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Topological phase transitions go beyond Ginzburg and Landau’s paradigm of spontaneous symmetry break-
ing and occur without an associated local order parameter. Instead, such transitions can be characterized
by the emergence of nonlocal order parameters, which require measurements on extensively many particles
simultaneously—an impossible venture in real materials. On the other hand, quantum simulators have demon-
strated such measurements, making them prime candidates for experimental confirmation of nonlocal topological
order. Here, building upon the recent advances in preparing few-particle fractional Chern insulators using ultra-
cold atoms and photons, we propose a realistic scheme for detecting the hidden off-diagonal long-range order
(HODLRO) characterizing Laughlin states. Furthermore, we demonstrate the existence of this hidden order in
fractional Chern insulators, specifically for the ν = 1/2-Laughlin state in the isotropic Hofstadter-Bose-Hubbard
model. This is achieved by large-scale numerical density matrix renormalization group (DMRG) simulations
based on matrix product states, for which we formulate an efficient sampling procedure providing direct access
to HODLRO in close analogy to the proposed experimental scheme. We confirm the characteristic power-law
scaling of HODLRO, with an exponent 1/ν = 2, and show that its detection requires only a few thousand
snapshots. This makes our scheme realistically achievable with current technology and paves the way for further
analysis of nonlocal topological orders, e.g., in topological states with non-Abelian anyonic excitations.
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I. INTRODUCTION

Over the last decades, interacting topological systems
have provided an exciting opportunity to explore exotic
states of matter, most prominently states exhibiting intrinsic
topological order. A prime example for this paradigm is
the fractional quantum Hall (FQH) effect, where strongly
interacting particles in two dimensions are subject to a
strong magnetic field [1,2]. In contrast to symmetry breaking
phases of matter, such topologically ordered states cannot be
described by a local order parameter. Nevertheless, since the
early days of FQH physics researchers have been intrigued by
the idea of using nonlocal extensions of conventional order
parameters in order to characterize topological states of matter
and enable insights into their remarkable properties [3–6].
Specifically, based on variational trial states like the Laughlin
state [7], the emergence of so-called hidden off-diagonal

*These authors contributed equally to this work.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

long-range order (HODLRO) has been established
theoretically in continuum systems. This multiparticle variant
of conventional off-diagonal long-range order (ODLRO),
characterizing Bose-Einstein condensation associated with a
global U(1)-symmetry breaking, will play a central topic in
this article. As we will discuss, in order to detect HODLRO
in a FQH system a measurement of long-range one-particle
coherence, ∼ψ̂†(r1 + d )ψ̂ (r1), has to be combined with a
simultaneous measurement of the positions r2, . . . , rN of all
remaining N − 1 particles. Despite recent breakthroughs in
realizing FQH states in moiré systems based on multilayer
graphene [8–10] or transition metal dichalcogenides [11–14],
a direct measurement of HODLRO remains unfeasible in
traditional solid state experiments due to the lack of single
particle resolution throughout the entire sample.

In contrast, modern quantum simulator platforms, such
as ultracold atoms in quantum-gas microscopes [15–17] or
arrays of superconducting qubits [18,19], routinely perform
such measurements of all particles simultaneously, achieving
full single-site and single-particle resolution. Furthermore,
these quantum simulators have recently begun to explore the
interplay of topological bandstructures and strong interac-
tions. Using lattice shaking or Raman transitions, artificial
gauge-fields have been implemented in optical lattices by
realizing complex tunneling matrix elements for the neutral
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FIG. 1. (a) 1© Possible experimental realization of the proposed measurement protocol using a synthetic bilayer Hofstadter-Hubbard system
with internal states |σ = ±〉. 2© On one side of the system, the edges are coupled to obtain an effective single layer system. 3© Measurements of
off-diagonal elements of the one-particle reduced density matrix, 〈â†

x,y,+âx,y,−〉 are possible using a local pulse protocol involving both layers,
as described in the main text. (b) Correlations extracted from Nsnaps = 104 numerical snapshots without any postprocessing and with exper-
imentally relevant errorbars from shot-noise. The algebraic decay of the two-site correlations of the composite bosons |ρ̃x,x′;y| ∼ |〈b̂†

x,yb̂x′,y〉|
(red squares) can be clearly distinguished from the exponential decay of the original bosonic correlations |ρx,x′;y| ∼ | 〈â†

x,yâx′,y〉 | (blue circles).
(c) Tensor-network diagram of the extended perfect sampling scheme which allows for numerical snapshots of composite boson correlations
|ρ̃x,x′;y| equivalent to the ones obtained in the proposed experiment.

atoms. In particular, implementations of artificial gauge fields
[20,21] along with strong interactions [22] allowed for a first
realization of a two-particle ν = 1/2-Laughlin state in an
optical lattice [23] based on the Hofstadter-Bose-Hubbard
Hamiltonian [24–41]. Similarly, experiments have been suc-
cessful at creating a Laughlin state made of light in a photonic
analog of a FQH system [42,43]. Other experimental angles
such as microwave cavity arrays are also promising candidates
to engineer topological materials [44].

