters.

The data used for the figures in this article can be found at
[73].
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APPENDIX A: STEADY-STATE ANALYTICAL
RESOLUTION

In this Appendix we derive the equations of motion of all
the elements of the density matrix in the interacting basis
{|G〉 , |�−〉 , |�+〉 , |E〉}. We use these equations of motion to
obtain analytical expressions of the steady-state populations
and color-blind intensity correlation g(2)(0) when the laser is
tuned to the two-photon resonance and also to the transition
frequency of the superradiant state |�−〉. According to the
general expression in Eq. (9), the intensity correlation is ob-
tained from the steady-state coherence ρ+− = 〈�+|ρ̂ss|�−〉
and from the steady-state populations of the superradiant
state |�−〉, of the subradiant state |�+〉, and of the dou-
bly excited state |E〉. To obtain these quantities, we write
the master equation [see Eq. (6)] in the interacting basis
{|G〉 , |�+〉 , |�−〉 , |G〉} and derive the equations of motion of
the populations and coherences in this basis.

First, the incoherent Liouvillian given in Eq. (7) is given in
the interacting basis as

Lincρ̂ = γ+
2

(D[σ̂G+]ρ̂ + D[σ̂+E ]ρ̂ ) + γ−
2

(D[σ̂G−]ρ̂ + D[σ̂−E ]ρ̂) + γ̃+
2

(D[σ̂G+, σ̂+E ]ρ̂ + D[σ̂+E , σ̂G+]ρ̂ )

+ γ̃−
2

(D[σ̂G−, σ̂−E ]ρ̂ + D[σ̂−E , σ̂G−]ρ̂ ) + γ̃0

2
(D[σ̂G−, σ̂+E ]ρ̂ + D[σ̂+E , σ̂G−]ρ̂ )

+ γ̃0

2
(D[σ̂G+, σ̂−E ]ρ̂ + D[σ̂−E , σ̂G+]ρ̂) + γ̃12

2
(D[σ̂G+, σ̂G−]ρ̂ + D[σ̂G−, σ̂G+]ρ̂)

+ γ̃12

2
(D[σ̂+E , σ̂−E ]ρ̂ + D[σ̂−E , σ̂+E ]ρ̂ ), (A1)

where γ̃± = γ̃ ± γ0 sin 2θ , γ̃0 = γ0 cos 2θ , and γ̃12 = γ̃ cos 2θ . We have also introduced the operators σ̂EE = |E〉 〈E |, σ̂++ =
|�+〉 〈�+|, σ̂−− = |�−〉 〈�−|, σ̂EG = |E〉 〈G|, and σ̂+− = |�+〉 〈�−|. The terms in the first line of Eq. (A1) correspond to
one-photon transitions between states of the interacting basis, whereas the rest of the terms correspond to crossed incoherent
processes.

Next, we compute from Eqs. (5) and (A1) the set of equations of motion of the mean value 〈·〉 of the operators σ̂ii, whose
expected values correspond to the populations of the states of the interacting basis, and the mean values of the coherences σ̂i j .
The resulting equations are

d

dt
〈σ̂EE 〉 = −2γ0 〈σ̂EE 〉 + i


+
2

〈σ̂E+ − σ̂+E 〉 + i

−
2

〈σ̂E− − σ̂−E 〉, (A2a)

d

dt
〈σ̂++〉 = −γ+ 〈σ̂++ − σ̂EE 〉 − γ̃12

2
〈σ̂−+ + σ̂+−〉 + i


+
2

〈σ̂+E − σ̂E+ + σ̂+G − σ̂G+〉, (A2b)
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FIG. 6. Dependence of the steady-state coherences on the laser intensity for different laser detunings. Absolute value of the coherences
when the laser is tuned to (a) the two-photon resonance, (b) the transition frequency of the superradiant state |�−〉, and (c) the transition
frequency of the subradiant state |�+〉. The insets in (a)–(c) illustrate the different resonant excitation processes promoted by the different
laser frequencies. Solid lines represent the coherences that involve the subradiant state |�+〉, namely (red) ρ+− = 〈�+| ρ̂ss |�−〉, (purple)
ρ+G = 〈�+| ρ̂ss |G〉, and (brown) ρE+ = 〈E | ρ̂ss |�+〉. Dashed lines are used to represent the coherences that do not involve the subradiant
state, namely (orange) ρ−G = 〈�−| ρ̂ss |G〉, (green) ρE− = 〈E | ρ̂ss |�−〉, and (blue) ρEG = 〈E | ρ̂ss |G〉. The dipole-dipole coupling is fixed as
V = −20γ0, the combined Debye-Waller/Franck-Condon factor as α = 0.3 and the molecular detuning as δ = 10γ0.

d

dt
〈σ̂−−〉 = −γ− 〈σ̂−− − σ̂EE 〉 − γ̃12

2
〈σ̂−+ + σ̂+−〉 + i


−
2

〈σ̂−E − σ̂E− + σ̂−G − σ̂G−〉, (A2c)

d

dt
〈σ̂EG〉 = 〈σ̂EG〉 (i2�0 − γ0) + i


+
2

〈σ̂E+ − σ̂+G〉 + i

−
2

〈σ̂E− − σ̂−G〉, (A2d)

d

dt
〈σ̂E+〉 = −i 〈
+

2
(−σ̂EE + σ̂++ − σ̂EG) + 
−

2
σ̂−+〉 + 〈σ̂E+〉 (i(�0 − �) − γ0 − γ+/2) − γ̃12

2
〈σ̂E−〉, (A2e)

d

dt
〈σ̂E−〉 = −i〈
−

2
(−σ̂EE + σ̂−− − σ̂EG) + 
+

2
σ̂+−〉 + 〈σ̂E−〉(i(�0 + �) − γ0 − γ−/2) − γ̃12

2
〈σ̂E+〉, (A2f)

d

dt
〈σ̂+G〉 = −i〈
+

2
(−σ̂++ + σ̂GG + σ̂EG) − 
−

2
σ̂+−〉 + (i(�0 + �) − γ+/2)〈σ̂+G〉 − γ̃12

2
〈σ̂−G〉 + γ̃+〈σ̂E+〉 + γ̃0〈σ̂E−〉,

(A2g)

d

dt
〈σ̂−G〉 = −i〈
−

2
(−σ̂−− + σ̂GG + σ̂EG) − 
+

2
σ̂−+〉 + (i(�0 − �) − γ−/2)〈σ̂−G〉 − γ̃12

2
〈σ̂+G〉 + γ̃−〈σ̂E−〉 + γ̃0〈σ̂E+〉,

(A2h)

d

dt
〈σ̂+−〉 = −i


+
2

〈σ̂E− + σ̂G−〉 + i

−
2

〈σ̂+E + σ̂+G〉 + (i2� − γ0)〈σ̂+−〉 + γ̃12

2
〈2σ̂EE − σ̂++ − σ̂−−〉. (A2i)

The above system of equations is valid for arbitrary laser
intensity and detuning, but its exact analytical resolution leads
to very complex expressions. Hence, it becomes convenient to
perform some approximations when looking for simple ana-
lytical expressions of the intensity correlation. For example,
when the laser is either tuned to the two-photon resonance
(�0 = 0) or to the transition frequency of the superradiant
state |�−〉 (�0 = �), the steady-state coherences between the
subradiant state |�+〉 and any other state are much smaller
than the largest coherence of the system (in the interacting
basis) for any value of laser intensity (see Fig. 6). Thus, we can
neglect the steady-state coherences related to the subradiant
state for these two laser detunings. As a consequence, the set
of Eqs. (A2) is reduced in the steady state ( d

dt ρ̂ = 0) to

0 = −2γ0ρE − 
−ImρE−, (A3a)

0 = −γ+(ρ�+ − ρE ), (A3b)

0 = −γ−(ρ�− − ρE ) + 
−(ImρE− − Imρ−G), (A3c)

0 = (i2�0 − γ0)ρEG + i

−
2

(ρE− − ρ−G), (A3d)

0 = −i

−
2

(−ρE + ρ�− − ρEG)

+ (i(�0 + �) − γ0 − γ−/2)ρE−, (A3e)

0 = −i

−
2

(−ρ�− + ρG + ρEG)

