
PHYSICAL REVIEW RESEARCH 6, 023203 (2024)

Designing moiré patterns by strain

Federico Escudero ,1,2,* Andreas Sinner ,3 Zhen Zhan ,2 Pierre A. Pantaleón ,2,† and Francisco Guinea2,4,5

1IFISUR, Departamento de Física, CONICET, Universidad Nacional del Sur, Av. Alem 1253, B8000 Bahía Blanca, Argentina
2IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain

3Institute of Physics, University of Opole, 45-052 Opole, Poland
4Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain

5Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain

(Received 9 October 2023; revised 25 January 2024; accepted 12 March 2024; published 23 May 2024)

Experiments conducted on two-dimensional twisted materials have revealed a plethora of moiré patterns with
different forms and shapes. The formation of these patterns is usually attributed to the presence of small strains
in the samples, which typically arise during their fabrication. In this paper we find that the superlattice structure
of such systems actually depends crucially on the interplay between twist and strain. For systems composed
of honeycomb lattices, we show that this can lead to the formation of practically any moiré geometry, even if
each lattice is only slightly distorted. As a result, we show that under strain the moiré Brillouin zone is not a
stretched irregular hexagon, but rather a primitive cell that changes according to the geometry of the strained
moiré vectors. We identify the conditions for the formation of hexagonal moiré patterns arising solely due to
shear or biaxial strain, thus opening the possibility of engineering moiré patterns solely by strain. Moreover, we
study the electronic properties in such moiré patterns and find that the strain tends to suppress the formation
of the flat moiré bands, even in the strain-induced hexagonal patterns analogous to those obtained by the twist
only. Our paper explains the plethora of moiré patterns observed in experiments, and provides a solid theoretical
foundation from which one can design moiré patterns by strain.
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I. INTRODUCTION

The recent discovery of correlated electronic states and su-
perconductivity in twisted bilayer graphene (TBG) [1–3] has
sparked a great interest in twisted moiré systems. Theoretical
studies in TBG [4–10], and transition metal dicalcogenides
(TMDs) [11–20], have demonstrated that the moiré patterns
in these systems can give rise to narrow bands that are largely
responsible for the correlated effects [2,3,21–40]. The form of
these moiré patterns, however, can be highly sensitive to the
presence of strain in the system [41]. This can have significant
effects on the electronic properties, e.g., by preventing the
bands from becoming flat around the magic angle, or by split-
ting the van Hove singularities [42–46]. Although the strain in
superlattices configurations typically arises randomly during
the fabrication of the samples [47,48], recent experimental
advances have opened the possibility of inducing and control-
ling, in a precise way, different types of strain fields [49]. This
provides a promising platform for designing moiré patterns,

*federico.escudero@uns.edu.ar
†pierre.pantaleon@imdea.org

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and tune the electronic properties, through the interplay be-
tween twist and strain [50].

In superlattice configurations, the effect of the strain is
usually magnified in the resulting moiré pattern [51]. Lo-
cal variations of strain in the samples can, indeed, lead to
large changes in the moiré pattern [52]. This is consistent
with several recent experimental studies where the creation
of different types of moiré lattice defects have been re-
ported. Examples include domain walls between different
stacking domains in TBG [53], hexagonal boron nitride [54],
or TMDs [55]. On the other hand, the effect of strains in
monolayer graphene and other nontwisted bidimensional ma-
terials has been extensively studied [51,56–59], and important
insights on the role of strains in twisted bilayer graphene
have been described in [42,43,48,52,60,61]. Interestingly,
highly anisotropic moiré patterns in strained twisted bilayer
graphene have been reported in many experiments [41,50,53–
55,60,62–65]. In addition to anisotropies, almost every exper-
iment in multilayer graphene [48,52,53,62,66–68] and TMDs
[55,65,69], have shown the existence of moiré patterns with
different geometries. In particular, recent experiments have
shown the existence of unconventional rectangular moire pat-
terns in TMDs [65] and multilayer graphene [68].

Inspired by these findings, in this paper we study how the
interplay between twist and strain can modify the geometrical
properties of the moiré patterns. We find that by selectively
applying strain to the system one can change the moiré pat-
terns to practically any geometry, even at very small strain
magnitudes that only slightly distort each lattice. Exploiting
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a unique transformation that determines the relative angle
and length between the moiré vectors, we develop a general
theoretical scheme, which allows one to describe any strained
moiré geometry. We discuss different experimentally relevant
types of strain, such as uniaxial heterostrain, shear strain, and
biaxial strain. We obtain and discuss the formation of spe-
cial moiré geometries, such as the square moire patterns. We
also show that hexagonal moiré patterns, analogous to those
obtained with only a twist, can be formed solely by the appli-
cation of shear or biaxial strain, thus opening the possibility of
engineering moiré patterns only by strain. Finally, we observe
that the typical irregular hexagonal cell, commonly used to
describe strained honeycomb lattices, is no longer the moiré
Brillouin zone (mBZ) of the strained superlattice. Instead, we
identify a family of mBZ, with distinct geometries, that reflect
the symmetries of the superlattice.

Our geometrical analysis of strained moiré patterns over-
laps with those recently presented in Ref. [20], where various
types of strain have also been examined. However, despite
the similarities, our theoretical scheme is build upon finding
a unique transformation that directly determines the geo-
metrical properties of the moiré vectors. This allows us to
analytically study, in greater detail, what combinations of
twist and strain result in any particular moiré pattern, thus
providing a firm platform from which one can actually de-
sign moiré patterns. In addition, we develop a comprehensive
account of the strain effects in both real and reciprocal space,
and in particular discuss how these can strongly reshape the
moiré BZ, which has not been addressed before in the liter-
ature. We thus believe that our paper complements previous
theoretical studies by providing a detailed account of how the
moiré patterns can be actually designed by strain.

Furthermore, our geometrical analysis is complemented
by the studies of the electronic properties. We find that the
modification of the moiré patterns by the strain plays a crucial
role in the formation of flat bands around a magic angle. We
attribute this to an interplay between the shift of the Dirac
points in each deformed lattice, due to geometric and ener-
getic effects, and the moiré potential that couples them. The
strain influences both by breaking almost all the symmetries
in the system, effectively preventing the lowest moiré bands
to flatten across the BZ. We find that this occurs even in the
hexagonal moiré patterns that arise due to strain only, and
that on the moiré scale look practically identical to those
obtained with the twist only. In these cases the strain reor-
ganizes the charge density in the system, and leads to the
splitting and appearance of multiple high-order van Hove
singularities.

The rest of the paper is organized as follows: In Sec. II
we discuss geometrical properties of strained moiré patterns.
We describe in details how different patterns can be achieved
through the interplay between twist and different types of
strain. We also obtain how the first moiré Brillouin zone
changes under strain. In Sec. III we discuss the electronic
properties of the strained moiré patterns, using an extension
of the continuum model in the presence of strain. We calculate
the band structure, the density of states, and the charge density
profile under different types of strain, and compare them to the
case of TBG without strain. Finally, our conclusions follow in
Sec. IV.

