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We analyze the formation of multiparticle bound states in ladders with frustrated kinetic energy in two-
component bosonic and two-component fermionic systems. We focus on the regime of light doping relative
to insulating states at half-filling, spin polarization close to 100%, and strong repulsive interactions. A special
feature of these systems is that the binding energy scales with single-particle tunneling ¢ rather than exchange
interactions, since effective attraction arises from alleviating kinetic frustration. For two-component Fermi
systems on a zigzag ladder we find a bound state between a hole and a flipped spin (magnon) with a binding
energy that can be as large as 0.67. We demonstrate that magnon-hole attraction leads to formation of clusters
comprising several holes and magnons, and we expound on antiferromagentic correlations for the transverse
spin components inside the clusters. We identify several many-body states that result from self-organization
of multiparticle bound states, including a Luttinger liquid of hole-magnon pairs and a density wave state of
two-hole—three-magnon composites. We establish a symmetry between the spectra of Bose and Fermi systems
and use it to establish the existence of antibound states in two-component Bose mixtures with SU(2) symmetric
repulsion on a zigzag ladder. We also consider Bose and Fermi systems on a square ladder with flux and
demonstrate that both systems support bound states. We discuss experimental signatures of multiparticle bound
states in both equilibrium and dynamical experiments. We point out intriguing connections between these

systems and the quark bag model in QCD.
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I. INTRODUCTION
A. Motivation

Quantum frustrated systems hold the prospect of multi-
farious exotic many-body states, including spin liquids and
unconventional superconductors (see Ref. [1] and references
therein). While frustrated magnetism has been extensively
studied in the past, the implications of kinetic frustration on
quantum many-body systems remain elusive nowadays. In a
seminal work by Haerter and Shastry [2] it was shown that
the movement of a kinetically frustrated hole in a triangular
lattice induces an antiferromagnetic 120° order. This form
of kinetic antiferromagnetism has attracted recent theoreti-
cal studies [3-7]. Specifically, it has been demonstrated that
kinetic frustration induces an intrinsic spin-charge coupling
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leading to the formation of bound states in the triangular lat-
tice [6]. However, the many-body physics remains unexplored
due to the many competing orders present in the full two-
dimensional triangular geometry. Ladder systems consisting
of two coupled one-dimensional chains are the minimal se-
tups for exploring the many-body phases that appear in
two-dimensional geometries [8—15]. Moreover, these systems
can be simulated using unbiased numerical techniques such
as the density matrix renormalization group (DMRG) algo-
rithm [16]. Therefore, they are very promising platforms for
the theoretical and experimental study of frustrated systems.
In this paper, we consider two-component (spin-1/2) mix-
tures of fermionic or bosonic particles on ladders with
frustrated kinetic energy in the regime of light doping rela-
tive to insulating states at half-filling, spin polarization close
to 100%, and repulsive SU(2) symmetric interactions. The
systems under consideration can be realized using ultracold
Bose and Fermi atoms in optical lattices with the currently
available experimental techniques [17—40]. Specifically, quan-
tum gas microscopes offer the possibility of imaging atoms
with a single site resolution [17-28]. This will allow for a
direct measurement of the kinetically induced multiparticle
clusters found in our system. At the same time, ladder systems
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FIG. 1. Schematic representation of multiparticle bound states of
a single hole and one or several flipped spins (magnons) on top of a
fully polarized insulating state. Panel (a) corresponds to the nonbi-
partite zigzag ladder and (b) to the square ladder with a perpendicular
magnetic flux .

have been produced in different cold atom laboratories and
kinetic frustration can be introduced by adding a synthetic
static gauge field to the system [29-40]. Ultracold atomic
systems also offer the possibility to study these systems at
a fixed number of particles of each internal state (spin) and
to directly image the two internal states; see e.g. [41]. This
can be achieved by using different atomic species or different
hyperfine states of the same type of atom. In this way, the total
number of particles and total magnetization of the system can
be fixed, which motivates us to study the ground state of the
system in each sector of fixed magnetization and total number
of particles. Thus, physics close to the fully polarized state
can be accessed even though the underlying magnetic interac-
tions are antiferromagnetic. We demonstrate that such systems
exhibit a common tendency to form multiparticle bound states
with effective attraction between particles arising from kinetic
frustration. In many cases we find that the ground state of such
systems is best understood as resulting from self-organization
of multiparticle clusters.

In addition, recent works have also shown the importance
of kinetic frustration for transition metal dichalcogenides het-
erostructures [42—45] and our results are also relevant for
experiments with these compounds [46,47]. In these studies
a strong external magnetic field has been employed to polar-
ize the system because the magnetization cannot be fixed by
setting the total number of electrons. Another interesting plat-
form where kinetically induced pairing may also be relevant
is twisted bilayer graphene close to ferromagentic insulating
states [48].

We consider two specific lattice geometries: zigzag ladders
and square ladders with flux (see Fig. 1), but we expect that
our conclusions apply to broader classes of systems. Our
starting “vacuum” is an insulating state with one fermion per
site on a frustrated ladder (zigzag or regular ladder with a flux)
and full spin polarization. When one of the spins is flipped, we
call it a magnon. When a single fermion is removed altogether,
we call it a hole. The starting point of our analysis is the obser-
vation of attraction between holes and magnons arising from
frustration of the kinetic energy of holes (see the discussion in
Secs. II and III). We demonstrate that this attraction leads to

the formation of multiparticle bound states, which we denote
as nHmM, where the integers n and m indicate the numbers
of holes and magnons in the composite object (see Fig. 1 for
illustration), respectively. Although a previous study has al-
ready shown the formation of kinetically induced bound states
in the triangular lattice [6], we extend this analysis to ladder
systems and explore in detail the formation of multiparticle
composites and their implications on the many-body physics.

The central objective of our paper is to understand
the interplay of few- and many-body phenomena. Many-
body systems are usually understood from the perspective
of two-body correlations, such as the pairing amplitude
in superconductors that arises due to formation of Cooper
pairs. Traditional mean-field approaches rely on the order
parameters defined to describe two particle correlations (su-
perconductivity, magnetism, spin and charge density wave
states). We show that kinetically frustrated systems present
many-body phases where multibody correlations are domi-
nant. Thus, they go beyond the simple mean-field picture.
On the other hand, powerful theoretical methods have been
developed for analyzing few-body states in vacuum, such
as the celebrated Skorniakov-Ter-Martirosian (STM) equa-
tion [49,50]. However, understanding the implications of
multiparticle composites on the many-body physics remains
an open problem in many areas of physics. For example,
the primary objective of quantum chromodynamics (QCD) is
developing accurate models of triplets of quarks binding into
nucleons, which in turn combine to form nuclei. Intriguingly,
we find many analogies between our system and the “bag
model” of QCD [51]. While in QCD gluons provide a “bag”
that holds quarks together, in the ladder systems discussed in
this paper, magnons provide a “bag” which traps one or sev-
eral holes, and in turn holes are holding the magnons together.

B. Overview of results

Before presenting detailed microscopic calculations we
summarize the main results of our work in a nontechnical
manner.

Fermions in a zigzag ladder. Kinetic frustration of holes
in a zigzag ladder gives rise to formation of several types
of multiparticle magnon-hole bound states, such as shown in
Figs. 1 and 2. The nature of stable composite objects can be
tuned by varying the ratio of interaction to single fermion
hopping and the relative concentration of holes and magnons;
see Sec. III. We find large binding energies of composites,
since attraction is driven by the kinetic energy of holes rather
than the superexchange energy setting the amplitude of spin
dynamics. For example, the binding energy of 1HIM (one
hole and one magnon) can be as large as 0.6¢, where ¢ is the
fermion hopping. We also point out that the largest binding
energy of the 1HIM pair is achieved in the limit of vanishing
superexchange interactions, which corresponds to large on-
site repulsion of two particles. Figure 2 shows several cuts
through the phase diagram for simple ratios of the magnon
and hole densities. We show that these bound states have a
common tendency to exhibit antiferromagnetic correlations
around the hole positions. In the case of a single hole, most of
the magnons accumulate around the hole forming an antiferro-
magnetic region and the rest are pushed out of this region and
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FIG. 2. Phase diagram of the multiparticle bound states in the
fermionic zigzag ladder for different J/¢ and different ratios of
the magnon to hole densities. The vertical dashed line represents the
point J/t ~ 2 at which the hole-magnon bound states disappears. The
oo line represents the case of a single hole with an arbitrary number
of magnons.

form a spiral winding with a net S° magnetization as shown
in Fig. 3. When multiple composite objects are present in the
system their statistics and interaction between them determine
the nature of the ground state. In Fig. 4 we report the pair
correlation function of single holes and hole-magnon pairs.
We observe that one closely follows the other one, indicating
that each hole in the system is paired with a magnon, thus
creating a fluid of hole-magnon pairs. In Sec. IV A we show
that this fluid corresponds to a Luttinger liquid of fermionic
IHIM bound states, and in Sec. IVB we discuss the pair
density wave state of 2H3M composites.

Fermions and bosons in a square ladder with a flux.
Quantum particles on a square ladder in the presence of
static gauge field also experience frustration of kinetic en-
ergy as shown in Sec. VII. Optical lattices with synthetic
gauge fields have been realized experimentally for both
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FIG. 3. Schematic picture of the antiferromagentic spin bag sur-
rounding a single hole. Inside the spinbag, the z components of the
spins are suppressed, whereas the xy components exhibit antiferro-
magnetic correlations between two sites of different legs. For clarity
of presentation, in the figure we oriented the transverse components
to point along the y axis. Outside the spinbag, we find spiral winding
of the xy components of the spins and z magnetization approaching
its asymptotic value. The two angles 6 and ¢ characterize the mag-
netic orders present in the system. They correspond to the angles
between two adjacent spins in different legs in the xy plane and with
respect to the z axis, respectively. We define two regions: Region I
inside the spinbag and region II outside of it. In order to perform nu-
merical calculations we map the ladder to a one-dimensional system
in which the sites are indexed following the zigzag pattern specified
by the numbers.
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FIG. 4. (a) Schematic representation of a self-organization of
hole-magnon pairs in the fermionic zigzag ladder. Hole-magnon
pairs form a Luttinger liquid with a characteristic Fermi momentum
kf;B) = mnp given by the density of pairs ng. (b) Pair correlation
function of single holes and hole-magnon pairs in the fermionic
zigzag ladder for J/t = 0 and N, = N,, = 10.

fermions and bosons [31,33,35-37,52], including square flux
ladders [31,32]. In Fig. 18 below we present results for the
binding energy of 1HIM for different interaction strengths
and different flux per plaquette. We find the largest binding en-
ergy of around 0.3¢ in the regime of vanishing superexchange
energy.