+ (i(�0 − �) − γ−/2)ρ−G + γ̃−ρE−, (A3f)

where ρi j = Tr(σ̂i j ρ̂ss) and ρi = Tr(σ̂iiρ̂ss). This simplified set
of equations gives raise to manageable expressions for the
steady-state populations and the color-blind intensity corre-
lation g(2)(0). We note that, as a consequence of Eq. (A3b),
the analytical population of the doubly excited state ρE is
identical to the analytical population of the subradiant state
ρ�+ .
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For the case in which the laser is tuned to the two-photon
resonance (2ωlas = 2ω0), we substitute �0 = 0 into Eq. (A3)
and solve the set of equations. The population of |E〉 and
|�+〉 are equal ρE |2PR = ρ�+|2PR (with 2PR standing for two-
photon resonance) and given by

ρE

∣∣∣∣
2PR

= 
4
−

4
4− + 2
2−γ0(4γ0 + 3γ− − 4γ̃−) + (4γ0�)2
,

(A4)

which converges to 1/4 for strong laser intensities. The pop-
ulation of the superradiant state |�−〉 becomes related to the
above population as

ρ�−

∣∣∣∣
2PR

= ρE

∣∣∣∣
2PR(

1 +
(

2γ0


−

)2)
, (A5)

which leads to ρ�−|2PR
I�Isat

= ρE |2PR
I�Isat

= ρ�+|2PR
I�Isat

= 1/4 for
strong enough laser intensities, but ρ�−|2PR

I�Isat
� ρE |2PR

I�Isat
=

ρ�+|2PR
I�Isat

for weak intensities. Substituting these analyti-

cal populations into Eq. (9), with Reρ+− = 0, the intensity
correlation results

g(2)(0)

∣∣∣∣
2PR

= 
4
− + 
2

−γ0(2γ0 + 3γ−/2 − 2γ̃−) + (2γ0�)2[

2− + γ 2

0 (1 − sin 2θ )
]2 . (A6)

Similarly, we solve the set of Eqs. (A3) with �0 = � to
obtain the populations and intensity correlation for a laser
tuned to the transition frequency of the superradiant state. The
resulting steady-state populations of the doubly excited state
and the subradiant state are given as

ρE

∣∣∣∣
|�−〉

= 
4
−

4
4− + 2
2−[(2ξ )2 + γ0(γ− − 4γ̃−)] + (2ξγ−)2
,

(A7)

with ξ =
√

(2�)2 + (γ0 + γ−/2)2 and which also converges
to 1/4 for strong laser intensities. The population of the su-
perradiant state now is

ρ�−

∣∣∣∣
|�−〉

= ρE

∣∣∣∣
|�−〉

+ 
2
−(2ξ )2

4
4− + 2
2−[(2ξ )2 + γ0(γ− − 4γ̃−)]+ (2ξγ−)2
, (A8)

and the intensity correlation thus becomes

g(2)(0)

∣∣∣∣
|�−〉

= 4
4
− + 2
2

−[(2ξ )2 + γ0(γ− − 4γ̃−)] + (2ξγ−)2

4[
2− + (1 − sin 2θ )ξ 2]2
. (A9)

APPENDIX B: DEPENDENCE OF g(2)(0) ON THE LASER
INTENSITY WHEN THE LASER IS TUNED TO THE

TWO-PHOTON RESONANCE

In this Appendix, we consider that the molecules are driven
by a laser tuned to the two-photon resonance (2ωlas = 2ω0)
and discuss in detail the dependence of g(2)(0) on the laser
intensity at δ = 10γ0 [red line in Fig. 2(d) and black-solid
line in Fig. 7(a)]. To gain analytical insights, we use the
expressions of the steady-state populations in Eqs. (A4) and
(A5) [plotted with dots in Fig. 7(b)], which agree well with
the numerical results [solid lines in Fig. 7(b)].

In the laser intensity range I � Isat, the superradiant state
|�−〉 is excited through single-photon processes and its popu-
lation ρ�− increases linearly with the laser intensity according
to ρ�−|2PR

I�Isat
= I

Isat

1−sin 2θ
2η2 [obtained from Eq. (A5) and where

η = 2�
γ0

]. Further, the doubly excited state |E〉 is excited
through two-photon processes and its population depends
quadratically on the intensity ρE |2PR

I�Isat
= I2

I2
sat

(1−sin 2θ )2

16η2 [ob-
tained from Eq. (A4)].

Additionally, within this intensity range (I � Isat), we ob-
serve in Fig. 7(b) that the population ρ�+ of the subradiant
state |�+〉 is two orders of magnitude smaller than the pop-
ulation ρ�− of the superradiant state |�−〉 and thus ρ�+ can

be neglected in the calculation of the intensity correlation in
Eq. (10). As a consequence, both the numerator (4ρE ) and
the denominator (ρ2

�− (1 − sin 2θ )2) in Eq. (10) scale quadrat-
ically with the intensity and g(2)(0) becomes independent of
the particular value of I/Isat in this range of laser intensity.
The resulting expression is given by

g(2)(0)

∣∣∣∣
2PR

I�Isat

=
(

η

1 − sin 2θ

)2

, (B1)

which agrees with the numerical results in Fig. 7(a) and
becomes equal to 439.5 in our configuration. Similar to the
analytical expression in Eq. (11) of g(2)(0) at weak enough
illumination and for a laser tuned resonantly to the subradiant
state, the simple expression of g(2)(0) in Eq. (B1) can also
be used for the experimental estimation of molecular param-
eters. Moreover, Eq. (B1) shows that the emission is strongly
bunched [g(2)(0)|2PR

I�Isat
� 1)] if the splitting 2� is much larger

than the spontaneous decay γ0 (as it occurs when V � γ0).
For increasing laser intensities (I � 10−1Isat), the inten-

sity correlation strongly decreases. Figure 7(b) shows that
the population ρE of the doubly excited state |E〉 becomes
comparable to the population ρ�− of the superradiant state
|�−〉 in this case and, as a consequence, Eq. (10) is no longer
a good approximation. By relating 
 with I , we can rewrite
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Eq. (A6) as

g(2)(0)

∣∣∣∣
2PR

= (4�)2 + 2γ0(1 − sin 2θ )(2γ0 + 3γ−/2 − 2γ̃−)(I/Isat ) + (1 − sin 2θ )2γ 2
0 (I/Isat )2

[(2 + I/Isat )(1 − sin 2θ )γ0]2
, (B2)

with γ̃− = γ̃ − γ0 sin 2θ . Equation (B2) is consistent with the
expression reported in Ref. [74] for identical emitters (δ =
0) and where the combined Debye-Waller/Franck-Condon
factor is not taken into account (i.e., α = 1). Figure 7(a)
shows the excellent agreement between Eq. (B2) (blue dots)
and the numerical results (black-solid line), including the
convergence of both to g(2)(0) = 1 for strong enough laser
intensities.

Analytical
Numerical

(b)

P
o

p
u

la
ti

o
n

laser

Eq. (B2)
Numerical

(a)

FIG. 7. Dependence on the laser intensity of (a) g(2)(0) and
(b) the steady-state populations when the laser is tuned resonantly
to the two-photon resonance. In (a), the solid-black line is obtained
numerically using Eq. (9), whereas blue dots are calculated with the
full analytical expression in Eq. (B2). The inset in (a) represents the
excitation at the two-photon resonance (2ωlas = 2ω0). In (b), blue
color corresponds to the steady-state populations of the superradiant
state |�−〉, green to that of the subradiant state |�+〉, red to that of
the doubly excited state |E〉 and pink to absolute value of the real
part of the steady-state coherence ρ+− = 〈�+|ρ̂ss|�−〉. Solid lines
correspond to the numerical calculations, whereas dots represent the
analytical results obtained from the expressions in Eqs. (A4) and
(A5). We have fixed the values V = −20γ0, α = 0.3, and δ = 10γ0.