II. GEOMETRICAL PROPERTIES OF STRAINED
MOIRÉ PATTERNS

A. General considerations

We choose the lattice vectors of a honeycomb lattice as
a1 = a(1, 0) and a2 = a(1/2,

√
3/2), where a is the lattice

constant (a � 2.46 Å in graphene). In a honeycomb twisted
bilayer configuration, the usual rotation by ±θ/2, and a fur-
ther application of strain, yields ãi,± = (I + E±)R(±θ/2)ai,
where I is the 2 × 2 identity matrix, R(θ ) is the rotation
matrix, and E± is the strain tensor. At small deformations
(that is, to leading order in E±), the reciprocal vectors can
be obtained as b̃i,± � (I − E±)R(±θ/2)bi. In what follows,
we only restrict our discussion to small twist angles and the
practical case in which the forces act oppositely in each layer,
E+ = −E− = E/2. Then, for a general strain tensor of the
form E = ∑

i j εi j (ei ⊗ e j ) (where i, j = x, y), the moiré lat-
tice vectors can be obtained as gi = b̃−,i − b̃+,i, which implies
gi = Tbi, where

T = (I + E/2)R(−θ/2) − (I − E/2)R(θ/2). (1)

We are interested in how the combination of rotation and
strain changes the geometry of the moiré patterns. The angle
β between the moiré vectors can be determined from the
symmetric transformation F = TTT acting on the reciprocal
vectors bi,

cos β = Fb1 · b2√
(Fb1 · b1)(Fb2 · b2)

. (2)

We can separate F = F0 + Fε , where F0 is the contribution
due to pure rotations, and Fε is the contribution due to the
combination of rotation and strain,

F0 = 4 sin2 (θ/2)I, (3)

Fε = sin θ

( −2εxy εxx − εyy

εxx − εyy 2εxy

)
+ cos2 (θ/2)E2. (4)

Since F0 is a spherical tensor, a transformation by F0 alone
does not change β. This is, of course, the situation with-
out strain, where the honeycomb layers are only rotated and
the moiré vectors have always the same angle β = 2π/3.
However, under strain the vectors are also transformed by
the nonspherical tensor Fε , which changes the angle of bi

and hence modifies the geometrical properties of the moiré
pattern. Note that the second term in Eq. (4) describes the
possibility of obtaining moiré patterns without rotations, i.e.,
purely by strain [70,71].

Equations (1) to (4) constitute the central results of the
geometrical part of our study. They possess the versatility to
describe a wide range of moiré structures, relying solely on
the transformation matrix F. This matrix can be constructed
using an arbitrary strain tensor, rotation matrix, and even
lattice geometries with appropriately chosen lattice vectors.
These equations provide a concise and straightforward repre-
sentation, that can also be employed to reproduce the results
presented in Ref. [20].

One crucial aspect of the modification of moiré patterns
under strain is that it requires significantly smaller strain mag-
nitudes compared to the strain needed to modify a monolayer
honeycomb lattice. This can be observed by examining the
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strain required to change the angle between the corresponding
lattice vectors. Consider, for instance, the case of uniaxial het-
erostrain along the φ = 0 direction, i.e., εxx = ε, εyy = −νε,
and εxy = 0, where ν is the Poisson ratio. As in Eq. (2),
we can obtain the angle α between the strained reciprocal
vectors b̃± through the symmetrical transformation TT

±T±,
where T± = (I ∓ E/2)R(±θ/2). Then, at low twist angle and
to leading order in ε we get

cos α � −1

2
∓ 3

16
ε(ν + 1), (5)

cos β � −1

2
+ 3

16
ε(ν + 1)

2
√

3

θ
. (6)

Thus at small values of θ one needs much smaller strain
magnitudes to modify β than to modify α. In fact, for ex-
perimentally relevant values ε � 10%, and sufficiently low
twist angles [41,49,69], one can, in principle, vary the angle
β to any value between 0 and π . In comparison, for the same
strain range, the actual angle between the lattice vectors in the
monolayer varies only by just a few degrees [72] (see also [59]
and references therein). This means that, under the right strain
parameters, the moiré patterns can be practically changed
to any desired geometry, even if the underlying honeycomb
lattices are only slightly distorted [20,68]. Such behavior is
possible because the moiré pattern arises from the twist angle
or the lattice mismatch between the two monolayers, and any
small distortion is enhanced by the moiré [51].

It is important to note that, under strain, the moiré vectors
obtained by using a unique construction (e.g., by the differ-
ence between b̃−,i and b̃+,i) may not be the smallest ones
(the so called primitives). Consequently, for arbitrary strain
parameters the moiré vectors may not reflect the symmetries
of the corresponding moiré geometry. For example, a square
moiré pattern can result from equal length moiré vectors with
an angle β = π/2 between them, but also from moiré vectors
with an angle β = π/4 and relative length |g1|/| g2| = √

2. In
general, for arbitrary strain parameters, the primitive moiré
vectors are obtained by appropriately changing the set of
reciprocal lattice vectors from which they are constructed
(e.g., by taking the difference between the deformed vectors
b1 and b1 + b2, rather than b1 and b2; see Fig. 1). These
different constructions of gi eventually reflect the underlying
symmetries of the honeycomb lattices.

Furthermore, although the form of the moiré patterns
between nonstrained honeycomb lattices are uniquely deter-
mined by the periodicity of the superlattice, the same is not
true under strain. Two set of symmetric moiré vectors, which
technically describe the same superlattice, may actually cor-
respond to different forms of the moiré pattern. The reason is
that the stretch of the AA stacking, which is periodically re-
peated by the moiré vectors, increases under strain [50,62,68].
The effect of the strain on the moiré patterns thus acts not only
on the modification of the moiré periodicity, but also on the
form of the stacking shape that is repeated. This behavior is,
in a way, similar to the usual description of crystal structures
through a basis within a primitive cell and a set of Bravais
vectors that repeat such a basis.

Throughout this paper we shall consider twist and strain
parameters for which the resulting superlattice is not, in
general, commensurate. However, recent experiments have

FIG. 1. Construction of the moiré vectors for the case of uniaxial
heterostrain with θ = 5◦, ε = 5%, and φ = 60◦. The strained recip-
rocal lattice vectors b̃1,± and b̃2,± in top and bottom layer are shown
in red and blue, from which the moiré vectors gi = b̃i,− − b̃i,+ are
obtained. The superlattice spanned by these vectors is shown on the
right. In this case the vector g2 is not the shortest one that can be
taken, since it can be translated by g1 to obtain a shorter moiré vector
g′

2 = g2 + g1. The superlattice vector g′
2 arises from constructing the

second moiré vector by taking the difference between the reciprocal
vectors (b̃1,± + b̃2,±).

demonstrated that even when the superlattice structure is not
commensurate, there is a self-alignment due to lattice re-
laxation [73]. Simple commensurate cases are usually only
feasible in special scenarios, such as in moiré patterns arising
from only a twist [6,9], or from only certain types of strain
[74,75]. Nevertheless, the geometrical properties of the sys-
tem can still be well described through the analysis of the
moiré vectors, since these can always be defined, regardless
of whether the superstructure is commensurate or not [76].
Furthermore, at low twist angles and strain magnitudes the
moiré length is usually much larger than the atomic length,
and the electronic properties of the system can be well de-
scribed by effective continuum models (Sec. III), even if the
moiré pattern is incommensurate [77].

Given the reciprocal vectors gi, the primitive moiré lattice
vectors gR

i are most easily obtained by the relation gi · gR
j =

2πδi j , which implies gR
i = T−Tai, where T is given by Eq. (1).

Thus, the geometrical properties of the primitive moiré vec-
tors are determined by the inverse transformation F−T = F−1.
In particular, the angle between the primitive vectors is βR =
π − β, where β is the angle in reciprocal space given by
Eq. (2).

In what follows we discuss in details the geometrical prop-
erties of the moiré patterns under three important kinds of
strain: the uniaxial heterostrain, the biaxial strain, and the
shear strain. It is worth mentioning that our formalism, applied
here to moiré heterostructures, which arise from honeycomb
lattices, can be directly extended to other geometries by ap-
propriately modifying the lattice vectors and the strain tensor
[78].

B. Uniaxial heterostrain

The uniaxial heterostrain refers to a type of strain that
is applied along a unique axis, and acts oppositely in each
honeycomb lattice. From the experimental point of view
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it is widely regarded as the most relevant kind of strain
in TBG. It was first introduced both theoretically and ex-
perimentally in Ref. [42], and then further investigated in
Refs. [41,43,45,60,79]. The developed approach can, nev-
ertheless, be directly extended to other types of strains, as
discussed in the next sections.

The strain tensor of uniaxial heterostrain with magnitude
ε, along an angle φ relative to the x axis, reads

E = RT(−φ)

(
ε 0
0 −νε

)
R(−φ)

= ε

[
cos2 φ − ν sin2 φ (1 + ν) sin φ cos φ

(1 + ν) sin φ cos φ sin2 φ − ν cos2 φ

]
. (7)

The transformation matrix F then becomes

F = 4 sin2

(
θ

2

)
I + ε(1 + ν) sin (θ )R(2φ)σx

+ cos2

(
θ

2

)
ε2

2
[(1 + ν2)I + (1 − ν2)R(2φ)σz], (8)

where σi are the Pauli matrices. From here one can readily
see that the solutions of Eq. (2) for the strain magnitude
always scale with the twist angle as ∼ tan(θ/2). Indeed, by
writing ε = ε′ tan(θ/2) it follows that F ∝ sin2(θ/2) and,
consequently, that the angle equation for β as function of ε′
is independent of the twist angle. Thus, for any β and φ, the
solutions of Eq. (2) for the strain magnitude have the form
ε ∝ tan(θ/2). What this general result reflects is that the lower
the twist angle, the weaker strain is needed to modify the
geometry of the moiré superlattices.

