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Runaway transition in irreversible polymer condensation with cyclization
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The process of polymer condensation, i.e., the formation of bonds between reactive end groups, is ubiquitous
in both industry and biology. Here we study generic systems undergoing polymer condensation in competition
with cyclization. Using a generalized Smoluchowski theory, molecular dynamics simulations and experiments
with DNA and ATP-consuming T4 ligase, we find that this system displays a transition, from a ring-dominated
regime with finite-length chains at infinite time to a linear-polymers-dominated one with chains that keep
growing in time. Finally, we show that fluids prepared close to the transition may have widely different
compositions and rheology at large condensation times.
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I. INTRODUCTION

Linear polymer condensation is the process by which two
polymeric end groups react to form a bond. Beyond its rel-
evance to industry [1], and biotechnology [2], it underpins
the biophysics of DNA repair and cloning [3]. In the absence
of loop formation, polymer condensation will yield linear
chains with average length 〈l〉 = 1/(1 − p), where p is the
extent of the condensation reaction [1,4]. However, looping,
or cyclization, is expected to be favorable in certain conditions
[5–7]. Several theories on reversible polymer condensation
and experiments have, over the last decades, attempted to
reach a consensus on whether the polymers in such systems
will all eventually convert into rings or whether there always
will be a linear population at a large timescale [8–15]. Despite
this, the polymer physics and chemistry communities have not
yet reached a consensus [15–17]. Additionally, there is little
literature on irreversible polymer condensation, which we also
refer to as “ligation,” henceforth in analogy with the biological
process of connecting DNA segments by the enzyme ligase.

Here we study irreversible linear polymer condensation
using a combination of theory, simulations, and experiments.
First, we show that irreversible polymer condensation is well
captured by a modified Smoluchowski coagulation equa-
tion [18,19] with an additional sink term that captures ring
formation. By spanning a range of monomer concentrations
c, we discover that above a critical c† � 0.1c∗ there is a
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“runaway” transition characterized by a population of chains
that permanently escape cyclization. Here c∗ = l0/(4/3πR3

g)
denotes the overlap concentration of polymers, with l0 and
Rg the initial polymer length and radius of gyration, respec-
tively. This transition separates a regime (c < c†) in which
all the chains are converted into rings at infinite time, from
one (c > c†) in which the length of the linear chains diverges
in time. The consequence of this runaway transition is that
systems prepared close to c† and driven out-of-equilibrium
by irreversible condensation will display markedly different
architectural and rheological features at large enough times.

Our work differs from classic and also more recent pa-
pers on polymer condensation and cyclization [8,11,11,16,20]
because it deals with irreversible condensation while im-
plementing subdiffusive search and cyclization in a Smolu-
chowski framework and because it suggests through theory,
simulations, and experiments that a runaway transition is ex-
pected beyond a critical concentration. We also argue that
DNA is particularly suitable to test these theories, as we
can readily visualise the products of ligation reactions by gel
electrophoresis and distinguish linear and circular forms by
treating the samples with exonuclease, as described below.
We conclude our paper by discussing the implications of our
findings in the design of soft materials and DNA cloning.

II. METHODS

A. Molecular dynamics simulations

We model a 6500-bp-long linear DNA molecule as a bead-
spring polymer made of l0 = 174 beads. The total number
of polymer chains is Nc = 200. The polymers are mod-
eled via the Kremer-Grest model [21]. Each bead has a
diameter σ = 13 nm (or ∼38 bp), modeled as a truncated
and shifted Lennard-Jones (LJ) potential (Weeks-Chandler-
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Andersen, WCA),

ULJ(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4], (1)

for r < rc = 21/6σ and 0 otherwise. Here r represents the dis-
tance between beads, and ε = 1.0 (in LJ units) parametrizes
the strength of the potential. The diameter of the bead, σ ,
defines the length units in our system. Consecutive beads
are connected through a permanent finite extensible nonlinear
elastic (FENE) bond,

UFENE(r) = −0.5KR2
0 log [1 − (r/R0)2], (2)

with K = 30ε/σ 2 and R0 = 1.5σ , which is summed to a
Weeks-Chanlder-Andersen potential to yield an equilibrium
bond length of around 0.9σ . The bending stiffness of the
polymer is controlled by a Kratky-Porod interaction,

Ub(r) = kBT lp

σ
(1 − cos θ ), (3)

which constrains the angle (θ ), defined by the two tangent
vectors connecting three consecutive beads along the polymer.
Here, lp = 4σ = 150 bp is the persistence length of DNA.
We note that as l0 � lp, we are always in the flexible chain
regime. The solvent is simulated implicitly using a Langevin
thermostat so that the time evolution of our system is governed
by the stochastic partial differential equations,

mr̈ = −ζ ṙ − ∇U +
√

2kBT ζδ, (4)

where r is the position of a particle, ζ its friction, m its mass,
U the sum of the interaction potentials discussed above, and
δ white noise with unit variance. The diffusion timescale is
τB = ζσ 2/kBT . The integration of the Langevin equation is
done with a velocity-Verlet algorithm using a time step �t =
0.01τB in LAMMPS [22].

Various monomer densities were considered, ranging from
10−2c∗ to 1c∗, where c∗ = 0.012σ−3 is the monomer concen-
tration at which the polymers start to overlap. The overlap
concentration c∗ was measured by computing the radius of
gyration Rg of the polymers in equilibrium at infinite dilution.
All the systems were equilibrated for a sufficient amount of
time to ensure that the polymer chains have moved at least a
distance equal to Rg.

After the equilibration step, 40 replicas of production runs
were started for each number density considered. The ligation
is performed stochastically and is attempted every tl = τB

between two end beads that are closer than Rc = 1.1σ using
the fix bond/create LAMMPS command. The choice of the
time in between ligation attempts, tl , was made so that it was
much shorter than the relaxation time of the chains; in this way
the condensation process is diffusion limited. The distance
threshold Rc was chosen so that the new bond created is a
FENE with cutoff 1.5 σ and to avoid unstable simulations.
The probability of successful ligation (i.e., bond formation) is
set to pl = 0.1. This value was chosen to avoid “granularity”
in the stochastic condensation reaction. If this parameter was
set to 1, all the ends that can react would do so in a single time
step introducing granular events in our simulations. Setting
pl < 1 introduces some randomness that simply maps to a
smaller average condensation rate. We have tested slightly
different choices of these parameters, and we found that the
main results and qualitative behavior of our results are not

Bond list
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2 -- 3
3 -- 4

...(c)

(b)(a)

RingsLinear

Ligation

FIG. 1. Molecular dynamics simulations of irreversible conden-
sation. (a) Sketch of a condensation (also referred to as “ligation”)
event in a molecular dynamics (MD) simulation. (b) Snapshot of the
simulation box with rings colored in blue and linear chains in gray.
(c) Simulation workflow: we track the bond list to reconstruct the
length and topology of the polymers and how these evolve in time.

affected. In particular, we have tested that the reactions remain
diffusion limited, even with our choice of pl . A schematic
representation of the simulation process is shown in Fig. 1.