APPENDIX C: DEPENDENCE OF g(2)(0) ON THE LASER
INTENSITY WHEN THE LASER IS TUNED RESONANTLY

TO THE SUPERRADIANT STATE

We examine next the color-blind intensity correlation
when the laser is tuned to the transition frequency of the

(b)

P
o

p
u

la
ti

o
n

Eq. (C2)
Eq. (C3)

Numerical

laser

Analytical
Numerical

(a)

FIG. 8. Dependence on the laser intensity of (a) the color-blind
intensity correlation and (b) steady-state populations when the laser
is tuned resonantly to the superradiant state |�+〉. In (a), the solid-
black line is obtained numerically using Eq. (9), while orange dots
are calculated with the analytical expression in Eq. (C2) and blue dots
with the analytical expression in Eq. (C3). The resonant excitation at
the transition frequency of the superradiant state is illustrated in the
inset in (a). In (b), color blue corresponds to the steady-state popu-
lation of the superradiant state |�−〉, green to that of the subradiant
state |�+〉, red to that of the the doubly excited state |E〉, and pink
to the absolute value of the real part of the steady-state coherence
ρ+− = 〈�+|ρ̂ss|�−〉. Solid lines correspond to the numerical calcu-
lations, whereas dots represent the analytical results obtained from
the expressions in Eqs. (A7) and (A8). We have fixed the values
V = −20γ0, α = 0.3, and δ = 10γ0.
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superradiant state |�−〉, i.e., ωlas = ω0 − �. In this case, the
single-excitation delocalized state |�−〉, which couples more
efficiently to light than |�+〉, is excited resonantly so that
under weak enough illumination (I � Isat), it dominates the
response and thus the effect of the doubly excited state |E〉
and of the subradiant state |�+〉 is negligible. The system then
behaves in close analogy to a resonantly driven TLS, with
strongly antibunched emission, as shown by the solid-black
line in Fig. 8(a) [corresponding to the blue line in Fig. 2(d)].
This TLS-like behavior is consistent with the populations in
Fig. 8(b), because (i) the population ρ�− of the superradiant
state |�−〉 is much larger than the population ρ�+ of the
subradiant state |�+〉, and (ii) the square of the population
ρ�− of the superradiant state |�−〉 is also much larger than the
population ρE of the doubly excited state |E〉. Thus, Eq. (10)
is again a good approximation and indicates that g(2)(0) � 1.

To obtain further analytical insights of the intensity cor-
relation, we employ the expressions of the steady-state
populations in Eqs. (A7) and (A8) [plotted with dots in
Fig. 8(b)]. In the laser intensity range I � Isat, these ana-

lytical expressions reduce to ρ�−||�−〉
I�Isat

= I
Isat

γ 2
0 (1−sin 2θ )

2γ 2−
and

ρE ||�−〉
I�Isat

= ρ�+||�−〉
I�Isat

= I2

I2
sat

( γ 2
0 (1−sin 2θ )

4ξγ−
)2, with ξ 2 = (2�)2 +

(γ0 + γ−/2)2. Thus, the population ρ�− of the superradiant
state |�−〉 depends again linearly on the laser intensity, and
the population ρE of the doubly excited |E〉 does it quadrat-
ically. The population of the subradiant state |�+〉, which
can be safely neglected in the denominator of Eq. (10), also
depends quadratically on the laser intensity, because it is pop-
ulated through the relaxation of the doubly excited state |E〉
for these laser intensities. Thus, both the numerator and the
denominator scale quadratically in Eq. (10) and the intensity
correlation becomes again independent of the laser intensity
for weak enough intensities

g(2)(0)

∣∣∣∣
|�−〉

I�Isat

=
[

γ−
ξ (1 − sin 2θ ))

]2

. (C1)

Equation (C1) becomes equal to 2.5 × 10−4 for our molecular
configuration. Crucially, this equation shows that as long as
the losses are much smaller than ξ (e.g., strong dipole-dipole
coupling), then the intensity correlation is characterized by
strong antibunching (in contrast to the bunching obtained
when the laser is tuned to the two-photon resonance) and
thus the coupled emitters behave as a single-photon source
with larger emission rate and transition dipole moment than a
single molecule.

The value of g(2)(0) increases for stronger laser intensities
(I � 10−1Isat). This increase is due to the fact that the popu-
lation ρ�− of the superradiant state |�−〉 reaches a maximum
value 0.49 (which is very close to the excited-state popula-
tion of a saturated TLS) and remains almost constant, while
the population of the doubly excited state |E〉 now increases
linearly with the laser intensity. As a consequence, g(2)(0)
also increases linearly with the laser intensity and is given
by

g(2)(0)

∣∣∣∣
|�−〉

I�Isat

= γ 2
− + (1 − sin 2θ )γ 2

0 I/Isat

ξ 2(1 − sin 2θ )2
. (C2)

We plot the dependence of g(2)(0) on the laser intensity ac-
cording to this equation (orange dots) in Fig. 8(a), which
shows an excellent agreement with the numerical results
(solid-black line) up to I ≈ 103Isat. We remark that the pop-
ulation of the doubly excited state |E〉 increases linearly with
the laser intensity due to the large and constant population of
the superradiant state.

For even stronger laser intensities, Eq. (10) is no longer
a good approximation because the contributions of the popu-
lation of the doubly excited state and subradiant state to the
denominator of Eq. (9) need to be accounted for. By relating

 with I , Eq. (A9) can be rewritten as

g(2)(0)

∣∣∣∣
|�−〉

= (2ξγ−)2 + (I/Isat )γ 2
0 (1 − sin 2θ )[(2ξ )2 + γ0(γ− − 4γ̃−)] + (I/Isat )2γ 4

0 (1 − sin 2θ )2

(1 − sin 2θ )2
[
(I/Isat )γ 2

0 + 2ξ 2
]2 , (C3)

which reproduces the numerical results for arbitrary laser
intensity [compare blue dots and black line in Fig. 8(a)], in-
cluding the saturation to g(2)(0) = 1 for very large intensities.

APPENDIX D: IMPACT OF THE COMBINED
DEBYE-WALLER/FRANCK-CONDON FACTOR α

ON THE LIGHT EMISSION STATISTICS

In this Appendix we analyze the impact of the combined
Debye-Waller/Franck-Condon factor α on the light statistics.
First, we investigate the influence of α on the color-blind
intensity correlation g(2)(0). Figure 9 shows the dependence of
g(2)(0) on the laser intensity I and α, calculated at δ = 10γ0.
We fix the dipole-dipole coupling at V = −20γ0 [i.e., r12 is
modified simultaneously with α according to Eq. (3)] to focus
on the impact of α on the decay rates γ− and γ+ of the super-

radiant state |�−〉 and the subradiant state |�+〉, respectively.
For identical emitters (δ = 0) and α = 1, as usually assumed
in the literature, the decay rate of the superradiant state yields
γ− = 2γ0 at short distances, while the decay rate of the sub-
radiant state vanishes. In contrast, smaller values of α reduces
considerably the difference between γ− and γ+ according to
γ± = γ0(1 ± α sin 2θ ) (here, sin 2θ = V/� = −0.97).

We find that the modification of γ± through α does not
significantly impact on the color-blind intensity correlation
g(2)(0) when the laser is tuned to the two-photon resonance
[Fig. 9(a)] or to the transition frequency of the superradiant
state |�−〉 [Fig. 9(b)]. In contrast, when the laser is tuned
resonantly to the subradiant state |�+〉, Fig. 9(c) shows that
the minimum and maximum values of g(2)(0) can be notably
modified by α. However, the qualitative behavior, including
the presence of a crossover from antibunched emission (for
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(d)

(a)

(c)

(b)

Analytical

Numerical

FIG. 9. Dependence of the color-blind intensity correlation g(2)(0) on the laser intensity I and on the combined Debye-Waller/Franck-
Condon factor α. The laser is tuned to (a) the two-photon resonance (2ωlas = 2ω0), (b) the transition frequency of the superradiant state |�−〉
(ωlas = ω0 − �), and (c) the transition frequency of the subradiant state |�+〉 (ωlas = ω0 + �). In (a)–(c), color blue represents antibunched
emission [g(2)(0) < 1], red bunched emission [g(2)(0) > 1] and white Poissonian statistics [g(2)(0) = 1]. Cuts of the numerical results in (a)–
(c) for I = 10−3Isat are plotted in (d), where the red line corresponds to a laser tuned to the two-photon resonance, the blue line is obtained for
a laser tuned to the superradiant state and the green line corresponds to a laser tuned to the subradiant state. Dots in (d) correspond to analytical
results obtained with (red) Eq. (B1), (blue) Eq. (C1), and (green) Eq. (11). In (d), red and blue shaded background represent bunched and
antibunched statistics, respectively. The insets illustrate the different laser detunings considered. The molecular detuning is fixed at δ = 10γ0

and the dipole-dipole coupling at V = −20γ0, i.e., the modification of α is accompanied by a modification of the distance between the emitters
according to Eq. (3).

weak enough laser intensities) to bunched emission (for in-
creasing laser intensities), is maintained when α is changed.