In this paper, we show that state-of-the-art quantum sim-
ulation platforms, and cold atoms in particular, can be
used to directly detect HODLRO in FQH states. Through
large-scale numerical density-matrix renormalization group
(DMRG) simulations [45–47] of the isotropic Hofstadter-
Bose-Hubbard model at magnetic filling ν = 1/2, we demon-
strate that fractional Chern insulators in lattice systems
exhibit the same form of universal HODLRO as the corre-
sponding continuum FQH states. To this end, we perform
projective measurements on the matrix-product state (MPS)
representation of the ground state, building on previous

works introducing a perfect sampling algorithm for MPS
[48] to emulate snapshots of local observables [49] via a
successive collapse of the many-body wave function. We ex-
tend this scheme in such a way that it enables snapshots of
nonlocal quantities [see Fig. 1(c)] to sample correlation func-
tions like those needed to detect the multiparticle HODLRO.
Our numerical prediction can be experimentally tested using
two hyperfine manifolds in ultracold atoms in a quantum-
gas microscope [see Fig. 1(a)], for which we propose a
specific experimental implementation enabling long-range
measurements of the one-particle coherence combined with
simultaneous single-site resolved measurements of the den-
sity on the whole lattice, granting direct access to HODLRO
[see Fig. 1(b)].

The remainder of this paper is structured as follows. In
Sec. II, we present an overview of the main results of this
paper. We briefly introduce the key concepts of HODLRO
and elucidate explicitly how to obtain snapshots necessary
for the detection of this putative multiparticle off-diagonal
long-range order from measurements on cold atoms in
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optical lattices. In Sec. III, we extensively discuss the
results of our large-scale numerical analysis of the
Hofstadter-Bose-Hubbard ground state showing the absence
of conventional long-range order and the emergence of
HODLRO using the MPS-based sampling method. Finally,
in Sec. IV, we present the MPS-based projective sampling
scheme in a self-contained review which can be read inde-
pendently.

II. OVERVIEW OF MAIN RESULTS

This section summarizes the main findings of the paper.
We begin with a short review of HODLRO in continuum
FQH systems. We then proceed by generalizing this con-
cept to lattice systems hosting fractional Chern insulators.
After introducing a scheme to resolve long-range coherence
in quantum-gas microscopes, exploiting a bilayer geometry,
a detailed experimental setup is proposed which yields all
information needed to obtain HODLRO.

A. A brief review of HODLRO

The ordering in superfluids and superconductors can be
famously characterized by the existence of off-diagonal
long-range order (ODLRO) associated with the breaking
of the particle number preserving U(1) gauge symmetry
of the system signaling Bose-Einstein condensation. Consider
the one-particle reduced density matrix

ρr,r+d = 〈ψ̂†(r)ψ̂ (r + d )〉. (1)

In general, one expects ρr,r+d to fall off rapidly and decay to
zero for increasing values of d. In systems exhibiting ODLRO
however, the one-particle correlations saturate to a finite value
in this limit

lim
d→∞

ρr,r+d 	= 0. (2)

Contrary, one of the hallmarks of topologically ordered
states of matter is the absence of any kind of one-particle long-
range order. For example, for Laughlin’s trial wave function
describing the ground state of a continuum FQH system at
magnetic filling ν = 1/m,

ψLN(z1, . . . , zN ) =
∏
j<k

(z j − zk )me− 1
4

∑
l |zl |2 , (3)

where z j = x j + iy j is the jth particle position in the complex
plane, it can be shown that the one-particle reduced density
matrix decays exponentially

ρLN
z,z′ = 〈ψ̂†(z)ψ̂ (z′)〉 ∼ e− 1

4 (z−z′ )2/�2
B . (4)

Nonetheless, there is a characteristic type of order hidden
in the density matrix of the Laughlin state. It can be revealed
by introducing a singular gauge transformation [50–53] of the
form

A(z1, . . . , zN ) = m�0

2π

∑
j

∑
k 	= j

∇ jIm{ln(zk − z j )}. (5)

The effect of this transformation is a contribution of the
form

∏
j<k

|z j−zk |m/(z j−zk )m to the wave function which can be
understood as endowing each of the particles with m quanta of

magnetic flux �0. Independent of m being odd/even, Eq. (5)
maps the fermionic/bosonic FQH problem to composites of
flux quanta and charge with bosonic statistics which are hence
referred to as composite bosons ψ̂

(†)
CB(z j ). For a more detailed

derivation, see Appendix A. In this composite boson basis,
the continuum one-particle reduced density matrix decays
algebraically, i.e.,

ρ̃LN
z,z′ = 〈ψ̂†

CB(z)ψ̂CB(z′)〉 ∼ |z − z′|−2ν . (6)

This emergence of quasi-long-range order, signaling a con-
densation of the composite bosons in the Laughlin state [4,6]
defines hidden off-diagonal long-range order (HODLRO).

B. HODLRO in lattice systems

We can readily expand the concept of HODLRO to discrete
systems. Inspired by earlier studies of lattice anyons [54,55],
in a lattice system with local bosonic degrees of freedom â(†)

k ,
attaching m flux quanta to each boson can be achieved by the
following lattice gauge transformation:

�̂ j = m
∑
k 	= j

	( j, k)n̂k, 	( j, k) = arg(z j − zk), (7)

where the bold letters represent the coordinates of a particular
lattice site, e.g., k = (x, y) and n̂k = â†

kâk is the local density
operator. Evidently, �̂ j is the lattice analog of the contin-
uum emergent gauge degrees of freedom of A j . Hence, using
Eq. (7), we can define composite boson operators

b̂(†)
j := e(−)i�̂(†)

j â(†)
j , (8)

describing the desired composites of m flux quanta and a
boson.