Mott state of Bose atoms, antibound states. An important
feature of hole-magnon systems for all lattice geometries is a
symmetry between the slightly doped Mott states of hardcore
bosons and fermionic models. The low-energy states of the
hole-magnon Hamiltonian in the fermionic system can be
mapped into the high-energy states of the bosonic model,;
see Sec. V for a detailed examination. This correspondence
works in the regime of strong repulsion between particles,
when we can exclude real “doublons” and describe both
systems using ¢-J-type Hamiltonians. The change of sign of
the kinetic energy of holes in the two cases arises from the
fact that a hole creation operator is an annihilation operator
of the original particle. Thus the hole hopping term has the
opposite sign relative to the hopping of the original particle
for fermions and the same sign for bosons (for details, see
discussion in Sec. II). Superexchange interactions in the two
systems also differ in sign. Bosonic systems have ferromagen-
tic exchange interactions [53] [we assume SU(2) symmetric
repulsion between particles] while fermions have antiferroma-
gentic superexchange interactions [54,55]. The consequence
of the ‘H to —H mapping is that the bound hole-magnon states
of fermionic systems correspond to the antibound states in
the case of hardcore bosons. These antibound states can be
understood as analogues of repulsively bound states observed
in experiments in [56] with one important difference that they
are nonlocal, i.e., the bound “elementary” particles in our
systems (i.e., magnons and holes) do not occupy the same
site. It is worth noting that the symmetry between bound and
antibound states applies not only to the basic IHIM pairs but
also to multiparticle clusters.
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FIG. 5. Dynamics of a hole-magnon pair in the zigzag lad-
der. Hole-magnon correlation function (7! ) computed at different
times for J/t = 0. The initial state corresponds to putting a hole
and a flipped spin in adjacent sites in the middle of the lattice. At
long times, a diagonal part can be discerned showing the correlated
expansion of the hole and the magnon bound together.

Dynamical probes of binding. An efficient method of ex-
ploring bound and antibound states of many-body systems
is to use coherent quantum dynamics. To be concrete we
consider the case of a IHIM pair, however, this discussion can
be generalized to arbitrary nHmM composites. The idea is as
follows: use external local potential and/or local optical spin
control to prepare an initial state in which a hole and a magnon
are localized on neighboring sites. Switch off the localizing
potential and let the system evolve under the many-body
Hamiltonian. When there are no bound (antibound) states, the
two particles will spread out essentially independently and the
probability to find them next to each other should eventually
decrease to zero (in a finite system it will saturate to a finite
value set by inverse of the system size). On the other hand,
when there is a bound (or antibound) state in the spectrum,
we will find a finite probability that the magnon and the hole
spread out together. The probability to find the two particles
together after a long evolution time is given by the overlap
between the bound state wave function and the initial state.
In Fig. 5 we show dynamics in the zigzag ladder starting
from the initial state in which one hole and one magnon have
been prepared on neighboring sites. We observe that the joint
probability distribution function remains peaked when the two
particles are close to each other. In Sec. VI we present a
detailed analysis of the quantum dynamics of a hole-magnon
pair in the fermionic zigzag ladder. The hole-magnon correla-
tion at different times could be measured in current ultracold
atom experiments with a quantum gas microscope [17-27].
A similar experimental technique has been used previously
in the Mott insulating regime of two-component bosons to
demonstrate the existence of two magnon bound states in the
Heisenberg model in one dimension [32].

II. MICROSCOPIC MODEL

A. Kinetic frustration

While the most familiar mechanism of bound state for-
mation is attractive interaction between particles, kinetic
frustration provides an alternative route. Kinetic frustration

(a) Zigzag ladder : (b) Square ladder with flux
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FIG. 6. A single hole injected into a fully polarized insulating
state exhibits kinetic frustration arising from destructive interference
of different paths. This occurs for nonbipartite geometries such as the
zigzag ladder (a) or for bipartite ones in the presence of magnetic flux
(b). When a flipped spin is added into the system (c), the two different
paths cannot interfere since they lead to different final states. These
two final states correspond to the permutation of the two spins.

arises in lattice systems when different quantum paths of
a propagating particle interfere destructively; see Figs. 6(a)
and 6(b). In this situation the particle is not able to obtain
the full kinetic energy corresponding to the number of nearest
neighbor sites in a nonfrustrated case. This frustration can be
relieved by the presence of another distinguishable particle;
see Fig. 6(c). When the original frustrated particle moves
from the initial point to the final one along the first trajec-
tory, the second particle remains fixed at the same position.
For the other path, the “frustrated” particle moves from the
same initial point to the same final one, but its motion causes
the second particle to move to a different site. For the two
trajectories, the second particle ends up in different positions,
hence, these paths do not interfere and the “frustrated” particle
can gain more kinetic energy. Moreover, since alleviation of
the kinetic energy frustration is greater for shorter paths, it is
energetically favorable for the two particles to stay close to
each other in space.

The primary goal of this paper is to present several ex-
amples of kinetic frustration giving rise to formation of
multiparticle bound states in two-component Bose and Fermi
mixtures.

B. ¢-J models
The ¢-J model is given by

B_;=P|—t Y (&,e0o+He)|P+I> SS; (1)
(i,J),0 (i,J)

where ¢;
with spin o =1, | and P project onto the subspace of no
double occupancies. The spin operators are defined by S =
Do 8 6;[0;” pCip where o7 are the Pauli matrices with y =
x,,z. The sum ) | i) is taken over first neighbors.

The ¢-J model contains two energy scales: the quantum
tunneling (hopping) of particles ¢ and the superexchange J.
The hopping ¢ gives rise to the kinetic energy of holes, and the

creates a fermion or a hardcore boson at site i
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superexchange term describes propagation and interaction of
magnons. The #-J model (1) is an effective low-energy model
for the Hubbard model at very strong Hubbard interaction U
with J = £4¢2/U, where + (—) corresponds to the fermionic
(bosonic) case [53,57-60].

The ¢-J model (1) presents an underlying U(1)® SU(2)
symmetry associated with the conservation of the total num-
ber of particles and the spin rotational invariance. In our
simulations we exploit the subgroup U(1)® U(1) associated
with the conservation of the number of particles in each spin
(component) Ny and N, . This is achieved by performing sim-
ulations in the canonical ensemble fixing the total number
of particles N = N; + N, and the magnetization measured
respect to the z axis §* = (Ny — N )/2. We focus our study on
the physics close to the fully polarized Mott state N &~ N, and
§% ~ N, /2, where Nj is the total number of sites in the system.
For convenience we define the number of holes and the num-
ber of magnons N, = Ny — N < Ny and N,, = N, — M < Nj,
respectively.

In order to study kinetic frustration in the #-J model (1) we
have to specify the underlying lattice. Kinetic frustration can
be easily achieved for fermions in lattice geometries where
the number of legs enclosed in a minimal closed loop is
odd. Therefore ladders are promising candidates where this
condition can be satisfied. The minimal lattice fulfilling that
condition is a zigzag ladder, in which a unit cell corresponds
to two stacked triangles; see Fig. 1(a). Another promising
platform for realizing a one-dimensional model with kinetic
frustration is flux ladder systems, which have been recently
realized in experiments with ultracold atoms [31,61]. In this
system a static synthetic gauge field is used to provide the
analog of the Aharonov-Bohm flux of the ordinary magnetic
field in condensed matter systems. A particularly attractive
feature of such systems is the possibility of reaching high flux
density per unit cell.

Single-particle dispersion for the zigzag ladder. The disper-
sion relation for a single hole in a fully polarized zigzag ladder
is given by €,(k)/t = £2[cos(k) + cos(2k)], where + (—)
corresponds to the fermionic (bosonic) case. For fermions,
kinetic frustration manifests in the ground state of the hole
since its ground-state energy is given by €, (ky) = —2.25¢ and
ko = arccos(—1/4). This ground-state energy is higher than
the kinetic energy we would expect from counting the num-
ber of nearest neighbors —4¢. For bosons kinetic frustration
appears not in the ground state but for the highest energy
single-particle states. In this situation, the highest energy
obtained 2.25¢ is lower than the expected value of 4¢. To
understand this effect, one can change the sign of hopping
t — —t, so that the highest energy states of the positive ¢
model correspond to the lowest energy states of the negative
t model. Then one observes that in the negative ¢ case there
is a relative minus sign between the two trajectories around a
single triangle (blue and red paths in Fig. 6), which implies
a destructive interference and thus a reduction of the kinetic
energy gain due to hopping. This will play a crucial role when
studying bound states of holes and magnons for the fermionic
and bosonic systems.

Single-particle dispersion for the square ladder with a
flux. For a square flux ladder we consider propagation of a
single hole on top of a fully polarized insulating state. In this

situation, the dispersion relation of the hole reads e (k)/t =
—2cos(¢p/2) cos(k) \/1 + 4sin(¢/2)? sin(k)? where ¢ cor-
responds to the magnetic flux per plaquette (see e.g. [61]).
The minimum of the band (—) is at k, =0 (k, =
+5sin(¢/2)/1 — cos(¢/2)/[4sin(¢/2)*)] for ¢ < ¢ (¢ >
¢.) where ¢, =~ 0.43 x m, respectively. In this case two differ-
ent bands are present (4) because the system can be thought
of as two coupled 1D systems. It is easy to check that the
kinetic energy is always higher than the nonfrustrated situa-
tion €4 (k) > —3¢ for all momenta when the magnetic flux is
turned on. Moreover, the spectrum is symmetric with respect
to a change of sign of ¢, shifting the momentum by 7, and
exchanging the two bands (&£). This symmetry shows that in
this case frustration does not arise from the sign of the bare
t (recall that hole hopping has different signs for the bosonic
and fermionic systems) but originates from the magnetic flux
¢ and appears for both lowest and highest energy single-
particle states. As a consequence, the dispersion of a single
hole is the same for bosonic and fermionic systems.

C. Numerical techniques

To verify the presence of kinetically induced bound states
we have employed a combination of numerical techniques. To
obtain the ground state of the system with a single hole and
a single magnon we have numerically solved the two-body
problem and study its finite-size scaling; see Appendix A for
details. The results obtained are presented in Sec. III B. To ob-
tain the unitary time evolution presented in Sec. V and Fig. 5
we have performed a full diagonalization of Hamiltonian (1)
and then successively applied the time evolution operator
with a discretized time step dt/J = 0.05 to an initial almost
fully polarized state with a single hole and a single magnon
in adjacent sites in a zigzag ladder with 2 x 50 sites. The
time evolution runs until the wave function starts to exhibit
probability at the edges of the system. In this way, we ensure
that it does not suffer from finite-size effects and the chosen
boundary conditions. Simulations with larger number of holes
and magnons Nj, N,, > 1 presented in Secs. III and IV are
performed using the DMRG algorithm. We study systems
with open boundary conditions and analyze the dependence
of the energy on the system size. This allows us to identify the
presence of different bound states by examining the binding
energies of different decomposition channels. Moreover, we
also explore different correlation functions to verify the pres-
ence of bound states. We perform system simulations with up
to 150 x 2 sites for the largest composites and we limit the
bond dimension of the DMRG calculations up to x = 512.