Moreover, we plot in Fig. 9(d) cuts of the results in
Figs. 9(a)–9(c) at I = 10−3Isat. g(2)(0) is almost constant when
the laser is tuned to the two-photon resonance (red-solid
line) and increases slightly with α [from g(2)(0) ≈ 1.5 × 10−4

when α → 0 to g(2)(0) ≈ 6 × 10−4 at α = 1] if the laser is
tuned resonantly to the superradiant state |�−〉 (blue-solid
line). More significantly, when the laser is tuned to the transi-
tion frequency of the subradiant state |�+〉 (green-solid line),
g(2)(0) decreases considerably with α [from ≈0.4 when α →
0 up to ≈ γ 2

0 /(2�)2 ≈ 6 × 10−4 at α = 1]. The analytical

results [dots in Fig. 9(d)] obtained with (red) Eq. (B1), (blue)
Eq. (C1), and (green) Eq. (11) show an excellent agreement
with the numerical results for all values of α.

Furthermore, we analyze in Fig. 10 the influence of α

on the FRIC maps at I = 0.1Isat and for a laser tuned
the transition frequency of the subradiant state |�−〉. We
choose this laser frequency because of the large sensi-
tivity of the color-blind intensity correlation to α found
in Fig. 9. Here, we fix again V = −20γ0 and, thus,
changes in α only modify the decay rates γ±. Figure 10(a)
shows the FRIC map at α = 0.05, which is very simi-
lar to the FRIC map obtained at α = 0.3 in Fig. 10(b),
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(c)

(a) (b)

(d)

FIG. 10. Influence of α on the FRIC maps when the laser is tuned to the transition frequency of the subradiant state |�+〉. The inset in
(a) illustrates the laser frequency. The combined Debye-Waller/Franck-Condon factor is fixed at (a) α = 0.05, (b) α = 0.3, (c) α = 0.75,
and (d) α = 1. We follow the standard color convention in the FRIC maps. According to this convention, blue color means antibunched
emission, red bunched emission, and white Poissonian statistics. We use a logarithmic scale in the color bar in the complete range of values of
g(2)(ω1, ω2; 0). We fix V = −20γ0, I = 0.1Isat, and � = 0.1γ0.

corresponding to the FRIC map in Fig. 5(a), discussed in
Sec. IV C. This large similarity is attributed to the small dif-
ference between the γ−/γ+ ratio in both cases (γ−/γ+ ≈ 1.1
when α = 0.05, while γ−/γ+ ≈ 1.8 when α = 0.3). However,
Fig. 10(c) shows that the FRIC map is substantially modified
at α = 0.75 (γ−/γ+ ≈ 6.3), with a more strongly antibunched
background and larger values of intensity correlation in the
bunched antidiagonal lines. Most notably, neglecting the com-
bined Debye-Waller/Franck-Condon factor (α = 1), as usual
in the literature, leads to a drastically different FRIC map
[Fig. 10(d)]. In this case γ−/γ+ ≈ 66 and the FRIC map
exhibits a single antidiagonal line (which is not bunched) and
a single horizontal/vertical line.

APPENDIX E: WEAK ILLUMINATION APPROXIMATION
WHEN THE LASER IS TUNED TO THE TRANSITION

FREQUENCY OF THE SUBRADIANT STATE

In this Appendix we obtain the steady-state populations
under weak illumination and for a laser tuned to the transition

frequency of the subradiant state |�+〉. With this aim, we cal-
culate the populations of two independent three-level systems,
one of them consisting of the states {|G〉 , |�+〉 , |E〉}, corre-
sponding to the excitation of the doubly excited state via the
resonantly pumped subradiant state. The second three-level
system is composed by the states {|G〉 , |�−〉 , |E〉}, corre-
sponding to the excitation of the doubly excited state via the
nonresonantly driven superradiant state |�−〉. The pumping
rates for the transitions |G〉 → |�±〉 and |�±〉 → |E〉 are

± and the decay rates of the transitions |E〉 → |�±〉 and
|�±〉 → |G〉 are γ±.

The dynamics equations of the elements of the density
matrix for the first three level-system {|G〉 , |�+〉 , |E〉} are
given by

d

dt
〈σ̂EE 〉 = −γ+ 〈σ̂EE 〉 + i


+
2

〈σ̂E+ − σ̂+E 〉 , (E1a)

d

dt
〈σ̂++〉 = −γ+ 〈σ̂++ − σ̂EE 〉

+ i

+
2

〈σ̂+E − σ̂E+ + σ̂+G − σ̂G+〉 , (E1b)
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d

dt
〈σ̂+G〉 = −i


+
2

〈−σ̂++ + σ̂GG + σ̂EG〉 − γ+
2

〈σ̂+G〉 ,

(E1c)
d

dt
〈σ̂E+〉 = i


+
2

〈σ̂EE − σ̂++ + σ̂EG〉
− (i2� + γ+/2) 〈σ̂E+〉 , (E1d)

d

dt
〈σ̂EG〉 = i


+
2

〈σ̂E+ − σ̂+G〉 − (i2� + γ+/2) 〈σ̂EG〉 .

(E1e)

Next, by neglecting the steady-state coherence ρEG =
〈E |ρ̂ss|G〉 between the ground state |G〉 and the doubly excited
state |E〉 we solve the steady-state density matrix. The re-
sulting steady-state populations can be additionally simplified
assuming � � γ0, which leads to the steady-state population
of the subradiant state |�+〉,

ρ�+

∣∣∣∣
|�+〉

= 1 + (
+/4�)2

2 + 3(
+/4�)2 + (γ+/
+)2
, (E2)

and to the steady-state population of the doubly excited state
|E〉,

ρ
(+)
E

∣∣∣∣
|�+〉

= (
+/4�)2

2 + 3(
+/4�)2 + (γ+/
+)2
. (E3)

We follow the same procedure with the three-level system
{|G〉 , |�−〉 , |E〉}. The transition |G〉 → |�−〉 is nonreso-
nantly pumped (with detuning 2�), whereas the transition
|�+〉 → |E〉 is resonantly driven. The dynamics equations are
then given by

d

dt
〈σ̂EE 〉 = −γ− 〈σ̂EE 〉 + i


−
2

〈σ̂E− − σ̂−E 〉 , (E4a)

d

dt
〈σ̂−−〉 = −γ− 〈σ̂−− − σ̂EE 〉

+ i

−
2

〈σ̂−E − σ̂E− + σ̂−G − σ̂G−〉 , (E4b)

d

dt
〈σ̂−G〉 = −i


−
2

〈−σ̂−− + σ̂GG + σ̂EG〉
− (i2� + γ−/2) 〈σ̂−G〉 , (E4c)

d

dt
〈σ̂E−〉 = i


−
2

〈σ̂EE − σ̂−− + σ̂EG〉 − γ−
2

〈σ̂E−〉 , (E4d)

d

dt
〈σ̂EG〉 = i


−
2

〈σ̂E− − σ̂−G〉 − (i2� + γ−/2) 〈σ̂EG〉 .

(E4e)

In this case, we do not neglect any coherence and only
assume that � � γ0. The steady-state population of the su-
perradiant state |�−〉 is thus given by

ρ�−

∣∣∣∣
|�+〉

= 1

1 + (4�/
−)2
, (E5)

and the population of the doubly excited state |E〉 by

ρ
(−)
E

∣∣∣∣
|�+〉

= 2(
−/4�)4

2 + 3(
−/4�)2 + (
−/4�)4
. (E6)

Therefore, the total population ρE of the doubly excited
state |E〉, understood as the sum of the population ρ

(+)
E excited

via the resonantly driven subradiant state |�+〉 and the popu-
lation ρ

(−)
E excited via the nonresonantly driven superradiant

state |�−〉 becomes

ρE

∣∣∣∣
|�+〉

= ρ
(+)
E

∣∣∣∣
|�+〉

+ ρ
(−)
E

∣∣∣∣
|�+〉

. (E7)

Finally, according to the expression of the intensity cor-
relation g(2)(0)|I�Isat

in Eq. (10), which is valid under weak
illumination, we obtain the intensity correlation for this laser
detuning given by Eq. (11).

