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Verification of wave turbulence theory in the kinetic limit
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Using the 1D Majda-McLaughlin-Tabak model as an example, we develop numerical experiments to study the
validity of the wave kinetic equation (WKE) at the kinetic limit (i.e., small nonlinearity and large domain). We
show that the dynamics converge to the WKE prediction, in terms of the closure model and energy flux, when
the kinetic limit is approached. When the kinetic limit is combined with a process of widening the inertial range,
the theoretical Kolmogorov constant can be recovered numerically to a very high precision.

DOI: 10.1103/PhysRevResearch.6.023184

I. INTRODUCTION

Wave turbulence (WT) describes the out-of-equilibrium
statistical dynamics of multiscale wave systems. The theory
of WT has been successfully applied to various physical con-
texts, including ocean surface waves [1,2], internal gravity
waves [3,4], quantum turbulence [5], and gravitational waves
in the early universe [6]. For a given system, a statistical
closure model can be developed that connects the high-order
correlators of the wave field to pair correlators. When the
closure model is taken in the kinetic limit, i.e., infinitesi-
mal wave amplitude in an infinite domain, a wave kinetic
equation (WKE) can be derived which describes the spectral
evolution via a Boltzmann-like collision integral over wave-
wave interactions.

One of the most important features of the WKE is that
it yields stationary power-law solutions with constant flux,
known as Kolmogorov-Zakharov (KZ) spectra. For direct cas-
cades, the general form of the KZ solution of the wave action
spectrum can be written as nk = CPαkγ , where k is the wave
number, P is the energy flux, and α = 1/2 and α = 1/3 for
systems with three- and four-wave resonances, respectively.
C and γ are constants that can be calculated as a part of this
solution. Attempts to verify the KZ solution heavily focus on
the scaling exponent γ [7–10], with only a handful of them
targeting the Kolmogorov constant C. Among the latter, recent
experimental validations [e.g., 11,12] lead to larger discrep-
ancies with theory (as much as a factor of 20 difference),
partly due to the challenge of precisely measuring P from
experimental data. The studies that are relatively success-
ful consider well-controlled numerical simulations, including
turbulence of capillary waves [13–15] and Bose-Einstein
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condensates [16], which provide values of C respectively
about 40% above and 10% below the corresponding the-
oretical values. These two results signify that for a given
power-law spectrum with theoretical slope γ , the energy flux
computed from simulations are respectively about 0.5 and
1.3 [≈ (1/1.40)2, 1.13] times of that from the KZ solution.

The scarce and limited success in verifying the Kol-
mogorov constant indicates an insufficient understanding of
the validity of the WKE for stationary WT. This issue is more
subtle than verification of WKE at an evolving state (e.g.,
[17]), where spectral evolution serves as a natural measure
of success. We are mainly interested in two fundamental
questions in this work: (1) What are the major obstacles in
obtaining the theoretical value of C in simulations of dynam-
ical equations? In particular, what does it take to bring the
numerical value of C closer to the theoretical value than in
previous validations? (2) How is the KZ spectrum (and more
generally, the WT closure) realized in one-dimensional (1D)
systems? We note that 1D WT is in a sense more difficult to
describe than in higher dimensions [16–18] due to far fewer
interactions for any given spectral range. One example of a
1D system is the Majda-McLaughlin-Tabak (MMT) model
[7], for which the theoretical value of γ has been notoriously
difficult to reproduce numerically for more than 20 years.
This puzzle was resolved only recently in [9], where it was
shown that the theoretical value of γ can be recovered with a
much wider inertial range than those in previous studies. The
Kolmogorov constant for this 1D system, on the other hand,
has never been numerically studied.

With the two above questions in mind, we perform a nu-
merical study of the MMT model focusing on the Kolmogorov
constant in the stationary state. One feature distinguishing our
current study from all previous studies is that we numerically
probe the kinetic limit, by weakening nonlinearity while mak-
ing the domain large. We show that the theoretical value of
C can be recovered as a result of two limiting processes: (1)
as we approach the kinetic limit, the dynamics of the MMT
model converge to the WKE description, evaluated through
the closure model and energy flux; (2) as we enlarge the iner-
tial range, the value of C computed from the collision integral
converges to the theoretical value to very high precision. In
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component (1), we find that quasiresonances can lead to a
difference between the MMT simulation and WKE prediction
when the former is taken outside the kinetic limit as in [16].
In component (2), we find that an inertial range of at least 3.5
decades is needed for the convergence of C.

II. THE MMT MODEL AND KZ SOLUTION

The MMT model is a family of nonlinear dispersive equa-
tions for a complex field ψ (x) = ψ ∈ C that are widely used
in the study of WT [7,19–21]. This model’s popularity is in
part due to its relatively simple structure, which reproduces
many of the essential features of WT. Thus, it has been and
remains a test bed for wave turbulence theory, as many conclu-
sions drawn with this system are applicable broadly in wave
turbulence. The MMT equation of interest to this work reads

i
∂ψ

∂t
= |∂x|1/2ψ + |ψ |2ψ, (1)

where the derivative operator |∂x|1/2 produces a dispersion
relation ωk = |k|1/2, the same as surface gravity waves. We
consider the MMT equation on a 1D periodic domain of
length L, where we have ψ (t ) = ∑

k∈�L
ψ̂k (t )eikx, with �L ≡

2πZ/L.
The statistical description of (1) begins by defining the

wave action spectrum nk = L
2π

〈|ψ̂k|2〉, where the 〈·〉 denotes
an ensemble average (or a time average for statistically sta-
tionary data). In deriving the WKE governing nk , a statistical
closure needs to be taken which connects 4th-order correlation
of ψ̂k to nk , in the form of