1. Equal length moiré vectors

In the following, to simplify our analysis, we focus on
the moiré patterns formed by equal length moiré vectors,
i.e., on the structures with |g1| = |g2|. This choice allows
for analytical solutions, which can be used to analyze the
geometrical effects. The consideration of moiré vectors with
different lengths is a straightforward extension of our analysis,
as described in a following section. From Eq. (8), the equal
length moiré vector condition for nonzero strain is given by

εeq = 4

1 − ν
cot

(
π

3
− 2φ

)
tan

(
θ

2

)
. (9)

Since εeq ∝ tan(θ/2) and thus F ∝ sin2(θ/2), Eq. (2) for
ε = εeq does not depend on θ . This is a rather remarkable
result: it means that the strain direction φ needed to obtain the
equal length moiré vectors, with an angle β between them, is
independent of the twist angle. The twist angle only modifies
the needed strain magnitude, and the resulting (equal) length
of the moiré vectors, |gi|2 = Fbi · bi ∝ sin2(θ/2) (as in the
unstrained case). Note that Eq. (9) is not invariant under the
transformation φ → φ + π/3 because we are not considering
the other solutions that are obtained by appropriately changing
the construction of the moiré vectors (see Appendix A).

As detailed in Appendix B, by solving Eq. (2) for φ one
can get the required strain parameters in order to obtain the
equal length moiré vectors with the angle β between them.
At low twist angles, the corresponding strain magnitudes are

relatively small and well within the experimental range [49].
Some moiré patterns that can be formed under uniaxial het-
erostrain are shown in Fig. 2. In general, the moiré patterns
are quite sensitive to the values of the strain parameters, in
the sense that small changes in ε and φ can, in contrast, result
in significant changes in the geometry of the moiré vectors
[52,53]. Thus, the precise control over the magnitude and
direction of the applied uniaxial heterostrain is crucial for
designing moiré patterns through the strain manipulation. It
is worth noting that this control has already been achieved
experimentally. Reference [49] describes a methodology for
process-induced strain engineering, where the strain magni-
tude and direction in TBG can be controlled.

Figure 2 also shows that the orientation of the Wigner–
Seitz cell, and of the stretched AA stacking within it, change
depending on the strain magnitude. This is because the strain
modifies not only the angle between the moiré vectors, but
also their orientation with respect to the nonstrain case. For
instance, in the strained case with βR = 120◦, the hexagonal
primitive cell is rotated with respect to the same cell in the
nonstrain case. In general, the stretch of the AA stacking oc-
curs along the direction of the moiré vector gR

1 ± gR
2 , where +

(−) when βR < 90◦ (� 90◦). Such direction always coincides
with one corner of the Wigner–Seitz cell. The angle φs of the
stretching can thus be estimated as

cos φs = gR
1 ± gR

2∣∣gR
1 ± gR

2

∣∣ · ex. (10)

Note that φs generally differs from the strain angle φ, i.e., the
observed stretch of the AA stacking does not reflect the direc-
tion along which the uniaxial heterostrain is applied. It only
reflects the magnitude of the applied strain. Since when ε ∝
tan(θ/2) one has T ∝ sin(θ/2) [cf. Eqs. (7) and (1)], it follows
that for any strain direction φ that yields an angle βR between
the moiré vectors, the corresponding stretch angle φs is inde-
pendent of the twist angle θ . The above analysis may allow
one to estimate the strain properties of twisted bilayer honey-
comb samples by analyzing only the shape of the AA regions.

2. Special moiré patterns

Some special moiré patterns that may be accomplished de-
serve further discussion. One case is the square moiré pattern
shown in Fig. 2(a). Squared-like moiré patterns have already
been experimentally observed [65,66,80], and theoretically
predicted [20]. While their shape has been attributed to highly
distorted moiré patterns, our model indicates that this geom-
etry can be alternatively obtained by the right combination of
twist angle and strain. Another interesting case occurs when
βR = 120◦, where one can have the same hexagonal moiré
periodicity as with no strain (where βR = 60◦), albeit with a
stretched AA stacking within the primitive cell [see Fig. 2(b)].

A particularly relevant case is the critical limit in which
the moiré vectors become collinear. This can lead to quasi-
unidimensional channels that have been predicted [51,81]
and observed in several experiments [41,47,49,50,52–55,62–
65,67,69,78]. Plugging β = {0, π} into Eq. (B1) yields a crit-
ical strain parameter [81]

εc = ± 2√
ν

tan

(
θ

2

)
. (11)
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(a)

(b)

FIG. 2. Moiré patterns generated by uniaxial heterostrain in a twisted honeycomb lattice with θ = 2◦, for the case of equal length
moiré vectors. (a) Strain parameters vary from left to right as: ε = 0 (no strain); ε � 1.64%, φ � −9.40◦; ε � 4.44%, φ � −0.90◦; and
ε � −2.28%, φ � −22.7◦. The corresponding angles between the primitive moiré vectors, shown in black, are βR = 60◦, 90◦, 140◦, 30◦. The
Wigner–Seitz cells of the moiré superlattices are shown in white. The insets underneath each panel (in blue) show the strain magnitude in a
scale of 5%, and the strain angle relative to the nonrotated lattice orientation. (b) The evolution of the moiré pattern within the Wigner–Seitz
cell for angles (from left to right) βR = 40◦, 60◦, 80◦, 90◦, 100◦, 120◦, 140◦. Bars underneath (thick line) indicate the magnitude of the strain
ε in a scale of 5% (thin line). As ε increases, the stretch of the AA stacking within the primitive cell increases. As a result, the shape of two
moiré patterns with the same periodicity is not the same if they correspond to different strain magnitudes.

This expression for εc is actually quite general, i.e., it always
leads to the collinear moiré vectors, regardless of the strain
angle φ [20,81]. Technically, this is because at this critical
strain the determinant of the matrix F vanishes, which means
that it becomes noninvertible and the moiré vectors are no
longer linearly independent.

3. Arbitrary strain parameters

The general situation of arbitrary strain parameters (within
the limit of small deformations) is, in many ways, qualitatively
very similar to the special case of equal length moiré vectors.
By fixing, for example, the strain angle to φ = 0, one can still
obtain many different geometries in which the angle between
the moiré vectors can be tuned solely by changing the strain
magnitude. Examples of such moiré patterns are shown in
Fig. 3. There one sees that, although the length of one moiré
vector may be more than double the length of the other one,
the moiré patterns follows a similar behavior to the simpler
ones analyzed in Fig. 2. Thus our discussion in the previous
section is readily generalized to arbitrary strain parameters.
In particular, the symmetry of the moiré superlattice, and the
magnitude of the strain, are always reflected in the shape of
the Wigner–Seitz cell, and the stretch of the AA stacking
within it. Furthermore, the direction of the AA stretching also
follows, in general, the direction of the moiré vector gR

1 ± gR
2

[cf. Eq. (10)].
In the case of pure uniaxial heterostrain, without a twist,

the transformation given by Eq. (8) reduces to

F = ε2

2
[(1 + ν2)I + (1 − ν2)R(2φ)σz]. (12)

Since the second term is not a spherical tensor, the resulting
moiré pattern is not hexagonal.

C. Shear strain

In a honeycomb lattice, shear strain occurs when forces act
parallel to its surface but in opposite directions. This leads
to a distortion of the lattice. In simpler terms, shear strain in
a honeycomb lattice comes from sliding forces that deform
the lattice without altering its overall volume, cf. Fig. 4(d).
This kind of strain has been studied in graphene and transition
metal dicalcohenides [82–85].