APPENDIX F: FRIC OF A SINGLE TLS

In this Appendix we summarize the FRIC of a single TLS
that is coherently and resonantly driven by a laser [34,69].
The Hamiltonian in this case is given as Ĥ = h̄ ω0

2 σ̂z −
h̄ 


2 (σ̂ †e−iω0t + σ̂eiω0t ) and the spontaneous emission rate γ0

of the emitter is incorporated through the Lindblad dissipator
γ0

2 D[σ̂ ].
We present in Fig. 11(a) the FRIC map for the case

of laser intensity I = 0.1Isat. For such weak driving the
eigenstates of the system are the ground and excited states
|g〉 and |e〉 and thus the emission spectrum [shown on
top of Fig. 11(a)] shows a single resonance at frequency
ω0. Here, we normalize the emission spectrum S(ω) ∝∫ ∞
−∞ dτ 〈δÊ (−)(τ )δÊ (+)(0)〉ss e−iωt [with δÊ (−)(τ ) = σ (t ) −

〈σ 〉ss], in such a way that
∫ ∞

0 dωS(ω) = γ0 〈δσ̂ †δσ̂ 〉ss. Within
the picture where the laser field is quantized, the two eigen-
states |e, n〉 and |g, n + 1〉 are degenerated in the rung n under
weak illumination. Thus the one-photon transitions between
eigenstates in rung n + 1 and rung n give raise to the single
emission peak at ωlas = ω0, as shown by S(ω). This is trans-
lated into the FRIC with the emergence of a single vertical line
at ω1 = ωlas and a horizontal line at ω2 = ωlas. Additionally,
the leapfrog processes necessarily fulfill ω1 + ω2 = 2ωlas and
give raise to the single antidiagonal line that emerges in the
FRIC map.

For increasing laser intensities, the two eigenstates in the
same rung are no longer degenerate. The two eigenstates in
the rung n become the dressed states |S(n)

eg 〉 = (|e, n − 1〉 +
|g, n〉)/

√
2 and |A(n)

eg 〉 = (|e, n − 1〉 − |g, n〉)/
√

2, with energy
splitting h̄
. We plot in Fig. 11(b) the dressed states in
rungs n − 1, n, and n + 1 and the different one-photon and
two-photon transitions. In addition to the photons emitted at
ωlas = ω0 [gray-solid arrows in Fig. 11(b)], photons of fre-
quency ωlas − 
 = ω0 − 
 and ωlas + 
 = ω0 + 
 can also
be emitted due to the one-photon transitions |S(n+1)

eg 〉 → |A(n)
eg 〉

[blue-solid arrow in Fig. 11(b)] and |A(n+1)
eg 〉 → |S(n)

eg 〉 (green-
solid arrow), respectively. These new one-photon transitions
lead to the emergence of additional vertical and horizontal
lines in the FRIC map and to the emergence of two additional
peaks in the emission spectrum (Mollow triplet) as the inten-
sity of the incident laser increases. Similarly, there are now
two additional leapfrog processes, one with |S(n+1)

eg 〉 as initial
state in rung n + 1 and with |A(n−1)

eg 〉 as final state in rung n − 1
[which fulfills ω1 + ω2 = 2ωlas + |
| and is represented with
a dashed blue arrow in Fig. 11(b)] and another one with
|A(n+1)

eg 〉 as initial state in rung n + 1 and with |S(n−1)
eg 〉 as final
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(a) (b)

FIG. 11. FRIC for a resonantly driven TLS. [(a),(c),(d)] Normalized emission spectra (top panel) and FRIC maps (bottom panel) for laser
intensity (a) I = 0.1Isat, (c) I = 50Isat, and (d) I = 1000Isat. We illustrate in (b) the dressed states in rungs n − 1, n, and n + 1, together with the
corresponding one-photon transitions between eigenstates (solid arrows) and two-photon transitions through intermediate virtual states (dashed
arrows). We follow the standard color convention in the FRIC maps, i.e., blue color means antibunched emission, while red color bunched
emission, and white Poissonian statistics. In the color bar, we utilize a linear scale in the interval 0 � g(2)(ω1, ω2; 0) � 1 and a logarithmic
scale in the range 1 � g(2)(ω1, ω2; 0) � 100. Solid arrows are used to mark the horizontal and vertical lines in the FRIC maps, while dashed
arrows are used for the antidiagonal lines related to the two-photon processes through intermediate virtual states. We use a filter linewidth
� = γ0/10 and fix the values V = −20γ0, α = 0.3, and δ = 10γ0.

state in rung n − 1 [which fulfills ω1 + ω2 = 2ωlas − |
| and
is represented with a dashed-green arrow in Fig. 11(b)].

We represent in Fig. 11(c) the FRIC map for laser intensity
I = 50Isat. For this intensity, we observe the Mollow triplet in
the emission spectrum on top of Fig. 11(c); however, in the
FRIC map we observe a broad horizontal line and a broad
vertical line due to the overlapping of the three horizontal and
vertical lines. Additionally, we also observe that the antidi-
agonal line is much broader than in Fig. 11(a), due to the
actual presence of three antidiagonal lines, which are very
close to each other. Finally, we present in Fig. 11(d) the FRIC

map for I = 1000Isat. For this laser intensity we observe three
well-differentiated vertical, horizontal, and antidiagonal lines,
since the laser intensity is strong enough such that the energy
splitting between the dressed states h̄
 is much larger than
h̄γ0.

APPENDIX G: HAMILTONIAN DIAGONALIZATION
WHEN THE LASER IS TUNED TO THE SUPERRADIANT

OR TO THE SUBRADIANT STATE

In this Appendix we show how to perform an approximate
diagonalization of the Hamiltonian in Eq. (5) when the laser
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FIG. 12. (a) Numerical eigenenergies Ei (normalized by �) of the Hamiltonian in Eq. (5) when the laser is tuned either to the transition
frequency of the superradiant state or to the transition frequency of the subradiant state (Ei are identical for both laser frequencies).
(b) Numerical energy splitting (normalized by |
|) between the more energetic eigenstates |E3〉 and |E4〉 (purple line) and energy splitting
between the less energetic eigenstates |E1〉 and |E2〉 (brown line). Horizontal-black-dashed lines represent the same energy splittings under
the analytical approximation, see Eq. (G1). (c) Deviation of the analytical eigenstates |AY −〉 , |SY −〉 , |SX+〉 , |AX+〉 from the exact eigenstates
|E1〉 , |E2〉 , |E3〉 , |E4〉 obtained numerically. The deviation is estimated as the difference between 1 and the squared overlap of the analytical
eigenstate and the corresponding numerical eigenstate. For the case in which the laser is tuned to the transition frequency of the superradiant
state then X = E and Y = G, whereas if the laser is tuned to the transition frequency of the superradiant state then X = G and Y = E . The
molecular detuning is fixed as δ = 10γ0, the dipole-dipole coupling as V = −20γ0 and the combined Debye-Waller/Franck-Condon factor
α = 0.3.

is tuned either to the transition frequency of the superradiant
state or to the transition frequency of the subradiant state.
For both laser detunings and very weak or no driving, there
are two pairs of degenerate eigenstates at energies ±� in the
rotating frame at the laser frequency. Namely, if the laser is
tuned to the transition frequency of the superradiant state |�−〉
(�0 = �), the states |G〉 and |�−〉 become degenerate (with
energy −�) and the states |E〉 and |�+〉 become degenerate
(with energy �). In contrast, if the laser is tuned to the tran-
sition frequency of the subradiant state |�+〉 (�0 = −�), the
states |E〉 and |�−〉 become degenerate (with energy −�) and
the states |G〉 and |�+〉 become degenerate (with energy �).

