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Breakdown of steady-state superradiance in extended driven atomic arrays
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Recent advances in generating well controlled dense arrangements of individual atoms in free space have
generated interest in understanding how the extended nature of these systems influences superradiance phe-
nomena. Here, we provide an in-depth analysis on how space-dependent light shifts and decay rates induced by
dipole-dipole interactions modify the steady-state properties of coherently driven arrays of quantum emitters. We
characterize the steady-state phase diagram, with particular focus on the radiative properties in the steady state.
Interestingly, we find that diverging from the well-established Dicke paradigm of equal all-to-all interactions
significantly modifies the emission properties. In particular, the prominent quadratic scaling of the radiated
light intensity with particle number in the steady state—a hallmark of steady-state Dicke superradiance—is
entirely suppressed, resulting in only linear scaling with particle number. We show that this breakdown of
steady-state superradiance occurs due to the emergence of additional dissipation channels that populate not
only superradiant states but also subradiant ones. The additional contribution of subradiant dark states in the
dynamics leads to a divergence in the time scales needed to achieve steady states. Building on this, we further
show that measurements taken at finite times for extended atom ensembles reveal properties closely mirroring
the idealized Dicke scenario.
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I. INTRODUCTION

Dicke superradiance, i.e.,the effect where a group of ex-
cited atoms collectively emit radiation faster than they would
individually, is a fundamental effect in light-matter inter-
acting systems [1]. Since Dicke introduced the concept of
cooperative radiation of atomic ensembles [2], a series of
seminal works have investigated cooperative phenomena in
systems with strong light-matter interaction in various set-
tings. Prominent examples include Dicke superradiance of
atomic ensembles coupled to optical resonators and waveg-
uides, in large clouds of Rydberg atoms and dense ensembles
of two-level quantum emitters [3–9]. More recently the ad-
vent of novel technologies which offer more control over
the arrangement of individual atoms [10–16] or quantum
emitters [17–20] has motivated an in-depth study of the role
of the emitter geometry on superradiant emission [21–29].
While the dissipative long-range nature of the underlying
spin model makes exact studies of these systems challenging,
it also provides opportunities to unveil fundamental gov-
erning principles of dissipative many-body systems, and to
develop applications for novel lasing technologies [30], the
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preparation of entangled states [31,32] or the generation of
nonclassical states of light [33].

Most works characterizing superradiance focus on the
transient dynamics of fully inverted ensembles. Recently,
however, a seminal experimental work investigated the
steady-state properties of a dissipative cooperative system
under constant classical laser drive [34]. In the Dicke limit,
where all atoms are assumed to be located at the same spatial
position, and the dissipative interactions among them con-
sequently have the same strength, this system is known to
exhibit quadratic scaling of the emitted light intensity with
particle number in the steady state [35–37] for sufficiently
strong laser drive. For extended ensembles of atoms, geometry
dependent energy shifts and decay rates are expected to alter
these dynamics.

In this work, we investigate the role of light-induced coop-
erative shifts and decay rates for steady-state superradiance in
driven-dissipative periodic arrays of quantum emitters under
strong drive. While previous work focused on mapping out the
steady-state phase diagram of this system [33], or perturbative
approaches in the weak driving regime for disordered clouds
[38,39], our focus lies on the full characterization of the
superradiant emission properties as a function of the system
parameters. The core finding of this work is that going beyond
the paradigmatic Dicke limit modifies the radiative steady-
state properties significantly. While the radiated light intensity
in the steady-state scales quadratically with system size in the
Dicke limit, it only scales linearly for extended ensembles
(see Sec. IV). For very dense extended ensembles measured
at finite times, however, we show that the scaling approaches
that of the Dicke limit again, namely N2 (see Sec. V).

2643-1564/2024/6(2)/023206(12) 023206-1 Published by the American Physical Society

https://orcid.org/0000-0002-9762-9010
https://orcid.org/0000-0002-4886-1593
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.023206&domain=pdf&date_stamp=2024-05-23
https://doi.org/10.1103/PhysRevResearch.6.023206
https://creativecommons.org/licenses/by/4.0/


STEFAN OSTERMANN et al. PHYSICAL REVIEW RESEARCH 6, 023206 (2024)

FIG. 1. Sketch of the considered model. A dense periodic array
of two-level quantum emitters is driven by an external laser with
Rabi frequency �. If the lattice spacing a is much smaller than
the transition wavelength λ0 = 2πc/ω0, light-induced dipole-dipole
interactions will result in nontrivial collective dissipative dynamics.

II. MODEL

We model the system depicted in Fig. 1(a) as a set of
two-level atoms with ground state |gi〉 and excited state |ei〉,
located at positions ri in the x-y plane with a transition dipole
matrix element d. To reduce the number of tunable parameters
throughout this work, we choose d = (0, 0, 1)T . Analogous
results, however, can be found for other polarizations. The
Hamiltonian is then given as (we set h̄ = 1 here and for the
remainder of this work) Ĥ = Ĥint + Ĥdrive, with

Ĥint = −�

N∑
i=1

σ̂+
i σ̂−

i +
N∑

i, j �=i

Ji j σ̂
+
i σ̂−

j , (1a)

Ĥdrive = �

2

N∑
i=1

(
eik·ri σ̂+

i + e−ik·ri σ̂−
i

)
, (1b)

where σ̂+
i = |ei〉〈gi| (σ̂−

i = |gi〉〈ei|) is the raising (lowering)
operator for atom i, � = ω − ω0 denotes the detuning be-
tween the drive laser frequency ω and the atomic transition
frequency ω0 (including the Lamb shift Jii), and Ji j is the
coherent interaction strength between distant emitters. For
the analysis below we choose � = 0 unless stated otherwise.
The ensemble is driven with a plane wave drive with con-
stant Rabi frequency � and wave vector k. The direction of
k, i.e., the direction of the incoming pump beam, does not
alter the steady state properties, but it affects the transient
dynamics and therefore is an important quantity to consider
when analyzing finite time measurements in Sec. V. The
strength of the coherent interaction is determined via Ji j =
− 3πγ0

ω0
d† · Re[G(ri j, ω0)] · d, [40,41], where G(r, ω) is the

Green’s tensor for a point dipole in vacuum [42,43] given in
Appendix A, and ri j = ri − r j is the vector connecting atoms
i and j.