Once ligated, the bond formed between the polymers is
irreversible and cannot be broken, therefore accounting for
the formation of a covalent bond between the DNA fragments.
During the ligation process, snapshots of the system are taken
every 106 time steps on both the three-dimensional coordi-
nates of the beads and the bond list at those time steps. From
the bond list we can, later on, reconstruct the topology of the
individual polymers, i.e., if fused with others to form linear
chains or if circularized.

For the topology reconstruction, the trajectories and bond
lists were analyzed using our PYTHON code. The description
of the algorithm can be found in Appendix A.

B. The DSMC algorithm

The modified Smoluchowski equation proposed here [see
Eq. (5) below] can only be solved analytically for certain
forms of the condensation rate k1(i, j) and of the cyclization
rate k0(l ). As our molecular dynamics simulations are practi-
cally limited to systems of hundreds of chains, to characterize
the behavior of larger systems we solve the Smoluchowski
equation numerically employing the direct-simulation Monte
Carlo (DSMC) algorithm [23–26]. DSMC is a powerful
stochastic method to solve differential equations such as
Eq. (5) and which samples the correct ligation kinetics in the
limit of large system sizes. The algorithm employed here is
similar to that described in Ref. [26], with the difference that
here we do not include fragmentation, but instead, we include
ring formation. The description of the algorithm also follows
Ref. [26]. The starting point for the Monte Carlo algorithm is
an array m of length Nc, each element i of which contains a
number mi which represents the mass/length of the chain i:

m = (
m1, m2, . . . , mNc

)
.

A value of 0 corresponds to the absence of a certain chain.
Moreover, to satisfy mass conservation, we ensure that∑Nc

i=1 mi = Nc is true at any time during the simulation. Here,
Nc denotes the total number of polymer chains. We will also
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consider an analogous array r of length Nc (initially empty),
where we save the masses of the rings.

For an initial monodisperse condition, we set m0 =
(1, 1, . . . , 1). After the array m is initialized, we run the
DSMC simulation, which consists of repeating a Monte Carlo
step a large number of times (described in detail in Ap-
pendix B). The execution is terminated when the system has
reached a state in which there is a single linear chain and
several nonreactive rings, where the only possible reaction is
the cyclization of the remaining linear chain.

C. Experiments

1. Ligation reactions with DNA

We perform irreversible condensation on linear DNA
using T4 ligase New England Biolabs (NEB). This en-
zyme consumes ATP to form a covalent bond between two
proximal and complementary double-stranded DNA ends.
More specifically, we perform irreversible condensation on a
monodisperse solution of linear, l0 = 6500-bp-long plasmid
(referred to as “1288” plasmid here) that is converted into
a linear form by using a restriction enzyme (XhoI). This
linearization step is checked on gel electrophoresis. The equi-
librium radius of gyration of this linear DNA molecule is
about Rg � lp

√
l0/3lp � 0.2 µm (in agreement with diffusion

data from Ref. [27]). This yields an overlap concentration
c∗ = 3l0Mw/(4NAπR3

g) � 0.2 µg/μl with Mw = 650 g/mol
the molecular weight of a DNA base pair and NA the Avogadro
number. For the low-DNA-concentration experiments, we set
the sample at 0.01c∗, i.e., c = 2 µg/ml. To perform ligation
we use T4 ligase (NEB, M0202L, 1U corresponds to 0.5 ng or
0.00735 pmol of protein according to Ref. [28]) and work at
a 1x T4 ligase reaction buffer concentration, which contains
1 mM ATP. To classify the topology of the DNA under
ligation, we perform time-resolved gel electrophoresis. We
prepare a master solution of DNA at the desired concentration,
1x ligase buffer and 2 U/μl T4 ligase.

After adding T4 ligase, we draw aliquots at time intervals
and heat-inactivate the reaction by heating the aliquot at 65 ◦C
for 15 min. We then split the aliquot and treat one of the
two subaliquots using exonuclease (RecBCD, Lucigen), an
enzyme that digests linear, but not circular, DNA. Finally, we
treat all aliquots with Nb.BbvCI nickase (NEB, R0631L) to
relax the supercoiled population [29]. The resulting aliquots
are run on a gel: we load 20 ng of DNA from each aliquot onto
a 1% agarose gel prepared using 1x TAE buffer. A standard
λDNA - HindIII digest (NEB, N3012S) marker is also loaded.
The gel is run at ∼2.5 V/cm for 5 h and poststained with
SybrGold (ThermoFisher) for 30 min. A Syngene G-box and
GENESYS software is used to image the gels.

The combination of nickase (relaxing the DNA supercoil-
ing) and exonuclease (fully digesting linear DNA molecules)
allowed the topology of the DNA in each band to be un-
ambiguously identified. Further, the λDNA - HindIII digest
marker confirmed the bands were of the correct size for
monomer and dimer lengths. Here the terms “monomer”
and “dimer” refer to a single DNA molecule and two
molecules ligated, respectively. To extract the relative amount
of molecules in each lane, we compute, using ImageJ, the
intensity of each lane and account for the fact that the band

with dimers has chains that are twice as long. We then nor-
malize against the sum of the three bands to obtain the relative
fraction of chains in each population.

2. Microrheology

The viscosity of the systems is measured using particle
tracking microrheology. Solutions are made by mixing 8 μl
of 1288 linearized plasmid at different concentrations to a
final concentration in the range 2 ng/µl–500 ng/µl, with 1 µl
of 40 U/ul T4 ligase and 1 µl of T4 ligase reaction buffer.
Control solutions are prepared at the same time and in the
same manner, substituting additional Tris-EDTA buffer for
the T4 ligase. The samples are kept at room temperature on
a roller for several days. The samples are then spiked with
a = 800 nm PVP (Polyvinylpyrrolidone)-coated polystyrene
beads, pipetted and sealed onto a slide and imaged using an
inverted microscope. We take a 30-min movie, and we ana-
lyze the movies using a particle tracking algorithm (trackpy
[30]) and extract the trajectories and mean-squared displace-
ments (MSD) of the tracers 〈�r2(t )〉 = 〈[r(t + τ ) − r(t )]2〉.
Diffusion coefficients are extracted by fitting to the MSDs
via MSD = 2Dt . The viscosity is obtained using the Stokes-
Einstein relation [31], η = kBT/(3πDa).