Im〈ψ̂1ψ̂2ψ̂
∗
3 ψ̂∗

k 〉	 = 4πn1n2n3nk

×
(

1

nk
+ 1

n3
− 1

n1
− 1

n2

)
f (	), (2)

where 	 denotes the frequency mismatch of the four wave
modes k1, k2, k3, and k. The closure (2) can be derived in
various ways, assuming quasi-Gaussian statistics [1], or more
recently under the less restrictive assumption of a field with
random phases and amplitudes [22–24]. Depending on dif-
ferent methods of derivation, f (	) takes different forms of
a broadened delta function, namely a Lorentzian form [25]
or sinc-like functions [26,27]. At the kinetic limit, we have
f (	) → δ(	) and reach the WKE:

∂nk

∂t
=

∫∫∫
4πn1n2n3nk

(
1

nk
+ 1

n3
− 1

n1
− 1

n2

)

× δ(k1 + k2 − k3 − k)δ(	)dk1dk2dk3. (3)

One can further seek stationary solutions to (3) using the
so-called Zakharov transformation [25]. Of interest here is the
KZ solution associated with a finite energy flux from small
to large k, taking the form of nk = CP1/3k−1. Included in
Appendix A is a full derivation of the KZ spectrum, including
a correction to the previous work [19] leading to a new value
of C = 0.2984.

III. METHODS OF NUMERICAL STUDY

We simulate (1) with Gaussian forcing and dissipation
terms on the right-hand side via the pseudospectral method

developed in [7]. The simulated equation takes the form

i
∂ψ

∂t
= |∂x|1/2ψ + |ψ |2ψ + F − ν, (4)

where F and ν are defined in spectral domain. The dissipation
is given by

νk =
⎧⎨
⎩

3k−4 × iψ̂k 0 < |k| � 10
10−14(k − 900)8 × iψ̂k |k| � 900
0 otherwise.

(5)

Forcing is applied only on the interval 10 � |k| � 20, with
Fk ≡ Re[Fk] + iIm[Fk]. For each k, both the real and imagi-
nary components are sampled independently and identically
from a zero-mean Gaussian distribution whose standard de-
viation σF determines the effective forcing strength (and the
final nonlinear strength of the field). We dissipate at the small
scales to drive the system into a steady, out-of-equilibrium
state associated with an energy cascade toward large |k|. Dis-
sipation is added at the large scale to prevent the accumulation
via the inverse wave action cascade. Forcing and dissipation
of this type have been widely used in the study of the MMT
model (e.g., [9]).

For each simulation, we start from a quiescent field and
simulate until a stationary spectrum is reached, with the final
nonlinearity level measured by ε = H4/H2, where H2 and H4

are the linear and nonlinear components of total energy of
the unforced and undissipated system (1), respectively, given
by [7]:

H = H2 + H4 =
∫ ∣∣|∂x|1/4ψ

∣∣2
dx + 1

2

∫
|ψ |4dx. (6)

For the remainder of this work, ε will be computed from
the average values of H2 and H4 measured from statistically
stationary time data.

To numerically approximate the kinetic limit, we choose
four different forcing strengths resulting in four different final
nonlinearity levels ε, and for each forcing strength, we con-
duct simulations on domain of sizes L ∈ [2π, 4π, 8π, 16π ].
As L increases from 2π to 16π , the resolution in k space
progressively doubles with �k decreasing from 1 to 1/8, with
kmax = 1024 kept for all simulations. For a fair comparison
between domains of different L, we would like to keep key
quantities like the length-averaged Hamiltonian density H , ε,
and P approximately constant as L increases, while allowing
other quantities to vary. Choosing the parameters of each
numerical simulation to achieve this goal turns out to be a
nontrivial task. Given the definition of our Fourier series

ψ̂k = 1

L

∫ L

0
ψ e−ik·xdx, (7)

the spectral amplitude ψ̂k is normalized such that the length-
averaged total action does not depend on L, as can be seen via
Parseval’s theorem [26],

1

L

∫ L

0
|ψ |2dx =

∑
k∈�2

L

|ψ̂k|2. (8)

The key parameters that control the energy content of our
simulations are forcing and dissipation. Thus, we attempt
to keep the action injection rate, controlled by the standard
deviation of the Gaussian forcing σF , and the dissipation rate,
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controlled by νk , the same across domains of different L at
each ε of interest. After a careful scaling analysis, we deter-
mine that this is achieved by νk remaining constant in L, while
σF ∼ 1/

√
L. Under this scheme, we find H , ε, P, and other

related quantities remain close to constant as L increases.
With numerical data available, we are interested in study-

ing the behavior of the closure model (2), especially in the
context of a large number of quartets forming the energy
flux. The basis for this analysis is an exact evaluation and
decomposition of energy flux developed in [28]:

P(kb) =
∑
	

P	(kb), (9)

P	(kb) = −
∑

|k|<kb

ωk

∑
(k1,k2,k3 )∈S	,k

2Im〈ψ̂1ψ̂2ψ̂
∗
3 ψ̂∗

k 〉, (10)

where kb is the wave number through which the time-averaged
flux P is evaluated, S	,k ≡ {(k1, k2, k3)| k1 + k2 − k3 − k =
0, |ω1 + ω2 − ω3 − ωk| = 	}. Equation (9) describes the de-
composition of energy flux into contributions from quartets
with the wave number condition satisfied and with a mismatch
of 	 in frequency condition. The formulation of P	 in (10)
can be derived directly from (1) without any assumption [28].
With the closure model (2) substituted in (10), we have

P	(kb) = −
∑

k∈{k|k<kb}
ωk

∑
(k1,k2,k3 )∈S	,k

4πn1n2n3nk

×
(

1

nk
+ 1

n3
− 1

n1
− 1

n2

)
f (	). (11)

By computing the left-hand side of (11) through (10) and the
right-hand side via nk taken from our simulation data, we can
directly compute the functional form of f (	). Comparison
of the numerically resolved f (	) with the analytical function
then provides us a metric to evaluate the validity of the closure
model. We note that this method evaluates the performance of
(2) over a large number of quartets, which is shown in [28]
as the only meaningful way to study the closure model with a
single simulation. In addition, since the right-hand side of (11)
is exactly the energy flux calculated from a discrete form of
WKE with a broadened delta function, named quasiresonant
WKE (QRWKE) in [14], the closeness between numerical
and analytical f (	) also indicates the accuracy of the WKE
(or QRWKE) in reproducing the energy flux in dynamical
simulations.

