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Colloid phase separation dynamics driven by chiral turbulent flows
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Hydrodynamic interactions significantly influence phase-ordering kinetics in complex fluids. While passive
fluid phase separation is well studied, the impact of active components remains relatively unexplored. We
examine pure- and quasi-two-dimensional mixtures of attractive colloids and self-rotating particles in a solvent.
Varying rotor rotational speed and area fraction yield diverse dynamic patterns such as percolated networks
and round droplets composed of passive colloids alone. At intermediate rotation speeds, inertial chiral flows,
accompanied by the inverse energy cascade, lead to self-similar power-law coarsening with a growth exponent
of 1/2. The flows spontaneously organize within fluid domains, exhibiting turbulent and chiral characteristics.
Surprisingly, these turbulent flows can sustain hexatic order hydrodynamically stabilized by the Magnus force
under certain conditions. Conversely, at higher speeds, nonlinear hydrodynamic interactions impede phase sepa-
ration. Our findings illuminate the intriguing dynamic interplay between phase separation and chiral turbulence,
effectively bridging the realms of phase ordering and turbulent physics.
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I. INTRODUCTION

Phase separation is a fundamental phenomenon where an
initially uniform system spontaneously separates into dis-
tinct phases, a process of significant importance in various
domains, including the natural world [1,2], biology [3–5],
and industrial applications [6,7]. Recently, there has been
a renewed interest in phase separation, particularly due to
its believed role in forming intracellular compartments such
as nucleoli and stress granules [3,8]. In general, the phase-
separation pattern in passive systems evolves to reduce the
free-energy cost associated with the domain interface, a
process called “domain coarsening.” Typically, the pattern
evolves following the power-law growth of the domain size
〈�〉 with time t as 〈�〉 ∝ tν , where ν is the growth exponent.
The values of ν depend on the specific mechanisms [1], such
as evaporation-condensation [9,10] and the Brownian coag-
ulation coarsening [11,12] characterized with ν = 1/3 and
Siggia’s viscous hydrodynamics mechanism with ν = 1 [1].

Although phase separation in systems solely composed
of passive soft materials, including colloids [13–18] and
polymers [7,19–21], has been studied extensively, recent at-
tention has turned towards controlling domain coarsening
[22–27] and pattern formation [28–35] by introducing active
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components. The presence of active particles in complex and
crowded environments, even when intermixed with passive
particles, has garnered significant interest, as emphasized in
the comprehensive review by Bechinger et al. [36]. Particu-
larly, active components influence the system by generating
hydrodynamic interactions (HIs) as they move within the
fluid medium [37–43], resulting in intricate many-body dy-
namic couplings among particles, a facet that has received
relatively less attention. For example, Takatori et al. reported
phase-separation experiments on a binary mixture of active
actomyosin and passive lipid membrane [25]. Their findings
demonstrated that the hydrodynamic flow generated by the
active actomyosin yields an unusual coarsening exponent ν =
2/3 of attractive lipid membranes [25], a twofold acceleration
compared to the classical value of ν = 1/3 [1]. Moreover, it
has been shown that even a small quantity of self-propelled
colloids can influence the self-assembly of passive colloids
through HIs [31,34]. Active matter can also serve as a means
to generate an effective long-range attraction between two
parallel plates solely via HIs [43].

A notable category of active systems involves self-rotating
particles generating vortical flows [44–52]. These particles
are not only observed in biological systems [53–55] but are
also engineered in experiments [48,49,52]. In experimental
setups, the rotation speed (activity) of the rotors, such as
magnetic rotors, can be precisely controlled by manipulat-
ing the frequency and amplitude of the applied magnetic
field, enabling the creation of active turbulence [48]. Ro-
tors in a fluid medium exhibit collective behaviors and
self-organization primarily governed by HIs [46,51]. These
behaviors range from dynamic hexatic ordering for rotors with
single chirality [45,46] to the emergence of flowing bands
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and rotating droplets for mixtures of rotors with opposite
chiralities [45,51]. Recent work also demonstrated the ability
to utilize chaotic turbulence to create distinct flow patterns
trigger by the nonlinear effects of HI [56]. The authors have
proposed a scenario in which rotation is initiated at the micro-
scopic level through the rapid spinning of particles to attain
sufficient inertia effects. Phase-separation dynamics and edge
currents have been also explored in a system of rotating disks
with short-range attractive interactions [57].