In turn, we can introduce the one-particle correlation func-
tion for the composite bosons,

ρ̃ j,l = 〈b̂†
j b̂l 〉, (9)

which can be expressed purely in terms of the original bosonic
annihilation (creation) operators â(†)

j and the boson number
operators n̂k

ρ̃ j,l =
〈 ∏

k 	= j,l

(
z j − zk

|z j − zk|
)−mn̂k

(
zl − zk

|zl − zk|
)mn̂k

â†
j âl

〉
. (10)

Consequently, the multiparticle composite boson correlation
function ρ̃ j,l picks up an additional nontrivial phase for each
occupied lattice site k 	= j, l with respect to the usual corre-
lator ρ j,l ∼ 〈â†

j âl 〉. Therefore, in order to probe this lattice
analog of HODLRO, one not only has to measure the long-
range bosonic one-particle coherence ρ j,l but combine it
with a simultaneous measurement of local density operators
{n̂k}k 	= j,l . This enables us to examine lattice models described
by the Hofstadter-Bose-Hubbard Hamiltonian

Ĥ = −t
∑
〈 j,k〉

eiφ j→k â†
j âk + H.c. (11)

which hosts fractional Chern insulators. The phase φ j→k is
determined by the choice of the magnetic vector potential and
the sum runs over adjacent sites.
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C. Measuring off-diagonal long-range order

Despite being highly adjustable and offering single-
lattice-site and single-particle resolution, so far quantum-gas
microscopes only allow for a direct measurement of phys-
ical quantities which are diagonal or near-diagonal in the
occupation number basis. To resolve phase coherence one
relies on a combination of a time-of-flight expansion followed
by absorption imaging granting access to the momentum
distribution [56]. That means, even though there has been
recent progress in resolving coherence and currents between
adjacent sites [57,58], measuring long-range single-particle
correlation functions of the form

ρr,r′ = 〈â†
r âr′〉, |r − r′| > 1 (12)

from single-site measurements is a nontrivial task.
Here, we propose to use a bilayer geometry consisting of

two hyperfine manifolds of ultracold atoms which are coupled
along one edge of the layers, see Fig. 1(a). Using such a setup,
an effective single layer is achieved in which we can realize
a two-dimensional lattice model. Exploiting this double layer
structure, nonlocal interlattice-site correlations ∼â†

r âr′ of the
effective model, where r and r′ denote sites in different layers
but are on top of each other, i.e., r = (x, y,+), r′ = (x, y,−),
can be accessed by measuring local correlations between the
layers. In order to extract this interlayer correlations, we pro-
pose to perform a local π/2 pulse on the probe sites r and r′
to rotate the measurement basis into a coherent superposition
of both layers. In this manner, the interlayer correlations can
be extracted using standard single-site resolved quantum-gas
microscopy. In the following section, we will discuss in de-
tail how such measurements can be performed and how the
bilayer structure enables us to naturally treat bosonic atoms in
an artificial, homogeneous magnetic field, making it a prime
candidate to probe fractional Chern insulators.

D. Experimental protocol

In order to detect HODLRO in a cold atom quantum sim-
ulator we first need to achieve a long-range measurement
of one-particle coherence and secondly, perform projective
measurements on the site-local Fock spaces of the remaining
sites simultaneously. For a particularly simple measurement
of long-range two-point correlations ∼â†

r âr′ , we exploit the
bilayer approach described in Sec. II C. In particular, we pro-
pose to realize a synthetic bilayer Hofstadter-Bose-Hubbard
model using internal states |±〉 of the atoms to realize the
different manifolds. As already demonstrated experimentally
[20,21], artificial gauge fields can be realized with opposite
signs for the two internal states of the atom. Thus it is possible
to realize a Hamiltonian of the form

ˆ̃Hexp = −t
∑
x,y,σ

(
â†

x+1,y,σ âx,y,σ

+ eσ2π iα(x+1/2)â†
x,y+1,σ âx,y,σ + H.c.

)
+ U

2

∑
x,y,σ

n̂x,y,σ (n̂x,y,σ − 1), (13)

where â(†)
x,y,σ are the bosonic annihilation (creation) operators

and n̂x,y,σ = â†
x,y,σ âx,y,σ are the boson number operators. Here,

(x, y) are the lattice positions on a square lattice of size
Lx × Ly parametrizing a single layer while σ = ± labels the
internal state of the atoms. The Hamiltonian is written in
Landau gauge, i.e., the physical vector potential which gen-
erates the homogeneous flux per plaquette α only affects the
hopping amplitudes in y-direction which pick up a complex
phase factor.