(a) (b)

FIG. 3. Moiré patterns under uniaxial heterostrain with unequal
length superlattice vectors, for twist angle θ = 2◦. The strain pa-
rameters are (a) ε = 1%, φ = 0◦ and (b) ε = 3.5%, φ = 20◦. The
corresponding relative length and angle between the moiré vectors
are (a) |gR

1 |/|gR
2 | � 1.11, βR � 72.5◦ and (b) |gR

1 |/|gR
2 | � 2.57, βR �

97.8◦. The respective strain magnitude ε (in blue) and the strain angle
direction φ relative to the nonrotated lattice orientation is shown in a
scale of 4% underneath each panel.
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(a) (b) (c) (d)

FIG. 4. Hexagonal moiré patterns generated only by (a) twist angle θ = 5◦; (b) shear strain with magnitude εs = 2 sin(θ/2) � 8.7%; and
(c) biaxial strain with magnitude εb = 2 sin(θ/2) � 8.7%. From Eqs. (15) and (19), all cases have the same moiré periodicity. The figures in
the bottom row visualize the enlarged Wigner–Seitz cells. Here, the vicinity of the AA, AB, and BA stacking positions looks different for
each case. This difference, however, becomes smaller (and practically unnoticeable at the moiré scale) as the twist and strain decrease. Panel
(d) shows schematically the corresponding deformations in the bottom (left) and top (right) lattices due to (from top to bottom panels) rotation,
shear strain, and biaxial strain. The effects are exaggerated for better visualization.

The strain tensor due to shear forces applied perpendicu-
larly to an angle direction ϕ is given by

E = RT(−ϕ)

(
0 εxy

εxy 0

)
R(−ϕ) = εs

(− sin 2ϕ cos 2ϕ

cos 2ϕ sin 2ϕ

)
,

(13)

where εxy = εs is the shear strain magnitude. For a twisted
bilayer lattice, this leads to the transformation

F =
[

4 sin2

(
θ

2

)
+ ε2

s cos2

(
θ

2

)]
I − 2 sin (θ )εsR(2ϕ)σz.

(14)

The second term implies that the combined effect of twist and
shear strain can change the geometry of the moiré patterns,
similar to the effect of uniaxial heterostrain. The main dif-
ference lies in how the distortion of each honeycomb lattice
gives rise to a particular moiré geometry. Thus, although the
moiré patterns for different strain types may appear similar,
their electronic properties can be substantially different (cf.
Fig. 10 below).

An interesting situation occurs in the case of pure shear
forces without a twist angle, where Eq. (14) reduces to
F = ε2

s I. This transformation acts as in the twisted nonstrain
case, where F = 4 sin2(θ/2)I, with the resulting moiré pattern
being always hexagonal. This means that one can form hexag-
onal moiré patterns without any twist between the layers, just
by applying opposite shear forces in each lattice, thus open-
ing the possibility of engineering superlattice heterostructures
purely by strain [cf. Fig 4(b)]. The shear angle ϕ only changes
the orientation of the moiré pattern. Interestingly, the moiré
superlattice with pure shear strain can have the same period-
icity as that of TBG with twist angle θeq if the strain magnitude

satisfies

εs = 2 sin

(
θeq

2

)
. (15)

For example, a strain magnitude εs ∼ 1.8% yields a moiré
periodicity L ∼ 13.4 nm, corresponding to an equivalent twist
angle θeq ∼ 1.05◦.

D. Biaxial strain

In the case of biaxial strain the forces are equally applied
along the x and y directions, and in opposite directions in
each layer. The corresponding strain tensor reads E = εbI,
thus yielding the transformation matrix

F =
[

4 sin2

(
θ

2

)
+ ε2

b cos2

(
θ

2

)]
I. (16)

Since F is always a spherical tensor, a biaxial strain cannot
change the moiré geometry: any combination of strain and
twist always results in a hexagonal moiré pattern. This is, of
course, expected because the biaxial strain does not distort the
hexagonal lattices, it only changes the size of the primitive
cell. The effect of twist and strain, in this case, is to only
modify the orientation and length of the superlattice vectors.

The change of orientation can be measured in relation
to the direction of the moiré vectors in the case of no
strain, where, according to our reference convention, the
second moiré vector in reciprocal space is always along
the x axis, g2 = 8π sin(θ/2)/

√
3aex [cf. Eq. (1)]. In the

case of biaxial strain, this moiré vector becomes g2 =
(8π/

√
3a) sin(θ/2)[ex + ε cot(θ/2)ey/2], so its angle αε with
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respect to the x axis reads

cos αε = 1√
1 + ε2

4 cot2 (θ/2)
. (17)

By comparing Eqs. (3) and (16) one can obtain the combi-
nations of strain magnitude εb and twist angle θ that give the
same moiré periodicity as with only a twist angle θeq,

sin2 (θ/2) = sin2(θeq/2) − ε2
b/4

1 − ε2
b/4

. (18)

This condition does not, however, guarantee that both moiré
patterns would be align, since their orientation may differ due
to the strain effect. This can be important when one seeks an
alignment between two (or more) moiré patterns arising from
a combination of rotation and lattice mismatch.

A relevant example occurs in heterostructures of
TBG/hBN in which hBN acts as a substrate of TBG
[86–88]. In this case, the lattice mismatch between graphene
(ag = 2.46 Å) and hBN (ah = 2.50 Å) can be accounted as
a biaxial strain with magnitude εb ∼ 1 − aT /aB = 0.016. If
the twist angle in TBG is θT , and the twist angle between
hBN and the graphene layer directly on top is θb, a moiré
alignment implies that both moiré patterns have the same
orientation and periodicity. Since in TBG the layers are only
rotated, the orientation condition is obtained from Eq. (17)
by setting cos αε = ±1/2, which gives θb � εb/

√
3 ∼ 0.53◦.

Then the equal periodicity condition, Eq. (18), implies that
the twist angle in TBG should be θT �

√
θ2

b + ε2
b ∼ 1.06◦, in

agreement with previous calculations [75,89,90] and recent
experimental results [73]. We emphasize that this is the only
twist angle in TBG for which one can have a perfect moiré
pattern alignment (or a single moiré) with a hBN substrate.
As this is only a geometrical condition, it is quite remarkable
that it occurs practically at the magic angle where the bands
in TBG tend to become flat.

In the particular case of pure biaxial strain, with no twist,
Eq. (16) reduces to F = ε2

bI. In fact, according to Eq. (1) one
simply has gi = εbbi, i.e., the moiré vectors are just the re-
ciprocal vectors scaled by the biaxial strain magnitude. Thus,
in contrast to the cases of only a twist or shear strain, the
moiré BZ for only biaxial strain has the same orientation as
the BZ of the honeycomb lattices (see Fig. 9 below). Similarly
to the case of pure shear strain, the resulting moiré pattern has
the same hexagonal periodicity as with only a twist angle θeq

when

εb = 2 sin

(
θeq

2

)
. (19)

However, the moiré orientation with only biaxial strain is
rotated 90◦ with respect to the case of only a twist angle, see
Eq. (17).

A comparison between hexagonal moiré patterns formed
by only a twist, and only shear or biaxial strain, can be seen
in Fig. 4. Although in all situations the moiré patterns look
practically the same at the moiré scale, the local distortions
of each honeycomb lattice can be significantly different. Note
that only in the cases of a pure twist or a pure biaxial strain,
the moiré patterns have C3 rotational symmetry.