III. BOUND STATES IN FERMIONIC ZIGZAG LADDER

The kinetic energy of a hole is modified when one of
the possible paths contains a magnon. This induces an ef-
fective interaction between the hole and the magnon, which
can be either repulsive or attractive depending on the lattice
geometry and particle statistics. Surprisingly this has impli-
cations beyond the formation of bound hole-magnon pairs.
In this section we demonstrate that as one varies J/t and
relative concentrations of holes and magnons, different types
of composite objects are formed. We will focus on the case
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of a fermionic zigzag ladder and discuss other systems in
subsequent sections.

A. Overview of bound states in fermionic zigzag ladder

We present the phase diagram of multiparticle bound states
in the fermionic zigzag ladder in Fig. 2. We note that we
perform calculations at fixed ratios of the hole to magnon
densities, and with system sizes that are much larger than the
number of holes and magnons. Thus the phase diagram shown
in Fig. 2 should be understood as corresponding to the limit
of small concentrations of holes and magnons, with tuning pa-
rameters being J/t and the ratio between the densities of holes
and magnons. Going to finite density of dopants may result
in stabilization of other phases, which we plan to address in
future work.

To understand the results presented in Fig. 2 it is useful
to consider cuts through the phase diagram at fixed N, /N,
as we vary J/t. We find that generally large J/¢ favors the
decomposition of hole-magnon bound states into free holes
and magnons. By contrast, for small J/¢ we find stabilization
of large composite objects. For the case N,,/N;, = 1 we find
that the bound hole-magnon state appears only when J/t < 2.
The origin of the suppression of hole-magnon binding for
larger values of J is discussed in the next subsection. We
do not find formation of larger composites, which suggests
that hole-magnon pairs repel each other for equal and small
densities of holes and magnons.

For N, /N, = 3/2 we observe that at J/t ~ 0.5 a trimer
bound states 1H2M is formed. Between J/t ~ 0.3 and J/t ~
0.5 we find that hole-magnon pairs and trimers coexist, sug-
gesting repulsive interaction between trimers and pairs. For
smaller values J/t < 0.3 a pentamer 2H3M composed of two
holes and three magnons is formed. This indicates that the
attraction between holes and magnons induces an effective
attraction between two holes. This is the smallest bound
state that we have found which includes a pair of holes. For
N, /Ny =2 we find a similar scenario but the hole-magnon
trimer appears for a wider range of J/¢ and an hexamer 2H4M,
which includes a pair of holes, appears for a narrow range of
J/t. In Sec. IV we discuss the many-body phases associated
with the pentamer and the hole-magnon pair.

Finally, we study a single hole immersed in a fluid of
magnons: this is the N, /N, = oo line in Fig. 2. By lower-
ing the superexchange interaction J/t we observe that the
number of magnons bound to the hole increases. Magnons
bound to the hole form a finite-size cloud around the hole, a
phenomenon that we will refer to as formation of a “spinbag.”
Within the spinbag region we observe strong antiferromag-
netic correlations of the XY spin components between the
two legs of the ladder as shown in Fig. 3. This feature is a
counterpart of the ferromagnetic spinbag (Nagaoka polaron)
found in bipartite lattices [62—65]. Furthermore, similar to the
Nagaoka polaron in the limit J/t — 0 the bag size becomes of
the order of the system size, which in our case indicates that
the full system will exhibit antiferromagnetic correlations of
the transverse spin components. Antiferromagnetic correla-
tions surrounding the hole alleviate its kinetic frustration by
making all possible paths distinguishable, thus lowering the
energy. In this way, hole-magnon binding provides an ex-
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FIG. 7. Binding energy Eg/t of the hole-magnon pair (red dots)
on the fermionic zigzag ladder obtained in the limit of having an
infinite ladder by performing a finite-size scaling (see Appendix A 2)
and the hole-magnon pair extension (blue squares) \/@ /a for a
ladder of 2 x 200 sites.

planation of the origin of antiferromagnetism in nonbipartite
lattices [2,4].

B. Analysis of a 1HIM pair

In order to solve the hole-magnon problem of the fermionic
t-J model Eq. (1) in a zigzag ladder we first map the ladder
to a one-dimensional system in which the sites are indexed
as shown in Fig. 3. Then we pass from the original particle
operators to operators of holes and magnons. In this way we
reduce the problem to a one-dimensional two-body problem;
see Appendix A for a detailed examination. Then the effective
two-body problem can be solved and all the hole-magnon
bound state properties can be obtained. We set the energy
of the fully polarized state with one fermion on every site
to be zero, i.e., we measure energies of all states relative to
the fully polarized band insulating state. The hole-magnon
binding energy is defined as Ey = E g1y — E1g — E1y Where
Eivgiy, Eig and Ejy are the ground-state energies for the
hole-magnon, the single-hole, and the single-magnon states,
respectively. We find the largest binding energy when J/t = 0;
see Fig. 7. This demonstrates that kinetic frustration provides
an effective attraction between a hole and a magnon. At the
same time the superexchange interaction J provides an ef-
fective repulsion between them. To see this effect one can
consider the difference of superexchange energies of having
a hole and a magnon at adjacent sites relative to the case of
being at larger distances, Ej agjacent — E7 separated = J/2. This
shows that in the fermionic system with J > 0 having a hole
and a magnon on adjacent sites increases the exchange energy.
At J/t = 2 the repulsion exactly cancels the attraction and the
hole-magnon pair vanishes. The hole-magnon bound state is
characterized by having the two particles close to each other
in real space. By construction they are hardcore particles be-
cause they cannot occupy the same site. By defining a relative
distance between the hole and the flipped spin z we compute
the size of the bound state relative to the size of the system
(z%)/(L?); see Appendix A. In the regime of strongest binding,
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FIG. 8. Hole-magnon correlation function on the fermionic
zigzag ladder for the case of N, = N,, = 1 and different values of the
superexchange interaction J/t = 0.1, 2.2 for (a) and (b), respectively.

J/t — 0, the size of the bound state is much smaller than the
system size and in fact, independent of it. With increasing J
and decreasing binding energy, the bound state expands (see
Fig. 7). At J/t = 2 the binding energy goes to zero and the
size of the bound state reaches the system size. Beyond that it
becomes proportional to the system size, indicating a transi-
tion from a bound to a nonbound state (see Appendix A 2 for a
detailed finite-size scaling analysis of the hole-magnon size).
The hole-magnon correlation function (nf-‘n’]’.’) can be used to
see the real space structure of this bound state. To simplify the
notation we define the hole and magnon positions x;, and x,,
in different figures. They denote the sites at which a hole or
a magnon operator acts, such as nf’ and n'}, respectively. For
small values of J/¢ we see that the positions of the magnon and
the hole are staying close to each other; see Fig. 8. Moreover
the correlation function has a peak on adjacent sites which
also indicates a small spatial extent of the bound state. With
increasing J/t the distance between the hole and the magnon
begins to increase and positions of the hole and the magnon
become less correlated. These results indicate that analysis
of the hole-magnon correlation function should provide direct
experimental evidence of the bound state formation.

C. Analysis of the 1H2M trimer

In the previous subsection we discussed that superex-
change interaction gives rise to an effective repulsion between
a hole and a magnon, which competes with attraction arising
from kinetic frustration. The relative strength of these oppos-
ing interactions determines the transition between trionic and
pair binding on the N, /N, = 2 line. For small values of J/¢
the ground state of the system has 1H2M trimers. As J/t
increases, the system undergoes a transition in which trimers
dissociate into 1HIM pairs and free magnons. Numerically we
identify this transition by computing Eg = Egoy — Eigiy —
E1p. When the binding energy Ep is negative, a trimer state is
stable. When Ejp is positive, trions become unstable to disso-
ciating into hole-magnon pairs and free magnons. We observe
that this transition occurs around J/¢ ~ 0.5. Correlation func-
tions can also be used to detect the formation of a trimer. Since
these trimers contain two magnons, these bound states can be
revealed by observing two magnon bunching in the correlation
function (n;'n’'). On the other hand, for large values of J/z,
when the system decomposes in a pair and a free magnon,
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FIG. 9. Hole-magnon correlation function (a), (b) and magnon-
magnon correlation function, (c), (d), on the fermionic zigzag ladder
for N, = 1, N,, = 2 and two values of the superexchange interaction
J/t =0.2,0.6.

the magnon-magnon correlation function shows that the two
magnons are separated by a large distance comparable to the
system size; see Fig. 9. Moreover the hole-magnon correlation
function always shows that there is a magnon close to a hole
(see the enhanced probability close to the diagonal i, = j,,
line in Fig. 9 upper row). This can be understood from the
observation that for both trimers and 1HIM pairs, we should
find a hole and a magnon close to each other.

D. 2H2M: Effective repulsive interactions

When multiple hole-magnon pairs are present in the sys-
tem effective interactions between them appear. In particular,
magnons can mediate effective interactions between holes.
We analyze whether these effective interactions are enough
to bind a pair of holes in zigzag ladders with nearly full spin
polarization. Surprisingly we do not find hole pairs for the
cases of 2HIM and 2H2M. In the case of two holes and two
magnons we observe that the system decomposes into two
hole-magnon pairs. The binding energy Espoy — 2E151m ap-
proaches zero when we increase the system size for any value
of J/t. This indicates that there is an effective repulsive force
between hole-magnon pairs. By computing the hole-hole and
magnon-magnon correlation we observe that the two holes
and the two magnons are separated in space; see Fig. 10. On
the other hand, the hole-magnon correlation still shows that a
hole and a magnon sit close together. This indicates that the
system forms two pairs which then stay away from each other.

E. 2H3M: Hole pairing

In the zigzag ladder the smallest bound state containing
a pair of holes is a pentamer formed by two holes and three
magnons. We checked that the binding energy of the pentamer
is negative with respect to all possible decompositions into
smaller objects when J/t < 0.3. We observe, however, that
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FIG. 10. (a) Hole-magnon, (b) hole-hole, and (c) magnon-
magnon correlation functions on the fermionic zigzag ladder for
N,=2,N, =2,and J/t =0.1.

the binding energy with respect to the decomposition into a
trimer and a pair is small. Therefore, although the pentamer
is the ground state of the system, small temperatures already
will lead to the breaking of a pentamer into a IH1M pair and
a 1H2M trimer. In the remainder of this subsection we will
focus on the properties of the ground state of the system. In
order to detect the formation of hole pairs we measure the hole
density; see Fig. 11. For large values of J/¢ the hole density
exhibits two humps indicating that the holes are separated by
a large distance. With decreasing J/¢ the two humps begin
to approach to each other and finally fuse into a single one.
After the fusion the two holes share the same region of space
forming the pentamer together with three magnons. In order
to quantify how far apart the two holes are, we fix the position
of the first hole and compute the spatial distribution of the
probability density of the second hole. Technically this is done
by first projecting the ground-state wave function into the
state which contains a hole in the center of the lattice |y,) =
ﬁ[’h&) = émézTéL ¢5Z i|1ﬂ) and then computing the density
of the second hole (1//h|13ih|1/fh) [66]. We also normalize the
state (y,|vy,) = 1. For large values of J/t this probability has
maxima at the positions L/4 and 3L/4, which is the expected

— J/t=05 J/t=02 —— J/t =005
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FIG. 11. Hole density (a) for the case of N, =2, N, =3 and
different values of the superexchange interaction on the fermionic
zigzag ladder. Hole density of the projected state |y,) (b) which has
a fixed hole in the middle of the lattice; see main text. We removed
the central point to improve visibility.
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FIG. 12. Magnonic affinity energy pm,/t on the fermionic
zigzag ladder (a) as a function of the superexchange interaction for
the cases with N, = 1 and different numbers of magnons. Number of
magnons forming the antiferromagnetic spinbag N, (b) as a function
of the superexchange interaction J/t. Dashed line represents the an-
alytical result for the antiferromagnetic spinbag N o 1.10(z/J)'/3;
see Appendix B. Dotted line is the fit to numerical data, which gives
N* o 1.63(t /)3,

result for two hardcore particles. When reducing J/¢ the po-
sitions of the two maxima start to approach the center of the
lattice. This shows that the two holes start approaching each
other, which indicates effective attraction between them and
formation of a bound state. As a function of J/t the distance
between the two maxima exhibits a minimum value of 2 x 10
sites atJ/t ~ 0.05; see Fig. 11. We conclude that the pentamer
exists but it is a loosely bound object with a relatively large
size.