While Eq. (13) describes a true bilayer system, by locally
driving the internal transition and hence introducing a local
coupling between the internal states on the x = 0 edge of the
system, i.e., introducing a term

Ĥexp = ˆ̃Hexp − t
∑

y

(â†
0,y,+â0,y,− + H.c.), (14)

we can realize an effective single-layer model. Note that the
additional edge term only consists of hopping contributions in
x-direction and thus, due to the gauge choice, does not contain
complex phase factors. In this manner, an effective single-
layer Hofstadter-Bose-Hubbard model of dimension 2Lx × Ly

with homogeneous artificial magnetic field of α flux quanta
per plaquette can be realized, see Fig. 1(a).1

The main advantage of such a synthetic bilayer system
is that it allows for a direct measurement of â†

x,y,+âx,y,− by
using local tunneling pulses between the layers as follows.
Switching on an additional coupling between the two internal
states at site (x, y,±) only and for a time corresponding to
a π/2 pulse essentially rotates the bosonic operators to a new
basis

â±
x,y = (âx,y,+ ± âx,y,−)

/√
2. (15)

Now, applying a local detuning � between the internal states
[59] for some time τ allows us to furthermore rotate the
measurement basis to

ˆ̃a±
x,y = (âx,y,+ ± ie−iϕ âx,y,−)

/√
2, (16)

where the relative phase ϕ − π/2 ∝ �τ can be controlled by
the offset �.

Measuring the local occupation numbers with site and
internal state resolution gives the density in the transformed
basis ˆ̃n±

x,y at the site where the pulse was applied, while at
all other sites the original densities are recovered. We note
that in the original basis the transformed occupation numbers
translate to

ˆ̃n±
x,y = (n̂x,y,+ + n̂x,y,− ± ĵx,y(ϕ))

/
2, (17)

where we introduced the generalized current operator

ĵx,y(ϕ) = −ieiϕ â†
x,y,−âx,y,+ + H.c. (18)

From Eq. (17), it follows immediately that

ˆ̃n+
x,y + ˆ̃n−

x,y = n̂x,y,+ + n̂x,y,−, ˆ̃n+
x,y − ˆ̃n−

x,y = ĵx,y. (19)

That is, from occupation number measurements in the rotated
basis, we can recover the occupation numbers in the initial
basis, while simultaneously obtaining ĵx,y(ϕ) for any value of

1Another option is to realize a true spatial bilayer system and to
couple the edge by driving a Raman transition.
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the offset phase ϕ resolving the absolute value of the coher-
ence between the two sites via

|〈â†
x,y,+âx,y,−〉| = 1

2

√
〈 ĵx,y(π/2)〉2 + 〈 ĵx,y(0)〉2. (20)

In general, exploiting the mapping of the bilayer system
to an effective single-layer model, long-range correlations
can be extracted using this protocol while reading out Fock
basis snapshots on all remaining sites simultaneously. Con-
sequently, the protocol proposed here furthermore allows for
measurements of more complex correlators of the form〈

â†
x,y,+âx,y,− f

(
n̂x2,y2,σ2 , . . . , n̂xN ,yN ,σN

)〉
. (21)

In this case, Eq. (20) generalizes to

1

2

√〈
ĵx,y(π/2) f

(
n̂x j ,y j ,σ j ; π/2

)〉2 + 〈
ĵx,y(0) f

(
n̂x j ,y j ,σ j ; 0

)〉2
,

(22)
which especially contains all the necessary information to
compute HODLRO as defined in Eq. (10) if we identify the
function f (n̂x j ,y j ,σ j ) with the phase contribution due to the flux
attachment. Therefore our protocol makes it feasible to extract
this indicator of intrinsic topological order in state-of-the-art
cold atom experiments.

The remainder of this paper will numerically explore the
possibility to use our approach for the bosonic Laughlin state
at magnetic filling ν = 1/2. We find that already Nsnaps = 103

numerical snapshots [see Fig. 1(c)] of a system of 10×10
sites are sufficient to obtain not only a qualitative agreement
with theoretical predictions from the continuum, but also an
accurate quantitative estimate for the exponent of the power-
law scaling of the HODLRO parameter [see Fig. 1(b)], giving
direct insights about the topological order of the probed quan-
tum state.

III. NUMERICAL ANALYSIS

In this section, we present an overview of the key results of
the extensive numerical analysis of HODLRO we performed
for the Hofstadter-Bose-Hubbard model. First, we introduce
the explicit model and the parameters considered in our simu-
lations. After pointing out key features of the ground states
like incompressibility and the presence of a homogeneous
density droplet in the bulk, we continue by confirming the
absence of ordinary ODLRO. Finally, we present strong in-
dications for the emergence of HODLRO in the composite
boson one-particle correlations of the obtained ground states.

A. Model

We study interacting bosons on an L × L square lattice
with open boundary conditions subject to a perpendicular
magnetic field, modeled by the Hofstadter-Bose-Hubbard
Hamiltonian

Ĥ = − t
∑
x,y

(â†
x+1,yâx,y + e2π iαxâ†

x,y+1âx,y + H.c.)