E. Shear and biaxial strain

The combination of shear and biaxial strain implies that
the lattices change both its size and shape. The general strain
tensor of such combination,

E =
(

εb 0

0 εb

)
+ RT(−ϕ)

(
0 εs

εs 0

)
R(−ϕ)

=
(

εb − εs sin 2ϕ εs cos 2ϕ

εs cos 2ϕ εb + εs sin 2ϕ

)
, (20)

leads to the transformation

F = 4 sin2

(
θ

2

)
I + (

ε2
s + ε2

b

)
cos2

(
θ

2

)
I

− 2εsR(2ϕ)

[
sin (θ )σz − εb cos2

(
θ

2

)
σx

]
. (21)

The shear strain gives the nonspherical last term in F, thus
leading to nonhexagonal moiré patterns. The possible strained
geometries are similar to those that result from uniaxial het-
erostrain (Sec. II B). This analogy can be precisely stated by
comparing the above transformation with Eq. (8). Indeed,
since R(φ)σx = R(φ + π/2)σz, we have an equivalence of
both transformations by the correspondence

ε → εs + εb,

ν → εs − εb

εs + εb
,

φ → ϕ + π/4. (22)

This allows one to directly obtain the geometrical proper-
ties due to biaxial and shear strain from those previously
studied for uniaxial heterostrain. For the particular case of
equal length moiré vectors, the above correspondence can be
replaced in the analytical expressions in Appendix B. We em-
phasize that the obtained moiré patterns, being either a result
of uniaxial heterostrain, or a combination of shear and biaxial
strain, are exactly the same if the above correspondence holds.
This can have important implications in the design of moiré
patterns by strain, since it offers a wider range of strain con-
figurations from which one can engineer them. Furthermore,
it offers a more thorough description of the moiré patterns
observed in experiments, since they do not necessarily could
be the consequence of only uniaxial heterostrain.

The correspondence given by Eq. (22) directly extends to
the critical limit in which the moiré vectors become collinear.
Indeed, from Eq. (11) we get that unidimensional channels
arise under shear and biaxial strain if√

ε2
s − ε2

b = ±2 tan

(
θ

2

)
, (23)

independently of the shear angle ϕ. The same result is ob-
tained from the condition det F = 0 in Eq. (21). The above
result extends the possibility of realizing quasi-undimensional
channels in the presence of different strain configurations.
Interestingly, these can result from only shear strain if

εs = ±2 tan

(
θ

2

)
. (24)

This critical shear strain is ∼√
ν � 0.4 times smaller than

the one required for the case of uniaxial heterostrain.
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(a) (b)

FIG. 5. Unidimensional channels formed by shear and biaxial
strain, according to Eq. (23). In (a) we consider a twist angle θ =
2◦, biaxial strain with magnitude εb = 0.5%, and shear strain with
magnitude εs � √

θ2 + ε2
b ∼ 3.5% and angle ϕ = 0◦. In (b) there is

no twist angle, and the channels arise solely from shear and biaxial
strain with equal magnitude εb = εs = 1.5%.

Equation (23) further allows the possibility of unidimensional
channels arising purely by strain, without a twist, which oc-
curs when

εs = ±εb. (25)

Remarkably, this condition does not depend on the strain mag-
nitude: as long as they are nonzero, such combination would
result in collinear moiré vectors. The shear angle ϕ changes
the orientation and length of the collinear moiré vectors (in
real space, the orientation and stretch form of the channels).
Two examples of unidimensional channels due to biaxial and
shear strain are shown in Fig. 5, in the cases of with and
without a twist angle.

It is worth noting that the no-twist condition εs = ±εb

relies on our initial assumption that the strain forces are
equal but opposite in each honeycomb layer, i.e., E± = ±E/2
(Sec. II A). For arbitrary strain forces in each lattice, the
transformation given by Eq. (1) generalizes to T = E+ − E−
for the case of no twist. Then, for a combination of shear and
biaxial strain (with, for simplicity, shear angle ϕ = 0 in both
layers), the undimensional channel condition det T = 0 (see
Ref. [81]) implies

εs,+ − εs,− = ±(εb,+ − εb,−), (26)

where εs,± and εb,± are the shear and biaxial strain magnitude
in each layer. Thus there is, in general, quite a wide range of
only-strain configurations that lead to unidimensional chan-
nels. It may be even possible that only one layer is strained, in
which case Eq. (26) is satisfied if εs = ±εb. The generaliza-
tion to arbitrary shear angles in each lattice further increases
the possible only-strain configurations that yield unidimen-
sional channels.

F. Deformation of the Brillouin zone

In the reciprocal space, the most symmetrical primitive cell
is given by the first Brillouin zone, which is constructed by
considering the set of points that can be reached from the
origin without crossing a Bragg plane (lines in the 2D case).
The moiré patterns discussed in the previous sections imply
that such cell would drastically change its shape under the
application of strain. Consider, for example, the hexagonal BZ

of a honeycomb lattice. In terms of the reciprocal vectors, it
can be obtained by the union of the points

q1 = −2g1 + g2

3
,

q2 = q1 + g1,

q3 = q1 + g1 + g2, (27)

and their negatives. This construction holds in general for the
moiré pattern of a twisted bilayer superlattice without strain,
since then the two lattices are only relatively rotated. How-
ever, when the lattices are deformed, the construction through
the six vectors qi yields a deformed hexagon, which is no
longer the first BZ. The same holds for the moiré superlattice.

Although the construction through Eq. (27) still gives a unit
cell in reciprocal space, such cell does not reflect the symme-
tries of the strained moiré patterns. Specifically, we refer to
the symmetries relating the AA and AB stacking positions of
the moiré patterns, as seen in Fig. 2. The correct construction
of the moiré BZ (mBZ) under strain requires a generalization
of Eq. (27) for the case in which the lattice vectors can have
any angle and length. Following our previous discussion, we
will focus on the situations in which the lattice vectors have
equal length. In that case, the points that determine the mBZ
are given by

Q1 = − (1 + 2χ )g1 − λg2

2(1 + χ )
,

Q2 = Q1 + g1,

Q3 = Q1 + g1 − λg2, (28)

where χ = |g1 · g2|/|g1 · g1| and λ = sign(g1 · g2) + δ0,g1·g2

(see the Appendix C for details). It is easy to see that
the points in Eq. (27) reduce to those given in the above
equation only for a hexagonal lattice with β = 2π/3. Note
that for β = π/2 the six points are reduced to four because
Q1 = −Q3, thus resulting in a square mBZ. In Fig. 6 we
show the evolution of the mBZ with the applied strain. A
comparison is made with the deformed hexagon calculated
with the points qi given by Eq. (27).

The mBZ, and its counterpart in real space (the Wigner–
Seitz cell shown in Fig. 2), provides a direct visualization of
the geometrical properties of the moiré patterns under strain.
This becomes clear by analyzing the shapes of the mBZ in
Fig. 6, which follow a distinct pattern depending on the angle
β. In contrast, the deformed hexagon cell only reflects the
magnitude of the strain in the system (i.e., the larger the strain,
the longer the deformed hexagon gets), similarly as how the
AA stacking stretches in real space [see Fig. 2(b)]. This be-
havior has been used to characterize the moiré patterns under
strain, e.g., by reshaping the deformed hexagons to a regular
form [43]. We believe, however, that the alternative way of
looking at the moiré patterns, by considering the mBZ or the
Wigner–Seitz cell in real space, gives a clearer representation
of the strained superlattice geometry. As noted in Sec. II A, the
underlying distortion of the honeycomb lattices, and thus of
the magnitude of the strain, is reflected in the stretch of the AA
stacking within the primitive cell. Furthermore, the reshaping
of the mBZ may complement the approach in Ref. [46], where
strain-induced open Fermi surfaces in a distorted honeycomb
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FIG. 6. Evolution of the Brillouin zone for different angles β

between equal length superlattice vectors (shown in black). Each
respective mBZ constructed with vectors from Eqs. (28) is shown in
blue, while the deformed hexagons constructed using vectors from
Eqs. (27) is shown in red. Both constructions coincide only in the
nonstrain limit where β = 120◦. With strain, the deformed hexagons
do no longer capture the full symmetry of the moiré patterns. In
particular, only the mBZ is symmetric around β = 90◦, since it
corresponds to the same moiré pattern rotated by 180◦.

cell were proposed to explain the unusual magnetotransport
experiments in Ref. [91]. However, the impact of mBZ reshap-
ing due to strain on magnetotransport experiments remains an
open question.

III. ELECTRONIC PROPERTIES OF STRAINED
MOIRÉ LATTICES

A. Effective continuum models

While the shape and form of strained moiré patterns only
reflect the geometrical differences between deformed lattices,
the electronic properties reflect other important consequences
of the strain, such as the shift of the Dirac points, the influence
of the moiré potential that couples them, and the splitting of
the van Hove singularities, among others [42,45]. For suf-
ficiently low twist angles, these properties can be captured
by a direct extension of the continuum model [4,7,10] in the
presence of strain [42,43,45].