III. RESULTS

A. Smoluchowski equation with cyclization

In this result section, we first propose a modified Smolu-
chowski equation [18,19] describing polymers undergoing
irreversible condensation (ligation) and cyclization. Linear
polymers undergo irreversible ligation with rate k1(i, j), with
i, j the polymerization indexes of the reactants and cyclization
with rate k0(q). The concentrations of linear polymers of
polymerization index q at time t , nq(t ), and of rings, nr

q(t ),
are thus governed by the following equations:

ṅq(t ) = 1

2

∑
i j;i+ j=q

k1(i, j)ni(t )n j (t ) +

− nq(t )
∞∑

i=1

k1(q, i)ni(t ) − k0(q)nq(t ) (5a)

ṅr
q(t ) = k0(q)nq(t ). (5b)

Once a linear chain undergoes cyclization, it becomes a
ring and cannot undergo ligation anymore, as the reactions are
assumed to be irreversible. The kinetics is also constrained by
the requirement that the total mass is conserved:

∞∑
q=1

q
[
nq(t ) + nr

q(t )
] = M/V = n ∀t, (6)

where M is the total number of monomers and V is the
system’s volume. Assuming that the reaction takes place on
a timescale larger than the Rouse relaxation time, the length
dependence of the annealing rate is [32,33]

k1(i, j) = κ̃1(Di + Dj )(Ri + Rj )

= κ1(i−α + j−α )(iν + jν ), (7)
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FIG. 2. Validation of cyclization and annealing rates. (a) Number of rings Nrings as a function of time for systems initialized to N = 400
chains with l0 = 87 monomers each (five independent replicas). The black line represents the numerical derivative of the average 〈Nrings〉 in the
limit t → 0. (b) The numerical derivative dNrings/dt displays a power-law decay with initial polymer length and with exponent −2.6, close to
the value −4ν = 2.4 for ν = 0.588 (as predicted, see text Sec. III A). (c) Value of k1(L) obtained from fitting the analytical solution of Eq. (9b),
neglecting the second term, in the limit t → 0. The exponent of the power law is close to the predicted value ν − α (see text Sec. III A) with
ν = 0.588 and α = 1.

where l = il0 is the length of a polymer with a degree of
polymerization i and l0 is the initial polymer length, so that
the chain’s radius of gyration is Ri = l0iν . In Eq. (7), κ̃1 is
a dimensionless constant and κ1 is a constant that depends
on temperature and the viscous friction of the solvent ζ . For
example, in the Rouse model [34], Di = kBT/(ζ l0i) (α = 1)
and thus κ1 = κ̃1kBT/ζ .

This condensation rate captures the diffusion-controlled
search process [32,33]. The cyclization rate is taken to be
k0(q) = κ0qμ, where μ = −4ν. Note that this is different from
the classic Shimada-Yamakawa theory [20,35], which would
predict μ = −3ν at lengths larger than lp because we (i) are
out-of-equilibrium and (ii) account for the subdiffusion of the
polymer end within the volume of the coil.

In equilibrium, the looping probability of a chain is given
by the Shimada-Yamakawa formula [20,36]. For l � lp the
looping probability of a polymer decays as P(l ) ∼ lμ with
μ = −3ν. This looping probability also holds for an irre-
versible, nonequilibrium scenario if the process is reaction
limited. This is because the chain ends would have the time to
explore many conformations and to diffuse the whole volume
of the chain, V ∼ l3ν , before reacting (as it would happen
in equilibrium). In a diffusion-limited, irreversible ligation
process, one should instead compute the time it takes for
an end to diffuse over a certain distance ξ . The dynamics
of the end is described by the Rouse model [34] so that
ξ = b[kBT t/(ζb2)]1/4, where b is the size of a Kuhn monomer.
Then, setting ξ = R (the size of the polymer coil) one ob-
tains (R/b)4 = kBT t/(ζb2), which implies k0 ∼ t−1 ∼ R−4 ∼
l−4ν . So considering μ = −4ν effectively takes into account
the fact that the chain ends are performing a sub-diffusive
search process within the polymer coil, as expected for Rouse
dynamics.

We have verified that the rate of cyclization scales as the
length of the chain to the power −4ν by measuring the rate
at which rings are produced for different lengths of the linear
chains [Figs. 2(a) and 2(b)]. We have done this by changing
the initial length l0 and by running short simulations, in turn
assuming that the system has had no time to create dimers,
trimers, etc. and by measuring the number of rings formed.
We have observed that the rate of ring formation at early times

Ṅrings ∼ l−2.6
0 , which is close to the expected μ = −4ν = 2.4

with ν = 0.588. Thus, both theory and simulations suggest
that the diffusion-limited, irreversible looping probability of a
polymer scales with its length as l−4ν .

To validate the functional form used for the condensation
rate k1(i, j) [Eq. (7)], we solve the Smoluchowski equation in
the limit of small concentration and short times, where only
monomer, dimer, and monomer ring populations are assumed
to be present (see next section). In Fig. 2(c) we plot the
condensation rate k1 as a function of different initial polymer
lengths obtained by fitting the analytical solution of Eq. (9b)
(see below) to the monomer chain population, omitting the
second term since no rings were present in these conditions
and at early times. From this quantity we fit a power law
lν−α with ν = 0.588 and find α � 1 yields a good fit to the
simulated data. This validates de Gennes’ hypothesis for the
functional form of the condensation rate [Eq. (7)] and our
choices for ν and α.

In our experiments and simulations, we typically track the
mean length of the polymers as a function of time,

〈l (t )〉 = l0

∑∞
i=1 i

[
ni(t ) + nr

i (t )
]

∑∞
i=1

[
ni(t ) + nr

i (t )
] , (8)

and we fit this observable with the numerical solution of
the full Smoluchowski equation, Eqs. (5a) and (5b). This is
practically implemented in a MATLAB code. The numerical
evaluation of the system is iterated to find the best free param-
eters κ0 and κ1 that fit the mean length 〈l (t )〉 obtained from
simulations or experiments. The fit is done using the nonlin-
ear least squares MATLAB function lsqcurvefit. The rate
of ring formation κ0 and the rate of linear chains formation
κ1 are extracted from this fit by considering 40 independent
replicas, allowing us to obtain the error on the fit parameters.
For experiments, we typically average over three independent
replicas. The numerical and fitting algorithms are described in
detail in Appendix C.

1. Time dependence of the mean length: Dilute regime

At short times and in the dilute regime, we can assume that
the formation of rings and short n-mers is more favorable.

023189-4



RUNAWAY TRANSITION IN IRREVERSIBLE POLYMER … PHYSICAL REVIEW RESEARCH 6, 023189 (2024)

This assumption is valid in the experiments whenever only
linear monomers, dimers, and monomer rings are visible in the
gel electrophoresis after ligation. In more dense solutions the
presence of rings consisting of more than two monomer chains
will be present and is observed in our simulations. Under very
dilute conditions, we can thus assume that only monomers,
dimers, and monomer rings are present. Denoting the number
density of monomer rings, linear monomers, and dimers as
nr

1, n1, and n2, respectively, the Smoluchowski equations de-
scribing the system take the form

dnr
1(t )

dt
= k0(1)n1(t ) (9a)

dn1(t )

dt
= −k1(1, 1)n2

1(t ) − k0(1)n1(t ) (9b)

dn2(t )

dt
= 1

2
k1(1, 1)n2

1(t ). (9c)

We solve Eq. (9b) neglecting the second term as n2
1 � 1 in

the infinite dilution limit:

n1(t ) = n1(0)e−k0(1)t . (10)