The approximation that we perform consists in neglecting
the driving terms in the second line of Eq. (5) that connect
states that are not degenerated for no driving. As a conse-
quence, for a laser tuned to the transition frequency of the
superradiant state |�−〉, the driving Hamiltonian becomes
Ĥlas = −h̄ 
+

2 σ̂E+ − h̄ 
−
2 σ̂G− + H.c., whereas if the laser is

tuned to the transition frequency of the subradiant state
|�+〉 then the laser Hamiltonian is approximated as Ĥlas =
−h̄ 
+

2 σ̂G+ − h̄ 
−
2 σ̂E− + H.c. The resulting total Hamiltoni-

ans can be analytically diagonalized.
For a laser tuned to the transition frequency of the

superradiant state, the approximation leads to the eigenstates
|AE+〉 = (|E〉 − |�+〉)/

√
2, |SE+〉 = (|E〉 + |�+〉)/

√
2,

|SG−〉 = (|G〉 + |�−〉)/
√

2, and |AG−〉 = (|G〉 − |�−〉)/
√

2,
while for a laser tuned to the transition frequency of the
subradiant state, the approximation leads to the eigenstates
|AG+〉 = (|G〉 − |�+〉)/

√
2, |SG+〉 = (|G〉 + |�+〉)/

√
2,

|SE−〉 = (|E〉 + |�−〉)/
√

2, and |AE−〉 = (|E〉 − |�−〉)/
√

2.
The corresponding eigenenergies are equal to

E (|AX+〉) = � + 


2
(cos θ + sin θ ), (G1a)

E (|SX+〉) = � − 


2
(cos θ + sin θ ), (G1b)

E (|SY −〉) = −� − 


2
(cos θ − sin θ ), (G1c)

E (|AY −〉) = −� + 


2
(cos θ − sin θ ), (G1d)

where X = E and Y = G if the laser is tuned to the tran-
sition frequency of the superradiant state |�−〉 and X = G
and Y = E if the laser is tuned to the transition frequency
of the subradiant state |�+〉. We note that the energy split-
ting between the two higher-energy states |AX+〉 and |SX+〉
is equal to |
(cos θ + sin θ )|, while the energy splitting be-
tween the lower-energy states |SY −〉 and |AY −〉 is equal to
|
(cos θ − sin θ )|. We next compare the eigenenergies ob-
tained analytically in Eqs. (G1), with the numerical eigenen-
ergies Ei (i ∈ {1, 2, 3, 4}) of the exact numerical eigenstates
|Ei〉. We plot in Fig. 12(a) the exact numerical eigenenergies
Ei (normalized by �) and in Fig. 12(b) the numerical en-
ergy splitting (normalized by the absolute value of the Rabi
frequency |
|) between the two higher-energy states (purple
line), as well as between the two lower-energy states (brown
line). The numerical energy splittings in Fig. 12(b) show an
excellent agreement with the analytical energy splittings cal-
culated from Eqs. (G1) (horizontal-dashed-black lines) up to
a laser intensity I ≈ 100Isat.

Finally, we analyze the accuracy of the eigenstates ob-
tained analytically with the approximation presented in this
Appendix. With this aim, we plot in Fig. 12(c) the differ-
ence between 1 and the squared overlap of the numerical
and analytical eigenstates, which serves as a measure of the
error of the analytical eigenstates. For example, for the lowest
energetic state, the deviation of the eigenstate |AY −〉 (obtained
analytically) from the exact eigenstate |E1〉 (calculated numer-
ically) is given by 1 − | 〈AY −|E1〉 |2. For weak and moderate
laser intensities the analytical eigenstates are found to be a
very accurate approximation of the exact eigenstates of the
system.
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Numerical

Analytical

FIG. 13. Dependence of the eigenenergies on the laser intensity
for a laser tuned to the two-photon resonance (2ωlas = 2ω0). Solid
lines represent the numerical eigenenergies (normalized by �) of the
full Hamiltonian in Eq. (5), whereas dots represent the analytical
approximation of the eigenenergies given by Eq. (H1). The molec-
ular detuning is fixed as δ = 10γ0, the dipole-dipole coupling as
V = −20γ0 and the combined Debye-Waller/Franck-Condon factor
α = 0.3.

APPENDIX H: FRIC WHEN THE LASER IS TUNED
TO THE TWO-PHOTON RESONANCE

In this Appendix we show the analytical approximation
that we perform to diagonalize the Hamiltonian in Eq. (5) for
a laser tuned to the two-photon resonance (2ωlas = 2ω0) and
arbitrary laser intensity. We then present the FRIC maps for
this detuning and the same laser intensities than for the other
laser detunings in Sec. IV, again for a fixed value of molecular
detuning δ = 10γ0.

In order to diagonalize the Hamiltonian for a laser tuned
to the two-photon resonance, we neglect in Eq. (5) the terms
that are proportional to 
+. The reason is that both the
superradiant state |�−〉 and the subradiant state |�+〉 are non-
resonantly driven and, additionally, the effective pumping 
+
through the subradiant state is one order of magnitude smaller
that the effective pumping 
− through the superradiant state.
Neglecting these terms we can analytically diagonalize the
Hamiltonian in Eq. (5), which leads to the eigenenergies

E1 = −�

2
−

√(
�

2

)2

+
(


−√
2

)2

, (H1a)

E2 = 0, (H1b)

E3 = −�

2
+

√(
�

2

)2

+
(


−√
2

)2

, (H1c)

E4 = �. (H1d)

We plot in Fig. 13 the analytical (dots) and numerical (solid
lines) eigenenergies for δ = 10γ0 showing that they are in

very good agreement. The corresponding analytical eigen-
states result in

|E1〉 = 1√(

−√

2

)2 + E2
3

(

−√

2
|�−〉 + E3 |SEG〉

)
, (H2a)

|E2〉 = |AEG〉 , (H2b)

|E3〉 = 1√(

−√

2

)2 + E2
1

(
− 
−√

2
|�−〉 − E1 |SEG〉

)
, (H2c)

|E4〉 = |�+〉 , (H2d)

where |SEG〉 = (|E〉 + |G〉)/
√

2 and |AEG〉 = (|E〉 −
|G〉)/

√
2. Equation (H2) shows that |AEG〉 and |�+〉 are

eigenstates of the system for any laser intensity, whereas
the other two dressed eigenstates (|E1〉 and |E3〉) are
superpositions of |SEG〉 and |�−〉, with coefficients that
depend on the laser intensity. Additionally, we note that under
weak enough illumination, the eigenstates |E2〉 = |AEG〉 and
|E3〉 = |SEG〉 become degenerate in energy.

Next, we plot in Fig. 14(a) the emission spectrum and the
FRIC map for I = 0.1Isat. This map is in general strongly
bunched, which can be expected from the strongly bunched
color-blind intensity correlation for these laser parameters
[see Fig. 3(a)]. Over this strongly bunched background, we
can distinguish two antibunched vertical lines at ω1 = ωlas

(here, ωlas = ω0) and ω1 = ωlas − � and two horizontal lines
at ω2 = ωlas and ω2 = ωlas − � (marked by grey and light
green solid arrows) in the FRIC map. These two lines are
related to the one-photon transitions depicted in the level
scheme in Fig. 14(b). Further, we observe in the emission
spectrum on top of Fig. 14(a) a third peak at frequency ω1 =
ωlas + �, related to the one-photon transitions from the sub-
radiant state |�+, n〉 in rung n + 1 to the ground state |G, n〉
in rung n, whose corresponding horizontal and vertical lines
cannot be distinguished in the FRIC map due to the strong
background bunching. In contrast, three antidiagonal lines
with stronger bunching than the background emerge in the
FRIC map in Fig. 14(a) (see the broad line marked by a dashed
gray arrow and the subtle lines marked by a dashed-light-
green arrow and a dashed-dark-green arrow) corresponding to
three different type of leapfrog processes that can take place
for these laser parameters.