First, we note that under strain the mBZ and the position of
the Dirac points in each lattice change. As a result, the latter
in general do not coincide with the high-symmetry points at
borders of the mBZ. At small deformations, the new positions
of the Dirac points in the ζ valley of the � = ± layer are given
by

D�,ζ � (I − �E/2)R[�θ/2]Kζ − �ζA, (29)

where Kζ = −ζ (2b1 + b2)/3 is the Dirac point in the unde-
formed honeycomb lattice, and

A =
√

3

2a
β(εxx − εyy,−2εxy) (30)

is the strain-induced gauge potential (βG � 3.14 is the
Grüneisen parameter) [57]. The two terms in Eq. (29) rep-
resent the combined effect of the strain on the position of

the Dirac points: the first term gives the shift due to the
geometrical distortion of the lattice, while the second term
gives the shift due to the change in the hopping energies.
In addition, strains can also lead to scalar (or deformation)
potentials [57,92,93]

V = g(εxx + εyy). (31)

We use g = 4 eV for monolayer graphene [94]. The afore-
mentioned potential is incorporated into the diagonal elements
of the Dirac Hamiltonian, resulting in a vertical energy dis-
placement of the Dirac cones within each monolayer. This
phenomenon resembles the responses observed under the in-
fluence of a perpendicular electric field [76].

In a TBG configuration, at low twist angles and strain mag-
nitudes the low-energy physics is dominated by states near the
shifted Dirac points D�,ζ . The continuum model Hamiltonian
under strain, for the ζ valley, then reads

Hζ =
[

h−,ζ (q) − IV U †(r)

U (r) h+,ζ (q) + IV

]
. (32)

Here h�,ζ (q) is the Dirac Hamiltonian in the � layer,

h�,ζ (q) = −h̄vF σζ · RT(�θ/2)(1 + �E/2)(q − D�,ζ ), (33)

where vF is the Fermi velocity and σζ = (ζσx, σy).
The coupling between the layers is given by the matrix

U (r) in the nondiagonal terms of Hζ . For long-period moiré
structures its Fourier expansion reads [77]

Uαβ (r) =
∑

m1,m2

ei(m1g1+m2g2 )·rei(m1b1+m2b2 )·(δα−δβ )

× tαβ (k− + m1b1,− + m2b2,−). (34)

Here the indices α and β refer to the sublattices A and B
in each layer, with δα,β being the corresponding basis vec-
tors. The interaction strength is determined by the hopping
parameter tαβ (k− + m1b1,− + m2b2,−), which, importantly,
only depends on the strained reciprocal vectors in one layer.
For momenta relative to a K point, the coupling amplitudes
thus scale as ∼t (K ) to first order, ∼t (2K ) to second order, and
so on (see Fig. 7). For TBG it was estimated that [77] t (K ) ∼
110 meV and t (2K ) ∼ 1.6 meV, which justifies keeping in
Eq. (34) only the three leading order terms with amplitude
t (K ). Assuming, on the basis of small deformations, that
under strain one still has t (2K )/t (K ) � 1, the leading order
Fourier expansion of the moiré coupling matrix around the K
point at K− = −ζ (2b1,− + b2,−)/3 then reads [43]

U (r) � U0 + U1eiζg1·r + U T
1 eiζ (g1+g2 )·r, (35)

where

U0 =
(

u0 u1

u1 u0

)
, U1 =

(
u0 u1ω

−ξζ

u1ω
ξζ u0

)
. (36)

Here ω = ei2π/3, and u1, u0 are the AB and AA hopping en-
ergies, respectively. For the numerical calculations, we use
u1 = u2 = 90 meV and h̄vF /a = 2.135 eV. In the matrix U1

we have introduced a factor ξ = ±1 that accounts for the
phase of the three leading order momentum transfers between
the shifted Dirac points in each layer. This phase is contin-
gent upon the specific type of strain. In particular, ξ = 1 in
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FIG. 7. Reciprocal space representation of moiré structures for
the cases of (a) θ = 5◦, ε = 0 (no strain) and (b) θ = 5◦, with uniax-
ial heterostrain ε = 3%, φ = 0◦. In both cases the three leading order
Fourier contributions, for momenta relative to a K point in the bottom
layer (blue), are shown in open circles, filled triangles, and open
squares, with respective hopping magnitudes ∼t (K ), ∼t (2K ), and
∼t (

√
7K ). The corresponding moiré BZ in each case is shown in the

bottom. Since the hopping magnitude t (q) decays exponentially with
q, for undeformed TBG one has t (K ) � t (2K ) � t (

√
7K ), which

justifies keeping only the three Fourier components with magnitude
∼t (K ). This still holds under small strain, as each lattice is only
slightly distorted. Such small deformations can, nevertheless, signif-
icantly reshape the moiré geometry and BZ.

Figs. 9(a) and 9(c) below for TBG and pure biaxial strain,
respectively, and ξ = −1 in Fig. 9(b) for pure shear strain.
Besides this phase factor, and a possible rescaling of the
hopping energies, the coupling matrices U0 and U1 have the
same form as in TBG [76]. The strain influence on the moiré
coupling comes mainly from the modification of the moiré
vectors gi in its Fourier expansion, and thus of the momentum
transfer vectors qi between the Dirac points in each layer.

B. Electronic structure: Twist and strain

We first consider the case of TBG with uniaxial heteros-
train [42,43]. The numerical results for the band structure are
shown in Fig. 8. As can be seen, even for relative low-strain
magnitudes the band structure can greatly differ from the
one in the nonstrain case. The discussion of several aspects

is in order. First, we note that under strain the positions of
the shifted Dirac points define a periodicity, which does not
coincide anymore with the corners of the mBZ. Indeed, ac-
cording to Eq. (29), the difference �D = D− − D+ between
two shifted Dirac points corresponding to, e.g., the nonde-
formed position K = −(2b1 + b2)/3, is given by

�D = −2g1 + g2

3
+ 2A, (37)

where gi = Tbi are the strained moiré vectors. Clearly, the
vector �D only coincides with the corner Q1 of the mBZ
[cf. Eq. (28)] when the angle between g1 and g2 is 120◦ and
A = 0, i.e., the nonstrain case. Note that even in the case of
pure shear strain with no twist, where the moiré geometry is
the same as in the only-twist case, the vector �D would still
be shifted from the hexagonal mBZ due to the nonzero gauge
field Ashear ∝ (0,−2εxy). This is expected because the hon-
eycomb lattices are distorted due to the strain, and therefore
the hopping energies are no longer the same as in the only
twist case. It should be also noted that any relation between
the Dirac points and the borders of the moiré BZ is further
blurred at low twist angles, where the Dirac points are strongly
coupled by the moiré potential.

Besides the actual shift in momentum due to strain-induced
gauge and deformation fields, there is also an additional en-
ergy shift of the Dirac points, which gets larger as the strain
increases. As a result, the lowest bands around the magic angle
still have two distinct Dirac points in the presence of strain.
A close inspection reveals that such suppression of the flat
bands occurs even when the gauge and deformation fields are
not taken into account (cf. Appendix D), thus hinting that it
is mainly due to how the strain influences the coupling of
the Dirac points by the moiré potential. We have observed
such flat suppression not only at the magic angle θ ∼ 1.05◦
with no strain (as shown in Fig. 8), but also for any other
combinations of twist and strain. In other words, our results
seem to indicate that the strain does not shift the magic angle
to a new value, or leads to new flat bands conditions compared
to unstrained TBG. Although a concrete explanation of this
behavior is still lacking, it may hint that the origin of flat bands
in TBG is intrinsically related to the symmetries of the system,
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FIG. 8. Evolution of the band structure of heteroaxially strained TBG with a twist angle θ = 1.05◦, for different angles β between equal
length moiré vectors. The strain parameters are (a) ε = 0 (no strain), (b) ε � 0.4%, φ = −12.0◦, and (c) ε � 0.8%, φ = −9.40◦. The angles
between the reciprocal moiré vectors are β = 120◦, 105◦, and 90◦, respectively. Underneath each 3D plot we show the corresponding mBZ,
and to their side the corresponding density plot of the lower (bottom panel) and upper (top panel) middle band. The respective mBZ constructed
with vectors defined in Eq. (28) are shown in white.
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(a) (b) (c)

FIG. 9. Reciprocal space representation of superlattice structures with hexagonal unit cells. Large hexagons represent the BZ of each
monolayer (in red and blue). The moiré BZ are represented by the small black hexagons. The figure shows the structures for (a) pure twist
angle, (b) pure shear strain, and (c) pure biaxial strain. The corresponding mBZ and the hopping processes between the Dirac cones of each
graphene monolayer are displayed at the bottom. Arrows indicate the direction of the momentum transfers between Dirac points.

particularly those relating the moiré potential U (r) (which
always has a hexagonal symmetry), and the three-momentum
transfers qi (whose hexagonal symmetry is in general broken
by the strain). Note that, although the strain breaks C3z, C2x,
and C2y rotational symmetries, the symmetry C2zT , with T a
time reversal operator, remains intact [43,45], so that the Dirac
cones are not gapped by strain, as seen in Figs. 8 and 10.