The concentration of monomer rings is thus

dnr
1(t )

dt
= k0n1(0)e−k0(1)t , (11)

which yields

nr
1(t ) = n1(0)[1 − e−k0(1)t ]. (12)

Substituting in Eq. (9c), we get

dn2(t )

dt
= 1

2
k1(1, 1)n1

2(t ) = 1

2
k1(1, 1)[n1(0)e−k0(1)t ]2, (13)

from which one obtains

n2(t ) = k1(1, 1)

4k0(1)
n1

2(0)[1 − e−2k0(1)t ]. (14)

Assuming these three are the only contributions to the system,
the mean length is then given by the following relation:

〈l (t )〉 = l0n1(t ) + l0nr
1(t ) + 2l0n2(t )

n1(t ) + nr
1(t ) + n2(t )

= l0
n1(t ) + nr

1(t ) + 2n2(t )

n1(t ) + nr
1(t ) + n2(t )

. (15)

In denser solutions, where the population is more poly-
disperse, the Smoluchowski equation cannot be solved
analytically and we refer to the next section for a scaling
prediction and to Sec. III C 1 for a perturbative approach in
the limit of small cyclization rate.

As mentioned above, we validate de Gennes’ equation for
the condensation rate [Eq. (7)] by running short simulations
at very high dilution. We then fitted the change in number
of ring monomers with the closed solutions [Eq. (12)] for
different values of initial polymer length l0. Similarly, we fit
the solution of Eq. (9b) without the ring term to the population
of monomers. From these data we validate the scaling of the
rates k0(l0) = κ0l−μ

0 and k1(l0, l0) = κ1lα−ν
0 as a function of

length l0 [Figs. 2(b) and 2(c)].
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FIG. 3. Results from MD simulations. (a) Number fraction of
linear (dotted line) and ring (solid line) polymers during the con-
densation process for different concentrations c (averaged across 40
independent replicas). (b) Number averaged polymer length for the
simulations in (a) as a function of time (symbols), and fitted (solid
line) with a numerical solution of Eq. (5) (see Sec. III A for details).

2. Time dependence of the mean length: Concentrated regime

Here we give scaling arguments for the solution of the
Smoluchowski equation in the concentrated limit, with the
assumption that ring formation is negligible. At the mean-field
level, we can make the simplifying assumption that the system
can be described by a single characteristic length scale l [37].
Under this assumption, the annealing rate scales as

k1(l ) ∼ DR ∼ lν−α. (16)

The total polymer density n thus follows ṅ = −k1(l )n2, so
that from the dimensional analysis the time evolution of the
characteristic length is [38,39]

l (t ) ∼ t1/(1+α−ν) ∼ t1/(1−λ) ≡ tγ , (17)

with λ = ν − α. For Rouse dynamics, one has α = 1, whereas
α = 2 for reptation [40]. The Flory exponent has value ν =
1/2 for ideal chains and ν = 0.588 for self-avoiding chains
[40]. Assuming concentrations above overlap but still far from
the melt concentration (for which one would have ideal chain
statistics and α = 1/2), we can assume ν = 0.588, so that
γ � 0.7 if the system is unentangled and γ � 0.4 in the pres-
ence of entanglement. We note, however, that using Eq. (16)
in the presence of entanglements is only valid for times longer
than the reptation time τR ∼ l3 [41].

B. Linear DNA condensation

1. Simulations

We first simulate linear condensation using molecular dy-
namics. As detailed in the Methods section, we simulate
polymers with N = 174 beads of size σ ∼ 38 bp and per-
sistence length lp = 4σ = 150 bp. These polymers are thus
designed to coarse-grain 6.5-kb-long DNA plasmids, which
will be employed in experiments (see next section). During
the simulation, we take snapshots of the system and record
the list of bonds to reconstruct the topology of the polymers
(see Fig. 1). Over the simulation time, the number of initial
linear chains decreases due to the formation of (i) longer
linear polymers or (ii) circular chains [Fig. 3(a)]. Addition-
ally, lower monomer concentrations c promote the formation
of more rings at large times and a slower decrease of the
linear species. We also note that (i) the number fraction of
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FIG. 4. Experiments of DNA condensation at low concentra-
tion. (a) Time-resolved gel electrophoresis during ligation of a
2 ng/µl (c/c∗ = 0.01) solution of 6.5-kb linearized plasmid. The
lanes marked with “e” are treated with exonuclease to remove linear
DNA; “RM” indicates ring monomers, “LD” linear dimers, and
“LM” linear monomers. The term monomer here refers to a single
DNA molecule. The last column is a λ-HindIII marker as a reference
of DNA fragment lengths. The numbers at the top represent the
minutes for which the solution was incubated with ligase enzyme.
(b) Number fraction of polymers in ring and linear (monomer and
dimer) topologies obtained from image analysis of the gel in (a).
(c) Number averaged length calculated from three independent gels
at 2 ng/µl (symbols) and associated fit (solid line) using Eq. (5)
numerically solved as described in Sec. III A.

rings converges to a finite value at large time, and that (ii)
while the number of linear chains appears to go to zero, their
mean length increases [Fig. 3(b)]. Accordingly, the (number)
average length of polymers grows more quickly for larger c
[Fig. 3(b)]. Thus, we conclude that loop formation competes
with the growth of the chains and that cyclization is dominant
in dilute systems. Interestingly, the curves of the mean length
〈l (t )〉 can be fitted extremely well by the numerical solution
of the Smoluchowski equation, Eq. (5) [Fig. 3(b)].

2. Experiments

As described in the Methods section, we can perform DNA
condensation using solutions of linearized DNA plasmids,
mixed with ATP and DNA T4 ligase. We then perform a
time-resolved experiment, where we draw aliquots from a
master reaction at given time points from the addition of the
T4 ligase. By running the aliquots on agarose gels we can
visualize and compute the fraction of molecules in the linear
and ring, monomeric, dimeric, etc. states. Figure 4(a) reports a
picture of one such gel, displaying a single band of monomeric
linear DNA (as it disappears after exonuclease treatment) at
t = 0, evolving into three bands, one of which is exonuclease
resistant (a monomer ring) at larger times. In Fig. 4(b) we plot
the relative abundance of these populations, from which we
obtain the number average molecular length 〈l (t )〉 [Fig. 4(c)].

3. Dimensionless topological parameter

Since we initialize our simulations and experiments below
entanglement conditions, we fix α = 1 as expected for Rouse
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FIG. 5. The dimensionless topological parameter. Dimensionless
topological (also “cyclization”) parameter κ = 2κ0/(n0κ1) as a func-
tion of c/c∗. This is obtained by fitting simulations and experimental
curves 〈l (t )〉 with the numerical solution of the Smoluchowski equa-
tion with κ0 and κ1 as free parameters. There are no other free
parameters in our model. The scaling κ ∼ (c/c∗)−1 is consistent
with κ0 and κ1 being independent of concentration, and with this
assumption breaking down near c/c∗ � 1 where three-body interac-
tions become important.

dynamics and ν = 0.588 as expected for self-avoiding poly-
mers [34] (we verified these exponents through direct MD
simulations in Figs. 2(a)–2(c). In general, the Smoluchowski
coagulation equation [Eq. (5)] is then solved numerically to
fit the data of mean length versus time, 〈l (t )〉, obtained in
simulations and experiments via the free parameters κ1 and
κ0. A key number in our system is the ratio of the rates at
which polymers are condensed, κ1, and the one at which rings
are formed, κ0. We thus define a dimensionless “topological
parameter” κ ≡ 2κ0/(n0κ1), where n0 is the number density
of monomeric chains of length l0 at the start of the simulation
or experiment.