+ U

2

∑
x,y

n̂x,y(n̂x,y − 1), (23)

Here, â(†)
x,y are the bosonic annihilation (creation) operators and

n̂x,y = â†
x,yâx,y are the boson number operators. Analogously

to the proposed experimental protocol, we perform our simu-
lations using the Landau gauge. However all results discussed
below, including the correlations indicating HODLRO, also
apply to other gauge choices, see Appendix B. We fix the
flux per plaquette to 2πα = 2π/6 in all our simulations. We
study the hard-core bosonic limit, U/t → ∞, and consider
dilute systems of few bosons N , with N/L2  1. Similar mod-
els have been explored in the literature for a while and it
was established that the ground state of Eq. (23) considering
the set of parameters listed above close to magnetic filling
factor ν = N/Nφ = 1/2 is a lattice analog of the Laughlin state
[7,23–25,31,33,39–41] where Nφ is the number of flux quanta
piercing the sample. Furthermore, it has been shown that a
finite but strong Hubbard repulsion U/t is already sufficient to
stabilize the Laughlin state. Therefore we expect the results
obtained in the hard-core limit U/t → ∞ to carry over to the
experimentally relevant case of strong but finite interactions.

We use the single-site DMRG method [45–47] imple-
mented in the SYTEN-toolkit [60] to find an MPS represen-
tation of the ground state of Eq. (23) with maximum bond
dimension χ = 1000, where we exploit the U(1) symmetry
associated with particle number conservation of the system.
We consider different system sizes (L = 7, 10, 12) and differ-
ent particle numbers N , however remaining in the dilute limit,
N/L2  1. The magnetic length, and thus the correlation length
of the Laughlin state, is given by �B = a/

√
2πα ≈ a, where a is

the lattice constant.
We calculate the local density 〈n̂x,y〉 for the DMRG ground

states and, for sufficiently large systems (L = 10, 12), iden-
tify a bulk region of density n̄ ≈ να = α/2 as expected for a
ν = 1/2-Laughlin state, see Fig. 2 (lower panel). In particular,
this behavior is robust for a range of particle numbers satis-
fying N/L2 ≈ α/2, which can be interpreted as a signature of
the incompressibility of the Laughlin state, see Fig. 2 (upper
panel). For the smallest systems studied here (L = 7), the
situation is less clear because of significant finite-size effects,
and no extended bulk region is formed. However, earlier stud-
ies found evidence of an approximate Laughlin state even in
systems of 4×4 sites [23], so that it might still be possible to
find signatures of the topological nature in very small systems.

B. Absence of ODLRO

As discussed above, topologically ordered states of matter
are prominently characterized by the absence of conventional
long-range order and, in particular, ODLRO. We confirm this
to be true for the states under study here by analyzing the be-
havior of the normalized two-point correlation function along
the x-direction

ρx,x′;y = 〈â†
x,yâx′,y〉/

√〈n̂x,y〉〈n̂x′,y〉. (24)

Analytical continuum calculations for the Laughlin states at
general filling factor ν = 1/m for a fixed value of y found a
characteristic exponential decay at long distances,

ρLN
x,x′;y ∼ e− 1

4 (x−x′ )2/�2
B , (25)

which is in particular independent of the filling factor [4].
In our numerical analysis we evaluate the expectation value
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FIG. 2. Local particle number density 〈n̂x,y〉 in units of the flux density α for different system sizes and particle numbers. We find an
extended bulk region for sufficiently large systems (L = 10, 12) exhibiting a bulk density consistent with the prediction n̄/α ≈ 1/2 for the
Laughlin state (indicated by the dotted line in the upper row). In the upper panel, it is also demonstrated that these findings are robust to small
changes in the particle number N , indicating the (bulk) incompressibility of the studied ground states.

for the ground state wave function, both using an exact MPS
contraction, and analyzing Fock basis snapshots taken by the
projective sampling method introduced below in Sec. IV.

To study long-range correlations, we fix the reference site
to be on the edge of the system, i.e., x′ = 0. Furthermore, we
additionally fix y = y′ = y0 close to the center of the system
(y0 ≈ L/2) to ensure that we eventually probe the bulk of the
system.

The quasiexact MPS expectation value for the one-particle
reduced density matrix ρx,0;y0 of the ground state reproduces
the continuum prediction of Eq. (25) for the system sizes
L = 10 and 12 up to intermediate-range correlations, see
Fig. 3 (green diamonds). As �B ≈ a, we expect only short-
range correlations to be affected by the competition of the
characteristic length scales set by the magnetic and the lat-
tice length. For long distances of the order |x − x′| > L/2, we
observe evident signatures of finite-size effects weakening the
decay. We believe the presence of an edge mode to be the
reason for the deviation from the continuum prediction in this
limit. In support of this, a probe of the correlator along the
systems edge (see Appendix D) yields conclusive evidence for
an algebraic decay characteristic for such an edge mode. For
the smallest system, L = 7, finite size effects dominate and no
clear signature of an exponential decay can be found.

We additionally analyze ρx,0;y0 using the projective two-site
sampling from MPS. We find that already Nsnaps = 2×103

snapshots are sufficient to qualitatively reproduce the expo-
nential decay of ρx,0;y0 on intermediate scales obtained via
the MPS contraction, see Fig. 3 (light-blue circles with er-
rorbars). The plotted values are the means of the sampling
given with an errorbar corresponding to a single standard
deviation ±σρx,0;y/

√
N. In Appendix C, we justify this choice

and analyze the convergence behavior of the sampling to the
expectation value in the limit Nsnaps → ∞ and evaluate its
statistical accuracy. Using the data points of the sampling,
we perform an exponential fit for all system sizes yielding a
correlation length ξ ≈ 3a/2, which is slightly larger than the
magnetic length �B ≈ a.