Finally, before we present our results in full, we remark
that we have ensured that the averaged quantities we compute
from long time series are convergent. That is, averaging over
additional time data does not meaningfully change the values
we obtain. Some of the distributions we sample, as we will
show, have a relatively large standard deviation, meaning that
a large amount of data is needed to accurately compute these
statistics. Those few measurements where uncertainty is non-
negligible will be indicated. A full exposition and discussion
of the deviations and higher moments of the field, however, is
outside the scope of this work.

IV. RESULTS

We begin by showing in Fig. 1 the stationary spectra for all
16 simulations varying nonlinearity level ε ∈ (0.0066, 0.067)

FIG. 1. The directionally averaged compensated wave action
spectra nk/k−1 for each tested case. Colors denote L = 2π (blue),
L = 4π (red), L = 8π (magenta), and L = 16π (green). The four
distinct spectral levels denote the four values of ε. The KZ spectrum
associated with P(kb = 300) from the L = 16π case at each ε is also
plotted (dotted lines).

and domain size L. At high nonlinearity levels, we see good
agreement in spectral form for all L, indicating that even the
smallest domain size L = 2π is sufficient to capture the large-
L dynamics. At low nonlinearity (especially ε = 0.0066),
however, we see that the spectrum varies substantially as L
changes. In particular, the secondary peaks occurring at small
L reflect finite-size effects. They disappear as L increases, sug-
gesting a transition from the discrete to the kinetic turbulence
regime [8,29].

Also shown in Fig. 1 are the KZ solutions, with P com-
puted though kb = 300 for L = 16π for each ε. While we see
that the spectral slope gets closer to the KZ value of γ = −1
as as ε decreases, the inertial interval also shrinks, and perhaps
even departs slightly from a true power law. Additionally, the
spectral level of the numerical solution does not get closer to
the KZ solution as nonlinearity is decreased, indicating that
the numerically resolved Kolmogorov constant does not agree
better with its theoretical value. We note that this is not in
contradiction with the major theme of the paper. As discussed
below, we need to consider two limiting processes to precisely
reproduce the theoretical value of C: one taking the kinetic
limit, and the other increasing the width of the inertial range.

Before discussing the two limiting processes in detail, we
would like to mention another set of important results that
are made available by our detailed analysis. Measurement
of the long-time trajectory of the field enables resolution of
interscale energy flux and high-wave-number dissipation rate
probability density functions. We begin with measurements of
interscale energy flux P(kb = 300, t ), defined as

P(kb, t ) =
∑

|k|<kb

ωk
d|ψ̂k|2

dt
, (12)

where the derivative on the right-hand side may be computed
from (1) in its spectral form given some statistically stationary
field ψ̂k (t ). Results only for the highest nonlinearity case are
shown in Fig. 2(a); however they are representative of the
other cases. P(t ) takes a Gaussian distribution whose standard
deviation is much larger than its mean.

This is a similar result to our previous work in a 2D MMT
model with a nonlinear Schrödinger equation–like dispersion
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FIG. 2. The distributions of P(kb, t ) (a) and Pd (t ) (b) for the high-
est ε data, for L = 2π (blue), L = 2π (red), L = 2π (magenta), and
L = 2π (green). The distributions given by the solid curves represent
Gaussian (a) and log-normal (b) distributions of equal mean and
variance to the data they outline.

relation [28], suggesting a Gaussian energy cascade is a gen-
eral feature of wave turbulence. In fact, a simple argument
supports a Gaussian energy cascade: first, consider the form
of (12), which expresses the instantaneous interscale flux as a
sum over a large number of modes. If the the instantaneous
time rate of change of energy at each of these modes is
assumed to be independent, then the central limit theorem
(CLT) can be used to show that P(kb, t ) approaches a Gaussian
distribution as the number of modes in the domain becomes
large. Similar arguments can be used in conjunction with (1)
and (8) to derive the observed scaling of the standard deviation
σ (P(kb, t )) ∼ 1/

√
L.

In Fig. 2(b), we provide the steady time distribution of
high wave number dissipation rate, derived directly from the
dissipation term to be

Pd (t ) ≡ −
∑

|k|>900

2ωkνk|ψ̂k|2. (13)

The distribution is log-normal, and the standard deviation
exhibits the same 1/

√
L scaling due to similar arguments.

Log-normal distributions of dissipation rate have been de-
scribed in flow turbulence [30,31]; however we are not aware
of similar results in WT. Now, we proceed to our discussion
of the kinetic limit.

FIG. 3. The measured closure function f (	) (solid curves) for
each tested L = 16π case, denoted from highest to lowest ε by green,
magenta, red, and blue, respectively. A fitted Lorentzian closure
f (	) for each case (dashed curves). The fluctuations seen for large
	 are due to uncertainty in the measurement of the mean of high-
variance data. Measurements of f (	) for small 	, which determines
the bulk of the dynamics, are fully converged.

A. Limiting process 1: Kinetic limit

In this section, we will show that as the kinetic limit is
taken, the measured energy flux indeed converges to the pre-
diction of the WKE. Following methods introduced in Sec. III,
we plot f (	) for different nonlinearity levels at L = 16π ,
together with the analytical Lorentzian form a/π (a2 + 	2)
[25] with values of a that best fit the data, in Fig. 3. We see
that the analytical form fits the data remarkably well, and that
as nonlinearity is decreased with sufficient domain size, the
function f (	) approaches a true delta function. These results
indicate that the long-time dynamics indeed follow the WT
closure and converge to the WKE description as the kinetic
limit is taken. Due to the broadening of f (	), these results
also suggest that dynamics away from the kinetic limit may be
better represented by the QRWKE. Since the Lorentzian form
of the delta functions contains long tails, it is expected that a
large number of quasiresonances are active in dynamic sim-
ulations away from the kinetic limit. These quasiresonances
are therefore key factors resulting in difference in energy flux
from dynamical simulations and WKE calculations as seen in
[16].