Albeit related to the classic j factor employed in DNA
looping [6,20], our topological parameter is more naturally
interpreted as the number of rings formed for every two linear
chains that are fused together. Intuitively, this number de-
termines the final topological composition of the system. At
κ � 1, we expect the final state of the system to be dominated
by rings, while for κ � 1, we expect it to be dominated by
linear chains. Importantly, since k0 ∼ 〈l (t )〉−4ν , the probabil-
ity of ring formation decreases in time as the average length
of the linear chains increases. Accordingly, and even though
our system has a ring-only irreversible absorbing state, we
conjecture that the strongly decreasing looping probability
may effectively yield a very long time transient in which the
system is dominated by entangled linear chains with circular
contaminants (see below for more simulations on this).

Importantly, we expect the Smoluchowski equation to be
valid only in the limit in which three-body interactions are
negligible, and the values of κ0 and κ1 should be independent
of concentration only when c is small enough. By plotting
κ ≡ 2κ0/(n0κ1) as a function of c/c∗ (where c∗ is computed
at the beginning of the simulation or experiment), we show
that κ scales as n−1

0 ∼ (c/c∗)−1 in both simulations and ex-
periments until c � c∗ where it starts to deviate (Fig. 5);
this confirms that the Smoluchowski approximation is valid
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FIG. 6. Runaway transition. (a) Snapshots of MD simulations with initially Nc = 200 chains: the blue polymers represent rings of any
length, gray polymers linear chains. (b) In the corresponding graph representations, each circle represents a single chain and its color represents
the number of chains connected to it: 0 (gray), 1 (cyan), or 2 (blue). For example: a linear monomer chain is gray, a ring monomer is blue,
a linear dimer has two cyan nodes, and a dimer ring has two blue nodes. (c) Fraction of monomers in the giant connected component of the
system as a function of κ . (d) Average polymer length (including both linear and ring) at a large time as a function of κ . (e) Average mass of
rings Mrings = Nrings × 〈lrings(t � 1)〉 at large simulation time. Note that some simulations may not display any rings, thus bringing the average
Mrings below 1. (f) Average mass of linear chains at large simulation time as a function of κ . MC = Monte Carlo; MD = molecular dynamics.

in this range of concentrations. Importantly, in Fig. 5 we
also identify the crossover value κ = 1 (at which the initial
cyclization rate is larger than the dimerization rate) around
c/c∗ � 0.1 − 0.2. We note that the agreement between simu-
lations and experiments is excellent for small c/c∗. However,
quantitative analysis of gel electrophoresis images at larger
c/c∗ is challenging due to the poor separation of multimeric
bands.

C. Runaway transition

The results in Fig. 3 suggest that at large c/c∗ the chains
tend to grow longer and cyclization is suppressed; at the same
time, the density of reactive ends and the speed of spatial
exploration of the chains becomes smaller, thus suppressing
dimerization. Due to this kinetic competition, we ask whether
the system can truly display a “runaway” phase, defined as
a regime where at least one chain permanently escapes cy-
clization and its length diverges in time. One way to address
this question is to look at the number of chains that belong to
the longest chain in the system and how this quantity changes
in time. By using a graph representation of our simulations
[see Figs. 6(a) and 6(b)], we can compute the fraction of
chains (nodes) that belongs to the giant connected component
(GCC), i.e., the largest cluster of connected monomer chains
[Fig. 6(b)]. In Fig. 6(a) one can visually appreciate that at
large reaction time, rings (blue) are abundant at low c/c∗,
while linear chains (gray) are more abundant at large c/c∗.
These systems display a qualitatively different graph topology
[Fig. 6(b)]. At small c/c∗ (large κ) the network of monomers
is mostly disconnected; accordingly, even when the fraction of
unreacted bonds goes to 0 at t → ∞, the average length of the
polymers does not diverge. On the contrary, at larger c/c∗ we

observe only a few rings and some very long chains that are
connecting most of the nodes in the system. Overall, the graph
appears much more connected and approaching percolation,
i.e., where most of the nodes belong to the GCC, whose size
grows with the size of the system [see Fig. 6(c)].

1. Calculation of mass converted into rings at infinite time

Although our simulations support the notion that small
values of κ will result in linear chains of increasing lengths
and vanishing cyclization rate, they are fundamentally limited
to finite-size systems where the cyclization rate of the largest
chain never rigorously goes to 0. To estimate the amount
of mass that is converted into rings at long times, we do a
perturbative calculation valid in the limit of small κ . We start
from the continuum Smoluchowski equation:

dnl (t )

dt
= 1

2

∫ l

0
K (y, l − y)ny(t )nl−y(t )dy

−
∫ ∞

0
K (y, l )nl (t )ny(t )dy − 1

2
κlμnl (t ). (18)

We define K ≡ k1/κ1, which is thus a scaling function such
that K (ai, al ) ∼ aλk1(i, l ), where λ = ν − α [42]. We now
treat κ0 perturbatively, starting with κ0 = 0. In this case there
is no mass lost into rings and we can thus write a conservation
law: ∫ ∞

0
lnl (t )dl = 1 ∀t . (19)

Even for κ nonzero, we assume the loss of mass to cy-
clization remains finite and of order κ . We will check the
self-consistency of this assumption below. Using the mass
conservation and Eq. (18), we can write the following scaling
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relations: l2n = 1, nt−1 = l1+λn2. We therefore obtain

l ∼ t1/(1−λ), (20)

which is the same as Eq. (17). Note that we must have λ < 1
for the average length of polymers to increase over time. We
can also write the density distribution as

n ∼ t−2/(1−λ), (21)

which in the limit of long times or large lengths may be written
as

nl (t ) ∼ t−2/(1−λ)G
(

l

t1/(1−λ)

)
, (22)

where G is a scaling function that only depends on the ratio
l/t1/(1−λ).

We now introduce the ring length distribution nr
l (t ) and its

evolution equation as

dnr
l (t )

dt
= 2κ0lμnl (t ). (23)

Since at time t = 0 there are no rings, we can then write

nr
l (t → ∞) = 2κ0lμ

∫ ∞

0
nl (t )dt . (24)

We can plug in the result we obtained for the distribution of
length of linear chains Eq. (22) to yield

nr
l (t → ∞) = 2κ0lμ

∫ ∞

0
t−2/(1−λ)G

(
l

t1/(1−λ)

)
dt

= 2κ0lμ(1 − λ)l−(1+λ)
∫ ∞

0
x−λG(x)dx, (25)

where we defined x = l/t1/(1−λ). Thus, the number density of
polymers that are converted into rings over infinite time is

nr∞
l = 2κ0(1 − λ)lμ−1−λ

∫ ∞

0
xλG(x)dx. (26)

Since λ < 1 and assuming G(x) = O(1) when x → 0, the
integral converges at 0. For convergence of this integral at ∞,
we also require that the scaling function decays faster than
xλ−1.