In this work, we employ the fluid particle dynamics (FPD)
method [58,59] to investigate a two-dimensional (2D) binary
mixture consisting of attractive colloids and active rotors im-
mersed in a fluid. Strictly speaking, our active rotors should
be termed “driven rotors,” but we employ the term “active,”
as our results have implications for active matter. Through
systematic adjustments of the area fraction of passive colloids,
as well as the rotational speed and area fraction of active
rotors, we reveal a diverse state diagram. This diagram en-
compasses branched clusters, spherical droplets, percolated
networks, and nearly mixed states, all characterized by their
dynamic fluctuations. Under specific conditions, we observe
that attractive colloid domains exhibit power-law domain
coarsening with a growth exponent of ν = 1/2. This phe-
nomenon is attributed to the inertial chiral flow generated
by the active rotors. Interestingly, the characteristic inverse
energy cascade of 2D turbulence is is bounded by the fluid
domain size. We also observe an unconventional dynamically
fluctuating arrested state caused by nonlinear hydrodynamic
repulsions between rotating colloidal domains with the same
chirality. Furthermore, we conducted simulations on quasi-2D
colloidal monolayers confined between two plates. The results
unequivocally demonstrate the relevance of our findings, de-
rived from 2D simulations, for quasi-2D monolayers under
strong confinement, thereby providing a foundation for exper-
imental verification and further exploration of our system.

II. MODEL AND METHOD

Our model system comprises Nc attractive colloids and Nr

active rotors in a solvent within a 2D periodic box of length
L. Both colloids and rotors are modeled as fluid disks of vis-
cosity ηp expressed as ψi(r) = 1

2 {tanh[(a − |r − ri|)/ξ ] + 1},
where a is the particle radius, ξ is the interface thickness, and
ri is the position vector of particle i. The particles interact
via the shifted-truncated Lennard-Jones (LJ) potential with
energy coupling ε and cutoff rcut. We set rcut = 3σ for attrac-
tive colloid-colloid interaction and rcut = 21/6σ for repulsive
colloid-rotor and rotor-rotor interaction. To induce rotor rota-
tion, we apply an external force f i

T (r) = α|r − ri|ψi(r)ei
θ to

each rotor, where α > 0 is the strength of the torque and ei
θ is

the unit vector perpendicular to r − ri in the counterclockwise
direction [46,51].

We calculate the flow field v by using the FPD method
[58,59], which directly solves the Navier-Stokes equation
ρ( ∂

∂t + v · ∇)v = f + ∇ · (σ + σR), where ρ is the fluid den-
sity, f (r) = ∑

i f i
LJψi(r)/

∫
ψi(r′)dr′ + ∑

i f i
T is the force

field, f i
LJ is the LJ force of particle i, and η(r) = ηs +

(ηp − ηs)
∑

i=1 ψi(r) is the viscosity field; σ = η(r) [∇v +
(∇v)T ] − pI is the internal stress of the fluid, where I is the

unit tensor and p is the pressure determined to satisfy the in-
compressible condition ∇ · v = 0. The position of particle i is
updated by integrating the equation dRi(t )/dt = V i(t ), where
V i(t ) = ∫

d3r[vψi(r)] is the particle velocity. By choosing
ηp = 50ηs, we effectively suppress the flow within the par-
ticles, allowing us to approximate each particle as a rigid
body [58,59]. The competition between the stirring flow of
active rotors and the attraction between sticky colloids can
be characterized by a dimensionless parameter γ = ασ 4/ε.
We set the length unit as the lattice size l0, a = 6.4l0, ξ = l0,
σ = 2a + ξ , and ε = 100, while systematically adjusting α

to study the influence of active rotors. We use a system size
L = 2048l0, which is sufficiently large to avoid finite-size ef-
fects arising from the long-range nature of HIs. The time unit
is chosen as τ0 = ρl2

0 /ηs. We neglect thermal fluctuations,
which is valid for deep quench conditions. This setting enables
us to concentrate our investigation on the impact of HIs.

In quasi-2D simulations, we introduce flat walls at z =
0 and z = h, which are described by ψwall = 1

2 (tanh{[(L −
h)/2 − |z − (L + h)/2|]/ξ} + 1) with large viscosity ηp =
50ηs. The particles are confined in a monolayer and exhibit
free movement within a plane at z = 0.5σ . This setup mimics
an experimental situation, where colloidal particles dispersed
in a liquid settle due to gravity on the bottom plate. Anal-
ogously to the 2D disk scenario, we exert an external force
f i

T (r) = α|(r − ri )⊥|ψi(r)ei
θ to each 3D spherical rotor, where

α > 0 is the strength of the torque, (r − ri )⊥ is the vector
component of r − ri perpendicular to the rotation axis ez of
the sphere, ez is the unit vector in z dimension, and ei

θ is the
unit vector perpendicular to (r − ri )⊥ and parallel to x-y plane
in the counterclockwise direction. Due to computational con-
straints, we utilize a smaller box size L = 256l0 and a = 3.2l0
for quasi-2D simulations. We confirm that the incorporation
of ψwall effectively suppresses the flow penetration into the
upper and lower walls.