C. Electronic structure: Pure strain

Next we examine the scenario of hexagonal moiré struc-
tures emerging solely from strain (cf. Fig. 4). These cases
are interesting because, when compared to the situation of
hexagonal patterns arising from only a twist, they reflect the
direct effect of strain in the electronic properties. In particular,
by using the relations (15) and (19), we are able to compare
the electronic structures of cases that share the same moiré
periodicity. In Fig. 10 we present the results for the band struc-
ture, density of states and charge density. For comparison, we
also include the results for TBG without strain.

Remarkably, although all cases shown have the same
hexagonal moiré periodicity, their electronic properties differ
substantially. The strain thus plays a decisive role in how the
Dirac points in each lattice couple through the moiré potential.
This can be attributed to the actual distortion of each lattice
under strain, which, as seen in Fig. 4, results in different
behaviors around AA or AB stacking positions, even if at
the moiré scale they all look the same. Within the continuum
model, these differences are mainly reflected in how are the
three leading hopping processes between the Dirac points in
each lattice, cf. Fig. 9. In particular, we only observe flat
bands, and a corresponding peak in the density of states, in
unstrained TBG. With strain, these flat bands disappear, and a
splitting and emergence of multiple high-order van Hove sin-
gularities takes place. The overall influence of the strain can
be more clearly seen in the density plot of the band structures.
Note that in the case of only shear strain the two Dirac points

are shifted and no longer captured along the momentum path
depicted in Fig. 9(b).

As in the case of twist and strain, there does not seem to be
a new flat-band condition for the only-strain cases. Indeed, we
have not found an equivalent twist angle where the bands flat-
ten as in unstrained TBG. This may further hint that flat band
realization is actually related to the orientation of the moiré
vectors gi with respect to the fixed angles in the moiré cou-
pling matrices Ui, since in all the three cases shown in Fig. 10
the momentum transfer vectors only differ in their orientation
(cf. Fig. 9). It should be noted that the observed behavior
is restricted to moiré structures arising from graphene-like
honeycomb layers, with a Dirac dispersion. In other super-
lattices configurations, as, e.g., in strain-only transition metal
dichalcogenide moiré homobilayers, the strain may facilitate
the formation of flat bands [43,95].

In Fig. 10 we also observe that in TBG the difference
between the charge density at the center and at the edges of
the mBZ is more significant than in the two cases involving
only strain. This contrast implies potential variations in the
electrostatic interactions within purely strained systems when
compared to those observed in TBG [96,97]. We note that our
continuum model results for biaxial strain are in agreement
with recent DFT calculations in strained untwisted graphene
bilayers [98], where the shift of the Dirac cones with strain
indicates the presence of scalar deformation potentials, c.f.
Eq. (31).

IV. CONCLUSIONS

We have presented a general theoretical scheme that de-
scribes the strain effects in twisted two-dimensional materials.
We have shown that the interplay between twist and strain can
lead to the formation of practically any moiré geometry. The
strain plays a central role in this by distorting the lattices and
thus modifying the resulting relative length and angle between
the moiré vectors. Due to the magnifying effect of the moiré
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FIG. 10. Band structures of hexagonal moiré patterns generated by (a) only twist angle θ = 1.05◦; (b) only shear strain with the magnitude
εs = 2 sin(θ/2) � 1.83%; and (c) only biaxial strain with the magnitude εb = 2 sin(θ/2) � 1.83%. The momentum path in each case is shown
in Fig. 9. From Eqs. (15) and (19), all case have the same moiré periodicity L � 13.4 nm. Panels (e)–(g) display the corresponding density
plot for the top middle band, while panels (i)–(k) display the total charge density profile of the lower middle band. 3D plots in panels (d) and
(h) show the bands for the moiré structures realized by the shear and biaxial strain, respectively. In the case of biaxial strain the mBZ and the
Winger–Seitz cell are rotated 90◦ degrees with respect to the other cases [cf. Fig. 9(c)] and have the same orientation as a monolayer graphene
on hBN.

pattern formation, this effect becomes significant even at very
small strain magnitudes, where each layer’s lattice is barely
deformed. Thus the plethora of moiré patterns observed in
experiments can be directly attributed to the presence of small
strain in the samples. Our considerations, however, go far
beyond the mere diagnosis of such intrinsic effects and offer
a platform to actually design moiré patterns by strain. Indeed,
we have described in details the necessary conditions to form
any desired moiré geometry, simply by selectively chang-
ing the twist and strain parameters. In particular, we have
specified the conditions to form special moiré geometries,
such as square moiré patterns, or hexagonal moiré patterns
induced solely by strain. Furthermore, we have identified that
the modifications of the moiré geometry due to the strain
lead to significant deformations of the moiré Brillouin zone
(mBZ). In contrast to previous studies we have found that,
when subject to strain, the mBZ is not a deformed stretched
hexagon, but rather a primitive cell that reflects new symme-
tries of the strained moiré vectors. This might have important
implications, in particular with respect to identifying the high
symmetry points in band structures. We have rounded up our

studies by analyzing the electronic properties of the above
strained moiré pattern. We have found that the strain seems
to suppress the formation of moiré flat bands, even in those
hexagonal patterns formed only by strain. It also tends to split
and induce higher-order van Hove singularities, as well as to
modify the charge density profile.
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APPENDIX A: HEXAGONAL SYMMETRY
IN STRAINED MOIRÉ PATTERNS

As discussed in Sec. II A, and shown in an example in
Fig. 1, under strain the construction of the moiré vectors using
the usual recipe gi = b̃−,i − b̃+,i does not always yield the
smallest (primitive) vectors of the superlattice. A comprehen-
sive analysis of all moiré geometries that can be formed under
strain should account for which construction of the moiré
vectors give the smallest one. The analysis can be simplified
by using symmetry arguments.

First we note that the smallest primitive moiré vectors are,
in general, given by one of these vectors: g1, g2, or (g1 + g2),
where gi = Tbi [cf. Eq. (1)]. Choosing the first two gives,
of course, the usual set {g1, g2}, from which one can carry
out the analysis of the strained moiré geometries as done in
the manuscript. But there are also two other possible sets:
{g1, g1 + g2} and {g2, g1 + g2} (see Fig. 1). One of these two
sets can be primitive when a translation of one moiré vector
gi by the other one g j results in a smaller vector (i.e., when
|g1 + g2| < |gi|). The appropriate construction of the prim-
itive moiré vectors by one of these three sets preserves the
symmetries of the system (in the present case, the hexagonal
symmetry of the underlying honeycomb lattices).

To see this, consider the equal length moiré vectors con-
dition for the case of uniaxial heterostrain. For the usual set
{g1, g2}, such condition implies the strain magnitude given by
Eq. (9). For the other two sets {g1, g1 + g2} and {g2, g1 + g2},
the equal length condition can be stated as

F[b1 − (b1 + b2)] · [b1 + (b1 + b2)] = 0, (A1)

F[b2 − (b1 + b2)] · [b2 + (b1 + b2)] = 0, (A2)

where we have used that F = TTT is a symmetric transforma-
tion. Solving for the strain magnitude gives

|g1| = |g1 + g2| → εeq,2 = 4

ν − 1
cot (2φ) tan (θ/2), (A3)

|g2| = |g1 + g2| → εeq,3 = 4

ν − 1
cot

(π

3
+ 2φ

)
tan (θ/2).