The dissipative nature of the system is described by a
Lindbladian of the form

L[ρ̂] =
N∑

i, j=1


i j

2
(2σ̂−

i ρ̂σ̂+
j − σ̂+

i σ̂−
j ρ̂ − ρ̂σ̂+

i σ̂−
j ), (2)

where 
i j = 6πγ0

ω0
d†Im[G(ri j, ω0)]d describes correlated

cooperative decay.
The full system dynamics is then governed by the master

equation for the atomic density matrix ρ̂ [40,41,44]

d ρ̂

dt
= − i

h̄
[Ĥ, ρ̂] + L[ρ̂]. (3)

Notably, the resulting long-range interacting spin model is
not integrable, and the size of the density matrix ρ̂ scales
exponentially in system size. While a truncation of the Hilbert
space into the so-called single excitation subspace is feasi-
ble in the weak driving regime, studying the effects of a
strong drive requires to take into account the full exponential
Hilbert space. This makes an exact quantum mechanical treat-
ment of this many-body problem impossible for large system
sizes, and has traditionally rendered the study of dipole-
coupled ensembles in the strong driving regime unfeasible. To
circumvent this limitation, we use approximative tools (mean-
field approximation and second order cumulant expansions
[45–48] in the analysis below to model larger systems and
justify our findings by providing intuition based on the full
quantum model in Eq. (3) for small atom numbers.

An important limit of this model is the so-called Dicke
limit, which corresponds to N indistiguishable atoms located
at a single position, for example, ri = 0. The governing equa-
tions can be obtained from Eqs. (1a) and (2) by setting Ji j = 0
and 
i j = γ0, as well as defining collective raising and low-
ering operators Ŝ± = ∑N

i=1 σ̂±
i . If the system is initialized in

the ground state, the collective dynamics is restricted to the
fully symmetric spin sector |S = N/2, m = −N/2, . . . , N/2〉,
often also referred to as the Dicke ladder. The Hamiltonian
for the coherent drive then reduces to HDicke

drive = �/2(Ŝ+ +
Ŝ−) and the Lindbladian can be written as LDicke[ρ̂] =
γ0/2(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−). The fact that the restric-
tion to the symmetric subsector no longer holds in the free
space case for finite lattice spacings is pivotal for the results
discussed below.

III. STEADY-STATE PHASE DIAGRAM

We first determine the steady-state phase diagram as a
function of � and a. It is convenient to express the Hamilto-
nian Ĥ in the Pauli basis consisting of the Pauli matrices σ̂x,y,z

by employing the relation σ̂±
i = (σ̂ i

x ± iσ̂ i
y )/2. Then, the def-

inition of the collective spin operators Ŝx,y,z = 1/2
∑N

i=1 σ̂x,y,z
allows the interpretation of the results based on a collective
spin on a single Bloch sphere. An exemplary phase diagram
for a square consisting of four atoms is shown in Fig. 2(a).
It exhibits two distinct regions indicated in blue and red. The
blue region corresponds to the trivial magnetized phase where
all the spins are polarized, whereas the red region marks the
paramagnetic phase where 〈Ŝz〉 ≈ 0. Note that related charac-
terizations of the superradiant phase transition in the Dicke
limit were presented in Refs. [34–37]. In the Dicke limit, the
saturated paramagnetic regime also corresponds to the regime
exhibiting enhanced superradiant emission, as will be further
discussed in Sec. IV. In the Dicke case, the transition between
the magnetized and the paramagnetic phase can be inferred
by a peak in the value for the y component of the collective
spin 〈Ŝy〉 [see Fig. 3(a)]. In the finite size free space case,
this peak is no longer as pronounced [see Fig. 3(b)]. Never-
theless, the maximum of 〈Ŝy〉 remains a good indicator for
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FIG. 2. (a) Steady-state phase diagram for the collective spin in
z direction, 〈Ŝz〉/N , as a function of Rabi frequency � and lattice
spacing a for a four atom square. The solid black line indicates the
numerically obtained threshold from the full quantum solution, the
green dash dotted line indicates the threshold obtained via the mean-
field equations, and the dashed yellow line shows the analytically
obtained threshold given by Eq. (6). The horizontal dashed white
lines indicate the lattice spacings at which the effective coupling
strengths Jeff shown in (b) is zero. (b) Effective coupling strength
Jeff and decay rate 
eff as a function of lattice spacing. The vertical
dashed lines indicate zero crossings of Jeff .

the transition point between the magnetized and paramagnetic
phase. Hence, we use max{〈Ŝy〉} to characterize the transition
between these two regimes for the remainder of this work.

To study the particle number scaling of this superradiant
transition and to obtain some analytical insights, we first focus
on a mean-field model. The equations of motion for the ex-
pectation values sx,y,z ≡ 〈σ̂x,y,z〉 can be obtained from Eq. (3)
via the expression ∂t 〈Ô〉 = Tr([∂t ρ̂(t )]Ô), and by perform-
ing a mean-field approximation for the two-point correlators
〈ÂB̂〉 = 〈Â〉〈B̂〉. This results in a set of 3N coupled differential
equations governing the dynamics of the form

ṡx
k =

∑
i �=k

Jkis
y
i sz

k − γ0

2
sx

k +
∑
i �=k


ki

2
sx

i sz
k, (4a)

ṡy
k = −

∑
i �=k

Jkis
x
i sz

k − γ0

2
sy

k +
∑
i �=k


ki

2
sy

i sz
k − �sz

k, (4b)

ṡz
k =

∑
i �=k

Jki
(
sx

ksy
i − sy

i sx
k

) − γ0
(
1 + sz

k

)

−
∑
i �=k


ki

2

(
sx

ksx
i + sy

i sy
k

) + �sy
k, (4c)

for i and k ∈ {1 . . . N} and pump perpendicular to the x-y
plane, such that the atom-dependent driving phase in Eq. (1)
vanishes (k · ri = 0 for i = 1, . . . , N) (see Appendix D for the
more general set of equations). These equations capture the
transition between the paramagnetic and magnetized phase
remarkably well. In particular, the threshold obtained from
the mean-field equations matches with that obtained with
the full master equation (3), which are respectively shown
by the dash-dotted green trace and the solid black trace in
Fig. 2(a). Performing an additional approximation allows us
to obtain analytical insights based on this mean-field model.
For infinite periodic arrays, we can leverage the geometries’
symmetry and define the effective interaction strength and de-
cay rate as Jeff = ∑N

i=2 J1i and 
eff = ∑N
i=2 
1i, respectively.