III. RESULTS AND DISCUSSION

A. Pattern formation and domain coarsening
in a symmetric binary mixture

We first explore a symmetric binary mixture with colloids
and rotors occupying an equal area fraction, φc = φr = 0.15.
Figure 1 shows pattern evolution over time, t , for various α

values. First, we observe that active rotors are entirely ex-
pelled from passive colloid domains into the fluid. Therefore,
we may treat active rotors as part of the fluid phase. Notably,
under α = 0.006 [Fig. 1(a)], we observe an interconnected
network structure, despite φc = 0.15 being far below the per-
colation threshold φ∗

c ≈ 0.22 of the purely passive system
[Fig. S1 in Ref. [60]]. This suggests that introducing slowly
rotating particles reduces the percolation threshold for attrac-
tive colloids, enabling network formation even at low φc.

Increasing α from 0.03 to 0.12 [Figs. 1(b) and 1(c)] trans-
forms the domain morphology of attractive colloids from
dynamically fluctuating isolated branched clusters to round
droplets rotating clockwise, opposing the rotor direction. This
transformation in morphology is observable even in the very
early stages of the phase-separation process. Interestingly, a
similar transition between network and cluster patterns has
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FIG. 1. Typical pattern formation and domain coarsening behaviors of a 2D binary mixture of colloidal particles (blue) and active rotors
(red). Here both the area fraction of passive colloids, φc, and that of active rotors, φr , are set to 0.15. With increasing α, the phase-separation
morphology of attractive colloids changes from (a) a percolated network structure (α = 0.006) to (b) branched clusters (α = 0.03), (c) round
droplets (α = 0.12), and (d) a nearly mixed state, where the domain coarsening is significantly suppressed (α = 0.24). Unlike ordinary phase
separation, these phase-separated structures undergo dynamic fluctuations induced by flows generated by rotors [refer to Supplemental movies
S1–S4 in Supplemental Material (SM) [60], corresponding to (a)–(d)].

been reported for a mixture of sticky colloids and Escherichia
coli bacteria [35]. However, in this system, the active agents
produce a pusher-type flow pattern [61] in the linear hydrody-
namic regime. Considering the differences in the flow pattern
and the nonlinearity, the underlying mechanisms are expected
to be fundamentally different.

The relationship between the radius of gyration Rg and
the particle number nc of each cluster indicates a fractal di-
mension d f of approximately 1/2 for the case of α = 0.12
[Fig. 2(b)]. In contrast, for α = 0.03, d f exceeds 1/2, par-
ticularly for larger aggregates [Fig. 2(a)], aligning with the
observed patterns [Figs. 1(b) and 1(c)]. Further increasing
α leads to an almost mixed state [Fig. 1(d)] at α = 0.24.
Strongly fluctuating flows suppress sharp interface forma-
tion and domain coarsening, resulting in fluctuating domains
whose sizes are not significantly different from the particle
size. This phenomenon can be explained by the competition
between the stirring flow induced by the rotors and the attrac-
tion between sticky colloids, characterized by a dimensionless
parameter γ = ασ 4/ε. Although theoretical estimation is
challenging due to many-body effects, our simulations suggest
that when γ � O(102), phase separation is nearly suppressed.
These observations align with previous studies linking fluid
turbulence to hindering domain growth [62–66]. Figure 1
also shows that in our system, pattern emergence is solely
governed by HIs without the need for competing energetic
interactions [67,68].

To quantify the domain coarsening, we calculate the char-
acteristic wave number 〈q〉 for various α values [Fig. 3(a)],
with l = 2π/〈q〉 representing the characteristic domain size
(see Ref. [60] for the definition of 〈q〉). Compared to the
case without rotors, denoted as “wo” [black line in Fig. 3(a)],
it is evident that the addition of rotors, which consis-
tently generates hydrodynamic flow, notably enhances domain
coarsening, except for α = 0.24 [purple line in Fig. 3(a)]. The
accelerated domain coarsening is responsible for the absence
of network formation when augmenting α to α � 0.03 since

elongated chainlike structures in the early stage rapidly evolve
into larger domains prior to percolating into a network.