B. Limiting process 2: Wide inertial range

The convergence of dynamics to the WKE prediction at the
kinetic limit does not guarantee that the simulated spectrum
converges to the KZ solution, as we have demonstrated. As a
result, the Kolmogorov constants evaluated for the simulated
spectrum using the dynamic flux (10) and kinetic flux (11)
with f (	) → δ(	) are very close to each other but are far
away from the theoretical value [see symbols in Fig. 4(b)].
To understand this situation, recall that, given a valid WKE,
the realization of the KZ solution requires the dominance of
local interactions, which in turn requires a sufficiently wide
inertial range. The width of inertial range seems to be espe-
cially important for 1D models such as MMT, as evidenced
in [9] on the sensitivity of γ to the width. It is our objective
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FIG. 4. (a) The relative contribution of (nonlocal) interactions with the forcing range to the average small-scale dissipation rate for varying
ε, plotted for the (representative) L = 16π case. (b) Value of C for varying inertial interval length kc/ka. Filled square denotes C computed via
the kinetic flux for the simulated spectrum. Filled circles denote C computed via dynamic flux for the simulated spectrum.

to show next that our numerical solution is indeed contami-
nated by nonlocal interactions, and that a much wider inertial
range is needed to precisely recover the theoretical value
of C.

We first quantify the influence of the forcing-range spectral
peak (as the source of non-local interactions) on the high-
wave-number portion of the spectrum. Considering the sta-
tionary state, we explicitly decompose the average small-scale
dissipation rate via Pd = Jnl + Jl , where J is the small-scale
energy evolution due to nonlinear interactions with subscripts
nl and l denoting contributions from nonlocal and local in-
teractions, respectively. An interaction is considered nonlocal
if at least one wave number resides in the forcing range
(10 � |k| � 20). To compute these nonlocal contributions di-
rectly from our numerical data in an efficient way, we refine
methods developed in [32]. The full technique is presented in
Appendix C, and the resulting ratio Jnl/Pd is depicted in
Fig. 4(a). At low nonlinearities, about 40% of the interscale
energy flux is due to nonlocal interactions, clearly violat-
ing the assumptions of the KZ spectrum. Interestingly, the
nonlocal contribution decreases as nonlinearity is increased,
explaining the longer power-law range at higher nonlinearity
seen in Fig. 1.

We finally demonstrate precise convergence to the the-
oretical value of C as the width of inertial range is made
larger. This is achieved by evaluating kinetic flux PW KE for
an idealized spectrum nk = k−1 with cutoffs at both low and
high wave numbers ka and kc. Here PW KE ≡ ∫ kb

ka
ωk∂nk/∂t

with ∂nk/∂t computed from the collision integral of the WKE
(3), which is exactly the right-hand side of (11) with f (	) →
δ(	). Details on our method for evaluation of the collision
integral are available in Appendix B. Specifically, we keep
ka = 10 and progressively move kc to a higher wave number
to represent the widening of the inertial range, with PW KE

evaluated at kb = 560. Figure 4(b) plots the value of C as a
function of kc/ka. At kc/ka ≈ 100, some discrepancy is seen
between C evaluated on the simulated and idealized spectra,
due the differences in form between the two spectra. With the
increase of kc/ka, we see that the value of C converges to
the theoretical value with very high precision. We find that
an inertial range of about 3.5 decades is needed to obtain
converged and accurate result for C. This is much longer than
what is needed to recover the theoretical γ in the MMT model
[9] and what is needed for C in high-dimensional models [16].

In addition, we note that for the MMT model we consider,
γ = −1 is far from the boundaries of the locality window
−7/4 < γ < 1/2 [19]. The long inertial range needed to
recover the KZ solution is therefore more likely a general
feature of the 1D wave turbulence. We also comment that
recent theoretical work [33] demonstrates that higher-order
corrections to the WKE lead to ultraviolet divergences for the
KZ spectra. Our conclusion that the KZ spectrum is recovered
for a very long inertial interval is not a contradiction to this
theoretical development as we have considered the WKE only
up to leading order.

V. CONCLUSION

We present a detailed numerical study on the MMT model,
focusing on the realization of the Kolmogorov constant and
the WT closure. We show that the Kolmogorov constant can
be precisely recovered following two limiting processes: the
first as the kinetic limit is taken where the dynamics converges
to the WKE prediction in terms of the WT closure model
realized through energy flux; the second as the inertial-range
spectrum is made sufficiently wide so that enough interactions
over the inertial range are captured.
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APPENDIX A: DERIVATION OF THE
KOLMOGOROV-ZAKHAROV SPECTRUM

The derivation of the KZ spectrum begins with the wave
kinetic equation (WKE) (3). While it is not in general nec-
essary [26], we adopt the popular assumption of an isotropic
spectrum. In one-dimensional systems, this takes the form of
nk = n−k . Each of k1, k2, and k3 can take a positive or negative
sign in the delta function of (3), producing 8 possibilities.
However, not every combination of these signs produces a
nontrivial resonance. A trivial resonance is one that satisfies
the resonance conditions by having k1 = k3 and k2 = k, or
k2 = k3 and k1 = k. For these cases, the integrand of (3) takes
a zero value, so they may be ignored. After these trivial cases
are removed, we are left with

∂nk

∂t
= 4π

∫ ∞

0

∫ ∞

0

∫ ∞

0
n1n2n3nk

(
1

nk
+ 1

n3
− 1

n1
− 1

n2

)

× δ(ω1 + ω2 − ω3 − ωk )[δ(k1 + k2 + k3 − k)+
× δ(k1 − k2 − k3 − k) + δ(−k1 + k2 − k3 − k)

+ δ(−k1 − k2 + k3 − k)]dk1dk2dk3. (A1)