For subwavelength lattices, these effective couplings converge
to finite constants as N → ∞, for which the approximation
becomes exact. This simplifies the set of equations to just
three equations, which describe the mean-field dynamics of
a single spin surrounded by all other atoms. They are given as

ṡx = Jeff s
ysz − 1

2 (γ0 − 
effs
z )sx, (5a)

ṡy = −Jeff s
xsz − 1

2 (γ0 − 
effs
z )sy − �sz, (5b)

ṡz = −γ0(1 + sz ) − 1
2
eff [(sx )2 + (sy)2] + �sy. (5c)

Linearizing this set of equations around the steady-state so-
lution via sx,y,z = sx,y,z

0 + δsx,y,z(t ) and solving for the steady
state in δsx,y,z(t ) (see Appendix C) allows the extraction of a
concise expression for the critical driving strength. In accor-
dance with the Dicke limit [see Fig. 3(a)], we again define the
value of � where sy is maximal as the critical driving strength
�c. We obtain (see Appendix C)

�c =
√

γ0

√
4J2

eff + (γ0 + 
eff )2

√
2
√

γ0 + 
eff

. (6)

Despite the substantial approximation performed with the lin-
earization of equations (5), this analytical treatment captures
the overall properties of the phase diagram, as can be seen
from the yellow dashed line in Fig. 2(a). In particular, �c has
extrema at lattice spacings where Jeff = 0 (see Fig. 2). These
extrema coorespond to a maximum (minimum) when 
eff > 0
(
eff < 0).

The critical driving strength given in Eq. (6) is constant
in the particle number N . This marks a strong difference to
the Dicke case, where the critical driving strength in the ther-
modynamic limit, �Dicke

c = Nγ /2 (see Appendix B), scales
linearly with particle number. This distinction between the
free space and the Dicke case is illustrated in Fig. 3. The
full quantum solution of the Dicke model approaches the
analytical steady-state solution (see Appendix B) for N → ∞.
For the free space case, we rely on the mean field model in
Eq. (4) to obtain the particle number scaling. Intriguingly,
the critical value �c does not scale with particle number,
except for finite size effects at very small system sizes[see Fig.
3(b)]. The different scaling of the critical driving strength in
particle number suggests that the two cases studied here are
part of different universality classes. While a detailed analysis
of the models’ criticality in the thermodynamic limit warrants
further study, it goes beyond the scope of the present work.
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FIG. 3. (a) Steady-state value of the collective spin expectation value 〈Sα〉 (α ∈ {x, y, z}) obtained by solving the master equation (3) for
the steady state in the Dicke limit as a function of driving strength �. The thick black lines show the analytical solution obtained from a
mean-field model (see Appendix B). (b) Steady-state solutions of the mean-field model given in Eq. (4) for a square lattice in free space with
lattice spacing a = 0.2λ0. The different shadings in (a) and (b) indicate different particle numbers N = 4, 36, 64, 100 from light to dark. In
either case, we use the maximum of 〈Sy〉 as the threshold condition. (c) Scaling of the critical driving strength �c as a function of particle
number. As suggested by (a) and (b), the critical driving strength scales linearly with particle number in the Dicke limit, but it does not scale
with N for the free space case. This feature is independent of lattice spacing, as evinced by the solid grey line (a = 0.2λ0) and the orange
dashed line (a = 0.4λ0).

IV. EMISSION PROPERTIES

One of the core properties of steady-state super-
radiance in the Dicke limit is the quadratic scaling
of the total emission rate γtot = ∑

i j 
i, j〈σ̂+
i σ̂−

j 〉 in the
steady state (γ ss

tot) with particle number N [34,37]. This
rate is given as the expectation value of either the
jump term or the anti-commuting part of the Lindbla-
dian in Eq. (2) via γtot = Tr{∑i, j


i j

2 (σ̂+
i σ̂−

j ρ̂ + ρ̂σ̂+
i σ̂−

j )} =
Tr{∑i, j
i j σ̂

−
j ρ̂σ̂+

i } = 〈∑i, j 
i j σ̂
+
i σ̂−

j 〉 ≡ 〈Ĥdis〉, where we

defined the dissipative Hamiltonian Ĥdis. In Fig. 4(a), we plot
γ ss

tot obtained from a solution of the master equation in the
Dicke limit as a function of N for different driving strengths
�. For sufficiently large �, the total emission rate scales
quadratically with particle number. For small �, the emission
rate saturates to a constant value above a certain particle
number [see Fig. 4(a)]. This occurs because the decay rates
of the states in the symmetric Dicke ladder scale at least
with N, and small values of � are not enough to sufficiently

FIG. 4. Scaling of the total emission rate as a function of particle
number (a) for the Dicke case and (b) for a chain with lattice spac-
ing a = 0.2λ0 in free space, obtained by evolving the equations in
second order cumulant expansion until a steady state is reached. The
different colors and markers indicate different driving strengths. For
sufficiently strong driving, we find a quadratic scaling ∝ N2 with
particle number for the Dicke case and a linear scaling ∝ N for the
free space case.

invert large systems to attain the N2 scaling characteristic of
the |S = N/2, m = 0〉 state. For subwavelength arrays in free
space, where the underlying geometry results in cooperative
shifts and decay rates, a natural question arises: How does the
geometry influence the emission properties, in particular in
the superradiant regime?

Since solving the full master equation (3) is not feasible
in the free space case, we perform a cumulant expansion up
to second order [45–48] to extract the scaling of the total
steady-state emission rate. The full set of equations can be
found in Appendix D. In contrast to the quadratic scaling in
the Dicke limit, we find linear scaling with particle number
for any value of � in the free space case [see Fig. 4(b)],
independent of spacing or geometry. This drastic change in the
emission properties arises from the space dependent coherent
Ji j and dissipative 
i j dipole interactions, which result in ad-
ditional decay channels that couple bright to subradiant states
through dissipation. These decay channels and the subsequent
coupling to subradiant states are suppressed in the Dicke limit,
which is restricted to the symmetric bright or radiating states
[see Fig. 5(a)]. While the data presented in Fig. 4 are for a
chain of atoms, qualitatively similar results are obtained for a
square array or other higher dimensional geometries.

The general mechanism resulting in this stark deviation
from the Dicke limit can be already illustrated in a two atom
model. For two atoms at a distance a < λ0, the dipole-dipole
interactions become significant and give rise to coherent in-
teractions J12 and correlated emission or dissipation 
12. The
eigenstates of the Hamiltonian (1) are then given as |G〉 =
|gg〉, |B〉 = 1/

√
2(|eg〉 + |ge〉), |D〉 = 1/

√
2(|eg〉 − |ge〉), and

|E〉 = |ee〉, where |B〉 (|D〉) denotes the symmetric (antisym-
metric) single-excitation bright (dark) state. These eigenstates
are coupled via different dissipation channels. While the
symmetric bright state |B〉 is coupled to |E〉 and |G〉 via
the cooperatively enhanced bright channel with a decay rate