Remarkably, 〈q〉 exhibits a power-law behavior 〈q〉 ∼ t−1/2

for α = 0.03, persisting for nearly a decade [blue line in
Fig. 3(a)]. Conversely, for α = 0.06 and 0.12, there is an ini-
tial transient period of 〈q〉 ∼ t−1/2, followed by the dynamical
arrest in the late stage [magenta and red lines in Fig. 3(a)],
indicating a gradual approach to a steady state. The smaller

FIG. 2. Characterization of cluster shape and pressure inhomo-
geneity of a binary mixture (φc = 0.15 and φr = 0.15). (a) Relation-
ship between the particle number nc and the radius of gyration Rg

of individual clusters for various times t . These results are obtained
from simulations with α = 0.03. (b) The same analysis as in panel
(a) but for simulations with α = 0.12. The dashed lines in (a) and
(b) exhibit a slope of 1/2. (c) Temporal evolution of the chord
length of colloid domains (blue curve; see Ref. [60] for chord length
analysis) and the spatial correlation length of the pressure field (red
curve; see main text for details) under α = 0.03 in (c) and α = 0.12
in (d).
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FIG. 3. Characterization of domain coarsening and the impact of inertial hydrodynamics on the phase-separation processes (at φc = φr =
0.15). (a) Temporal change of 〈q〉 for α = 0.006 ∼ α = 0.24 as well as the case without rotors (denoted as “wo”). We find a power-law
coarsening 〈q〉 ∼ t−1/2 under α = 0.03. The dashed line has a slope of −1/2. (b) Scaled structure factors 〈q〉d S(q, t ) at different times as
a function of q/〈q〉 (α = 0.03), which are collapsed on a single master curve, supporting the self-similar power-law domain coarsening.
(c) Scaled structure factors 〈q〉d S(q, t ) at different times as a function of q/〈q〉 at α = 0.12. These data cannot be collapsed onto a single
master curve, particularly in the low-q region, indicating the breakdown of power-law growth. In (b) and (c), the dashed lines possess a slope
of −(d + 1), which denotes the Porod law with the system dimension d = 2. (d) Top: Temporal change of the macroscopic-scale Reynolds
number Re, determined from the flow velocity and the chord length of the fluid phase as the relevant velocity and length scale, respectively,
for α = 0.03 ∼ 0.24. Bottom: Temporal change of the average rotational velocity Vrotate of individual clusters for α = 0.03 ∼ α = 0.12. [(e)
and (f)] The q dependence of the kinetic energy E (q) for α = 0.03 (e) and α = 0.12 (f). We can see that the kinetic energy spectrum exhibits
the characteristic form of E (q) ∼ q−5/3 within the intermediate q range, signifying the 2D turbulent nature of the hydrodynamic flow. Here
the power-law regime is rather limited due to the small system size. The results for a larger system size are presented in Fig. S2 in Ref. [60],
where the power-law regime spans a decade.

saturated domain size and the earlier onset of saturation for
α = 0.12 compared to α = 0.06 indicate an increased level
of inhibition of coarsening due to the stronger stirring flow
generated by rotors.

In general, the self-similar nature of patterns underlies
power-law domain coarsening [1]. Scaling wave number q
with 〈q〉, we observe 〈q〉d S(q, t ) at various times collaps-
ing onto a single master curve for α = 0.03 [Fig. 3(b); see
Ref. [60] for S(q, t ) definition]. This self-similar domain
growth supports power-law coarsening 〈q〉 ∼ t−1/2. In con-
trast, for α = 0.12, 〈q〉d S(q, t ) at different times does not
collapse on a single master curve in the late stage, consistent
with the deviation from 〈q〉 ∼ t−1/2 [Fig. 3(c)].

B. Hydrodynamic origin of active rotor-induced
domain coarsening

Due to the athermal nature, the transport and coarsening
of domains must involve a hydrodynamic origin. For phase
separation in a binary fluid mixture with significant inertial
effects, Furukawa predicted unconventional coarsening laws:
〈q〉 ∼ t−2/(d+2) for asymmetric composition and 〈q〉 ∼ t−2/3

for symmetric composition [69]. We calculate the temporal
change of the macroscopic-scale Reynolds number, Re, esti-
mated from the average flow velocity v and chord length �out

[70] of the fluid domains with active rotors (see definition of
�out in Ref. [60]). We consistently observe a monotonic in-
crease in Re over time, reaching approximately 102–103 after
t ≈ 103τ0 [Fig. 3(d), top], despite the small particle-scale Re
[∼O(10)]. This phenomenon arises from the self-organization
of flows confined within fluid domains, whose sizes increase
over time.