F. 1HNM: Antiferromagnetic spinbag

‘We now discuss the character of a magnetic polaron when
a single hole makes a bound state with several magnons. With
this goal in mind we studied systems that consist of a single
hole and up to eight magnons. We define the binding energy
EéN) = Eignm — Eig — NE1y and then compute the differ-
ence [,y = EI(gN) — Egv*l). This quantity plays the role of a
magnonic affinity energy. We present its dependence on the
superexchange interaction for different number of magnons
in Fig. 12(a). The negative value of this quantity indicates that
when the Nth magnon is added to the system, it is energeti-
cally favorable to attach it to the IH(N — 1)M bound state as
an extra bound particle. Addition of magnons will continue to
increase the size of the cluster bound to the hole as long as the
magnon affinity remains negative. We refer to such clusters of
bound magnons as a “spinbag” (see Fig. 3). When the magnon
affinity becomes positive, the excess magnons are pushed
away from the bag. The point at which the magnonic affinity
energy changes sign indicates the optimal number of magnons
forming a spinbag N,:. For small values of J/¢ the number of
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magnons inside the spinbag increases which also results in the
expansion of its size; see Fig. 12(b). A simple scaling analysis
can be used to understand the dependence of N on the ratio
J/t (see Appendix B for a detailed analysis). For small values
of J/t the antiferromagnetic spinbag is frozen and it acts as an
effective potential trapping the hole inside it. Therefore the ki-
netic energy of the hole decreases for larger spinbags # /N2. On
the other hand, creating the antiferromagnetic spinbag costs an
extra magnetic energy JN,,. This competition between kinetic
and magnetic energy gives the optimal number of magnons
present in the spinbag N oc (t/J)'/3. Similar scalings have
been found for the magnetic polaron in a two-dimensional
square lattice [65,67,68].

G. Phase diagram

As we discussed before the fermionic ¢-J model in a zigzag
ladder exhibits a large zoo of bound states with different
numbers of holes and magnons. We now summarize how we
obtained transitions between different types of bound states as
a function of J/¢. Our first step was to compute binding ener-
gies defined previously for different numbers of the holes and
magnons. We use this procedure to identify the lowest energy
bound states for different values of J/¢t and different ratios
of the hole to magnon densities. Then we double the num-
ber of particles and compute the respective binding energy
E>y — 2Ey. A negative binding energy denotes an effective
attraction and particles will cluster and create a larger bound
state. Instead a positive binding energy indicates an effective
repulsive interaction and two separated bound states appear.
This means that we have found the largest possible bound state
for this ratio of number of magnons and holes at this value of
J/t. Iterating this procedure for different values of N,, /N, and
J/t we obtain the phase diagram presented in Fig. 2.

IV. MANY-BODY PHASES OF FERMIONIC
Z1GZAG LADDERS

In this section we review many-body states that emerge
in systems with many bound states. More formally we ana-
lyze zigzag ladders as we increase the number of holes and
magnons while keeping the ratio N,,/N;, fixed. After identi-
fying “optimal” multiparticle bound states, we do not find
further clustering. This suggest that optimal composites of
holes and magnons exhibit repulsive interactions with each
other. We begin by discussing the situation of small densities,
when the interaction between different bound states is much
smaller than the binding energy. In this regime the system can
be understood as a dilute fluid of weakly interacting bound
states, and the total energy of the system Eyp should be equal
to NgE1p, where Ep is the energy of a single bound state and
Npg is the number of bound states (see Fig. 13). We present
results of these calculations for the cases of 10HIOM and
6H9M where the energy of the system converges to 10E g1y
and 3E,g3p, respectively. In the first case the energy con-
verges slowly with the system size. In the second case the
energy converges to the asymptotic value already for small
sizes. This indicates strong repulsive interactions between
pentamers which forces them to avoid spatial overlap.

2L

FIG. 13. Binding energies relative to the hole-magnon pair
1HIM Ep = Ejog1om — 10E g1 (blue dots) and the pentamer 2H3M
Ep = E¢yoy — 3Erm3u (orange squares) for the fermionic zigzag
ladder as a function of the lattice length 2L.

A. Luttinger liquid of composite fermions

Our next step is to establish the best physical picture of
the quantum fluids of bound states. As our first example we
analyze a system in which we increase the densities of holes
and magnons but fix the ratio N,,/N;, = 1. IHIM pairs exhibit
strong binding with the scale of the binding energy set by ¢ and
effective repulsive interaction between pairs. This suggests
that the many-body state can be understood as a Luttinger
liquid of 1H1M pairs. In order to show the paired nature of the
liquid we deﬁ(n? the pair correlation function of hole-magnon

h

. (ninj) . . .
pairs g, = m for i > j with n{ = n'n.| + n"n, | being

n! and n" the hole and magnon density on site 7, respectively.
This correlator shows that every hole in the system is accom-
panied by a magnon on an adjacent site; see Fig. 4. This result
strongly supports the hypothesis of the liquid of pairs, but we
need to provide additional verification that the long-range part
of correlations is consistent with the Luttinger liquid phase.

The Luttinger liquid of bare holes and the Luttinger liquid
of hole-magnon composites can be rigorously distinguished
by identifying the operators that decay most slowly in space.
To this end we compute two types of correlation functions: the
correlation function of bare holes (6@-6; j) and the correlation
function of pairs (éMSi+ é";ij’) (see Fig. 14; we also note that
here operators ¢, denote the original fermionic operators).
The hole correlation function has an exponential decay indi-
cating that we cannot characterize the system as a Luttinger
liquid of individual holes. On the other hand, the correlation
function for pairs exhibits a much slower decay, which for
large distances approaches a power-law decay with oscilla-
tions with a characteristic length scale 1/(;rng) set by the pair
density ng = N,/(2L) = N,,/(2L) as predicted by Luttinger
liquid theory [69]. This indicates that a paired Luttinger liquid
appears when the number of magnons is equal to the number
of holes and J/t < 2.

B. Pair density wave

In the earlier discussion of energetics we pointed out ev-
idence of strong repulsive interactions between pentamers.
The repulsive interactions between pentamers provides the
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FIG. 14. Correlation functions of holes (dots) and hole-magnon
pairs (upper triangles) on the fermionic zigzag ladder for N, = 10,
N,, = 10, and J/t = 0. We note that operators ¢, denote the original
fermionic operators.

opportunity to explore a many-body phase of pairs of holes.
We will now discuss numerical evidence that pentamers form
a crystal-like phase. We call this state a pair density wave
phase because every pentamer is a charge two object. The hole
density presented in Fig. 15 provides a strong indication of the
pair density wave. In a system with six holes we find three
strong peaks in the density with very low density between
the peaks. This suggests that 2H3M pentamers are strongly
localized. Moreover by fixing the position of three holes and
computing the hole density for the remaining three ones we
observe that the latter are strongly localized close to the po-
sitions of the three fixed holes; see Fig. 15(b). In the middle
region between two bound pairs of holes the probability of
finding another hole is negligible. Furthermore these densities
seem very similar to the one found for a single pentamer in
Fig. 11(b). Before concluding this discussion we point out
that to rigorously define a crystal phase in 1d in the ther-
modynamic limit requires spontaneous breaking of discrete
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0.000

(W3n| P s

0 100 200 300

1
FIG. 15. Hole density on the fermionic zigzag ladder (a) for
the case of N, = 6 and N,, =9 at J/t = 0.05. Hole density of the

projected wave function |3,) (b) which has three holes fixed at the
positions specified by the dashed lines.
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FIG. 16. Band structure of the hole-magnon problem on the
zigzag ladder as a function of the total quasimomentum Q for J/t =
0.1. The gray area denotes the hole-magnon scattering continuum
and the continuous line the bound state band. The left (right) panel
corresponds to the fermionic (bosonic) caset > 0,J > 0( < 0,J <
0). The band structure is obtained by solving the effective two-body
problem of a single hole and a magnon in the zigzag ladder; see
Appendix A.

translational symmetry. Breaking of translational symmetry is
only possible for rational densities of pentamers. For irrational
densities one can at most find quasi-long-range order. Pres-
ence or absence of the long-range crystal order is expected to
depend strongly on the precise pentamer density. To identify
true long-range order in numerics calls for analyzing large
system sizes. We postpone this investigation to subsequent
publications.

V. BOSONS IN ZIGZAG LADDER

The fermionic ¢#-J model in a zigzag ladder presents the
unique opportunity to explore the attraction between holes and
magnons and thus attractive bound states coming from kinetic
frustration. On the other hand, repulsive hole-magnon bound
states (antibound states) driven by kinetic frustration can be
found in the bosonic case. These states are also characterized
by having the hole and magnon close in real space but their
energy is higher than the scattering continuum; see Fig. 16.
Thus these are not the ground state of the system. As we will
show there is a direct transformation relating the hole-magnon
bound state in both models.

In order to obtain the relation between the fermionic
and bosonic model it is convenient to express the Hamilto-
nian (1) in terms of the hole and magnon operators rather
than the original particles. Since we are working close to
the fully polarized state we can introduce the transforma-
tions ¢&],¢4; — £t hlh; and 1&],¢,; — 4t hiASTS; . The
positive and negative signs correspond to the bosonic and
fermionic case, respectively. These signs come from the com-
mutation and anticommutation relations satisfied by bosons
and fermions respectively. Moreover the superexchange cou-
pling also changes sign when going from bosons to fermions
J = +4¢>/U being positive for fermions and negative for
bosons [53-55]. This establishes a connection between the
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FIG. 17. Main panel: Probability of finding a hole and a flipped
spin at a relative distance less than three lattice sites P(|z|/a < 3)asa
function of time for a fermionic zigzag lattice of 2 x 50 sites for two
values of J/t. Inset panel: Probability of finding the hole and magnon
at a relative distance z = a as a function of J/¢ obtained in the limit
of having an infinite ladder by performing a finite-size scaling; see
Appendix A 2.

fermionic and bosonic #-J models A ; <= —H? ,.If ahole-
magnon bound state appears below the scattering continuum
for the fermionic case it also appears above the continuum for
the bosonic case; see Fig. 16. This sets a connection between
attractive (fermionic) and repulsive (bosonic) bound states for
t-J models.