As the laser intensity is increased up to I = 50Isat, the
eigenstates of the system become slightly dressed, according
to Eq. (H2). Figure 14(c) shows the corresponding spectrum
and the FRIC map for I = 50Isat, and Fig. 14(d) the energy
level structure. Notably, as the value of the color-blind in-
tensity correlation g(2)(0) decreases, then the value of the
frequency-resolved intensity correlation g(2)(ω1, ω2; 0) of the
background of the FRIC map also decreases and the three
horizontal and three vertical lines can now be clearly dis-
tinguished. This map is very similar to the one discussed in
Ref. [41] for identical emitters driven by a laser tuned to
the two-photon resonance. For even stronger laser intensities,
the eigenstates of the system become strongly dressed and a
variety of horizontal and vertical lines emerge in the FRIC
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FIG. 14. FRIC for a laser tuned to the two-photon resonance, 2ωlas = 2ω0. [(a),(c),(e)] Normalized emission spectra (top panel) and FRIC
maps (bottom panel) for laser intensity (a) I = 0.1Isat, (c) I = 50Isat and (e) I = 1000Isat. The inset in (a) illustrates the molecular energy levels
and the resonant excitation of the doubly excited state |E〉 with two photons. In the FRIC maps we use the standard color convention, where
blue color represents antibunched emission, while red color bunched emission and white Poissonian statistics. In the color bar, we use a linear
scale in the interval 0 � g(2)(ω1, ω2; 0) � 1 and a logarithmic scale in the range g(2)(ω1, ω2; 0) � 1. We consider a filter linewidth � = γ0/10.
[(b),(d),(f)] Schematic representation of the eigenstates (accounting for the quantum nature of the laser field) in rungs n − 1, n and n + 1 for
laser intensity (b) I = 0.1Isat, (d) I = 50Isat, and (f) I = 1000Isat. Each rung contains four eigenstates with equal number of excitations. Solid
arrows are used to mark the horizontal and vertical lines in the FRIC maps and the one-photon transitions in the diagrams of the eigenstates,
whereas dashed arrows are used for the antidiagonal lines related to the two-photon processes through virtual states. The dipole-dipole coupling
is fixed as V = −20γ0, the combined Debye-Waller/Franck-Condon factor as α = 0.3 and the molecular detuning as δ = 10γ0.

map [41]. We plot in Fig. 14(e) the emission spectrum and
the FRIC map for I = 1000Isat, with the corresponding one-

photon transitions as well as leapfrog processes illustrated in
Fig. 14(f).
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Major, I. Deperasińska et al., Single organic molecules for
photonic quantum technologies, Nat. Mater. 20, 1615 (2021).

023207-24

https://doi.org/10.1088/0034-4885/68/5/R04
https://doi.org/10.1007/BF00191318
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.92.037904
https://doi.org/10.1038/35051009
https://doi.org/10.1103/PhysRevA.65.012314
https://doi.org/10.1103/PhysRevLett.83.2722
https://doi.org/10.1038/s41563-021-00987-4


TAILORING THE STATISTICS OF LIGHT EMITTED … PHYSICAL REVIEW RESEARCH 6, 023207 (2024)

[11] J. Wrachtrup, C. Von Borczyskowski, J. Bernard, M. Orrit, and
R. Brown, Optical detection of magnetic resonance in a single
molecule, Nature (London) 363, 244 (1993).

[12] S. Pazzagli, P. Lombardi, D. Martella, M. Colautti, B. Tiribilli,
F. S. Cataliotti, and C. Toninelli, Self-assembled nanocrystals
of polycyclic aromatic hydrocarbons show photostable single-
photon emission, ACS Nano 12, 4295 (2018).

[13] B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, and W. E.
Moerner, Photon antibunching in single CdSe/ZnS quantum dot
fluorescence, Chem. Phys. Lett. 329, 399 (2000).

[14] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G.
Abstreiter, Coherent properties of a two-level system based on
a quantum-dot photodiode, Nature (London) 418, 612 (2002).

[15] S. Stufler, P. Ester, A. Zrenner, and M. Bichler, Quantum optical
properties of a single InxGa1−xAs-GaAs quantum dot two-level
system, Phys. Rev. B 72, 121301(R) (2005).

[16] P. Senellart, G. Solomon, and A. White, High-performance
semiconductor quantum-dot single-photon sources, Nat.
Nanotechnol. 12, 1026 (2017).

[17] Y. Arakawa and M. J. Holmes, Progress in quantum-dot single
photon sources for quantum information technologies: A broad
spectrum overview, Appl. Phys. Rev. 7, 021309 (2020).

[18] M. Gross and S. Haroche, Superradiance: An essay on the
theory of collective spontaneous emission, Phys. Rep. 93, 301
(1982).

[19] J. B. Trebbia, Q. Deplano, P. Tamarat, and B. Lounis, Tailoring
the superradiant and subradiant nature of two coherently cou-
pled quantum emitters, Nat. Commun. 13, 2962 (2022).

[20] C. M. Lange, E. Daggett, V. Walther, L. Huang, and J. D. Hood,
Superradiant and subradiant states in lifetime-limited organic
molecules through laser-induced tuning, Nat. Phys. (2024).

[21] A. Tiranov, V. Angelopoulou, C. J. van Diepen, B. Schrinski,
O. A. D. Sandberg, Y. Wang, L. Midolo, S. Scholz, A. D. Wieck,
A. Ludwig et al., Collective super-and subradiant dynamics
between distant optical quantum emitters, Science 379, 389
(2023).

[22] X. L. Chu, C. Papon, N. Bart, A. D. Wieck, A. Ludwig, L.
Midolo, N. Rotenberg, and P. Lodahl, Independent electrical
control of two quantum dots coupled through a photonic-crystal
waveguide, Phys. Rev. Lett. 131, 033606 (2023).

[23] D. Rattenbacher, A. Shkarin, J. Renger, T. Utikal, S. Götzinger,
and V. Sandoghdar, On-chip interference of scattering from two
individual molecules, Optica 10, 1595 (2023).

[24] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[25] R. E. K. Fishman, R. N. Patel, D. A. Hopper, T. Y. Huang, and
L. C. Bassett, Photon-emission-correlation spectroscopy as an
analytical tool for solid-state quantum defects, PRX Quantum
4, 010202 (2023).

[26] R. Hanbury brown and R. Q. Twiss, A test of a new type of
stellar interferometer on Sirius, Nature (London) 178, 1046
(1956).

[27] C. Hettich, C. Schmitt, J. Zitzmann, S. Kuhn, I. Gerhardt, and V.
Sandoghdar, Nanometer resolution and coherent optical dipole
coupling of two individual molecules, Science 298, 385 (2002).

[28] R. D. Griffin and S. M. Harris, Two-atom resonance fluores-
cence including the dipole-dipole interaction, Phys. Rev. A 25,
1528 (1982).

[29] Z. Ficek, R. Tanas, and S. Kielich, Effect of interatomic in-
teractions on resonance fluorescence of two atoms coherently

driven by a strong resonant laser field, Opt. Acta 30, 713
(1983).

[30] S. V. Lawande, B. N. Jagatap, and Q. V. Lawande, Inhibition of
fluorescence in a system of two interacting two-level atoms: A
quantum jump like behaviour, Opt. Commun. 73, 126 (1989).

[31] A. Beige and G. C. Hegerfeldt, Transition from antibunching
to bunching for two dipole-interacting atoms, Phys. Rev. A 58,
4133 (1998).

[32] J. Gillet, G. S. Agarwal, and T. Bastin, Tunable entanglement,
antibunching, and saturation effects in dipole blockade, Phys.
Rev. A 81, 013837 (2010).

[33] A. Vivas-Viaña and C. Sánchez Muñoz, Two-photon resonance
fluorescence of two interacting nonidentical quantum emitters,
Phys. Rev. Res. 3, 033136 (2021).

[34] A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, M. J. Hartmann,
and E. Del Valle, Two-photon spectra of quantum emitters, New
J. Phys. 15, 033036 (2013).

[35] J. D. Cresser, Intensity correlations of frequency-filtered light
fields, J. Phys. B: At. Mol. Phys. 20, 4915 (1987).

[36] E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and
M. J. Hartmann, Theory of frequency-filtered and time-resolved
n-photon correlations, Phys. Rev. Lett. 109, 183601 (2012).

[37] D. I. H. Holdaway, V. Notararigo, and A. Olaya-Castro, Per-
turbation approach for computing frequency-and time-resolved
photon correlation functions, Phys. Rev. A 98, 063828 (2018).

[38] M. Peiris, B. Petrak, K. Konthasinghe, Y. Yu, Z. C. Niu, and A.
Muller, Two-color photon correlations of the light scattered by
a quantum dot, Phys. Rev. B 91, 195125 (2015).

[39] C. Sánchez Muñoz, F. P. Laussy, C. Tejedor, and E. Del Valle,
Enhanced two-photon emission from a dressed biexciton, New
J. Phys. 17, 123021 (2015).