It will later become important to integrate over the resonant
manifold (described by the δ functions), which is much easier
to interpret as quadratic functions in ω = k1/2. Therefore, we
next rewrite the above equation as an integral over ω, and
replace (on the left-hand side) nk , the spectral density in k,
with Nω, the spectral density in ω. This leads to

∂Nω

∂t
= 128π

∫ ∞

0

∫ ∞

0

∫ ∞

0
(ω1ω2ω3ω)n1n2n3nω

×
(

1

nω

+ 1

n3
− 1

n1
− 1

n2

)
δ(ω1 + ω2 − ω3 − ω)

× [
δ
(
ω2

1 + ω2
2 + ω2

3 − ω2) + δ
(
ω2

1 − ω2
2 − ω2

3 − ω2)
+ δ

(−ω2
1 + ω2

2 − ω2
3 − ω2

)
+ δ

(−ω2
1 − ω2

2 + ω2
3 − ω2

)]
× dω1dω2dω3, (A2)

where nω = n(k(ω)), and we have used the facts that dk =
2ωdω and N (ω)dω = n(k)dk + n(−k)dk = 2n(k)dk. We
note that the factor of 2 on the spectral element relation is
necessary for a consistent and correct flux definition.

We now assume that nω = Aωγ , where γ refers to an
arbitrary exponent that will later be used to determine

the KZ exponents. Substituting this into (A2), we are left
with

∂Nω

∂t
= 128πA3

∫ ∞

0

∫ ∞

0

∫ ∞

0
ω

γ+1
1 ω

γ+1
2 ω

γ+1
3 ωγ+1

× (
ω−γ + ω

−γ

3 − ω
−γ

1 − ω
−γ

2

)
δ(ω1 + ω2 − ω3 − ω)

× [
δ
(
ω2

1 + ω2
2 + ω2

3 − ω2
) + δ

(
ω2

1 − ω2
2 − ω2

3 − ω2
)

+ δ
(−ω2

1 + ω2
2 − ω2

3 − ω2
)

+ δ
(−ω2

1 − ω2
2 + ω2

3 − ω2)]
× dω1dω2dω3. (A3)

Next we employ the Zakharov transformations [25,26], which
are a set of conformal transformations one applies to the inte-
grand that result in the reduction of the sum of delta functions
to a single delta function. This new structure of the integrand
will allow us to (a) explicitly see the zeros of the equation and
(b) explicitly compute the Kolmogorov constant C. See [7]
for an intuitive, geometric description of how these trans-
formations achieve these effects assuming only a self-similar
spectrum. We distribute the sum of delta functions to expand
the integrand into 4 terms, and we handle each separately. The
first term,

∂Nω

∂t

(1)

= 128πA3
∫ ∞

0

∫ ∞

0

∫ ∞

0
ω

γ+1
1 ω

γ+1
2 ω

γ+1
3 ωγ+1

× (
ω−γ + ω

−γ

3 − ω
−γ

1 − ω
−γ

2

)
× δ(ω1 + ω2 − ω3 − ω)

× δ
(
ω2

1 + ω2
2 + ω2

3 − ω2
)
dω1dω2dω3, (A4)

is the form onto which we will map the other terms. We have
used a superscript (1) to denote that we are referring to the first
term. Now, as an example, we manipulate the second term in
full,

∂Nω

∂t

(2)

= 128πA3
∫ ∞

0

∫ ∞

0

∫ ∞

0
ω

γ+1
1 ω

γ+1
2 ω

γ+1
3 ωγ+1

× (
ω−γ + ω

−γ

3 − ω
−γ

1 − ω
−γ

2

)
× δ(ω1 + ω2 − ω3 − ω)

× δ
(
ω2

1 − ω2
2 − ω2

3 − ω2
)
dω1dω2dω3, (A5)

to which we apply the following transformations: ω1 =
ω2/ω′

1, ω2 = ωω′
2/ω

′
1, and ω3 = ωω′

2/ω
′
1. Under these trans-

formations, dω1dω2dω3 = ( ω
ω′

1
)4dω′

1dω′
2dω′

3, and (A5) be-
comes, after some reduction,

∂Nω

∂t

(2)

= 128πA3
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
ω

ω′
1

)3γ+5

ω
′γ+1
1 ω

′γ+1
2 ω

′γ+1
3 ω′γ+1

× (
ω

′−γ

1 + ω
′−γ

3 − ω′−γ − ω
′−γ

2

)
δ(ω′ + ω′

2 − ω′
3 − ω′

1)

× δ
(
ω′2

1 + ω′2
2 + ω′2

3 − ω′2)dω′
1dω′

2dω′
3. (A6)

We note that the identity
∫

δ(ax)dx = ∫
δ(x)/|a|dx is used to simply the above expression. The integrand of (A6) almost reflects

(A4) with an additional factor of (ω/ω′
1)3γ+5. If one carefully looks at the signed terms in the equation, however, it becomes

apparent that certain indices have become switched as a result of our transformation. The choice of indices is arbitrary, so we
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renumber them according to 123 → 132. This leaves us with

∂Nω

∂t

(2)

= − 128πA3
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
ω

ω′
1

)3γ+5

× ω
′γ+1
1 ω

′γ+1
2 ω

′γ+1
3 ω′γ+1(ω′−γ + ω

′−γ

3 − ω
′−γ

1 − ω
′−γ

2

)
× δ(ω′

1 + ω′
2 − ω′

3 − ω)δ
(
ω′2

1 + ω′2
2 + ω′2

3 − ω′2)dω′
1dω′

2dω′
3. (A7)

In this form, the symmetry with (A4) is obvious. We perform the remaining Zakharov transformations (see [25] for the forms of
the other transformations), sum the four terms, and drop the primes from our notation. This results in

∂Nω

∂t
= 128πA3

∫ ∞

0

∫ ∞

0

∫ ∞

0
ω

γ+1
1 ω

γ+1
2 ω

γ+1
3 ωγ+1

(
ω−γ + ω

−γ

3 − ω
−γ

1 − ω
−γ

2

)