We compute the kinetic energy spectrum E (q) [Figs. 3(e)
and 3(f); see Ref. [60] for the definition of E (q)], identifying a
q regime where E (q) ∼ q−5/3, a fundamental characteristic of
2D turbulence [71]. We confirm that this power law persists
for a decade in a larger simulation system (L = 4096l0 and
α = 0.03), further supporting 2D turbulent flow (Fig. S2 in
Ref. [60]). Furthermore, we observe kinetic energy transfer
from the small rotor scale where energy is input [as evidenced
by the second peak in E (q)] to the larger fluid-domain scale,
supported by the shift of the first peak in E (q), indicating
an inverse energy cascade typical of 2D turbulence. The con-
finement of turbulent flow by the colloid-rich phase accounts
for the lower q bound of the power law. Collectively, these
findings suggest that rotating particles induce turbulent, in-
ertial hydrodynamic flow governing domain growth, resulting
in 〈q〉 ∼ t−1/2 [for α = 0.03; Fig. 3(a)]. This supports that this
growth exponent originates from 2D turbulent flow generated
by rotors.
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FIG. 4. Visualization of the pressure field P in a mixture (φc = φr = 0.15) at t = 15 000τ0 and t = 25 000τ0 for [(a) and (b)] α = 0.03
and [(c) and (d)] α = 0.12. The color represents the value of the local pressure (see the color bars), maintaining the incompressible condition
∇ · v = 0. Particles are displayed with a semitransparent overlay atop the pressure map. We find that the pressure field of the solvent exhibits
significant spatial inhomogeneity. This inhomogeneity is linked with the transport of isolated clusters and the resulting domain coarsening.
For α = 0.12 (d), the typical size of a high-pressure region far exceeds the domain size of isolated droplets at the late stage (t = 25 000τ0),
manifesting a slowdown of the coarsening process. Visualization of the flow-field vorticity ω, defined as ω = ∇ × v, where v = (vx, vy )
represents the velocity field, for cases [(e) and (f)] with α = 0.03 and [(g) and (h)] with α = 0.12. Here we employ a coarse-grained velocity
field at a length resolution of 16l0. It is observed that rotors and colloid domains exhibit vorticity with opposite signs, suggesting that the
turbulent flow generated in our system possesses chiralities rather than being structureless in the conventional sense.

For α = 0.12, after a period of power-law growth (〈q〉 ∼
t−1/2), the system eventually experiences dynamical arrest
with slowed domain coarsening [Fig. 3(a)], despite the rel-
atively high macroscopic-scale Re [Fig. 3(d), top]. The
rotational speed of droplet domains is notably higher for
α = 0.06 and α = 0.12, reaching a plateau in the late stage
[Fig. 3(d), bottom]. A similar dynamic arrest of domain
coarsening has been documented in symmetric binary fluid
mixtures subjected to 2D achiral turbulence in the absence of
active particles [72].

The motion of colloidal clusters and active rotors generates
a large-scale flow with a strongly inhomogeneous pressure
field (Figs. 4(a)–4(d); also see Fig. S3 in Ref. [60]). The char-
acteristic length scale of the pressure field expands as domain
coarsening progresses. Comparing the pressure field under
α = 0.03 [Figs. 4(a) and 4(b)] with α = 0.12 [Figs. 4(c) and
4(d)], we observe a significant increase in the characteristic
length scale of high-pressure domains with α, especially in
the late stage [t = 25 000τ0; Fig. 4(d)]. To quantify this phe-
nomenon, we calculate the spatial correlation of the pressure
field, defined as fP(r) = 〈P(0)P(r)〉/〈P(0)2〉, and determine
the correlation length as the distance at which fP decreases
to a threshold of e−1. Interestingly, for α = 0.03, we observe
that the characteristic length scale of the pressure field co-
herently increases with the domain size [Fig. 2(c)]. However,
when α is elevated to α = 0.12, the characteristic length
scale of pressure domains develops rapidly and eventually
surpasses the cluster size in the late stages [Fig. 2(d)]. Notably,
this crossover occurs at the timing when phase separation is
hindered and deviates from 〈q〉 ∼ t−1/2 [see the red line in

Fig. 3(a)]. These results collectively indicate that momentum
transport occurs at a length scale much greater than the col-
loidal droplet size. More specifically, the strong repulsion of
rapidly spinning rotors from the repulsive Magnus force [46]
prevents colloidal droplet coagulation, ultimately leading to a
deviation from power-law growth. This can be also seen from
the velocity field (Fig. S4 in Ref. [60]) where rotors tend to
maintain distance due to the repulsive Magnus force generated