C. Emergence of HODLRO

The central physical question addressed in this paper is
the existence of HODLRO in fractional Chern insulators. As
introduced in Sec. II, HODLRO can be understood as the al-
gebraic long-range order of emergent objects. To achieve this,
the original bosons are transformed to composite bosons via a
singular gauge transformation [50,51,61], which corresponds
to the attachment of flux quanta to the fundamental bosons.
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FIG. 3. Normalized two-point correlation function for the system sizes and particle numbers of Fig. 2 with the reference site on the edge,
i.e., x′ = 0. While we observe significant finite size effects, we find the characteristic exponential decay in all systems using a snapshot based
scheme (circles, Nsnaps = 2×103, 104) with an exponential fit (dotted line) in good agreement. The errorbars of the snapshots correspond
to a single standard deviation ±σρx,0;y/

√
N. Furthermore, a direct contraction of the ground state MPS (diamonds) confirms these findings, in

particular at short and intermediate length scales. The correlation length of the fitted decay is ξ � 3a/2 which is significantly lager than the
magnetic length lB � a < ξ .

In the case of the Laughlin state at ν = 1/m, each particle
is endowed with exactly m flux quanta. The attached flux
quanta cause the composite object to acquire an additional
statistical angle of mπ . Hence, independent of the filling and
the underlying particles the composite particles obtained by
this procedure are always bosonic.

For varying x, x′ and fixed y = y′ = y0 the composite bo-
son correlations in the continuum Laughlin state follow a
power-law scaling of the form

ρ̃LN
x,x′;y0

∼ |x − x′|−2ν = |x − x′|−2/m, (26)

indicating HODLRO in the Laughlin state [4,6]. In contrast to
the ordinary bosonic correlation, the transformed composite
bosonic expression cannot readily be evaluated using direct
contractions of the MPS representation of the ground state, be-
cause one explicitly needs to know the occupation numbers nk

on all lattice points which do not coincide with j = (x, y0) and
l = (x′, y0), while simultaneously determining the bosonic
one-particle coherence on the two remaining sites. However,
the projective two-site sampling algorithm we introduce in
this paper grants access to exactly this information. Applying
this algorithm, we can generate snapshots to evaluate the ex-
pectation value with in principle arbitrary accuracy. Moreover,
this scheme precisely emulates the measurement protocol for
a quantum-gas microscopy experiment as proposed in Sec. II
above. Analogously to the analysis of the bare correlator, we
compute the normalized transformed, multiparticle two-point
correlation function

ρ̃x,x′;y = 〈b̂†
x,yb̂x′,y〉/

√〈n̂x,y〉〈n̂x′,y〉, (27)

for all system sizes with the reference site fixed at the cen-
ter of one edge, x′ = 0, y0 ≈ L/2. Already for Nsnaps = 2×103

snapshots, we find a clear difference between the exponential
decay for the bare correlator ρ and the algebraic decay of
the transformed expression ρ̃ for all system sizes, see Fig. 4.
This clearly indicates the presence of HODLRO in the ground
state of our lattice model for a number of snapshots realis-
tically achievable in cold atom experiments. Moreover, the
emergence of the power-law scaling is robust to the choice of
the reference site x′, which we elaborate on in more detail in
Appendix E.

Building on those qualitative observations, we perform a fit
of the analytically predicted decay in Eq. (26) to our sampled
data and find an excellent agreement of the exponent with the
analytically predicted value for Nsnaps = 104 snapshots in the
largest systems, L = 12. We find a power-law scaling with
an exponent mL=12 = 2.01 ± 0.05 which agrees perfectly
with the predicted value m = 2. For the smaller systems,
L = 7 and 10, we find that we can still distinguish algebraic
and exponential decay, however the fit to the analytical pre-
diction becomes less accurate.

In the case of the smallest system studied here (L = 7),
the situation gets even more complicated as an obvious bulk
region is hardly identifiable and edge effects are believed
to significantly influence the results. Interestingly, while the
exponential decay is destroyed by finite size effects, the al-
gebraic decay in the composite bosonic correlations is robust
against them, signaling an underlying universal property of
the state responsible for its emergence.

While our numerical study of the systems allows us to keep
the analysis general, we confirm in Fig. 5 that also considering
only the data points available in an experimental set-up pro-
posed in Sec. II D is sufficient to observe the HODLRO. We
conclude that such experiments constitute a prime platform
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FIG. 4. Decay of correlations for the original bosons (|ρx,x′;y| ∝ |〈â†
x,yâx′,y〉|, circles) and the composite bosons (|ρ̃x,x′;y| ∝ |〈b̂†

x,yb̂x′,y〉|,
squares) for the system sizes and particle numbers of Fig. 2 with reference at the edge, x′ = 0. That means, for ρ, f (n̂x j ,y j ) ≡ 1 while for ρ̃,
f (n̂x j ,y j ) is to be identified with the phase contribution due to the flux attachment in Eq. (10). Already relatively few snapshots (Nsnaps = 2×103,
small orange squares) are sufficient to distinguish the algebraic decay of the correlations ρ̃x,x′;y of the composite bosons from the exponential
decay of the ordinary correlations ρx,x′;y. Furthermore, for sufficiently large systems and Nsnaps = 104 (red squares) a fit of the algebraic decay
gives an exponent −2/m consistent with m = 2. The fit is obtained using only intermediate-range points within the bulk of the system. The
errorbars for the sampling of both the bosonic (blue) and the composite bosonic (orange, red) two-point correlations correspond again to a
single standard deviation ±σρx,0;y/

√
N and ±σρ̃x,0;y/

√
N, respectively.

giving insights about the nature of the intrinsic topological
order of the state by pure analysis of the ground state.