Assuming this functional form for the distribution of ring
lengths at infinite time, we now compute the total average
mass transformed into rings at infinite time as

M∞
rings =

∫ ∞

1
lnr∞

l (t )dl

= 2κ0(1 − λ)
∫ ∞

0
x−λG(x)dx

∫ ∞

1
lμ−λdl. (27)

The convergence of this integral requires that λ − μ > 1, and
in this case we get

M∞
rings = 2κ0

1 − λ

λ − μ − 1

∫ ∞

0
x−λG(x)dx. (28)

From this equation we see that the fraction of mass in rings at
infinite time M∞

rings/M0 converges to a finite value proportional
to κ0 (and hence <1 at small κ0).

With this calculation we have thus shown that at small
enough but nonzero κ0, the fraction of mass turning into rings

is finite if λ − μ = ν − α + 4ν > 1 or ν > α/5, which is
valid for any type of polymer in the nonentangled (α = 1)
regime. This implies that in this regime we expect the cycliza-
tion probability to decay fast enough and cannot prevent the
runaway of the M0 − M∞

rings mass into linear chains that keep
growing in time.

Consistently with this, in both molecular dynamics (MD)
and Monte Carlo (MC) simulations, we never observe the
formation of rings larger than ten initial monomers. As shown
here using asymptotic theory, the mass fraction of linear poly-
mers goes to a finite limit at t → ∞ in a thermodynamic
system. We find that the key condition to ensure the exis-
tence of a runaway transition is that the cyclization rate k0 =
κ0lμ decays strongly enough. More specifically, we require
the exponent μ to be μ = −4ν < −4α/5 or ν > α/5. This
condition is always met in the Rouse unentangled (α = 1)
regime, provided that the polymers are not fully collapsed
(ν = 1/3). This argument establishes the existence of a run-
away transition in the limit of large time and at large enough
concentrations c/c∗.

2. Direct-simulation Monte Carlo simulations
of irreversible condensation

To formally address the existence of a true runaway transi-
tion in the thermodynamic limit, we compute the fraction of
monomers belonging to linear species in systems of increasing
size. To perform this calculation, we employ direct-simulation
Monte Carlo [23–26] to solve the Smoluchowski equation in
systems with up to 105 chains. We run the DSMC code until it
has reacted all ends apart from two and compute the average
length of the linear population of chains, 〈llin(t � 1)〉. As
shown in Fig. 6(c), our MD simulations show that at κ = 1
the GCC displays a change in scaling, growing as GCC ∼
κ−1 ∼ c/c∗ as κ → 0, suggesting that a qualitative change in
behavior takes place at around κ � 1. In Fig. 6(d) we also
plot the number of averaged chain lengths at an arbitrarily
large time when the DSMC code has evolved the system as
long as possible and has generated only a single linear chain.
Figure 6(d) suggests that the linear-dominated regime (κ < 1)
displays an average polymer length at a large reaction time
that scales as 〈l (t � 1)〉/l0 ∼ κ−1 ∼ c/c∗. Additionally, the
fraction of mass “lost” in forming rings grows as Mrings ∼ κ

and is thus negligible for small enough κ [Fig. 6(e)]. Finally,
as shown in Fig. 6(f), the mean length of the linear chains
〈llin(t � 1)〉 displays a plateau for κ � 1, which grows with
the system size, strongly indicating a true runaway transition
at the critical value κ � 1 or c/c∗ � 0.1 − 0.2.

D. Dynamics and rheology

To test the consequences of the runaway transition on the
dynamics and rheology of the system, we perform microrhe-
ology experiments and compute dynamics in MD simulations.
DNA microrheology is well established, and the effects of
DNA concentration, length, and topology on microrheology
have been studied in the past [43–49]. Here, we perform
microrheology by tracking 800-nm PVP-coated polystyrene
beads added in a solution of DNA that has been treated with
either 40U T4 ligase for a week (and thus to full extent of
reaction) or with buffer for a week (control) at different initial
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FIG. 7. Rheological consequences of the runaway transition.
(a) Time-resolved gel electrophoresis during ligation of c/c∗ =
0.01, 0.1, 0.25, 1, and 2.5 solution of 6.5 kb linearized plasmid. The
lanes marked with “e” are treated with exonuclease to remove linear
DNA; “RM” indicates ring monomers, “LM” linear monomers, and
“Multi” various lengths of linear structures. The numbers at the
top represent the concentrations of DNA. (b) Fraction of linear and
ring molecules of any size as a function of overlap parameter c/c∗.
(c) Mean-squared displacements (MSDs) of 800-nm PVP-coated
polystyrene beads diffusing in solutions of DNA. We compare the
MSDs in solutions treated for 1 week either with 40U T4 ligase or
buffer (control). (d) Viscosity of the ligated solutions η, normalized
by the viscosity of the control η0 vs η/η0 of the ligated solutions in
simulations. The inset shows the same plot in a log-linear scale to
highlight the exponential increase.

concentrations. We ran a small aliquot of the samples in a gel
and observed that indeed at c/c∗ � 0.1 the fraction of linear
chains overcomes the rings at large times [Figs. 7(a) and 7(b)].

At low concentrations, our microrheology shows that the
MSD of the tracer particles is unaffected by DNA ligation
[Fig. 7(c)]. On the contrary, for c/c∗ � 0.1, we find that the
MSDs of the tracers in the ligated systems are much slower
and display a stronger subdiffusive behavior than the control
[Fig. 7(c)]. From the MSD we extract the large time diffu-
sion coefficient D of the tracers and the effective viscosity
of the sample via the Stokes-Einstein equation [31]. The
plot of the normalized viscosity [Fig. 7(d)] suggests that a
dynamical transition takes place at around c/c∗ = 0.1 − 0.2
(or κ � 1 − 2), which matches the structural runaway tran-
sition seen before (Fig. 6). After the transition the viscosity
increases exponentially with the concentration [see inset of
Fig. 7(d)]. This suggests a relaxation process dominated by
end-retraction [34], possibly due to the threading of very long
linear chains through small rings [50–54] or pseudo-knotted
parts of their own extremely long contour [55,56]. We note
that, especially at large c/c∗, the ligated solution is extremely
elastic, and the passive tracers do not display a freely diffusive
behavior even after a lag time of 10 min. We thus argue
that the reported η/η0 may be lower bounds at large c/c∗,
which would render the transition even more dramatic. All
this implies that, intriguingly, near the transition c/c∗ � 0.1,
systems prepared at similar concentrations may display ex-
tremely different rheology at large condensation times. To

further support the existence of a qualitative change in the
dynamics, we compute the values of viscosity obtained in MD
simulations through the diffusion coefficient of the center of
mass of chains that have been ligated for long time at differ-
ent initial concentrations [see red circles in Fig. 7(d)]. One
can appreciate that our simulations also suggest a qualitative
difference in dynamics for c/c∗ � 0.1, albeit the transition
appears less dramatic than in experiments; we argue that this
may be due to finite-size effects present in MD simulations.