FIG. 5. The general state diagram on the φr-α plane, with φc =
0.15. For each value of φr , we observe a pattern selection, transi-
tioning from a percolated network to branched clusters and finally
to rotating round droplets with increasing α. The red stars indicate
state points where we observe power-law coarsening behavior of
〈q〉 ∼ t−1/2 [69].
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FIG. 6. Pattern formation and domain coarsening of a binary mixture (φc = 0.15 and φr = 0.02). (a) Temporal change of 〈q〉 for α = 0.03,
α = 0.12, and α = 0.24. The dashed line represents a power law with ν = 1/2. The inset shows the scaled structure factors 〈q〉d S(q, t ),
which are collapse onto a single master curve, supporting power-law domain coarsening under α = 0.24 (also α = 0.12; data not shown).
(b) Temporal change of the macroscopic-scale Reynolds number Re for α = 0.03, α = 0.12, and α = 0.24. The inset shows the q dependence
of the kinetic energy spectrum E (q) for α = 0.24 where the dashed line has a slope of −5/3. [(c) and (d)] Pattern evolution as a function of
time t for (c) α = 0.03 and (d) α = 0.24. In (d), we observe that rotors self-organize into hexagonal arrangements. See Supplemental movie S5
in SM [60] for the phase-separation behavior illustrated in (d). (e) The temporal evolution of the hexagonal order parameter ψ6 at α = 0.24. It
reveals the emergence of hexagonal order within the rotor phase, evident even as early as t = 2500τ0. Subsequently, ψ6 maintains a consistently
high value despite the dynamical motion of the rotors. (f) The flow velocity field (vx, vy ) within a specified region at α = 0.24, showcasing
an edge flow pattern along the colloid domain boundary. Here we present a coarse-grained velocity field characterized by a length resolution
of 24l0.

by the local pressure difference between the rotating side and
the opposite side, reducing droplet coarsening tendency. We
also note that HIs induce an effective attraction between ro-
tating disks, as discussed in Ref. [46]. However, the repulsive
Magnus interaction prevails over this effective attraction for a
high area fraction of rotating particles [46,51], making it not
relevant in this situation.

Additionally, we analyze the flow-field vorticity for α =
0.03 [Figs. 4(e) and 4(f)] and α = 0.12 [Figs. 4(g) and 4(h)]
and observe that rotors and colloid domains exhibit vorticity
with opposite signs. These results correspond to their respec-
tive counterclockwise and clockwise rotations, confirming the
presence of large-scale chiralities within the turbulent flow
generated in our systems.

We note that, in a rotor-only system, the static state fea-
tures hexatic ordering and a uniform pressure field [46]. The

nonuniform pressure field in Fig. 4 results from complex
couplings between active rotors and passive attractive col-
loids. For large α, dynamical couplings between rotors and
colloids lead to the self-organization of large-scale vortex flow
[Figs. 4(g) and 4(h)], characterized by large pressure domains
with high and low pressures [Figs. 4(c) and 4(d)]. This aligns
with the slowing down of coarsening dynamics in later stages,
as neighboring colloidal droplets within the same pressure
domain cannot coalesce to form larger droplets.

Accordingly, increasing α has a dual impact on coarsen-
ing. Higher α induces inertial hydrodynamic flow, leading
to domain transport, but it also results in substantial non-
linear hydrodynamic repulsion between domains, especially
for round rotating droplets. This enhanced repulsion causes
dynamic arrest, leading to a deviation from power-law coars-
ening in the late stage. For α = 0.24, the macroscopic-scale
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FIG. 7. Phase-separation dynamics of a quasi-2D monolayer of colloidal particles and active rotors (φc = φr = 0.15) confined in a slab
geometry. (a) The initial random configuration of a 2D binary mixture of colloidal particles (blue) and active rotors (red). The thickness of the
slab is h = 2σ (σ : particle diameter), and particles’ centers of mass can move freely on a plane at z = 0.5σ . [(b)–(f)] Typical pattern formation
of a 2D binary mixture. Here both the area fraction of passive colloids, φc, and that of active rotors, φr , are set to 0.15. As the parameter α is
elevated, the phase-separation morphology of colloidal particles changes from (b) a percolated network and (c) elongated branched clusters
to [(d) and (e)] round droplets, ultimately leading to (f) a nearly mixed state. The observed transition patterns are essentially the same as
those identified in a 2D system (Fig. 1). (g) Temporal change of 〈q〉 for α = 0.12 ∼ α = 1.92 as well as the case of purely passive colloids
without rotors. We find a power-law coarsening 〈q〉 ∼ t−1/2 under the intermediate α = 0.24 and α = 0.48. The dashed line has a slope of
−1/2. (h) The q dependence of the kinetic energy E (q) for α = 0.48 at different times t during the power-law coarsening regime. The kinetic
energy spectrum illustrates the transfer of energy from the small rotor scale, where energy is input, to large-scale fluid domains. This transfer
is characterized by E (q) ∼ q−5/3 in the intermediate q range, a hallmark of 2D turbulence, albeit with a narrow power-law range. These results
confirm that the conclusions drawn from 2D simulations hold true for a quasi-2D monolayer system under sufficiently strong confinement
(h = 2σ ).

Reynolds number Re does not evolve with time and remains
constant [Fig. 3(d), top], indicating the disappearance of
large-scale coherent flow development, consistent with the
small domain scale [Fig. 3(a)].