D. HODLRO in the noncontinuum Limit

For sufficiently small flux density α, the lowest band of
the Hofstadter-Bose-Hubbard model resembles the flat band
structure of the lowest Landau level of the continuum. In-

FIG. 5. Decay of correlations for the original bosons (|ρx,x′;y|,
circles) and the composite bosons (|ρ̃x,x′;y|, squares) considering only
experimentally relevant sample points. The reference site is not fixed.

creasing the flux per plaquette to α = 1/4, we now demonstrate
that the emergence of HODLRO is robust also away from the
continuum limit where the band dispersion and lattice effects
become sizable. Earlier exact diagonalization studies of small
systems found that for α = 1/4 the overlap of the ground state
wave function with the discretized Laughlin wave function has
already decreased substantially, compared to an almost perfect
overlap for smaller flux [24].

We repeat our numerical study for α = 1/4 for a 12×12-
system and confirm that the composite bosonic correlation
function shows off-diagonal long-range order with an expo-
nent close to the inverse of the filling fraction, see Fig. 6. We
conclude that while the microscopic structure of the ground
state may vary significantly in the presence of strong lattice
effects, the composite bosonic correlations indeed probe the
robust topological nature of the state, even away from the
continuum limit.

IV. METHODS

We now turn to the discussion of the sampling protocol
to simultaneously generate one- and two-site snapshots from
a MPS which was instrumental for our preceding numerical
analysis of HODLRO. First, we provide the reader with a
brief review of some features of MPS which are essential
to our snapshot setup and the idea to numerically emulate
experimental cold atom quantum-gas microscope measure-
ments. Afterwards, as the single-site/two-site algorithm is
a straightforward generalization of the single-site sampling,
we continue by shortly reviewing the idea of the single-site
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FIG. 6. Decay of correlations for the original bosons (|ρx,x′;y|,
circles) and the composite bosons (|ρ̃x,x′;y|, squares) for a flux per
plaquette value of α = 1/4 with reference site at the edge, x′ = 0.

method. Building up on this, in the last subsection, we discuss
the full single-site/two-site variant of the algorithm.

A. Matrix product state setup

We consider a tensor product Hilbert space H of L sites
with local basis states {|σ j,1〉 , |σ j,2〉 , . . . , |σ j,p〉}, where p de-
notes the local physical dimension, so that the full Hilbert
space is given by

H =
L⊗

j=1

H j, H j = span({|σ j〉}). (28)

The wave function of an arbitrary pure state |ψ〉 ∈ H can be
represented by a product of matrices such that

|ψ〉 =
∑

σ1,...,σL
μ0,...,μL

Mσ1
μ0,μ1

· · · MσL
μL−1,μL

|σ1, . . . , σL〉 , (29)

which yields the MPS representation of the state. Here, the
site-local matrix M

σ j

j is unique only up to an invertible linear
map. We can exploit this gauge freedom to rewrite the site ten-
sor in its left-canonical/right-canonical form A

σ j

j /B
σ j

j , which
is defined by

∑
σ j

(
A

σ j

j

)†
A

σ j

j = 1 j,
∑
σ j

B
σ j

j

(
B

σ j

j

)† = 1 j . (30)

Left-/right-canonical MPS are defined by requiring that they
consist of left-/right-normalized tensors only. We can also
construct a mixed-canonical MPS by fixing a site j for which
the tensor M

σ j

j remains unchanged while we demand all site
tensors to the left/right to be left-/right-normalized tensors.
We then call site j the active site. The canonical form of the
MPS tensor-network is visualized in Fig. 7. The canonical
form is especially advantageous if we want to compute the

FIG. 7. (a) Schematic sketch of the tensor-network of the right-
canonical MPS representation of an arbitrary state |ψ〉 ∈ H. (b) Now
the state is shown in its mixed-canonical form where all sites to the
left/ right of the active site are in the left-/right-canonical gauge (left-/
right-orientated triangle nodes). (c) The one-site reduced density
matrix ρ̂ j in its tensor network graph representation. Due to the
mixed-canonical form of the state the tensor contractions left/ right
to the active site (round node) will give the identity (light-orange
boxes). ρ̂ j gives access to the full site-local probability distribution.

expectation value of an arbitrary site-local operator ô j

〈ô j〉 = Tr j{ρ̂ j ô j} =
∑

o j

〈o j |ρ̂ j ô j |o j〉 =
∑

o j

ρo j o j o j, (31)

as the one-site reduced density matrix ρ̂ j becomes trivial and
grants access to the full probability distribution for the eigen-
value spectrum of the operator given by the diagonal elements
ρo j o j . For a detailed discussion of MPS and its technicalities
we remit to [46].