IV. CONCLUSION

We have studied a system of linear polymers undergoing
irreversible condensation in competition with cyclization. We
have shown that the key adimensional parameter controlling
growth kinetics is κ = 2κ0/(n0κ1), naturally interpreted as
the number of rings formed for any one dimerization. At
large concentrations (or κ < 1) dimerization is kinetically
favored and drives the growth of linear chains. While growth
disfavors cyclization, it also reduces the number of avail-
able reactive ends and the annealing rate of the chains [see
Eq. (7)], disfavoring further growth. Despite this, we discover
that the net result of this kinetic competition is a runaway
transition for κ < 1 if the cyclization rate decays strongly
enough with polymer length, i.e.m with ν > α/5, with ν the
metric exponent (typically 1/2 for random walks and 0.588
for self-avoiding walks) and α the dynamics exponent (typ-
ically 1 for Rouse and 2 for reptative dynamics). In these
conditions, the fraction of monomers transformed into rings
is finite, thus leaving the rest of the monomers available to
form a permanently growing linear chain which then drives a
runaway reaction.

We also discover that the runaway transition has deep
consequences on the rheology and triggers an exponential
increase for κ < 1 (or c/c∗ > 0.1). Our results suggest that
it may be possible to tune the final topological composition of
ligated systems by judiciously choosing c/c∗. For instance,
the most likely regime to form large rings and ring-linear
blends [51,52] is near the transition c/c∗ � 0.1. Mixing poly-
mer families with different reactive ends further enhances the
designability, as it introduces different c∗ for each family.
Our results can be used to optimize the conditions for DNA
engineering, e.g., transfection vectors [2] ought to be ligated
at c/c∗ < 0.1, whereas synthetic chromosome assemblies [57]
at large c/c∗. Finally, it may be possible to couple dissipative
DNA breakage reactions [48,58,59] with ATP-consuming lig-
ation to create dense solutions of self-sustained topologically
active viscoelastic fluids, which would be an interesting active
fluid to investigate in the future.

Source codes are available, see Ref. [60].
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APPENDIX A: TOPOLOGY RECONSTRUCTION
ALGORITHM

We will refer to the topology reconstruction code from now
on as TR. The code takes as input the instantaneous trajectory
and bond list from LAMMPS and checks for newly formed
linear and ring chains. The output of the PYTHON code is a
file containing the number and length of linear chains that
have formed in a given simulation time step. Similar files
are produced for the ring chains. These files are then used
to calculate the average length and the number of linear/ring
chain figures.

The starting point of the TR algorithm is an array b of size
Nb × 2; each row bi = (id1, id2) represents the IDs of atoms
that are bonded within the system:

b =

⎡
⎢⎢⎣

id1 id2

id3 id4
...

...

idNn−1 idNn

⎤
⎥⎥⎦.

Since not all particles are linked together, some do not appear
in the array b. To avoid operations with large sparse arrays,
the matrix b is mapped to b̃ that contains only indexes from 1
to the maximum number of atoms connected M : b → b̃.

The next step of the TR algorithm is to create a connec-
tivity matrix C based on the list b̃. Each row of C represents
an atom index and consists of three components C(idi, :) =
(idi−1, idi+1, f lag). Since in our case a particle can be linked
with two more particles, the first two components of each
row idi−1, idi+1 represent the connections of particle idi (note
that idi−1 and idi+1 are not necessarily consecutive in one
dimension but can be any other particle bonded to particle
i). The third component, f lag, takes only the values 0, 1 and
accounts for the particles idi that already belong to a polymer
chain. The flag column of C is initialized to zeros. During
the reading process of the connectivity matrix, the algorithm
switches the flags to one of the particles that are already
considered to belong in a chain. Rings are extracted in the
same manner, and a ring is found if the current atom index
is the same as the starting atom index. This reading process
outputs Nc arrays that have different lengths, and each of
them contains the particle (mapped) ids that are connected
in a polymer chain. The final step of the TR algorithm is to
map the atom indexed back to the original ones: M−1 : b̃ → b.
This algorithm is very generic and can be applied also in cases
where the atoms are not initially in polymers as in our case but
rather individual atoms that can connect during the simulation.

APPENDIX B: DESCRIPTION
OF THE MONTE CARLO STEP

In this paragraph we will describe the single Monte Carlo
(MC) step, which is repeated a large number of times dur-
ing the numerical resolution of Eq. (5) performed using the
DSMC algorithm. With reference to Eq. (5), we define n f ≡
V

∑∞
i=1 ni (total number of chains). Before the start of the

simulation, we give an estimate of the maximum annealing

rate kmax and of the maximum cyclization rate kmax
0 . The

exactness of the algorithm does not depend on this initial
choice; however, choosing values that are too far from the
actual maximum rates can lead to a reduced efficiency [23].

During every MC step, we either attempt to perform a
ligation reaction (with probability p) or a cyclization one (with
probability 1 − p). The value of p is calculated initially and
then updated during the simulation in such a way that the
average number densities n(l ) satisfy (5). At the beginning
of each MC step, p is evaluated as

p−1 = 1 + 2Nkmax
o

(n f − 1)nkmax
. (B1)

We will show below that this choice also guarantees that
the simulation samples the correct number of cyclization and
ligation events per unit volume and unit time as required by
Eq. (5).

We define a waiting time variable that is set to zero at the
beginning of the simulation. After each reaction, a waiting
time increment is generated. These increments are also chosen
to guarantee the correct number of ligation and fragmentation
reactions per unit of time and volume, as detailed below. We
can now describe the MC step, during which the following
actions are performed:

(1) We evaluate the probability of annealing p according
to Eq. (B1). The explicit form of p, Eq. (B1), will be discussed
in detail below.

(2) We pick a random number 0 � r � 1 from a uniform
distribution. If r � p, we attempt a ligation event:

(1) We pick a pair of elements of the array m, denoted
α, β at random. Since there are n f (n f − 1) ordered pairs
of chains, the probability of picking a specific pair is
[n f (n f − 1)]−1. Let the length associated with these ele-
ments be mα = i and mβ = j.

(2) We evaluate the ligation rate k1(i, j) for the two
chains. If k1(i, j) > kmax, we set kmax

1 = k1(i, j) and return
to (1). Otherwise, we continue.

(3) We pick another random number r′ and perform the
ligation if r′ � k1(i, j)/kmax

1 . If ligation is unsuccessful, we
return to (1). Otherwise, we continue.