B = γ0 + 
12, the antisymmetric dark state couples to these
states via the suppressed decay rate 
D = γ0 − 
12. In the
Dicke limit, the distance between emitters tends to zero and
the dissipative interaction approaches the spontaneous decay
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FIG. 5. (a) Intuitive explanation for the different scaling of the total emission rate with the particle number N based on the two atom case.
In the Dicke case (top), decay from |E〉 to |G〉 only occurs via the bright state |B〉 at a rate 
B = 2γ0. Similarly, the driving field only brings
population back into the fully excited state |E〉 via the symmetric Dicke ladder, i.e.,via state |B〉. As a result, the steady state at large drive
contains an equal population in |G〉, |B〉, and |E〉. In the free space case (bottom), decay from |E〉 to |G〉 can occur either through the bright state
|B〉 at a rate 
B = γ0 + 
12, or through the dark state |D〉 at a rate 
D = γ0 − 
12 Consequently, the steady state exhibits equal population in
all four states |G〉, |B〉, |E〉, and |D〉, which results in a diminished total emission rate. This occurs even in the limit a/λ0 → 0, when 
12 → γ0

and 
D → 0. Notably, the intuition gained from the two atom case also holds for larger particle numbers. (b) Overlap of the steady state with
the full Lindbladian spectrum for a chain with lattice spacing a = 0.2λ0 and strong pump � = 40γ0 for multiple particle numbers N . In all
cases, all states of the spectrum are equally populated in the steady state. (c) Decay rate κn = −Re(λn) of the eigenmodes of the Liouvillian
in Eq. (3) as a function of spacing a. The eigenvector associated with the eigenvalue κn = 0 corresponds to the steady state. The timescale
needed to reach this steady state is equal to the inverse of the smallest nonzero decay rate (orange markers) of the Liouvillian spectrum. For
a/λ0 → 0, this timescale diverges. (d) Emission rate as a function of time for two atoms separate by different distances a, illuminated by a
plane wave drive perpendicular to the atomic chain. As a decreases, the time required to reach the steady state increases and the evolution
resembles that of the Dicke limit for longer times. (e) Total emission rate measured at different finite times as a function of the angle of the
impinging driving field with the atomic chain. Larger emission rates are attained for perpendicular drive, θ = π/2, than for drive parallel to
the atom chain, θ = 0. A spacing of a = 0.1λ0 is considered.

rate, lim|r12|→0(
12) = γ0 [22,49]. As a result, the dynamics
is restricted to the symmetric subspace, i.e.,the Dicke lad-
der |E〉 → |B〉 → |G〉 [see Fig. 5(a)], and the population of
the dark state is zero at all times (pDicke

D = 0). This changes
in the free space case, where an additional dissipation channel
to the dark state emerges [50] and 
D takes a small but finite
value, 
D �= γ0. Then, the decay into the dark state is no
longer fully suppressed [see Fig. 5(a)], and a finite population
in the dark state (pf.s.

D �= 0) is attained. For this simple two
atom model, the populations of the individual states in the
steady state can be obtained analytically (see Appendix E).
In the Dicke case and for sufficiently strong driving on res-
onance with the bright state, i.e., � = J12, the interplay of
continuous drive and collective dissipation along the Dicke
ladder results in an equillibrium configuration where all states
in the symmetric subspace are equally populated, i.e., pDicke

G =
pDicke

B = pDicke
E = 1/3, whereas the dark state remains unoccu-

pied pDicke
D = 0. In the free space case, however, the additional

dissipation channel ∝ 
D modifies the equilibrium state, such

that all four eigenstates are populated equally in the steady
state, i.e.,pf.s.

G = pf.s
B = pf.s

D = pf.s
E = 1/4. That is, a significant

amount of the population is then trapped in a nonradiative
dark state. This results in a reduced emission rate in the free
space case, and will ultimately lead to the different scaling
of the emission properties with particle number shown in
Fig. 4.

Crucially, the steady-state populations at large drive follow
the same trend for a general particle number N : in the free
space case, all states are equally populated; in the Dicke case,
only the states within the symmetric subspace are equally
populated. While a full analytical solution for the steady
state of Eq. (3) is cumbersome in this general setting, we
can numerically test this intuition for small atom numbers.
In particular, the steady-state solution can be determined via
the spectrum {λn = −κn + iνn} of the Liouvillian L [ρ̂] =
i/h̄[Ĥ , ρ̂] + L[ρ̂], where κn and νn respectively denote the
decay rate and energy shift associated to the n-th eigenvalue.
More precisely, the steady state fulfills ∂t ρ̂ss = 0 and therefore
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corresponds to the Liouvillian eigenstate with zero decay rate,
i.e.,the state with κn = 0. In Fig. 5(b), we show the overlap
OL = 〈ψ | ρ̂ss |ψ〉 of the steady states with the individual
eigenstates |ψ〉 of the many-body Hamiltonian Ĥ for the free
space case. As occurs in the two particle case, the steady state
has equal overlap with all 2N eigenstates of the Hamiltonian
for all simulatable particle numbers up to N = 8. The steady-
state emission rate, can be expressed as the expectation value
of the dissipative Hamiltonian Ĥdis = ∑

i, j 
i j σ̂
+
i σ̂−

j . Then,
each of the 2N eigenstates of Hdis can be assigned to one of the
N + 1 excitation subspaces containing m ∈ {0, N} excitations.
There are

(N
m

) = M such states in the m-excitation subspace,
each having a decay rate 


(m)
i , and such that the sum of all

decay rates within the m-th excitation subspace is equal to∑M
i=1 


(m)
i = mγ0

(N
m

)
. Since all eigenstates in all excitation

manifolds are equally populated, the total emission rate is
simply given as the average of all their decay rates

γ f.s.
tot =

N∑
m=0

∑M
i=1 


(m)
i

2N
= 1

2N

N∑
m=0

mγ0

(
N

m

)
= N

2
γ0. (7)

This confirms the linear scaling of the total emission rate
with particle number obtained in Fig. 4(b). Intuitively, the
fact that all eigenstates of Hdis are equally populated results
in significant contribution of dark decay rates with 
D � γ0

in the sum of Eq. (7), which drastically diminishes the total
emission rate.

In contrast, only the N + 1 states contained in the sym-
metric subspace are occupied in the Dicke limit. The decay
rate of the symmetric state in the m-excitation subspace, |S =
N/2, m〉, is given as 
Dicke

m = γ0[N/2 + (m − N/2)][N/2 −
(m − N/2) + 1], and the total emission rate then reads

γ Dicke
tot =

N∑
m=0


Dicke
m

N + 1
= γ0

N + 1

N∑
m=0

m(N + 1 − m)

= γ0
N (N + 2)

6
, (8)

which highlights the quadratic scaling in particle number in
the Dicke case. These findings are in agreement with the
numerical results shown in Figs. 4(a) and 4(b).