×
[

1 +
(

ω3

ω

)y

−
(

ω1

ω

)y

−
(

ω2

ω

)y]
δ(ω1 + ω2 − ω3 − ω)

× δ
(
ω2

1 + ω2
2 + ω2

3 − ω2
)
dω1dω2dω3, (A8)

with y ≡ −3γ − 5. Careful consideration of the resonance
conditions reveals that (A8) is an integral over the intersection
of the plane ω1 + ω2 − ω3 − ω = 0 and the sphere ω2

1 + ω2
2 +

ω2
3 = ω2 for any given ω. Thus, we do not need to consider

integrating over any ωi > ω. This enables a reparametrization
in terms of some ξi = ωi/ω ∈ [0, 1], so that (A8) becomes

∂Nω

∂t
= 128πA3ω−y−1I (y) = 128πA3ω−y−1

×
∫ 1

0

∫ 1

0

∫ 1

0
(ξ1ξ2ξ3)γ+1

(
1 + ξ

−γ

3 − ξ
−γ

1 − ξ
−γ

2

)
× (1 + ξ

y
3 − ξ

y
1 − ξ

y
2 )δ(ξ1 + ξ2 − ξ3 − 1)

× δ
(
ξ 2

1 + ξ 2
2 + ξ 2

3 − 1
)
dξ1dξ2dξ3. (A9)

This is the form of the WKE that allows for the solution of γ

corresponding to stationary solutions.
One can see by the second product in the integrand that

if γ = 0, the right-hand side of (A9) is identically 0. This
corresponds to equipartition of wave action; i.e., nω is con-
stant. Also, if γ = −1, then the second product is identically
0 whenever the resonance condition is satisfied, also lead-
ing to a 0 of the collision integral. This solution nω = A/ω

corresponds to the Rayleigh-Jeans spectrum. Neither of these
solutions corresponds to wave turbulence, but rather they are
equilibrium solutions. The KZ solutions are given by y = 0
and y = 1, which produce 0′s of the collision integral by the
same arguments as the equilibrium solutions. Setting y = 0,
one obtains nω = Aω−5/3, and for y = 1, one obtains nω =
Aω−2. To determine which of these out-of-equilibrium spec-
tra correspond to the forward cascade of energy and which
corresponds to the inverse cascade of wave action, one may
use the ordering of the exponents γ relative to the equilibrium
spectra [26], or Zakharov’s method via evaluating (A9) [19],
while in both cases being careful to ensure the flux directions
are not nonphysical via comparison to the equilibrium spectra
[19,25,26]. In [19], it is demonstrated that the forward and in-
verse cascade for our system have physical cascade directions
and that y = 1 (with γ = −2) corresponds to the forward
cascade.

Next, we derive the Kolmogorov constant C. The energy
flux through frequency ω is defined by a control volume

argument in spectral space as

P(ω) ≡ −
∫ ω

0
ω′ ∂N

∂t
(ω′)dω′ = −128πA3 ω1−y

1 − y
I (y),

(A10)

where a negative sign is introduced to ensure that a positive
flux corresponds to a cascade of energy from large to small
scales (long to short timescales via the dispersion relation).
For the forward cascade with y = 1, the computation of P(ω)
involves the limit of an indeterminate quantity, which can be
obtained via L’Hospital’s rule to be

P(ω) = 128πA3 lim
y→1

dI (y)

dy
. (A11)

The limit of the desired derivative, S, is given by

S = lim
y→1

dI (y)

dy
=

∫ 1

0

∫ 1

0

∫ 1

0
(ξ1ξ2ξ3)−1

(
1 + ξ 2

3 − ξ 2
1 − ξ 2

2

)
× (ξ3 ln ξ3 − ξ1 ln ξ1 − ξ2 ln ξ2)δ(ξ1 + ξ2 − ξ3 − 1)

× δ
(
ξ 2

1 + ξ 2
2 + ξ 2

3 − 1
)
dξ1dξ2dξ3, (A12)

where we have used the fact that limy→1
dxy

dy = x ln x. In the
next section, we develop a precise method to numerically
evaluate (A12) to find S = 0.09353. We now compute the
relationship between A and P(ω), revealing the Kolmogorov
constant C via

A = CP1/3 = (128πS)−1/3P1/3, (A13)

resulting in C = 0.2984. Given that C is positive, we can now
be sure that the cascade direction is correct. Thus, the KZ
spectrum associated with the forward cascade process in our
MMT equation is given by nω = 0.2984P1/3ω−2, or, via the
linear dispersion relation, nk = 0.2984P1/3k−1. We note that
this value of C is different from the result of Zakharov et al.
[19], due to their missing factor of 2 in the spectral element
relation N (ω)dω = 2n(k)dk.
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APPENDIX B: NUMERICAL INTEGRATION
OVER THE RESONANT MANIFOLD

1. Evaluation of S

We are interested in integrating (A12). For simplicity, we
will refer to the non-delta part of the integrand by f (ξ1, ξ2, ξ3)
so that

f (ξ1, ξ2, ξ3) ≡ (ξ1ξ2ξ3)−1
(
1 + ξ 2

3 − ξ 2
1 − ξ 2

2

)
× (ξ3 ln ξ3 − ξ1 ln ξ1 − ξ2 ln ξ2). (B1)

This leaves

S =
∫ 1

0

∫ 1

0

∫ 1

0
f (ξ1, ξ2, ξ3)δ(ξ1 + ξ2 − ξ3 − 1)

× δ
(
ξ 2

1 + ξ 2
2 + ξ 2

3 − 1
)
dξ1dξ2dξ3. (B2)

The first of these delta functions is linear in ξ1. Making use of
the property∫ 1

0
g(x)δ(x − a)dx = g(a) for 0 � a � 1, (B3)

we can integrate over ξ3 to obtain

S =
∫∫

�(ξ1,ξ2 )

f (ξ1, ξ2, ξ1 + ξ2 − 1)

× δ
(
ξ 2

1 + ξ 2
2 + (ξ1 + ξ2 − 1)2 − 1

)
dξ1dξ2. (B4)