VI. EXPERIMENTAL PROBES WITH DYNAMICS

So far we discussed hole-magnon and other composites at
zero temperature. We expect that at temperature smaller than
the binding energies our conclusions will remain accurate.
However, when temperature exceeds the binding energy, we
expect composites to dissociate. Thus one of the practical
challenges for experimental observation of the bound states
that we discussed in previous sections is the requirement of
cooling systems to temperatures below the binding energies.
This difficulty is exacerbated by the requirement of having
strongly polarized Fermi mixtures for which Pauli principle
cuts off contact interactions and suppresses thermalization.
An alternative is to perform dynamical experiments. These
are based on starting a real time evolution of a fully polarized
state which has a hole and a magnon localized on adjacent
sites in the middle of the lattice. This state has an overlap
with the hole-magnon bound state (around 0.3). In the inset
of Fig. 17 we present the probability of finding the hole and
the magnon at nearest sites as a function of the superexchange
coupling J/t. A finite overlap of the initial state with the
bound state ensures that during the coherent evolution there is
a finite probability for the hole and the magnon to stay close
to each other as shown in Fig. 17. In order to avoid finite-
size effects we have performed dynamical simulations up to
the point where the hole or magnon touches the ends of the
system. These finite-time and finite-size simulations make the
probability to always saturate to a finite value even if no bound

state is present. To dynamically discern the formation of a
hole-magnon bound state we require to have saturation values
much larger than one over the system size. For small values of
J/t we observe saturation values that can be ten times larger
than one over the system size. Hence such “quantum walk”
like dynamics [70] starting from the adjacent hole-magnon
configuration can reveal the existence of the bound state. The
dynamical observation of hole-magnon bound states could
be addressed in current ultracold atom experiments with a
quantum gas microscope [17-27].

It is interesting to point out the similarity of the fermionic
and bosonic systems under this time evolution. Since the two
Hamiltonians are related by a minus sign H' ; <= —H? |
but the procedure satisfies dynamical symmetry analogous to
the one discussed in Ref. [71] we expect the time evolution
to be identical in both cases. Therefore far-from-equilibrium
experiments can be used either to detect attractive (fermionic)
or repulsive (bosonic) bound states.

VII. FERMIONS AND BOSONS IN FLUX LADDERS

A single hole propagating in a ferromagnetic background
in a nonbipartite lattice always experiences kinetic frustration.
However in a square lattice the kinetic energy of a single hole
can also become frustrated if different paths contribute with
different relative phases. Therefore we explore the formation
of hole-magnon bound states in a square ladder with magnetic
flux.

Hole-magnon bound states are found and they exhibit very
similar properties to the ones obtained for the zigzag ladder.
Near the hole the spins tilt the XY plane and antiferromag-
netic correlations are found; see Fig. 1. In order to quantify
the parameter space where hole-magnon bound states can be
observed we compute the respective binding energy Ep =
Eipiy — E1g — Ey; see Fig. 18. The bound state appears for
a wide range of values of the magnetic flux but the range of
J/t is small compared with the zigzag ladder.

The single hole spectrum for the regular ladder with flux
is symmetric under a change of sign of the single-particle
hopping. Thus starting with a spin-polarized band insulator
for fermions or a Mott insulator of bosons with n = 1, we
expect to find identical single-particle spectra of individual
holes. This proves that attractive bound states are present
for both bosonic and fermionic systems, in contrast to the
zigzag ladder studied above, where fermionic systems present
a bound state while bosonic ones present an antibound state. In
Fig. 18 we present the binding energies for the fermionic panel
[Fig. 18(a)] (J/t > 0) and the bosonic [Fig. 18(b)] (J/t < 0)
situation. Since we still have the property that fermionic and
bosonic models written in terms of hole and magnon operators
differ by the sign, we infer that in both systems attractive and
repulsive bound states are present. The wave function that
describes an attractive/repulsive bound state for fermions also
describes a repulsive/attractive bound state for bosons.

VIII. SUMMARY AND OUTLOOK

The main result of our work is a demonstration of the ef-
fective attractive interaction arising from kinetic frustration of
distinguishable particles. These interactions lead to formation
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FIG. 18. Binding energy of the hole-magnon for a square ladder
as a function of the perpendicular magnetic flux for different values
of the superexchange interaction. The fermionic case corresponds to
(a) and the bosonic one to (b).

of several types of multiparticle complexes, which can then
result in several types of interesting many-body phases. In
this paper we focused on two-component Bose and Fermi
mixtures and two types of frustrated lattices: zigzag ladders
and square ladders with a flux. We studied the regimes close
to fully polarized insulating states, when these systems can
be naturally described in terms of doped holes and magnons,
i.e., flipped spins. We made concrete predictions for the phase
diagrams of these models including identifying the most sta-
ble multiparticle bound states and understanding many-body
states that emerge from the interaction of such composites.
We expect that qualitatively, the results presented in our paper
should be valid to general models with kinetic frustration.
We used analysis of binding energies and correlation func-
tions to discern the lowest energy multiparticle bound states
for different values of the interaction strength and several
representative density ratios. Examination of the correlation
functions also allowed us to scrutinize the internal structure
of these multiparticle bound states. We show that the system
has a tendency to create an antiferromagnetic background
around the position of the hole; see Appendix B. This an-
tiferromagnetic background acts as an effective potential to
the hole which confines it in this region. This object can be
understood as a multiparticle bound state of many magnons
and a single hole, and we term it an antiferromagnetic spinbag.
When adding a second hole to the system an effective attrac-
tion between the two holes can be found. We show that the
minimal configuration exhibiting a pair of two holes is a pen-
tamer composed of two holes and three magnons. In addition,
we discuss several many-body phases that can be understood
from the perspective of self organization of these multiparticle
bound states. We argue that higher order correlation functions

provide direct signatures of the emergent many-body states
of composite objects and review two concrete examples: a
Luttinger liquid of one-hole—one-magnon pairs and a pair
density wave.

We discussed dynamical experiments which can be used to
probe formation of multiparticle bound states. In particular,
we considered a protocol for a fermionic system in a zigzag
ladder in which a hole and a flipped spin are initialized on
neighboring sites. After the hole and the magnon are released,
we find that their coherent dynamics can be decomposed into
two contributions: in the first one the hole and the magnon
expand essentially independently of each other, and in the sec-
ond one they move together. The latter part can be understood
by observing that the initial configuration has a large overlap
with the 1HIM bound state, which results in the hole-magnon
pair expanding as a whole. Moreover, we identified a generic
dynamic symmetry between the fermionic and bosonic Hub-
bard models close to spin polarized insulating states. The
symmetry relates the low-energy states of the fermionic model
to the high-energy states of the bosonic one implying that a
bound state in the fermionic system corresponds to an anti-
bound state in the bosonic one and vice versa: a bound state for
bosonic system implies an antibound state for the fermionic
one. Therefore, our dynamical procedure can be applied for
detecting either a bound state for fermions or an antibound
state for bosons. Moreover this probe could be generalized to
systems with more holes or magnons in order to detect larger
multiparticle bound or antibound states.

Our work on multiparticle bound state formation due to
kinetic frustration can be extended in several directions. Pow-
erful experimental tools developed for cold atomic ensembles
in optical lattices allow to satisfy two criteria at the same
time: relevance to current technologies and richness of the-
oretically expected phenomena. A promising direction is to
analyze ladders in which tunneling/interactions within the
chains and between them are different. Applying potential
gradients also allows to realize mixed dimensional systems,
in which along certain directions there is exchange interaction
but no single-particle tunneling [72]. In the case of bosonic
systems one can also consider Hubbard models in which in-
teractions are not SU(2) symmetric. This should translate into
the anisotropy of exchange interactions [60,73]. We discussed
in Sec. III that the Ising part of the interaction contributes
to the repulsive interaction between a magnon and a hole.
Thus by making the z-axis part of the exchange interaction
stronger, we expect to find suppression of magnon-hole bind-
ing, which should in turn affect stability of all multiparticle
composites. A more detailed analysis of multiparticle forma-
tion and self-organization in systems with magnetic flux is
also an interesting future direction. By adding an external
perpendicular magnetic flux the frustration can be increased
and thus provide a stronger binding. For the square lad-
der we find that binding becomes stronger around & /7 ~
0.7. This should make multiparticle systems, for which we
find binding energies to be small, easier to observe in
experiments.

Moreover, our results are also relevant for experiments
simulating the Fermi-Hubbard model in the 2D triangular
geometry; see [44] for more details. A recent experiment
with fermionic atoms loaded in a 2D triangular optical lattice
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has shown the formation of magnetic correlations when the
system is doped with respect unit filling [28]. The emergence
of antiferromagnetic correlations upon hole doping can be at-
tributed to the self-organization of the antiferromagnetic spin
bags proposed in this work. Moreover, recent experiments
with transition metal dichalcogenide heterostructures with a
triangular moiré pattern have also reported the appearance of
magnetic correlations when the system is doped away half-
filling [46,47]. Therefore, these experiments suggest the broad
applicability of our results.

Our findings also indicate that hole pairing is strongly
suppressed for ladders relative to the 2D case. A possible
explanation is that the hole pairs in two dimensions form at
finite angular momentum and in ladders they are suppressed
because they cannot fully expand in the perpendicular direc-
tion. From the results of Ref. [6] one expects that 2D systems
exhibit hole pairing arising from formation of two holes—one
magnon trimers. An interesting question then is to extend our
work to a larger number of legs and study the transition from
the quasi-1D geometry to the full 2D one. In this direction, a
recent theoretical work has shown the tendency of hole pairing
in the 2D triangular geometry in the regime of small particle
imbalance [44].