Hence, the stark difference in emission properties between
free space and the paradigmatic Dicke limit can be explained
by the contribution of the different dissipation channels avail-
able in the two cases. While only radiative or superradiant
states contribute to emission in the Dicke case, nonradiative
dark or subradiant states are significantly occupied in the free
space case, resulting in diminished photon emission.

V. FINITE TIME EFFECTS

The emergence of decay channels with nonzero decay rates
much smaller than γ0 affect not only the steady-state emission
properties of the system, as discussed in Sec. IV, but also its
dynamics. So far, we have characterized the steady-state prop-
erties by either determining the null-space of the Liouvillian
or evolving approximate equations of motion for very long
times (t > 100γ0). In experiments, however, the measurement
of the emission properties typically takes place at much
earlier times, and it is important to understand the interplay

between the measurement time and the slowest or
characteristic timescale at which the system evolves. To
do so, we note that the time evolution of the density
matrix ρ̂ under the master equation (3) can be expressed
as ρ̂(t ) = ∑2N

n=1 cneλnt un, where the coefficients cn are fixed
via the initial condition, and λn and un respectively denote the
eigenvalues and eigenvectors of the Liouvillian. Note that the
eigenvalues are typically complex, λn = −κn + iνn, and are
characterized by a decay rate κn and an energy shift νn. Then,
the fundamental timescale at which the steady state is reached,
τss, is equal to the inverse of the smallest nonzero decay rate
of the Liouvillian spectrum with a nonzero contribution cn.
In Fig. 5(c), we show the decay rates of the Lindbladian
spectrum for two atoms, κn = −Re(λn). The smallest nonzero
decay rate is indicated by yellow markers. For decreasing
lattice spacing a → 0, this eigenvalue approaches zero, which
implies a divergence of the timescale required to reach the
steady state. This effect is nicely illustrated in Fig. 5(c),
where we show the time evolution of the total emission rate
for two atoms for different atom distances. For large enough
lattice spacings, the steady-state emission rate reaches the
analytic free space value given in Eq. (7) very quickly. For
decreasing lattice spacings, the emission rate at finite times
gets closer and closer to the Dicke value given in Eq. (8), as
it takes longer and longer times for the subradiant states to
be populated. For a lattice spacing of a = 0.05λ0 and after
some oscillatory initial dynamics, the time evolution of the
emission rate overlaps with that of the Dicke limit for the
time window shown, t ∈ {0, 20γ0}. For such small lattice
spacings, the subradiant decay rate is heavily suppressed and
the time τss required to reach the actual free space steady-state
emission rate becomes increasingly large.

In other words, the emergence of decay channels with
heavily suppressed but nonzero decay rates increases the
time required for the system to equilibrate and populate its
dark states. This modifies the emission properties when mea-
sured at finite times (as it would occur in any experimental
implementation). In Fig. 6, we illustrate the effect of finite-
time measurements on the total emission rate. As shown
in Fig. 6(a), the emission rate approaches that of the Dicke
limit for smaller interparticle spacings (i.e.,larger densities)
and earlier measurement times.

Another important parameter which we did not consider
thus far is the angle of the incident pump beam with respect
to the orientation of the lattice. While the final steady state is
independent of the angle of incidence, the transient dynamics
leading to this steady state strongly depends on the phase
factors ∝ eik·ri in Eq. (1). For the two atom case, we solve
the full master equation [see Fig. 5(e)] and find that the effect
of finite measurement times is most pronounced for perpen-
dicular illumination (θ = π/2), where the total emission rate
gets close to the actual Dicke value at early times. For parallel
illumination (θ = 0.0), this effect is less pronounced, and we
obtain emission rates much closer to the free space case for
all measurement times. This phenomenon can be understood
by noting the fundamental difference between both scenarios.
For perpendicular illumination, the driving field couples the
ground state |G〉 only to the bright state |B〉, and contributes
to a rapid population of the superradiant states of the system.
The subradiant state |D〉, however, only gets populated via the
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FIG. 6. (a) Total emission rate as a function of inverse lattice
spacing for two atoms. For a measurement at finite times, the values
for γtot approach the Dicke limit for decreasing density. (b) Scaling
of the emission rate with particle number for a fixed chain length L =
3λ0 and varying particle number, for different measurement times t0

and plane wave drive perpendicular to the chain axis. The linear black
dashed line correspond to measurement times γ0t = 100, for which
the emission rate is consistent with the steady-state analysis shown in
Fig. 4. For early measurement times, the scaling becomes superlinear
and therefore resembles the Dicke case show in Fig. 4(a). (c) Same
as (b), but for plane-wave drive parallel to the chain axis. Compared
to perpendicular drive, the emitted intensity is closer to the free space
case and its characteristic linear scaling for all measurement times.
(b) and (c) therefore show that the properties obtained for the two
atom model in Fig. 5(e) also hold for larger particle numbers.

subradiant decay channel at a rate proportional to the slow
timescale 
D = γ0 − 
12. For parallel illumination, however,
the driving field generally couples the ground state |G〉 to
both the superradiant |B〉 and subradiant |D〉 single-excitation
states, and the population of the latter can occur at a much
faster timescale. As a result, the steady state is also reached
at earlier times, and the effect of measuring at finite times is
substantially suppressed.

We further study the scaling of the emission rate as a
function of density. To do so, we fix the length of the chain and
analyze the total emission rate as a function of particle number
N for different measurement times [see Figs. 6(b) and 6(c)].
We again simulate the dynamics of the system by means of a
second order cumulant expansion (see Appendix D) given the
large particle numbers considered. For sufficiently late mea-
surement times (γ0t0 = 100), we retrieve the expected linear
scaling characteristics of the steady state analyzed in Sec. IV.
For earlier measurement times, however, the total emission
rate scales superlinearly with particle number, confirming that
the effect observed in the minimal two atom model also occurs
for large system sizes. Again, the direction of the plane-wave
driving field has the same effect as in the two-atom case. The
strongest deviation from linear scaling is found for perpen-
dicular drive, which predominantly excites the superradiant

modes of the system. For driving along the chain axis, the
coupling to the most superradiant modes is reduced [51] and
deviations from linear scaling can only be observed at very
short measurement times.

VI. CONCLUSIONS

Motivated by the recent experimental progress in gen-
erating controllable subwavelength geometries of quantum
emitters, we analyzed the role of geometry induced shifts
and decay rates on the steady-state properties of driven atom
arrays. We particularly focused on the transition between a
magnetic and a paramagnetic (superradiant) regime, and char-
acterized the emission properties for varying geometries. We
find that the emergence of collective shifts and dissipations in
structured arrays results in a stark difference compared to the
simple Dicke regime, where equal all-to-all interactions with
vanishing shifts are assumed. In particular, the population of
dark states destroys the quadratic scaling with particle number
of the steady state emitted light intensity, characteristic of
the Dicke limit. Instead, only a linear scaling is observed
for extended geometries. At finite measurement times and for
very dense arrangements of atoms, however, we approach the
Dicke-like behavior due to the diverging time scales to reach
the actual steady state. These insights could directly contribute
to the interpretation of recent experimental observations in a
dense driven pencil-shaped cloud of atoms, which experimen-
tally realized the driven superradiant phase transition in free
space [34].