C. Extension to asymmetric binary mixture and general
dynamic state diagram

To examine the generality of our findings, we also inves-
tigate asymmetric binary mixtures, varying the ratios of the
area fraction between passive colloids (φc) and active rotors
(φr). In Fig. 5, we present the state diagram on the φr-α plane,
maintaining φc = 0.15. We observe that the pattern selection
between percolated networks, branched clusters, and rotating
droplets persists for different values of φr < φc = 0.15. Near
the state boundary (marked with red stars), we consistently
note power-law domain coarsening behavior (see Figs. S5 and
S6 in Ref. [60] for detailed 〈q〉 at φr = 0.1 and φr = 0.05 and
Fig. 6 for φr = 0.02).

Interestingly, for φr = 0.02 and α = 0.12 ∼ 0.24, rotors
self-organize into hexagonal arrangements [Fig. 6(d)] in the
rotor-rich fluid phase, characterized by the hexagonal order
parameter ψ6 ≈ 1 [Fig. 6(e); see Ref. [60] for the definition of
ψ6], reminiscent of systems of pure rotors [46]. This hexago-
nal arrangement of active rotors likely results from reduced
spatial confinement of rotors at small φr values, enabling

hexatic ordering via nonlinear hydrodynamic repulsions due
to Magnus effects [46]. The flow velocity field at α = 0.24
also exhbits an edge flow pattern along the colloid domain
boundary [Fig. 6(f)], resulting in the rotation of the colloid
domains (See Supplemental movie S5 in SM [60]).

Remarkably, nonlinear hydrodynamics enables the coex-
istence of power-law self-similar growth of passive colloid
domains and hexatic ordering of active rotors in this case
(φr = 0.02 and α = 0.24). In the inset of Fig. 6(b), it is illus-
trated that the inverse energy cascade takes place in the fluid
domains exhibiting hexatic order. This observation suggests
an exotic dynamic coexistence between turbulence and static
spatial order, both of which originate from nonlinear hydro-
dynamics. Additionally, these findings suggest the presence
of a parameter space region, characterized by Re ≈102–103,
where power-law coarsening (〈q〉 ∼ t−1/2) is observed. Over-
all, Fig. 5 confirms that pattern selection, driven by varying α,
is a general phenomenon.

Increasing the colloidal area fraction to φc = 0.3, ex-
ceeding φ∗

c ≈ 0.22, transforms the pattern from a percolated
network to round droplets as α increases (Figs. S7(a) and
S7(b) in Ref. [60]). In all cases, we observe slowed domain
evolution in the late stage without achieving power-law coars-
ening (Fig. S7(c) in Ref. [60]). Notably, even in the late stage,
Re becomes much smaller at φc = 0.3, reaching Re � 102

(Fig. S7(d) in Ref. [60]).

023186-7



JIAXING YUAN AND HAJIME TANAKA PHYSICAL REVIEW RESEARCH 6, 023186 (2024)

FIG. 8. Phase-separation processes of a quasi-2D monolayer of
colloidal particles and active spherical rotors (φc = φr = 0.15) con-
fined in a slab. The thickness of the slab is h = 8σ (σ : particle
diameter), and particles’ centers of mass can move freely on a plane
at z = 0.5σ . (a) Typical pattern formation of elongated branched
clusters and round droplets under α = 0.24, α = 0.48, and α = 1.92.
(b) Temporal change of 〈q〉 for different settings of α. The inset
shows the initial random configuration of a quasi-2D binary mixture
of colloidal particles (blue) and active rotors (red). (c) The average
flow velocity magnitudes, denoted as vxy (in the x − y dimension)
and vz (in the z dimension), plotted against the height z. We observe
a greater intensity of flow velocity in the x − y plane compared to
the flow-field velocity in the z dimension. Moreover, the flow field
exhibits a gradual decay in the distant region from the monolayer
until the upper wall at z = h = 8σ . Here we show the flow field
under α = 0.48 at time t = 5000τ0. The observed patterns closely
resemble those observed under stronger confinement with h = 2σ ,
as shown in Fig. 7. However, we do not observe the power-law
behavior of 〈q〉 ∼ t−1/2 for intermediate α, unlike in the cases of
h = 0 and 2σ (Fig. 7), highlighting the influence of the additional
z dimension in facilitating the flow’s escape. (d) The rotating flow
pattern around a single active rotor for h = 8σ . (e) The flow-field
velocity v/(aω) in relation to r/a, where r is the distance to the
center, ω is the angular frequency, and (a) is the radius. The flow
velocity decays as 1/r outside the particle, which is a characteristic
feature of a 2D rotating disk, known as “Rankin vortex” [46]. This
feature consistently remains for h = 2σ but is absent for h = 8σ ,
indicating deviations from 2D hydrodynamics. The dashed line has a
slope of −1.