The antiferromagnetic spinbags that we find provide an
intriguing analogy to the quark bag model used to explain the
asymptotic freedom of QCD. In our system the antiferromag-
netic background provides an effective static potential to the
holes. While holes are fast degrees of freedom, they become
trapped inside these antiferromagnetic regions. A possible
future perspective would be to exploit this analogy and study
the backreaction of the bag to the hole movement. We expect
that this will allow to find excitations of composite particles
in our system that are analogous to excitations of hadrons
considered in the context of the bag model [51]. In particular
we anticipate vibrational modes, that can be visualized as a
hole “rattling” inside the AF bag, as well as surface modes,
that correspond to local displacements of the bag with respect
to its equilibrium position around the hole. The latter family of
excitations should be particularly interesting in the 2D setting.
Finally, this analogy could be used to explore other directions
with the goal of providing new insight into interesting open
questions regarding the nature of confinement. One particu-
larly intriguing question is to use an experimental platform
of frustrated quantum systems to realize an analog of the
transition between the hadronic and paired phases, expected in
QCD at higher density. Many questions remain poorly under-
stood regarding this phase transition, including the possibility
of some intermediate exotic phases. In our frustrated system a
similar situation could be explored in the “pentamer phase”
when the density of holes to magnons is fixed at 2/3 but
individual densities are being increased. As the density of
pentamers increases, they should start to overlap, and at some
critical density holes may become “liberated” from the bags.
This will corresponds to breaking of pentamers, however,
we expect that residual interaction between holes will still
result in their pairing. Understanding this transition, including
exploring the possibility of other phases, is an interesting open
question.
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APPENDIX A: HOLE-MAGNON BOUND STATE
1. Two-body problem

By doping a fully polarized insulator in a frustrated ge-
ometry with vacancies (i.e., holes) and flipped spins (i.e.,
magnons) effective interactions between them appear. In this
section we consider an insulator polarized along the z axis
in a fermionic and bosonic zigzag ladder and study the
hole-magnon problem. Holes and magnons can rlgorously
be created by employing the transformations &y; = h and
Ci= hTSJr In this way the original 2L — N}, particles prob-
lem can be reduced to a problem of N;, holes and N,, magnons,
being 2L the total number of sites in the ladder. Under these
transformations the 7-J Hamiltonian becomes

A, ==+t Z(hwh +He)+J ) SSic

i,e

1y (hf, JiS7 ST, +He), (A1)

where e = a, 2a being a the lattice spacing and the + and
— signs correspond to the fermionic and bosonic case, re-
spectively. They appear because of the anticonmutation and
commutation relations satisfied by the hole operators in each
case. Under these transformations the fully polarized insulat-
ing state |FP) becomes the vacuum of holes and magnons.
Holes and magnons can be created by applying the respec-
tive creation operators. In particular the hole-magnon state
is defined as ﬁjSﬂFP) = |ij). We can solve this two-particle
problem by separating the center R/a = (i 4+ j)/2 and relative
z/a =i — j motion using the set of states

1 ,- 3
¥) = mizjeQRwQ(znm,

where we introduce the total quasimomentum Q of the pair
and the wave function in relative position space ¥, (z). Since

(A2)
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FIG. 19. Main panel: Binding energy Ep of the hole-magnon
bound state in the fermionic zigzag ladder as a function of J/t at
null total quasimomentum Q = 0. Inset: Band structure of the hole-
magnon problem as a function of the total quasimomentum Q for
J/t = 0.1. The gray area denotes the hole-magnon continuum and
the continuous line the bound state band.

the interaction part of the Hamiltonian (A1) does not couple
states with different quasimomentum Q we can obtain the
equation of motion for the relative part,

. J _,
Eo¥o(z) = Z (ile’Qe/erEe_’Qe/z)wQ(ere)

e==a,+2a

J
+ ) 3(z—e)<img(—e)+ EwQ(e))

e==a,+2a
(A3)

where the energy of the pair £y depends parametrically on the
total quasimomentum. We measure the hole-magnon energy
Eo with respect to the energy of the ferromagnetic back-
ground. The hole-magnon interaction contains an exchange
term of strength ¢ and a bare nearest-neighbor interaction
of strength J/2. For fermions (bosons) the nearest-neighbor
interaction J > 0 (J < 0) has a repulsive (attractive) effect on
the pair. The effect of the exchange interaction [see second
line of Eq. (A1)] becomes clear at null total quasimomentum
0 = 0. In this situation the relative wave function has the
property Yo—o(—e) = £y¥p—o(e) for a symmetric or antisym-
metric state with respect to the hole-magnon exchange. In this
way, we notice that the exchange interaction has an attractive
(repulsive) effect for the antisymmetric (Symmetric) solution
in the fermionic model. In the bosonic model we observe the
opposite. Finally, since by definition we cannot have a hole
and a magnon in the same position we impose a hard-core
constrain in the solution 1/¢(0) = 0 by including a very strong
on-site repulsion.

After these manipulations the equation of motion (A3)
describes a single-particle problem which parametrically
depends on the total quasimomentum Q. Therefore, we nu-
merically diagonalize the respective Hamiltonian and obtain
the dispersion relation as a function of Q. We find a hole-
magnon bound state for the fermionic model and an antibound
state in the bosonic one; see Figs. 16 and 19. The bound

—— L =100 —— L =400 —— L =800
L =200 —— L =600 —— L =1000
/\6\102
N
fo.%—
2
=
=0.00 ‘ -
0 1 9 3
I/t

FIG. 20. Extension of the hole-magnon pair \/@ /a (a) as a
function of J/t for different system sizes. Probability of finding a
hole and a flipped spin at a distance equal to the lattice spacing a
(b) as a function of J/¢ for different system sizes.

and antibound states are antisymmetric with respect to the
exchange of the hole and magnon positions. Thus we do
not observe binding when the solution is symmetric. The
appearance of an antisymmetric bound (antibound) state can
be explained by the presence of the interexchange interaction
which leads to an effective attraction (repulsion) between the
hole and the magnon in the fermionic (bosonic) model. The
minimum of the binding energy appears at Q = 0 for any
value of J/t. Therefore we define the binding energy at this
quasimomentum Ep = E g1y — E1g — E1y; see Fig. 19. The
binding energy is larger for small values of J/¢, and it vanishes
close to J & 2t which can be easily interpreted as the point
where the bare repulsion cancels the interexchange term. The
hole-magnon bound state exhibits a large effective mass due
to the large binding energy at J/t = 0. We observe that the
dispersion relation at J/t = 0 can be well approximated by
Eg/t = Ep + sin(Qa/2)*. This leads to an effective mass of
the composite object much larger than the one of a single hole
mi & 15m, being m; = 2h%/(15ta?) the effective mass of
a single hole in the zigzag ladder.

2. Finite-size scaling

In order to ensure the bound state nature of the hole-
magnon pair for a range of J/t we have performed a finite-size
scaling. We have obtained the binding energy, the extension of
the pair and the probability of finding the hole and the magnon
in nearest sites, by performing exact diagonalization of the
Hamiltonian associated with Eq. (A1) for large systems sizes;
see Fig. 20. Then we have extrapolated to the infinite size limit
by fitting our data to the scaling f(L) = f(L — oco) + C/L".
The binding energy in the infinite size limit becomes negative
for J/t < 2 and the probability a|y(z = a)|*> becomes zero for
J/t > 2 as shown in Figs. 7 and 20. This signals a transition
from bound to nonbound pair in the infinite size limit at
J/t = 2. Moreover the size of the pair is independent of the
system size for J/¢ < 2 in the large size limit, and it is strongly
dependent on it for J/t > 2. This also supports the appearance
of a hole-magnon bound state at J/t < 2 with a characteristic
size independent of the system size.
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APPENDIX B: ANTIFERROMAGNETIC SPINBAG MODEL

We now consider the situation of binding many magnons to
a single hole thus creating a spin polaron or spinbag. An ana-
Iytical treatment of this problem using the Hamiltonian (A1) is
very hard since the hole hopping disturbs the spin background.
Therefore we change to a representation where the hole lives
in the links of a new lattice with 2L — 1 sites, i.e., the squeezed
space [75-80]. In this way the hole hopping between the
two legs of the ladder simply becomes (r D, fljﬂfzi + H.c.)
since it does not disturb the spin order in squeezed space. On
the other hand, for the hole hopping between two sites of
the same leg we have to take into account that two spins are
exchanged in squeezed space. The operator doing such pro-
cess is (fllrzfli + fljfli+2)(% 4 28S;Si+1). Concerning the spin
interaction we have to take into account that two spins will
not interact if a hole was occupying one of the two sites
in the original lattice, giving the term JS;S; (1 — fzjfzi) and
JSiSio(1 — iljili)(l — flLllAziH ). Moreover if a hole is present
in the original lattice between two spins these two will be
nearest neighbor in squeezed space, and they will interact
through the superexchange coupling JS,'Sinljfﬁi. Therefore
the Hamiltonian in squeezed space becomes

H, =t Z(ﬁjﬂﬁi +Hc)+J Z SiSit1
PN PN 1
+t Z(hl"+2h[ + hjhprz)(z + Q«Sisi+l>
+7 SSia(l — A1 = A hiy). (BI)

We notice that the Hamiltonian in squeezed space presents
terms which explicitly couple the hole movement and the
spin environment; see the second and third lines of Hamilto-
nian (B2). These terms are absent in the pure one-dimensional
case being the reason for spin-charge separation in one di-
mension. Therefore, we conclude that the original frustration
of the hole inducing an intrinsic spin-charge coupling is
transformed into explicit terms coupling the two degrees of
freedom in the squeezed space. It is also important to remark
that the coupling with strength 7 induces strong antiferro-
magnetic correlations between the two legs even though the
original Ising interaction is not present for J/¢ = 0. This ex-
plains the origin of antiferromagnetic correlations of strength
t in the zigzag ladder when the system is doped with holes.
These antiferromagnetic correlations between the two legs
will appear when a hole is present and the direct hopping
dominates over the superexchange interaction ¢/J > 1. The
original superexchange interaction presents magnetic frustra-
tion and at the semiclassical level it favours the formation of
a spiral order of angle 6 = arccos(—1/4). Since we work at a
fixed total magnetization (i.e., a fixed number of magnons)
we expect that the system can be understood as consisting
of two regions: Region I is adjacent to the hole and has
spins in the XY plane with antiferromagnetic correlations
between the legs. Region II extends outside of region I and has
nearly full §¢ polarization and spiral winding of the small XY
components of the spins; see Fig. 3. We name this object anti-
ferromagnetic spinbag or antiferromagnetic spin polaron [62]
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FIG. 21. Magnetization and in-plane spin-spin correlations
(a) computed over the projected wave function |v,) for which we
fix the hole position to be at the center of the lattice. Hole density
(b) of the ground state obtained from DMRG (blue dots) and from
the variational calculation (dashed line). Both panels correspond to a

computation of the fermionic zigzag ladder with a single hole and 20
magnons for J/t = 0.

since it is analogous to the ferromagnetic one [64], but its
origin resides in the frustration of the system.