In a broader setting, driven dissipative spin models are an
exciting avenue for future research. The control over vari-
ous atomic degrees of freedom enables novel protocols and
phenomena based on the interplay between dissipation and
coherent drive. Such protocols could allow the realization
of novel states of matter in the steady state and provide al-
ternative routes for dissipation assisted state preparation of
light and matter. The latter could be achievable in general-
ized analog settings as considered in this work, as well as
in fully programmable quantum devices, where Lindbladian
terms can in principle be engineered by performing appro-
priate randomized measurements to target a particular steady
state.
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APPENDIX A: GREEN’S FUNCTION

The Green’s function for a point dipole which determines
the interaction strength Ji j as well as the collective dissipa-
tion 
i j in Eqs. (1) and (2) can be written in the Cartesian

023206-7



STEFAN OSTERMANN et al. PHYSICAL REVIEW RESEARCH 6, 023206 (2024)

coordinates as [42,43]

Gαβ (r, ω) = eikr

4πr

[(
1 + i

kr
− 1

(kr)2

)
δαβ

+
(

−1 − 3i

kr
+ 3

(kr)2

)
rαrβ

r2

]
+ δαβδ(3)(r)

3k2
,

(A1)

where k = ω/c, r = |r|, and α, β = x, y, z.

APPENDIX B: CRITICAL DRIVING STRENGTH
IN THE DICKE LIMIT

The mean-field equations in the Dicke limit are given as

ṡx = 1
2γ szsx, (B1a)

ṡy = 1
2γ szsy − �sz, (B1b)

ṡz = − 1
2γ [(sx )2 + (sy)2] + �sy. (B1c)

Solving for the steady state by setting ∂t sx,y,z = 0 and impos-
ing the additional constraint that (sx )2 + (sy)2 + (sz )2 = N2

results in the stable mean-field steady-state solutions sx
MF = 0,

sy
MF =

{
�
γ

for �/N ∈ [0, 1/2],
N2γ

4�
for �/N ∈ [1/2, 1],

(B2)

and sz
MF = −

√
N2γ 2−4�2

2Nγ
. Theses solutions shown as solid

black lines in Fig. 3(a). Throughout this work we define the
transition from the magnetized into the superradiant regime
via the critical driving strength at which the spin y component
is maximal. Employing this condition, we can directly read-
off the critical Rabi frequency for the Dicke case from (B2) to
be �Dicke

mf = Nγ /2.

APPENDIX C: LINEARIZED MEAN-FIELD EQUATIONS
FOR THE FREE SPACE CASE

To obtain a compact expression for the critical pump
strength for different lattice spacings we linearize Eqs. (5)
around a steady-state solution via the ansatz sx,y,z(t ) = sx,y,z

0 +
δsx,y,z(t ). Plugging this ansatz into Eqs. (5) and linearizing in
δsx,y,z results in

∂tδsx = −γ

2
sx

0 − γ

2
δsx + Jsy

0sz
0 + Js0

yδsz + Js0
z δsy

+


2
sx

0sz
0 + 


2
sx

0δsz + 


2
sz

0δsx, (C1a)

∂tδsy = −γ

2
sy

0 − γ

2
δsy + Jsx

0sz
0 + Js0

xδsz + Js0
z δsx

+


2
sy

0sz
0 + 


2
sy

0δsz + 


2
sz

0δsy − �sz
0 − �δsz,

(C1b)

∂tδsz = −γ
(
1 + sz

0 + δsz
) − 


2

[(
s0

x

)2 + sx
0δsx + (

s0
y

)2

+sy
0δsy

] − �sy
0 + �δsy. (C1c)

For brevity of notation, we set Jeff ≡ J and 
eff ≡ J . Insert-
ing the trivial steady-state solution for �=0, i.e., sx

0=sy
0=0,

sz
0= − 1 gives a linear set of equations:

∂tδsx = −γ

2
δsx − Jδsy − 


2
δsx, (C2a)

∂tδsy = −γ

2
δsy + Jδsx − 


2
δsy − �δsz + �, (C2b)

∂tδsz = −γ δsz + �δsy. (C2c)

Solving these equations for the steady state by putting
∂tδsx,y,z = 0 results in the steady-state solutions

δsx
ss = − 4γ J�

(γ + 
)(γ (γ + 
) + 2�2) + 4γ J2
, (C3a)

δsy
ss = 2γ�(γ + 
)

(γ + 
)(γ (γ + 
) + 2�2) + 4γ J2
, (C3b)

δsz
ss = 2�2(γ + 
)

(γ + 
)(γ (γ + 
) + 2�2) + 4γ J2
. (C3c)

The critical value for � is then determined by solving
d

d�
δsy

ss = 0, which results in (6) in the main text.

APPENDIX D: SECOND-ORDER CUMULANT EXPANSION

Calculating the equations of motion of the σ̂x,y,z operators
via ∂t 〈Ô〉 = Tr([∂t ρ̂(t )]Ô), where ρ̂(t ) is governed by (3)
results in the set of equations (for notational brevity we omit
the hat symbol •̂ for operators below).

∂t 〈σ x
k 〉 =

∑
i;i �=k

Jki
〈
σ

y
i σ z

k

〉 − 1

2
γ
〈
σ x

k

〉 + 1

2

∑
i;i �=k


ki
〈
σ x

i σ z
k

〉
− � sin(k · rk )

〈
σ z

k

〉
, (D1)

∂t 〈σ y
k 〉 = −

∑
i;i �=k

Jki
〈
σ x

i σ z
k

〉 − 1

2
γ
〈
σ

y
k

〉 + 1

2

∑
i;i �=k


ki
〈
σ

y
i σ z

k

〉
− � cos(k · rk )

〈
σ z

k

〉
, (D2)

∂t 〈σ z
k 〉 = −

∑
i;i �=k

Jki
(〈
σ x

k σ
y
i

〉 − 〈
σ x

i σ
y
k

〉) − γ
(
1 + 〈

σ z
k

〉)

− 1

2

∑
i;i �=k


ki
(〈
σ x

k σ x
i

〉 + 〈
σ

y
i σ

y
k

〉)
(D3)

+ � sin(k · rk )
〈
σ x

k

〉 + � cos
(
k · rk

)〈
σ

y
k

〉
. (D4)