D. Applicability to quasi-2D colloidal monolayers

Finally, we explore the applicability of our findings in pure
2D systems for more realistic quasi-2D monolayers confined
between two flat substrates. We confirm the validity of our
findings for strong confinement (interplate separation h = 2σ ;
see Fig. 7). Note that the flow velocity is zero at the walls,

thus corresponding to no-slip boundary conditions (Fig. S8 in
Ref. [60]). For weaker confinement (e.g., h = 8σ ), the domain
patterns [Fig. 8(a)] still closely resemble those for h = 2σ .
However, unlike in 2D [Fig. 3(a)] and strongly confined quasi-
2D systems (Fig. 7), there is no power-law coarsening 〈q〉 ∼
t−1/2 observed for intermediate α, as depicted in Fig. 8(b).
These results indicate the non-negligible influence of the extra
dimension in facilitating flow’s escape [Fig. 8(c)] is responsi-
ble for a departure from 2D hydrodynamics [46,69]. In fact,
even at the single rotor level, as the separation between the
wall gradually increases, we observe a much faster decay of
the flow field surrounding a rotor [Figs. 8(d) and 8(e)]. This
observation highlights the significant influence of the confine-
ment effect in causing deviations from 2D hydrodynamics.

IV. CONCLUSIONS

In summary, we have investigated the pattern formation
and domain coarsening in a binary mixture of attractive
colloids and self-rotating particles by accounting for the
many-body hydrodynamic interactions through FPD method
[58,59]. We have demonstrated that hydrodynamic inter-
actions can induce various phase-separation morphologies,
including percolated networks, branched clusters, round
droplets, and nearly mixed states, in a binary mixture of at-
tractive colloids and active rotors in a solvent. Precise control
over domain shape and coarsening kinetics is achievable by
adjusting rotor area fraction and rotational speed.

Notably, the coarsening of colloidal particle domains ex-
hibits self-similar, power-law growth with an exponent of
ν = 1/2 under intermediate rotational speeds, attributed to the
inertial chiral hydrodynamic flow generated by active rotors.
Additionally, under certain conditions, nonlinear hydrody-
namics surprisingly facilitates the coexistence of self-similar,
power-law growth of passive colloid domains, and hexatic
ordering of active rotors in the fluid phase. We have also
identified an unconventional mechanism of dynamic arrest
induced by nonlinear hydrodynamic repulsions between rotat-
ing colloid domains when the activity of rotors is enhanced.
This phenomenon is unique to turbulence exhibiting chiral
symmetry breaking.

These findings collectively deepen our understanding of
the intricate dynamics observed in mixture systems of passive
colloids and active rotors. Furthermore, we performed hy-
drodynamic simulations of quasi-2D monolayers constrained
between two plates, a setup frequently used in experimental
settings. Our findings unequivocally confirm the applicabil-
ity of our results, mainly obtained from 2D simulations, to
quasi-2D monolayers under sufficiently strong confinement.
This sets the stage for experimental validation and further
exploration of our system.

Ordinary phase separation of passive soft materials in the
inertial hydrodynamic regime is seldom explored because
it only becomes relevant in the very late stages of domain
coarsening. For example, Kendon et al. [73,74] studied the
spinodal decomposition of a 3D symmetric binary fluid us-
ing lattice-Boltzmann simulations and successfully replicated
Furukawa’s prediction, 〈q〉 ∼ t−2/3 [69]. Due to its extensive
computational demands, particle-based simulations have not
tackled the inertial growth regime. One potential approach to
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achieve the inertial hydrodynamic regime involves turbulent
stirring of the fluid, explored in both experiments [62,64]
and simulations [65,66,75]. It has been observed that domain
coarsening is arrested after intense stirring, where power-law
growth has not been observed. Our system induces iner-
tial chiral hydrodynamic flow through fast-rotating particles,
leading to intriguing pattern selection and the replication of
Furukawa’s inertial growth law, 〈q〉 ∼ t−1/2 [69], albeit with
the addition of chirality, particularly for intermediate rota-
tional speeds. Interestingly, we observe that this phenomenon
is accompanied by an inverse energy cascade characteristic of
2D turbulence, constrained by the fluid domain size.

Simulating soft and active matter under the many-body
HIs poses a significant challenge. Our work offers guidance
for leveraging the hydrodynamic flow created by rotating

particles to drive phase separation and pattern formation in
passive materials. This facilitates further exploration into the
dynamics of nonequilibrium phase ordering in the nonlinear
inertial hydrodynamic regime, effectively connecting the do-
mains of phase ordering and turbulent physics.
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