To obtain qualitative expressions for the size and energy
of the antiferromagnetic spinbag we consider a semiclassical
approximation of the spin part of the wave function S;S;;| =
S2[sin(¢)? cos(8) + cos(p)?] with §2 = (S + 1) = 3/4 The
angles 6 and ¢ determine the spin orientation in the XY
plane and the angle respect to the z axis, respectively (see top
panel of Fig. 21). Therefore we can relate the total number of
magnons N,, and the size of the antiferromagnetic spinbag 2R
using the angle ¢y,

cos(¢)(L —R) = L — Ny. (B2)

By considering the limit J/t < 1 we assume a frozen mag-
netic order and solve the equation of motion for the hole
with a fixed spin background along the lines of the Born-
Oppenheimer approximation. The hole equation of motion in
each region is given by

3J
I: Ephi = t(hipr + hiy) — Z(hi + hiy1) — t(hi—a + hiyo),
(B3)

3J
II:  Eph = t(hip +hi_1>+§(15cos<gon>2— T)(hi + hiy1)

+%(15 cos(prr)” + D(hizz + hita). (B4)
These equations show that the hole energy is reduced when
it is localized inside the antiferromagnetic region I. Thus
the antiferromagnetic background acts as an effective square
well potential to the hole. In order to obtain an analytical
expression for the hole energy Ej, we solve the hole equa-
tion of motion by taking the continuum limit and proposing
a wave function localized in the antiferromagnetic region
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h; = exp{—x7/(R*)}/v/R/7 /2, where we employ the size
of the bag 2R. Moreover Eq. (B2) establishes the relation
between the size of the bag R and the angle ¢;; when the total
number of magnons is specified. Taking the limit L <« R ~
N < 1 we obtain a hole energy that scales with the number
of magnons as

t J
E, x 4.28Nn21 O.O4Nm. (BS)
We now consider the magnetic energy cost of creating an
antiferromagnetic spinbag. We compare the magnetic energies
with the same number of magnons when there is an antifer-
romagnetic spinbag and when there is not. In the first case
the antiferromagnetic region has zero magnetic energy and
the spiral region has an energy Ejs; which is determined by
the angle ¢;; [see Eq. (B2)] and the size of the spinbag R.
In the second case the full ladder presents a spiral order with
energy Ej» and an angle satisfying cos(¢p)L = L — N,,. The
difference between these two magnetic energies in the limit
L>»R>»1is

51
EM1 — EMZ X ?JNm' (B6)

The magnetic energy increases when creating an antiferro-
magnetic spinbag because the angle ¢ of the spiral order is
reduced. The total energy of the antiferromagnetic spinbag is
given by

Easp =428 — 0042 421y, (B7)

AsB = 4. N2 Oy g
where we discard the constant terms with respect to the num-
ber of magnons. From Eq. (B7) we observe that increasing the
size of the antiferromagnetic spinbag reduces the hole kinetic
energy but increases the magnetic one. Therefore there is an

optimal number of magnons forming the antiferromagnetic
spinbag N,;. Considering the situation of a small antiferromag-
netic region compared with the spiral region L > R ~ N,,, >
1 we can estimate the number of magnons,

N* o 1.10 (¢/)'°,

considering the condition (J/#) < 1.

The semiclassical spinbag theory predicts that under dop-
ing the fermionic zigzag ladder with a single hole and
magnons, a certain number of magnons, given by Eq. (BS),
accumulate around the hole with an antiferromagnetic order-
ing and the remaining ones are pushed away from this region
forming a spiral order with a net magnetization pointing in
the z axis; see Fig. 21(a). In order to benchmark our theory we
have performed DMRG simulations of the fermionic zigzag
ladder with a single hole and different number of magnons.
We observe that for small values of J/f, the hole density
accumulates in a certain region of the lattice; see Fig. 21(b).
This can be attributed to the large effective mass of the anti-
ferromagnetic spinbag and the fact that we are working with
open boundary conditions thus explicitly breaking the transla-
tional invariance of the system. By computing the projected
wave function ﬁ[’h/f} = |y,) which has a hole fixed at the
center of the lattice we obtain the spin ordering surrounding
the hole [66]. Around the hole the magnetization suddenly
decays indicating that the spins tilt to the XY plane. Moreover
the in-plane spin-spin correlations show an antiferromagnetic
order inside this region. Outside this region we recover a per-
fect ferromagnetic spin order. This confirms the formation of
an antiferromagnetic spinbag for small values of J/t. Notice
that the simulation is performed at J/¢ = 0. Therefore all the
magnons are contained in the antiferromagnetic spinbag and
the spiral order simply becomes a ferromagnetic order since
¢ =0.

(B8)

[1] C. Lacroix, Introduction to Frustrated Magnetism: Materials,
Experiments, Theory (Springer, Berlin, 2010).

[2] J. O. Haerter and B. S. Shastry, Kinetic antiferromagnetism in
the triangular lattice, Phys. Rev. Lett. 95, 087202 (2005).

[3] Y.-F. Wang, C.-D. Gong, and Z. D. Wang, Tuning kinetic mag-
netism of strongly correlated electrons via a staggered flux,
Phys. Rev. Lett. 100, 037202 (2008).

[4] C. N. Sposetti, B. Bravo, A. E. Trumper, C. J. Gazza, and L. O.
Manuel, Classical antiferromagnetism in kinetically frustrated
electronic models, Phys. Rev. Lett. 112, 187204 (2014).

[5] E. T. Lisandrini, B. Bravo, A. E. Trumper, L. O. Manuel, and
C. J. Gazza, Evolution of Nagaoka phase with kinetic energy
frustrating hopping, Phys. Rev. B 95, 195103 (2017).

[6] S.-S. Zhang, W. Zhu, and C. D. Batista, Pairing from strong
repulsion in triangular lattice Hubbard model, Phys. Rev. B 97,
140507(R) (2018).

[7] G. G. Blesio, M. G. Gonzalez, and F. T. Lisandrini, Magnetic
phase diagram of the infinite-u Hubbard model with nearest-
and next-nearest-neighbor hoppings, Phys. Rev. B 99, 174411
(2019).

[8] E. Dagotto and A. Moreo, Zero-temperature properties of
the two-dimensional Heisenberg antiferromagnet: A numerical
study, Phys. Rev. B 38, 5087 (1988).

[9] E. Dagotto, J. Riera, and D. Scalapino, Superconductivity in
ladders and coupled planes, Phys. Rev. B 45, 5744 (1992).

[10] T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Excitation
spectrum of Heisenberg spin ladders, Phys. Rev. B 47, 3196
(1993).

[11] S. Gopalan, T. M. Rice, and M. Sigrist, Spin ladders with spin
gaps: A description of a class of cuprates, Phys. Rev. B 49, 8901
(1994).

[12] R. M. Noack, S. R. White, and D. J. Scalapino, Correlations in
a two-chain Hubbard model, Phys. Rev. Lett. 73, 882 (1994).

[13] M. Troyer, H. Tsunetsugu, and T. M. Rice, Properties of lightly
doped 7-J two-leg ladders, Phys. Rev. B 53, 251 (1996).

[14] L. Balents and M. P. A. Fisher, Weak-coupling phase diagram of
the two-chain Hubbard model, Phys. Rev. B 53, 12133 (1996).

[15] K. Kuroki, T. Kimura, and H. Aoki, Quantum Monte Carlo
study of the pairing correlation in the Hubbard ladder, Phys.
Rev. B 54, R15641 (1996).

[16] U. Schollwock, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[17] W. S. Bakr, J. L. Gillen, A. Peng, S. Folling, and M. Greiner,
A quantum gas microscope for detecting single atoms in
a Hubbard-regime optical lattice, Nature (London) 462, 74
(2009).

023196-16


https://doi.org/10.1103/PhysRevLett.95.087202
https://doi.org/10.1103/PhysRevLett.100.037202
https://doi.org/10.1103/PhysRevLett.112.187204
https://doi.org/10.1103/PhysRevB.95.195103
https://doi.org/10.1103/PhysRevB.97.140507
https://doi.org/10.1103/PhysRevB.99.174411
https://doi.org/10.1103/PhysRevB.38.5087
https://doi.org/10.1103/PhysRevB.45.5744
https://doi.org/10.1103/PhysRevB.47.3196
https://doi.org/10.1103/PhysRevB.49.8901
https://doi.org/10.1103/PhysRevLett.73.882
https://doi.org/10.1103/PhysRevB.53.251
https://doi.org/10.1103/PhysRevB.53.12133
https://doi.org/10.1103/PhysRevB.54.R15641
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1038/nature08482

ATTRACTION FROM KINETIC FRUSTRATION IN LADDER ...

PHYSICAL REVIEW RESEARCH 6, 023196 (2024)

[18] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch,
and S. Kuhr, Single-atom-resolved fluorescence imaging of an
atomic Mott insulator, Nature (London) 467, 68 (2010).

[19] M. F. Parsons, F. Huber, A. Mazurenko, C. S. Chiu, W.
Setiawan, K. Wooley-Brown, S. Blatt, and M. Greiner, Site-
resolved imaging of fermionic SLi in an optical lattice, Phys.
Rev. Lett. 114, 213002 (2015).

[20] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V.
Ramasesh, W. S. Bakr, T. Lompe, and M. W. Zwierlein,
Quantum-gas microscope for fermionic atoms, Phys. Rev. Lett.
114, 193001 (2015).

[21] A. Omran, M. Boll, T. A. Hilker, K. Kleinlein, G. Salomon, I.
Bloch, and C. Gross, Microscopic observation of Pauli blocking
in degenerate fermionic lattice gases, Phys. Rev. Lett. 115,
263001 (2015).

[22] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf,
G. D. Bruce, and S. Kuhr, Single-atom imaging of fermions in
a quantum-gas microscope, Nat. Phys. 11, 738 (2015).

[23] G. J. A. Edge, R. Anderson, D. Jervis, D. C. McKay, R. Day,
S. Trotzky, and J. H. Thywissen, Imaging and addressing of
individual fermionic atoms in an optical lattice, Phys. Rev. A
92, 063406 (2015).

[24] D. Greif, M. E. Parsons, A. Mazurenko, C. S. Chiu, S. Blatt,
F. Huber, G. Ji, and M. Greiner, Site-resolved imaging of a
fermionic Mott insulator, Science 351, 953 (2016).

[25] P. T. Brown, D. Mitra, E. Guardado-Sanchez, P. SchauB3, S. S.
Kondov, E. Khatami, T. Paiva, N. Trivedi, D. A. Huse, and W. S.
Bakr, Spin-imbalance in a 2D Fermi-Hubbard system, Science
357, 1385 (2017).

[26] C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P.
Schau3, T. Fukuhara, I. Bloch, and S. Kuhr, Single-spin ad-
dressing in an atomic Mott insulator, Nature (London) 471, 319
(2011).

[27] J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss, Site-
resolved imaging of ultracold fermions in a triangular-lattice
quantum gas microscope, PRX Quantum 2, 020344 (2021).

[28] M. Xu, L. H. Kendrick, A. Kale, Y. Gang, G. Ji, R. T. Scalettar,
M. Lebrat, and M. Greiner, Doping a frustrated Fermi-Hubbard
magnet, Nature (London) 620, 971 (2023).

[29] A. S. Sgrensen, E. Demler, and M. D. Lukin, Fractional quan-
tum Hall states of atoms in optical lattices, Phys. Rev. Lett. 94,
086803 (2005).

[30] J. Dalibard, F. Gerbier, G. Juzeliiinas, and P. Ohberg, Collo-
quium: Artificial gauge potentials for neutral atoms, Rev. Mod.
Phys. 83, 1523 (2011).

[31] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Observation of chiral currents with ultracold
atoms in bosonic ladders, Nat. Phys. 10, 588 (2014).

[32] T. Fukuhara, P. Schaul, M. Endres, S. Hild, M. Cheneau,
I. Bloch, and C. Gross, Microscopic observation of magnon
bound states and their dynamics, Nature (London) 502, 76
(2013).