Calculating additional equations of motion for the two-
point correlators ∝ 〈OiOk〉 and replacing averages over
third-order operators by [45,46]

〈O1O2O3〉 = 〈O1〉〈O2O3〉 + 〈O2〉〈O1O3〉
+ 〈O3〉〈O1O2〉 − 2〈O1〉〈O2〉〈O3〉, (D5)
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results in a closed set of differential equations. The equations for the correlators are given as

∂t
〈
σ x

k σ x
l

〉 =
∑

j; j �=k,l

Jk j
〈
σ z

k σ x
l σ

y
j

〉 + ∑
j; j �=k,l

Jl j
〈
σ x

k σ z
l σ

y
j

〉 − γ
〈
σ x

k σ x
l

〉 + 
kl

(〈
σ z

k σ z
l

〉 + 1

2

〈
σ z

k

〉 + 1

2

〈
σ z

l

〉)

+ 1

2

∑
j; j �=k,l


k j
〈
σ z

k σ x
l σ x

j

〉 + 1

2

∑
j; j �=k,l


l j
〈
σ x

k σ z
l σ x

j

〉 − �
(

sin(k · rl )
〈
σ x

k σ z
l

〉 + sin(k · rk )
〈
σ x

l σ z
k

〉)
, (D6)

∂t
〈
σ

y
k σ

y
l

〉 = −
∑

j; j �=k,l

Jk j
〈
σ z

k σ
y
l σ x

j

〉 − ∑
j; j �=k,l

Jl j
〈
σ

y
k σ z

l σ x
j

〉 − γ
〈
σ

y
k σ

y
l

〉 + 
kl

(〈
σ z

k σ z
l

〉 + 1

2

〈
σ z

k

〉 + 1

2

〈
σ z

l

〉)

+ 1

2

∑
j; j �=k,l


k j
〈
σ z

k σ
y
l σ

y
j

〉 + 1

2

∑
j; j �=k,l


l j
〈
σ

y
k σ z

l σ
y
j

〉 − �
(

cos(k · rl )
〈
σ

y
k σ z

l

〉 + cos(k · rk )
〈
σ

y
l σ z

k

〉)
, (D7)

∂t
〈
σ z

k σ z
l

〉 =
∑

j; j �=k,l

Jk j
(〈
σ

y
k σ z

l σ x
j

〉 − 〈
σ x

k σ z
l σ

y
j

〉) +
∑

j; j �=k,l

Jl j
(〈
σ z

k σ
y
l σ x

j

〉 − 〈
σ z

k σ x
l σ

y
j

〉) − 2γ
〈
σ z

k σ z
l

〉 − γ
(〈
σ z

l

〉 + 〈
σ z

k

〉)

+ 
kl
(〈
σ

y
k σ

y
l

〉 + 〈
σ x

k σ x
l

〉) − 1

2

∑
j; j �=k,l


k j
(〈
σ x

k σ z
l σ x

j

〉 + 〈
σ

y
k σ z

l σ
y
j

〉)

− 1

2

∑
j; j �=k,l


l j
(〈
σ z

k σ x
l σ x

j

〉 + 〈
σ z

k σ
y
l σ

y
j

〉) + �
(

cos(k · rk )
〈
σ

y
k σ z

l

〉 + cos(k · rl )
〈
σ

y
l σ z

k

〉)
+ �

(
sin(k · rk )

〈
σ x

k σ z
l

〉 + sin(k · rl )
〈
σ x

l σ z
k

〉)
, (D8)

∂t
〈
σ x

k σ
y
l

〉 = Jkl
(〈
σ z

k

〉 − 〈
σ z

l

〉) +
∑

j; j �=k,l

Jk j
〈
σ z

k σ
y
l σ

y
j

〉 − ∑
j; j �=k,l

Jl j
〈
σ x

k σ z
l σ x

j

〉 − γ
〈
σ x

k σ
y
l

〉 + 1

2

∑
j; j �=k,l


k j
〈
σ z

k σ
y
l σ x

j

〉

+ 1

2

∑
j; j �=k,l


l j
〈
σ x

k σ z
l σ

y
j

〉 − � cos(k · rl )
〈
σ x

k σ z
l

〉 − � sin(k · rk )
〈
σ

y
l σ z

k

〉
, (D9)

∂t
〈
σ x

k σ z
l

〉 = Jkl
〈
σ

y
l

〉 + ∑
j; j �=k,l

Jk j
〈
σ z

k σ z
l σ

y
j

〉 + ∑
j; j �=k,l

Jl j
(〈
σ x

k σ
y
l σ x

j

〉 − 〈
σ x

k σ x
l σ

y
j

〉) − 3

2
γ
〈
σ x

k σ z
l

〉 − γ
〈
σ x

k

〉

− 
kl
(〈
σ z

k σ x
l

〉 + 1

2

〈
σ x

l

〉) + 1

2

∑
j; j �=k,l


k j
〈
σ z

k σ z
l σ x

j

〉 − 1

2

∑
j; j �=k,l


l j
(〈
σ x

k σ x
l σ x

j

〉 + 〈
σ x

k σ
y
l σ

y
j

〉) + � cos(k · rl )
〈
σ x

k σ
y
l

〉
+ �

(
sin(k · rl )

〈
σ x

k σ x
l

〉 − sin(k · rk )
〈
σ z

k σ z
l

〉)
, (D10)

∂t
〈
σ

y
k σ z

l

〉 = −Jkl
〈
σ x

l

〉 − ∑
j; j �=k,l

Jk j
〈
σ z

k σ z
l σ x

j

〉 + ∑
j; j �=k,l

Jl j
(〈
σ

y
k σ

y
l σ x

j

〉 − 〈
σ

y
k σ x

l σ
y
j

〉) − 3

2
γ
〈
σ

y
k σ z

l

〉 − γ
〈
σ

y
k

〉

− 
kl

(〈
σ z

k σ
y
l

〉 + 1

2

〈
σ

y
l

〉) + 1

2

∑
j; j �=k,l


k j
〈
σ z

k σ z
l σ

y
j

〉 − 1

2

∑
j; j �=k,l


l j
(〈
σ

y
k σ x

l σ x
j

〉 + 〈
σ

y
k σ

y
l σ

y
j

〉) + � sin(k · rl )
〈
σ x

l σ
y
k

〉
+ �

(
cos(k · rl )

〈
σ

y
k σ

y
l

〉 − cos(k · rk )
〈
σ z

k σ z
l

〉)
. (D11)

The truncation in the considered correlations allows the sim-
ulation of larger particle numbers compared to the free space
case. These equations are used to determine the scaling of the
total emission rate for the free space case obtained in Sec. IV.
It is given as

γtot (t ) = γ0

N∑
k=1

〈
σ z

k

〉
(t ) + 1

2
+

N∑
k,l=1


kl

〈
σ x

k σ x
l

〉
(t ) + 〈

σ
y
k σ

y
l

〉
(t )

4
.