[40] M. K. Schmidt, R. Esteban, G. Giedke, J. Aizpurua, and
A. González-Tudela, Frequency-resolved photon correlations
in cavity optomechanics, Quantum Sci. Technol. 6, 034005
(2021).

[41] E. Darsheshdar, M. Hugbart, R. Bachelard, and C. J. Villas-
Boas, Photon-photon correlations from a pair of strongly
coupled two-level emitters, Phys. Rev. A 103, 053702 (2021).

[42] T. Basché, W. E. Moerner, M. Orrit, and U. P. e. Wild, Single-
Molecule Optical Detection, Imaging and Spectroscopy (John
Wiley & Sons, New York, 2008).

[43] G. S. Agarwal, Quantum statistical theories of spontaneous
emission and their relation to other approaches, in Quantum
Optics, edited by G. Höhler, Springer Tracts in Modern Physics,
Vol. 70 (Springer, Berlin, 1974), pp. 1–128.

[44] A. Stokes and A. Nazir, A master equation for strongly inter-
acting dipoles, New J. Phys. 20, 043022 (2018).

[45] U. Akram, Z. Ficek, and S. Swain, Decoherence and coherent
population transfer between two coupled systems, Phys. Rev. A
62, 013413 (2000).

[46] D. A. Steck, Quantum and Atom Optics (2007), available online
at http://steck.us/teaching (revision 0.8.3).

[47] H. P. Breuer and F. Petruccione, The Theory of Open Quan-
tum Systems (Oxford University Press on Demand, New York,
2002).

[48] Z. Ficek and S. Swain, Quantum Interference and Coherence:
Theory and Experiments, Vol. 100 (Springer Science & Busi-
ness Media, New York, 2005).

[49] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J.
Kimble, and D. E. Chang, Exponential improvement in photon

023207-25

https://doi.org/10.1038/363244a0
https://doi.org/10.1021/acsnano.7b08810
https://doi.org/10.1016/S0009-2614(00)01042-3
https://doi.org/10.1038/nature00912
https://doi.org/10.1103/PhysRevB.72.121301
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1063/5.0010193
https://doi.org/10.1016/0370-1573(82)90102-8
https://doi.org/10.1038/s41467-022-30672-2
https://doi.org/10.1038/s41567-024-02404-4
https://doi.org/10.1126/science.ade9324
https://doi.org/10.1103/PhysRevLett.131.033606
https://doi.org/10.1364/OPTICA.502221
https://doi.org/10.1103/PRXQuantum.4.010202
https://doi.org/10.4159/harvard.9780674366688.c4
https://doi.org/10.1126/science.1075606
https://doi.org/10.1103/PhysRevA.25.1528
https://doi.org/10.1080/713821280
https://doi.org/10.1016/0030-4018(89)90156-9
https://doi.org/10.1103/PhysRevA.58.4133
https://doi.org/10.1103/PhysRevA.81.013837
https://doi.org/10.1103/PhysRevResearch.3.033136
https://doi.org/10.1088/1367-2630/15/3/033036
https://doi.org/10.1088/0022-3700/20/18/027
https://doi.org/10.1103/PhysRevLett.109.183601
https://doi.org/10.1103/PhysRevA.98.063828
https://doi.org/10.1103/PhysRevB.91.195125
https://doi.org/10.1088/1367-2630/17/12/123021
https://doi.org/10.1088/2058-9565/abe569
https://doi.org/10.1103/PhysRevA.103.053702
https://doi.org/10.1088/1367-2630/aab29d
https://doi.org/10.1103/PhysRevA.62.013413
http://steck.us/teaching


ADRIÁN JUAN-DELGADO et al. PHYSICAL REVIEW RESEARCH 6, 023207 (2024)

storage fidelities using subradiance and “selective radiance” in
atomic arrays, Phys. Rev. X 7, 031024 (2017).

[50] P. O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and
P. Zoller, Subradiant bell states in distant atomic arrays, Phys.
Rev. Lett. 122, 093601 (2019).

[51] K. E. Ballantine and J. Ruostekoski, Quantum single-photon
control, storage, and entanglement generation with planar
atomic arrays, PRX Quantum 2, 040362 (2021).

[52] R. Loudon, The Quantum Theory of Light (Oxford University
Press, Oxford, 2000).

[53] C. Gerry, P. Knight, and P. L. Knight, Introductory Quantum
Optics (Cambridge University Press, Cambridge, 2005).

[54] T. G. Rudolph, Z. Ficek, and B. J. Dalton, Two-atom resonance
fluorescence in running-and standing-wave laser fields, Phys.
Rev. A 52, 636 (1995).

[55] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1999).

[56] R. Loudon, Non-classical effects in the statistical properties of
light, Rep. Prog. Phys. 43, 913 (1980).

[57] D. Meiser and M. J. Holland, Intensity fluctuations in steady-
state superradiance, Phys. Rev. A 81, 063827 (2010).

[58] A. Auffèves, D. Gerace, S. Portolan, A. Drezet, and M. F.
Santos, Few emitters in a cavity: From cooperative emission to
individualization, New J. Phys. 13, 093020 (2011).

[59] R. Jones, R. Saint, and B. Olmos, Far-field resonance fluores-
cence from a dipole-interacting laser-driven cold atomic gas,
J. Phys. B: At., Mol. Opt. Phys. 50, 014004 (2017).

[60] M. Cordier, M. Schemmer, P. Schneeweiss, J. Volz, and
A. Rauschenbeutel, Tailoring photon statistics with an atom-
based two-photon interferometer, Phys. Rev. Lett. 131, 183601
(2023).

[61] S. Wolf, S. Richter, J. von Zanthier, and F. Schmidt-Kaler, Light
of two atoms in free space: Bunching or antibunching? Phys.
Rev. Lett. 124, 063603 (2020).

[62] S. Ribeiro, T. F. Cutler, C. S. Adams, and S. A. Gardiner,
Collective effects in the photon statistics of thermal atomic
ensembles, Phys. Rev. A 104, 013719 (2021).

[63] T. J. Arruda, R. Bachelard, J. Weiner, S. Slama, and P. W.
Courteille, Controlling photon bunching and antibunching of
two quantum emitters near a core-shell sphere, Phys. Rev. A
101, 023828 (2020).

[64] C. Sánchez Muñoz and F. Schlawin, Photon correlation spec-
troscopy as a witness for quantum coherence, Phys. Rev. Lett.
124, 203601 (2020).

[65] L. Knoll and G. Weber, Theory of n-fold time-resolved correla-
tion spectroscopy and its application to resonance fluorescence
radiation, J. Phys. B: At. Mol. Phys. 19, 2817 (1986).

[66] L. Knöll, W. Vogel, and D. G. Welsch, Quantum noise in spec-
tral filtering of light, J. Opt. Soc. Am. B 3, 1315 (1986).

[67] G. Nienhuis, Spectral correlations in resonance fluorescence,
Phys. Rev. A 47, 510 (1993).

[68] J. C. López Carreño, E. del Valle, and F. P. Laussy, Frequency-
resolved Monte Carlo, Sci. Rep. 8, 1 (2018).

[69] J. C. López Carreño, E. del Valle, and F. P. Laussy, Photon
correlations from the Mollow triplet, Laser Photonics Rev. 11,
1700090 (2017).

[70] E. del Valle, Distilling one, two and entangled pairs of photons
from a quantum dot with cavity qed effects and spectral filter-
ing, New J. Phys. 15, 025019 (2013).

[71] C. Clear, R. C. Schofield, K. D. Major, J. Iles-Smith, A. S.
Clark, and D. P. S. McCutcheon, Phonon-induced optical de-
phasing in single organic molecules, Phys. Rev. Lett. 124,
153602 (2020).

[72] M. Reitz, C. Sommer, B. Gurlek, V. Sandoghdar, D.
Martin-Cano, and C. Genes, Molecule-photon interactions
in phononic environments, Phys. Rev. Res. 2, 033270
(2020).

[73] A. Juan-Delgado, R. Esteban, Á. Nodar, J.-B. Trebbia, B.
Lounis, and J. Aizpurua, Research data supporting “Tailoring
the statistics of light emitted from two interacting quantum
emitter”, http://hdl.handle.net/10261/357088 (2024).
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