Integrating over the region �(ξ1, ξ2) ≡ {0 < ξ1 < 1, 0 <

ξ2 < 1, 1 < ξ1 + ξ2 < 2} simply ensures 0 < ξ3 < 1. We

would like to now apply (B3) again; however we require a
transformation so that the argument ξ 2

1 + ξ 2
2 + ξ 2

3 − 1 is of
the required form. To do this, we transform the inner integral
to one with respect to du, where u = ξ 2

1 + ξ 2
2 + (ξ1 + ξ2 −

1)2 − 1 and du = 2(2ξ1 + ξ2 − 1)dξ1. This leaves

S =
∫∫

�(u,ξ2 )

f (ξ1(u), ξ2, ξ1(u) + ξ2 − 1)
2[2ξ1(u) + ξ2 − 1]

δ(u)dudξ2. (B5)

Now, we may apply (B3), being careful to include only the
part of u(ξ1, ξ2) = 0 that lies in �(ξ1, ξ2). After some manip-
ulation of our definition of u we find that, of the two branches
for which u = 0, the one with

ξ1 = 1 − ξ2 + √
(1 − ξ2)(3ξ2 + 1)

2
, 0 < ξ2 < 1, (B6)

is in the region �(ξ1, ξ2). After applying (B3),

S =
∫ 1

0

f (ξ1(ξ2), ξ2, ξ1(ξ2) + ξ2 − 1)

2
√

(1 − ξ2)(3ξ2 + 1)
dξ2. (B7)

This form of S is suitable for numerical integration, where the
integrand as ξ2 → 1 (from below) can be shown to approach
zero via L’Hospital’s rule.

2. Evaluation of the WKE collision integral

Just as in the evaluation of dI (y)
dy , this explicit al-

gebraic approach works to evaluate (A2). To start, we
rewrite (A2) in terms of the function f (ω1, ω2, ω3, ω) =
ω1ω2ω3ωn1n2n3nω( 1

nω
+ 1

n3
− 1

n1
− 1

n2
):

∂Nω

∂t
= 128π

∫ ∞

0

∫ ∞

0

∫ ∞

0
f (ω1, ω2, ω3, ω)

[
δ
(
ω2

1 + ω2
2 + ω2

3 − ω2) + δ
(
ω2

1 − ω2
2−ω2

3 − ω2)
+ δ

( − ω2
1 + ω2

2 − ω2
3 − ω2

) + δ
( − ω2

1 − ω2
2 + ω2

3 − ω2
)]

dω1dω2dω3. (B8)

For each δ function with quadratic arguments in ω, we perform the procedure outlined in the previous subsection. After a good
deal of simplification, this results in the expression for ∂Nω

∂t given by Eqs. (B9)–(B14):

∂Nω

∂t
= ∂N (1a)

ω

∂t
+ ∂N (1b)

ω

∂t
+ ∂N (2)

ω

∂t
+ ∂N (3a)

ω

∂t
+ ∂N (3b)

ω

∂t
, where (B9)

∂N (1a)
ω

∂t
=

∫ √
4/3ω

0

f (ω(1a)
1 (u), ω(1a)

2 (u), ω(1a)
3 (u), ω)

2
√

4ω2 − 3u2
du, (B10)

∂N (1b)
ω

∂t
=

∫ √
4/3ω

ω

f (ω(1b)
1 (u), ω(1b)

2 (u), ω(1b)
3 (u), ω)

2
√

4ω2 − 3u2
du, (B11)

∂N (2)
ω

∂t
= 2

∫ ∞

0

f (ω(2)
1 (u), ω(2)

2 (u), ω(2)
3 (u), ω)

2
√

u2 + 4ω2
du, (B12)

∂N (3a)
ω

∂t
=

∫ ∞

0

f (ω(3a)
1 (u), ω(3a)

2 (u), ω(3a)
3 (u), ω)

2
√

u2 + 4ω2
du, (B13)

∂N (3b)
ω

∂t
=

∫ ∞

0

f (ω(3b)
1 (u), ω(3b)

2 (u), ω(3b)
3 (u), ω)

2
√

u2 + 4ω2
du. (B14)

(1a)

⎧⎪⎨
⎪⎩

ω2(u) = 1
3 (ω + √

4ω2 − 3u2),

ω1(u) = 1
2 (ω − ω2(u) + √

[ω − ω2(u)][3ω2(u) + ω]),

ω3(u) = ω1(u) + ω2(u) − ω,

(B15)
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(1b)

⎧⎪⎨
⎪⎩

ω2(u) = 1
3 (ω − √

4ω2 − 3u2),

ω1(u) = 1
2 (ω − ω2(u) + √

[ω − ω2(u)][3ω2(u) + ω]),

ω3(u) = ω1(u) + ω2(u) − ω,

(B16)

(2)

⎧⎪⎨
⎪⎩

ω2(u) = −ω + √
u2 + 4ω2,

ω1(u) = 1
2 (ω − ω2 + √

[3ω + ω2(u)][ω2(u) − ω]),

ω3(u) = ω1(u) + ω2(u) − ω,

(B17)

(3a)

⎧⎪⎨
⎪⎩

ω3(u) = ω + √
u2 + 4ω2,

ω2(u) = 1
2 (ω + ω3(u) + √

[ω3(u) + ω][ω3(u) − 3ω]),

ω1(u) = ω3(u) + ω − ω2(u),

(B18)

(3b)

⎧⎪⎨
⎪⎩

ω3(u) = ω + √
u2 + 4ω2,

ω2(u) = 1
2 (ω + ω3(u) − √

[ω3(u) + ω][ω3(u) − 3ω]),

ω1(u) = ω3(u) + ω − ω2(u).