(A4)

Comparing with Eq. (9) we see that

εeq(φ + π/3) = εeq,3(φ), (A5)

εeq(φ − π/3) = εeq,2(φ), (A6)

thus restoring the hexagonal symmetry. Geometrically, the
obtained result means that for given parameters (θ, εeq, φ),
one of the equal length moiré vector is no longer primitive
after the transformation φ → φ ± π/3. Rather, the new prim-
itive vector is found by appropriately changing the moiré
vector construction (e.g., by using other set than the usual

FIG. 11. Symmetries of the square moiré pattern solutions for
θ = 2◦, as given by Eq. (9). The depicted cases correspond to ε �
0.94 tan(θ/2), with φ � −9.4◦ (reciprocal moiré vectors g1 and g2),
and φ′ = φ + 60◦ (reciprocal vectors g′

1 and g′
2). First case leads

straightforwardly to the perpendicular moiré vectors [cf. Fig. 2(a)].
However, in the latter case the vectors g′

1 and g′
2 are not primitive, and

the angle between them is not 90◦. The resulting superlattice is still
a square, as seen by the translation of g′

2 by g′
1 that yields the vector

(g′
2 + g′

1) perpendicular to g′
1. Therefore, the symmetric case with

φ′ = φ + 60◦ also gives, as expected, a square moiré pattern, except
that the respective primitive moiré vectors are to be constructed from
the difference between the strained reciprocal vectors b1 and b1 + b2

in each lattice.

one {g1, g2}). We emphasize that this is only a change in
the superlattice description, due to how the moiré vectors
are constructed. The observed moiré geometry, arising from
the superposition of two strained honeycomb lattices with
primitive vectors ãi,± = (I + E±)R(±θ/2)ai, always reflects
the honeycomb symmetries of the underlying lattices, such
that any translation φ → φ ± π/3 leads to the same moiré
pattern (up to an overall rotation of the system). For this
reason it is more convenient to study, as done in the paper,
the strained moiré patterns by using only the set of vectors
{g1, g2}, and generalizing the obtained results by taking into
account the missing solutions corresponding to translations
φ → φ + π/3. These latter solutions would then correspond
to the ones obtained by considering the other sets of possible
primitive moiré vectors, see e.g. Fig. 11.

APPENDIX B: ANALYTICAL SOLUTIONS
FOR EQUAL LENGTH MOIRÉ VECTORS

In the case of uniaxial heterostrain (Sec. II B), by solving
the angle equation (2) for φ one can get the needed strain pa-
rameters to obtain equal length moiré vectors with an angle β

between them. Taking into account the symmetrical solutions,
we find

εs,r = 4s

1 − ν

fr√
1 − f 2

r

tan (θ/2), (B1)

φs,r = − s

2
arccos fr + π

3

(
n + 1

2

)
, (B2)

where

fr (ν, cos β ) =
(

1 − ν

1 + ν

)
2 + cos β + r

√
3|sin β|

1 + 2 cos β
. (B3)
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Here s, r = ±1, and n is an integer. The solutions are given in
terms of four roots, which correspond to four equivalent strain
directions that yield the same angle β. For both r = ±1 one
has two strain angles φ, which are related by φ−,r + φ+,r =
π/3 + nπ . Consequently, there is always two strain angles,
φ+ and φ− = π/3 − φ+, with corresponding strain magni-
tudes ±εr , which give the same moiré pattern. Each angle φ±
is, in turn, symmetrical under the exchange φ± → φ± + π/3,
due to the honeycomb symmetry of the lattice. The r = 1
roots correspond to the moiré patterns formed through the
lateral contraction of the honeycomb lattices, as measured
by the Poisson’s ratio, and thus correspond to larger strain
magnitudes. While the r = −1 roots are solutions for any
angle β, the roots r = 1 are only solutions for certain β. The
corresponding equal length of the moiré vectors reads

|gi|2
|bi|2

= (1 + ν)2 f 2
r − (1 − ν2) fr + (1 − ν)2

(1 − f 2
r )(1 − ν)2 4 sin2

(
θ

2

)
.

(B4)

It is important to note that the strain angle φ is measured with
respect to the orientation of the (nondeformed) honeycomb
lattice. Upon rotation of both hexagonal monolayers by ±θ/2,
the actual strain direction relative to each lattice is ±θ/2 +
φ. Although the axis from which φ is measured depends on
the chosen frame of reference (i.e., the lattice vectors ai), the
actual direction of the strain, in relation to the orientation of
the honeycomb primitive cell (hexagon), is always fixed.

APPENDIX C: CONSTRUCTION OF THE MOIRÉ
BRILLOUIN ZONE

Consider two equal length vectors g1 and g2 with angle β

between them. We set, without loss of generality, the vector
g1 on the x axis,

g1 = g(1, 0), (C1)

g2 = g(cos β, sin β ). (C2)

For any reciprocal vector R(m1, m2) = m1g1 + m2g2, the cor-
responding Bragg line, which we shall denote as l (m1, m2),
crosses R perpendicularly at R/2. Since the mBZ has a mirror
symmetry at β = π/2 by a reflection at the x axis, it is suffi-
cient to consider β < π/2. In that case the six intersections
are between the set of two Bragg lines

l (1, 0); l (0, 1), (C3)

l (0, 1); l (−1, 1), (C4)

l (−1, 0); l (−1, 1), (C5)

and their negatives (see Fig. 12). Now, for an arbitrary vec-
tor f = ( fx, fy) in the xy plane, a perpendicular vector is
n = ez × f = (− fy, fx ), whose angle with the x axis is α =
arctan(ny/nx ). A perpendicular line to f that crosses f/2 then
reads y = ( fx/ fy)( fx − x) + fy. Therefore, since g1 is all in x,
the three lines that we need for the mBZ construction are

l (1, 0) : x1 = g

2
, (C6)

FIG. 12. Construction of the mBZ for equal length lattice vectors
g1 and g2, with angles between them β = 70◦ (left) and β = 110◦

(right). The Bragg lines are shown in light gray, whose interceptions
determine the mBZ (shown in black). If β < 90◦, the interceptions
are between the Bragg lines associated with the vectors g1, g2,
g1 − g2 (and their negatives), whereas if β > 90◦ the interceptions
are between the Bragg lines of g1, g2, g1 + g2. Note that, up to a
rotation, both cases have the same mBZ, since they represent the
same lattice. The transition at which |g1 − g2| becomes larger (or
smaller) than |g1 + g2| occurs at the critical square case β = 90◦,
where |g1 + g2| = |g1 − g2| and the six points of the mBZ are re-
duced to four.

l (0, 1) : y2 = 1

tan β

(
g

2
cos β − x

)
+ g

2
sin β, (C7)

l (−1, 1) : y3 = cos β − 1

sin β

(
g

cos β − 1

2
− x

)
+ g

2
sin β.

(C8)

This leads to the three intersections points

I1 = g

2

[
1,

1

tan β
(cos β − 1) + sin β

]
, (C9)

I2 = g

2

[
2 cos β − 1,− 1

tan β
(cos β − 1) + sin β

]
, (C10)
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FIG. 13. Electronic structure of TBG with A = 0 and V = 0.
Other parameters are the same as in Fig. 8(c).
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I3 = g

2

[
−1,

1

tan β
(cos β − 1) + sin β

]
. (C11)

We can write these points in terms of the vectors gi as

I1 = g1 + g2

2

(
1 + g1 · g2

g1 · g1

)−1

, (C12)

I2 = −I1 + g2, (C13)

I3 = I1 − g1. (C14)

The case β > π/2 is obtained by a mirror reflection of g2

around g1, thus leading to Eq. (28) after changing the notation
of the interception points.

APPENDIX D: ELECTRONIC PROPERTIES WITHOUT
STRAIN FIELDS

Figure 13 shows the electronic structure of TBG under
uniaxial heterostrain, but with zero gauge and scalar strain
fields. Parameters are the same as in Fig. 8(c). Even in absence
of gauge fields there is a distortion of the energy bands. As
the strain increases, the mBZ is distorted, the Dirac cones are
shifted and the remote bands are pushed to a region close to
the narrow bands.
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