[33] J. Struck, C. Olschl'eiger, M. Weinberg, P. Hauke, J. Simonet, A.
Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Tunable gauge potential for neutral and spinless particles in
driven optical lattices, Phys. Rev. Lett. 108, 225304 (2012).

[34] N.R. Cooper and J. Dalibard, Reaching fractional quantum Hall
states with optical flux lattices, Phys. Rev. Lett. 110, 185301
(2013).

[35] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
ultracold atoms in optical lattices, Phys. Rev. Lett. 111, 185301
(2013).

[36] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with laser-
assisted tunneling in optical lattices, Phys. Rev. Lett. 111,
185302 (2013).

[37] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Experimental realization of the
topological Haldane model with ultracold fermions, Nature
(London) 515, 237 (2014).

[38] A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman,
G. Juzelitinas, and M. Lewenstein, Synthetic gauge fields in
synthetic dimensions, Phys. Rev. Lett. 112, 043001 (2014).

[39] N. Goldman, J. C. Budich, and P. Zoller, Topological quantum
matter with ultracold gases in optical lattices, Nat. Phys. 12, 639
(2016).

[40] F. A. An, E. J. Meier, and B. Gadway, Direct observation of
chiral currents and magnetic reflection in atomic flux lattices,
Sci. Adv. 3, 1602685 (2017).

[41] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin- and density-resolved
microscopy of antiferromagnetic correlations in Fermi-Hubbard
chains, Science 353, 1257 (2016).

[42] M. Davydova, Y. Zhang, and L. Fu, Itinerant spin polaron and
metallic ferromagnetism in semiconductor moiré superlattices,
Phys. Rev. B 107, 224420 (2023).

[43] K. Lee, P. Sharma, O. Vafek, and H. J. Changlani, Triangular
lattice Hubbard model physics at intermediate temperatures,
Phys. Rev. B 107, 235105 (2023).

[44] I. Morera, M. Kandsz-Nagy, T. Smolenski, L. Ciorciaro, A.
Imamoglu, and E. Demler, High-temperature kinetic magnetism
in triangular lattices, Phys. Rev. Res. 5, .022048 (2023).

[45] Y. Zhang and L. Fu, Pseudogap metal and magnetization plateau
from doping moiré Mott insulator, SciPost Phys. Core 6, 038
(2023).

[46] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe,
T. Taniguchi, A. H. MacDonald, J. Shan, and K. F. Mak,
Simulation of Hubbard model physics in WSe, /WS, moiré
superlattices, Nature (London) 579, 353 (2020).

[47] L. Ciorciaro, T. Smolesiski, I. Morera, N. Kiper, S. Hiestand, M.
Kroner, Y. Zhang, K. Watanabe, T. Taniguchi, E. Demler, and
A. Imamoglu, Kinetic magnetism in triangular moiré materials,
Nature 623, 509 (2023).

[48] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K.
Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-
Gordon, Emergent ferromagnetism near three-quarters filling in
twisted bilayer graphene, Science 365, 605 (2019).

[49] E. Braaten and H.-W. Hammer, Universality in few-body sys-
tems with large scattering length, Phys. Rep. 428, 259 (2006).

[50] C. H. Greene, P. Giannakeas, and J. Pérez-Rios, Universal
few-body physics and cluster formation, Rev. Mod. Phys. 89,
0350006 (2017).

[51] P. Hasenfratz and J. Kuti, The quark bag model, Phys. Rep. 40,
75 (1978).

[52] K. Jiménez-Garcia, L. J. LeBlanc, R. A. Williams, M. C. Beeler,
A. R. Perry, and I. B. Spielman, Peierls substitution in an engi-
neered lattice potential, Phys. Rev. Lett. 108, 225303 (2012).

023196-17


https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.114.213002
https://doi.org/10.1103/PhysRevLett.114.193001
https://doi.org/10.1103/PhysRevLett.115.263001
https://doi.org/10.1038/nphys3403
https://doi.org/10.1103/PhysRevA.92.063406
https://doi.org/10.1126/science.aad9041
https://doi.org/10.1126/science.aam7838
https://doi.org/10.1038/nature09827
https://doi.org/10.1103/PRXQuantum.2.020344
https://doi.org/10.1038/s41586-023-06280-5
https://doi.org/10.1103/PhysRevLett.94.086803
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nature12541
https://doi.org/10.1103/PhysRevLett.108.225304
https://doi.org/10.1103/PhysRevLett.110.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1038/nphys3803
https://doi.org/10.1126/sciadv.1602685
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1103/PhysRevB.107.224420
https://doi.org/10.1103/PhysRevB.107.235105
https://doi.org/10.1103/PhysRevResearch.5.L022048
https://doi.org/10.21468/SciPostPhysCore.6.2.038
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41586-023-06633-0
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1103/RevModPhys.89.035006
https://doi.org/10.1016/0370-1573(78)90076-5
https://doi.org/10.1103/PhysRevLett.108.225303

MORERA, BOHRDT, HO, AND DEMLER

PHYSICAL REVIEW RESEARCH 6, 023196 (2024)

[53] L.-M. Duan, E. Demler, and M. D. Lukin, Controlling spin ex-
change interactions of ultracold atoms in optical lattices, Phys.
Rev. Lett. 91, 090402 (2003).

[54] P. W. Anderson, Antiferromagnetism. theory of superexchange
interaction, Phys. Rev. 79, 350 (1950).

[55] W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin,
High-temperature superfluidity of fermionic atoms in optical
lattices, Phys. Rev. Lett. 89, 220407 (2002).

[56] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker
Denschlag, A. J. Daley, A. Kantian, H. P. Biichler, and P. Zoller,
Repulsively bound atom pairs in an optical lattice, Nature
(London) 441, 853 (2006).

[57] S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I.
Bloch, Time-resolved observation and control of superexchange
interactions with ultracold atoms in optical lattices, Science
319, 295 (2008).

[58] R. C. Brown, R. Wyllie, S. B. Koller, E. A. Goldschmidt, M.
Foss-Feig, and J. V. Porto, Two-dimensional superexchange-
mediated magnetization dynamics in an optical lattice, Science
348, 540 (2015).

[59] M. A. Nichols, L. W. Cheuk, M. Okan, T. R. Hartke, E. Mendez,
T. Senthil, E. Khatami, H. Zhang, and M. W. Zwierlein, Spin
transport in a Mott insulator of ultracold fermions, Science 363,
383 (2019).

[60] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E.
Demler, and W. Ketterle, Spin transport in a tunable Heisenberg
model realized with ultracold atoms, Nature (London) 588, 403
(2020).

[61] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke,
D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and
M. Greiner, Microscopy of the interacting Harper—Hofstadter
model in the two-body limit, Nature (London) 546, 519 (2017).

[62] E. Nagaev, Self-trapped states of charge carriers in magnetic
semiconductors, J. Magn. Magn. Mater. 110, 39 (1992).

[63] A. S. Alexandrov, Polarons in Advanced Materials (Canopus
Publications, Dordrecht, 2007).

[64] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer New York, New York, 1994).

[65] S. R. White and I. Affleck, Density matrix renormalization
group analysis of the Nagaoka polaron in the two-dimensional
t — J model, Phys. Rev. B 64, 024411 (2001).

[66] S. R. White and D. J. Scalapino, Hole and pair structures in the
t — J model, Phys. Rev. B 55, 6504 (1997).

[67] B. I. Shraiman and E. D. Siggia, Two-particle excitations in
antiferromagnetic insulators, Phys. Rev. Lett. 60, 740 (1988).

[68] F. Grusdt, M. Kdnasz-Nagy, A. Bohrdt, C. S. Chiu, G. Ji, M.
Greiner, D. Greif, and E. Demler, Parton theory of magnetic po-
larons: Mesonic resonances and signatures in dynamics, Phys.
Rev. X 8, 011046 (2018).

[69] T. Giamarchi, Quantum Physics in One Dimension, Interna-
tional Series of Monographs on Physics (Clarendon Press,
Oxford, 2004).

[70] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.
Zupancic, Y. Lahini, R. Islam, and M. Greiner, Strongly cor-
related quantum walks in optical lattices, Science 347, 1229
(2015).

[71] U. Schneider, L. Hackermiiller, J. P. Ronzheimer, S. Will, S.
Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and
A. Rosch, Fermionic transport and out-of-equilibrium dynam-
ics in a homogeneous Hubbard model with ultracold atoms,
Nat. Phys. 8, 213 (2012).

[72] E. Grusdt, Z. Zhu, T. Shi, and E. Demler, Meson formation in
mixed-dimensional ¢ — J models, SciPost Phys. 5, 057 (2018).

[73] P.N. Jepsen, W. W. Ho, J. Amato-Grill, I. Dimitrova, E. Demler,
and W. Ketterle, Transverse spin dynamics in the anisotropic
Heisenberg model realized with ultracold atoms, Phys. Rev. X
11, 041054 (2021).

[74] J. Hauschild and F. Pollmann, Efficient numerical simulations
with tensor networks: Tensor Network Python (TeNPy), SciPost
Phys. Lect. Notes, 5 (2018).

[75] M. Ogata and H. Shiba, Bethe-Ansatz wave function, momen-
tum distribution, and spin correlation in the one-dimensional
strongly correlated Hubbard model, Phys. Rev. B 41, 2326
(1990).

[76] Y. Ren and P. W. Anderson, Asymptotic correlation functions in
the one-dimensional Hubbard model with applications to high-
T. superconductivity, Phys. Rev. B 48, 16662 (1993).

[77] J. Zaanen, O. Y. Osman, H. V. Kruis, Z. Nussinov, and J.
Tworzydlo, The geometric order of stripes and Luttinger lig-
uids, Philos. Mag. B 81, 1485 (2001).

[78] H. V. Kruis, I. P. McCulloch, Z. Nussinov, and J. Zaanen,
Geometry and the hidden order of Luttinger liquids: The
universality of squeezed space, Phys. Rev. B 70, 075109
(2004).

[79] T. A. Hilker, G. Salomon, E. Grusdt, A. Omran, M. Boll,
E. Demler, 1. Bloch, and C. Gross, Revealing hidden antifer-
romagnetic correlations in doped Hubbard chains via string
correlators, Science 357, 484 (2017).

[80] A. Bohrdt, D. Greif, E. Demler, M. Knap, and F. Grusdt,
Angle-resolved photoemission spectroscopy with quantum gas
microscopes, Phys. Rev. B 97, 125117 (2018).

023196-18


https://doi.org/10.1103/PhysRevLett.91.090402
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRevLett.89.220407
https://doi.org/10.1038/nature04918
https://doi.org/10.1126/science.1150841
https://doi.org/10.1126/science.aaa1385
https://doi.org/10.1126/science.aat4387
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1038/nature22811
https://doi.org/10.1016/0304-8853(92)90011-C
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.55.6504
https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1126/science.1260364
https://doi.org/10.1038/nphys2205
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.1103/PhysRevX.11.041054
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevB.48.16662
https://doi.org/10.1080/13642810108208566
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1126/science.aam8990
https://doi.org/10.1103/PhysRevB.97.125117