(B19)

The first delta function on the right-hand side of (B8)
corresponds to ∂N (1)

ω /∂t , the next two delta functions (due
to symmetry) produce identical contributions and are com-
bined in ∂N (2)

ω /∂t , and the last delta function corresponds
to ∂N (3)

ω /∂t . The separate a and b contributions result from
multiple branches of the resonant manifold parametrized
by u. The corresponding functions of ω

j
i (u) are given by

Eqs. (B15)–(B19).
This is a form of the collision integral that is suitable for

numerical integration. When computing PW KE directly from
the collision integral in the main text, nk ≡ n(k(ω)) is eval-
uated explicitly from the idealized, truncated KZ spectrum
given by

nk =
{

k−1, ka � k � kc,

0, otherwise.
(B20)

When the simulated spectrum is instead used in this evaluation
[for the two points in Fig. 3(b) of the main text], we use
piecewise-linear interpolation of the simulated spectrum to
evaluate nk for k /∈ �L. In both of these cases, nk = 0 after
some large value of k with a corresponding u, meaning that
the upper integral bounds of ∂N (3a)

ω /∂t and ∂N (3b)
ω /∂t in our

numerical evaluations can be taken to be finite. All integrals
are evaluated via adaptive quadrature.

APPENDIX C: A FAST DIRECT METHOD
FOR COMPUTING NONLOCAL INTERACTIONS

To compute the nonlocal contribution to the small-scale
energy evolution rate for a stationary spectrum, we begin
by using a control volume argument to express the average
dissipation rate directly in terms of the nonlinearity of the
MMT model. This is achieved by

Pd = J = −
∑

|k|�900

2ωkνk
dnk

dt

= −
∑

|k|�900

2ωkνk

∑
123

2Im〈ψ̂1ψ̂2ψ̂
∗
3 ψ̂∗

k 〉δ12
3k , (C1)

where δ12
3k ≡ δK (k1 + k2 − k3 − k). We note that for this sec-

tion (in contrast to the previous section) Pd indicates a
time-averaged quantity. To proceed, we would like to com-
pute the spectral evolution at some wave number k ∈ �L to
interactions with the set of wave modes that reside in the
forcing range. Let us call this set of forced modes A ⊆ �L. We
will consider an interaction to involve A if one or more waves
in the interaction are part of A. To express this clearly, it is
useful to define the following set of 3-wave triples (k1, k2, k3):

S(i)
A ≡

⎧⎨
⎩(k1, k2, k3) | (ki ∈ A) ∪

⎛
⎝⋃

j �=i

(k j ∈ �L )

⎞
⎠

⎫⎬
⎭. (C2)

S(i)
A denotes the set of all 3-wave triples where the ith compo-

nent is part of A and the other two components are explicitly
arbitrary. We are now ready to formally define dn(k)

dt |A, the
spectral evolution involving interactions with A:

dnk

dt

∣∣∣∣
A

≡
∑

(k1,k2,k3 )∈S(1)
A ∪S(2)

A ∪S(3)
A

2Im〈ψ̂1ψ̂2ψ̂
∗
3 ψ̂∗

k 〉δ12
3k . (C3)

When substituted into (C1), we will obtain the average dissi-
pation rate due to interactions with the forcing range. While
the definition of dnk

dt |A is clear in this form, it is expensive to
compute. However, it is possible to rewrite the expression for
the spectral evolution due to interactions with A as a carefully
constructed series of sums which can be computed much more
quickly.

We start by reformulating (C3) in terms of the evolution of
ψ̂k ,

∂nk

∂t

∣∣∣∣
A

=
〈
ψk

∂ψ̂∗
k

∂t

∣∣∣∣∣
A

+ ψ̂∗
k

∂ψ̂k

∂t

∣∣∣∣∣
A

〉
, (C4)

with

i
∂ψ̂k

∂t

∣∣∣∣∣
A

≡ ωkψk +
∑

(k1,k2,k3 )∈S(1)
A ∪S(2)

A ∪S(3)
A

ψ1ψ2ψ̂
∗
3 δ12

3k . (C5)
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It follows from set theory that the sum in the nonlinear term
of (C5) can be rewritten as

∑
(k1,k2,k3 )∈S(1)

A ∪S(2)
A ∪S(3)

A

=
∑

(k1,k2,k3 )∈�3
L

−
∑

(k1,k2,k3 )∈S(1)
AC ∩S(2)

AC ∩S(3)
AC

,

(C6)

where AC is the complement to A. The advantage of this form
is that sums over S(i)

A and intersections of S(i)
A can be computed

quickly via Fourier transforms. To see this clearly, consider
the simple term

N̂L
(
k, S(1)

A

) =
∑

(k1,k2,k3 )∈S(1)
A

ψ̂1ψ̂2ψ̂
∗
3 δ12

3k . (C7)

We already know that N̂L(k,�3
L ) [where the sum is taken over

(k1, k2, k3) ∈ �3
L] is the Fourier domain representation of a

quantity that is readily computed in the physical domain, as
this is exactly the pseudospectral method used to solve the
MMT equation. Let us call the inverse Fourier transform of

(C7) NL(x, S(1)
A ). This can be written as

NL
(
x, S(1)

A

) = ψψ∗ ∑
k1∈A

ψ̂1eik1x. (C8)

However, the last term in the product (C8) is simply the
expression of an ideal bandpass filter applied to ψ that admits
only those modes in set A, and sets to 0 any mode with k /∈ A.
Let BA be such a filter, so that

NL
(
x, S(1)

A

) = ψψ∗BA(ψ ). (C9)

By exactly the same argument, we compute the second sum
on the right-hand side of (C6) by first computing

NL
(
x, S(1)

A ∩ S(2)
AC ∩ S(3)

AC

) = BAC (ψ )BAC (ψ )BAC (ψ∗). (C10)

The inverse Fourier transform can then be used to obtain the
desired term in the sum (C6). For N the number of modes, this
method has O(N log N ) complexity, as opposed to the O(N2)
complexity of computing (C3) directly. The desired quantity
Jnl ≡ JA for A = [20, 30] can then be computed, with

JA = −
∑

|k|�900

2ωkνk
dnk

dt

∣∣∣∣
A

. (C11)
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