(4) We increment the waiting time by �t lig
i, j =

2AN
n f (n f −1)nki j

. Here A is a parameter, the only condition of
which is that it must be between 0 and 1, as we discuss in
more detail below.

(5) After incrementing the waiting time, we update f
by setting mα = 0 and mβ = i + j.
(3) If r > p, we attempt a cyclization event:

(1) We pick a chain γ at random with probability n−1
f .

Let mγ = l .
(2) We evaluate the cyclization rate k0(l ). If k0(l ) >

kmax
0 , set kmax

0 = k0(l ) and return to (1). Otherwise, we
continue.

(3) We extract another random number 0 � r′ � 1
from a uniform distribution and perform cyclization if r′ �
k0(l )/kmax

0 . If cyclization is unsuccessful, we return to (1).
Otherwise, we continue.

(4) We increment the waiting time by �t cyc
l = 1−A

n f ko(l ) ,
with A defined above in step (2).

(5) We record the value of l in r and set mγ = 0.
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We now prove that the definitions of p [Eq. (B1)], the
waiting time increments �t lig

i, j (for ligation) and �t cyc
i,k−i (for

cyclization) give several ligation and cyclization events per
unit time, which is consistent with the Smoluchowski equa-
tion, Eq. (5). Over a single MC step, the mean number of
ligation events involving the ordered pair of filaments (α, β )
is

〈#Lα,β〉 ≡ p

n f (n f − 1)

k1(mα, mβ )

kmax
1

. (B2)

We note that in the algorithm we consider (mα, mβ ) as an
ordered pair, and thus in (B2) we consider the reaction
(i, j) → l as distinct from ( j, i) → l . The mean number of
ligation events involving any two chains with lengths i, j
can be obtained by multiplying the above quantity by 2(1 −
δi j/2)V 2nin j . The factor 2(1 − δi j/2) takes into account the
fact that, as mentioned above, for i �= j, there are two ways
to perform the ligation, whereas for i = j there is only one.
The factor V 2nin j is the product of the volume fractions of
filaments of lengths i and j. We thus have

2V 2nin j

(
1 − δi j

2

)
× p

n f (n f − 1)

k1(i, j)

kmax
1

= V k1(i, j)nin j

(
1 − δi j

2

)
�t, (B3)

where we have equated the mean number of ligation events
involving any two chains with lengths i, j to the value required
by the Smoluchowski equation. Recalling that n = N/V , we
thus find

�t = 2pN

n f (n f − 1)nkmax
1

. (B4)

Equation (B4) relates the time interval �t to the probability
of ligation. We will now obtain a second equality involving
p and �t , which will allow us to prove that the expression
Eq. (B1) for p guarantees the correct number of ligation and
cyclization events per unit time.

The mean number of cyclization events involving chains γ

is

〈#Cγ 〉 ≡ (1 − p)k0(mγ )

n f kmax
0

. (B5)

To obtain the mean number of cyclizations of a generic l −
mer we need to multiply this quantity by V nl , i.e., the volume
fraction of filaments of length l . Equating this quantity to the
expected number of rings formed in a time interval �t we
obtain

V nl × (1 − p)k0(l )

n f kmax
0

= k0(l )nlV �t, (B6)

and hence

�t ≡ 1 − p

n f kmax
o

. (B7)

By equating the two expressions for �t , Eqs. (B4) and (B7),
we find Eq. (B1). We have thus proven that the latter is the
correct expression of p, which gives the correct number of
cyclization and ligation events per unit time and unit volume,
as required by the Smoluchowski equation.

Finally, we will prove below that the constants A and 1 − A
introduced when calculating the waiting time increments are
consistent with Eqs. (B4) and (B7). To show this, it is suffi-
cient to observe that the total time increment during an MC
step is

�t =
∑

0�α<β�n f −1

〈#Lα,β〉�t lig
mα,mβ

+
mγ −1∑
i=1

〈#Cγ 〉�t cyc
mγ

=
∑

0�α<β�n f −1

[
pkmα,mβ

n f (n f − 1)kmax

][
2AN

n f (n f − 1)nkmα,mβ

]

+
mγ −1∑
i=1

[
(1 − p)ko(l )

nkmax
o

]
1 − A

n f ko(l )

= 2ApN

n f (n f − 1)nkmax
+ (1 − A)(1 − p)

n f kmax
o

. (B8)

One can see that this equality is consistent with Eqs. (B4)
and (B7). We note that the algorithm samples on average the
correct kinetics independently of the value of A, as long as
0 � A � 1. Here we take A = 1, meaning that the waiting
time increment is calculated only after a successful ligation
reaction but not after a successful cyclization reaction.

APPENDIX C: NUMERICAL INTEGRATION
OF MODIFIED SMOLUCHOWSKI

Solving the Smoluchowski equation to fit the data from
MD simulations consists of two main parts:

(1) We create an objective function for the lsqcurvefit
(called Obj_smoluchowski) that takes as input the array of
initial coefficient guess K0 = (κ1, κ0) and the time data array
xdata. It returns the average length as a function of time, array
ydata. In the objective function:

(1) An array L = n · l0 is initialized where n =
{1, 2, . . . , Nc = 200} and l0 = 174. This represents the set
of lengths that can be found in the system (recall that
we initialize our MD simulations with 200 chains of 174
beads each). Also, the arrays with the number density
of linear and ring chains are initialized as follows, nl0 =
(Nc/vol, 0, . . . , 0)1×Nc and nr0 = (0, . . . , 0)1×Nc , since ini-
tially all the molecules are linear chains. Here, vol denotes
the volume of the simulation box.

(2) for t = {1 to simulation final step time} do call
(nLnew , nRnew ) = exEuler_smoluchowski(nL, nR, K ) func-
tion (see point 2 below)

(3) update arrays nL = nLnew and nR = nRnew . Calculate
the total average length ltotal as

ltotal(t) = nLnew · L + nRnew · L∑Nm
i ni

Lnew
+ ∑Nm

i ni
Rnew

(4) exit for loop and parse ltotal(t) to ydata.
(2) The exEuler_smoluchowski function takes as input the

initial number densities of linear and ring chains and the reac-
tion rates nL, nR, K = (κ1, κ0). Based on the given rates K, it
outputs the final number density arrays nLnew , nRnew , after the
reactions have taken place. When this function is called, the
number densities of linear and ring chains of each population
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are updated according to Eq. (5). The monomer, dimer, and
so on populations are increased according to the first two
terms of Eq. (5), while the number of them that is converted
into rings is subtracted by the nLnew and added to the nRnew

array.
In the first two terms of Eq. (5a), the rate k1(i, j) is not a

scalar quantity but rather a matrix that follows the relation

Eq. (7). The extracted coefficient against which the fitting
is optimized is the scalar κ1. Similarly, for the sink term of
Eqs. (5a) and (5b), the equation k0(l ) = κ0l−4ν is used and
the fitting coefficient exported is the scalar κ0.

The coefficients K are updated iteratively by the lsqcurvefit
algorithm to best fit the data. Once the optimum values are
obtained, the algorithm terminates.
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