(D12)

The steady-state value can be obtained by evolving Eqs. (D4)
and (D11) for long times tmax  1/γ0 and evaluating
Eq. (D12) at the final time.

APPENDIX E: ANALYTICAL STEADY-STATE SOLUTIONS
FOR THE TWO ATOM CASE

Ĥdrive = �(e−ikd/2σ̂−
1 + eikd/2σ̂−

2 + H.c.) = � cos(kd/2)
(σ̂−

1 + σ̂−
2 ) − i� sin(kd/2)(σ̂−

1 − σ̂−
2 ) + H.c. For the

two-atom case, the system Hamiltonian Ĥ can be decomposed
into the eigenstates |G〉 = |gg〉, |B〉 = 1/

√
2(|eg〉 + |ge〉),

|D〉 = 1/
√

2(|eg〉 − |ge〉), and |E〉 = |ee〉 as

Ĥint = −2� |E〉 〈E | + (−� + J ) |B〉 〈B|
− (� + J ) |D〉 〈D| , (E1)

Ĥdrive = �B(|B〉 〈G| + |G〉 〈B| + |B〉 〈E | + |E〉 〈B|) (E2)

+ i�D(|D〉 〈G| − |G〉 〈D| + |D〉 〈E | − |E〉 〈D|), (E3)
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with �B ≡ √
2� cos(kd/2), �D ≡ √

2� sin(kd/2), d
denotes the distance between the two atoms and we introduced
the detuning � = ω − ω0. Equivalently the Liouvillian can
be written as

L = 
B

2
(|B〉 〈B| ρ̂ + ρ̂ |B〉 〈B|) − 
D

2
(|D〉 〈D| ρ̂ + ρ̂ |D〉 〈D|)

− 
B + 
D

2
(|E〉 〈E | ρ̂ + ρ̂ |E〉 〈E |) (E4)

+ 
B(〈B| ρ̂ |B〉 |G〉 〈G| + 〈E | ρ̂ |E〉 |B〉 〈B|
+ 〈B| ρ̂ |E〉 |G〉 〈B| + 〈E | ρ̂ |B〉 〈B|G〉) (E5)

+ 
D(〈D| ρ̂ |D〉 |G〉 〈G| + 〈E | ρ̂ |E〉 |D〉 〈D|
− 〈D| ρ̂ |E〉 |G〉 〈D| + 〈E | ρ̂ |D〉 〈D|G〉), (E6)

with the bright (dark) state decay rate 
B (
D).
In this dressed state picture, the dynamics of the state pop-

ulations pG = 〈G| ρ̂ |G〉, pE = 〈E | ρ̂ |E〉, pB = 〈B| ρ̂ |B〉, and
pD = 〈D| ρ̂ |D〉, as well as the correlators cEB = 〈E | ρ̂ |B〉,
cED = 〈E | ρ̂ |D〉, cEG = 〈E | ρ̂ |G〉, CBD = 〈B| ρ̂ |D〉, cBG =
〈B| ρ̂ |G〉, cDG = 〈D| ρ̂ |G〉 is governed by the master equa-
tion (3). It is given as

ṗE = −(
B + 
D)pE − i�B(cBE − cEB)

−�D(cDE + cED), (E7a)

ṗB = −
B pB + 
B pE + i�B(cBE − cEB)

− i�B(cGB − cBG), (E7b)

ṗD = −
D pD + 
D pE + �D(cDE − cED)

+�D(cGD − cDG), (E7c)

ṗG = 
B pB + 
D pD + i�B(cGB − cBG)

−�D(cGD + cDG), (E7d)

˙cEB = −2
B + 
D

2
cEB + i(J + �)cEB − i�B(pB − pE )

+i�cEG − �DCDB, (E7e)

˙cED = −2
D + 
B

2
cED − i(J − �)cED − i�BcBD

−�D(pB − pD) − �DCEG, (E7f)

˙cEG = −
B + 
D

2
cEG + 2i�cEG

−i�B(cBG − cEB) − �D(cDG + cED), (E7g)

˙cBD = −
B + 
D

2
cBD − 2iJcBD

−i�B(cED + cGD) + �D(cBE + cBG), (E7h)

˙cBG = −
B

2
cBD + 
BcEB − i(J − �)cBG + i�B(pB − pG)

−i�BcEG − �DcBD, (E7i)

˙cDG = −
D

2
cDG + 
DCcED + i(J + �)cDG − �D(pD − pG)

+�DcEG + i�BcDB. (E7j)

Since classical drive can only drive the symmetric bright state
�D = 0. Solving these equations under the assumption of
resonant drive of the bright state, i.e., � = J , results in the
steady-state solutions in the Dicke limit (
D = 0 and J = 0)

pE = �4
B(

�2
B + (


B
2

)2)2 + 2�4
B

, (E8a)

pB = �2
B

(
�2

B + (

B
2

)2)
(
�2

B + (

B
2

)2)2 + 2�4
B

, (E8b)

pD = 0, (E8c)

pG = 1 − pE − pB. (E8d)

For �B  
B, these solutions converge to pE = pB = pG =
1/3. The total emission rate in this case is given as the sum
of the populations in |E〉 and |B〉 and amounts to γ Dicke

tot =

B(pB + pE ) = 2γ0(pB + pE ) = 4/3γ0.

In the general free space case (J, 
D �= 0), the steady-state
solutions are

pE = pD

= �4
B

4�4
B + (

2�2
B + (


B
2

))(
4J2 +

(
4J2 + (


B+
D
2

)2
)) ,

(E9a)

pB =
�4

B + �2
B

(
4J2 + (


B+
D
2

)2
)

4�4
B + (

2�2
B + (


B
2

))(
4J2 +

(
4J2 + (


B+
D
2

)2
)) ,

(E9b)

pG = 1 − pE − pB − pD, (E9c)

which in the �  
B limit results in equal population of each
eigenstates in the steady state (pG = pE = pD = pB = 1/4).
Note that, while we have assumed for simplicity �D = 0 in
Eq. (E9), the same steady state would be found for nonzero
and large �D. That is, in the general free space case, the
total emission rate is given γ f.s

tot = (
B + 
D)pE + 
B pB +

D pD = γ0. It is this fundamental difference in the steady-
state populations between the Dicke and free space case, in
particular the population of the dark state in the free space
case, which gives provides an explanation for the stark differ-
ence in emission properties for the two cases as discussed in
the main text.
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