B. Quantum simulator setup

As we are interested in Fock basis snapshots, from now
on, we work in the occupation number basis and choose ô j =
n̂ j , but in principle the following scheme works for arbitrary
operators.

Taking Fock basis snapshots of the pure state |ψ〉 corre-
sponds to simultaneously measuring the site-local occupation
number operator n̂ j on each lattice site. We can decom-
pose each n̂ j using local projection operators P̂n j

j onto the
eigenspaces of the corresponding measurement outcomes nj ,
where n j ∈ [0, 1, . . . , p − 1]

n̂ j =
p−1∑

n j=0

n jP̂n j

j . (32)

The global particle number operator N̂ = ∑L
i=1 n̂ j can be

rewritten as

N̂ =
L∑

j=0

p−1∑
n j=0

n jP̂n j

j , (33)

and consequently, the measurement outcome of a single snap-
shot is given by a tuple (n1, . . . , nL ), which accordingly
corresponds to a pattern of projectors of the initial state into
site-local eigenspaces of the density operator.

C. Sampling single-site operators

Given the MPS representation of an arbitrary quantum
state, we can emulate state-of-the-art quantum simulator mea-
surements by drawing independent snapshots employing the
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perfect sampling scheme first introduced by Ferris and Vi-
dal [48]. Contrary to other sampling procedures such as
Markov chain Monte Carlo sampling, this algorithm produces
perfectly uncorrelated samples (and hence the name perfect
sampling). This is computationally advantageous, as we do
not need to account for additional equilibration and autocorre-
lation times. The perfect sampling scheme for a global lattice
operator, which is decomposable in site-local observables
is a straightforward successive application of the canonical
form and tensor contractions which has been discussed in the
framework of MPS in [49].

For a treatment of the ground state of the Hofstadter-
Bose-Hubbard model, we also need to account for the U(1)
symmetry of the system associated with the conservation of
the particle number N̂ constraining tensor manipulations. To
clarify this, we briefly review the key steps of the single-site
algorithm here.

The idea of projectively sampling is best understood, if we
first consider the expectation value of the global observable N̂
on our lattice Hilbert space H, which we can express as

〈ψ |N̂ |ψ〉 =
∑
�n∈N

〈ψ |�n〉 〈�n|N̂ |ψ〉 . (34)

Here N denotes the set of all pL possible outcome configura-
tion of the outcome tuple �n ≡ (n1, . . . , nL ) and |�n〉 ≡ |n1〉 ⊗
|n2〉 ⊗ · · · ⊗ |nL〉 is a product state with ni = 0, 1, . . . , p − 1
possible instances labeling the elements of a local orthonor-
mal basis {|ni〉}. This expression can be interpreted in the
following way. We introduce the probability | 〈�n|ψ〉 |2 ≡ P(�n)
of projecting |ψ〉 into the product state |�n〉, and the estimator
〈�n|N̂ |ψ〉 / 〈�n|ψ〉 ≡ E (�n) such that:

〈ψ |N̂ |ψ〉 =
∑
�n∈N

P(�n)E (�n). (35)

Evidently,
∑

�n∈N P(�n) = 1 and |N | = pL. In order to ap-
proximate 〈ψ |N̂ |ψ〉, consider only a subset of configura-
tions Ñ ⊂ N with |Ñ | < pL. Then upon normalizing with
Z = ∑

�n∈Ñ P(�n) we can use the following approximation of
the exact expectation value

〈ψ |N̂ |ψ〉 ≈ 1

Z

∑
�n∈Ñ

P(�n)E (�n). (36)

If we now suppose that the |Ñ | configurations of the subset Ñ
were drawn randomly from all possible configurations |N | in
accordance to the probability distribution P(�n), we can rewrite
this approximation as

1

Z

∑
�n∈Ñ

P(�n)E (�n) = 1

|Ñ |
∑
�n∈Ñ

E (�n). (37)

That is, we estimated 〈ψ |N̂ |ψ〉 by means of |Ñ | independent
samples from the random variable (P(�n), E (�n)). Instead of
performing the full contraction in order to obtain Eq. (34),
we can sample the observable N̂ by drawing a finite number
of samples from the probability distribution. Based on this
result, constructing the probability distribution P is the key
to the projective sampling algorithm. As elicited above, MPS
are an ideal starting point to construct P, due to the isometric
character of the site tensors which enable us to express the

MPS in the canonical/unitary form giving access to the full
probabilities through the one-site density matrices.

Hence, the first step of the algorithm is bringing |ψ〉 in the
right-canonical form

|ψ〉 =
∑

n1

∑
n2

· · ·
∑

nL

Bn1
1 Bn2

2 · · · BnL
L |�n〉 . (38)

Subsequently, we select the first site-local density operator n̂1

and break it down in its p projector constituents

n̂1 =
∑

n1

n1P̂n1
1 . (39)

On the tensor-network level, this can be achieved following
Ref. [62] by manipulating the local rank 4 site tensor of the
density operator in accordance with the constraints given by
particle number conservation until we have a compactified
rank 2 tensor. The rank 2 tensor is a Hermitian matrix and
thus, we can apply an eigenspace decomposition.

We obtain the probability P(n1) to draw n1 via

P(n1) ≡ 〈n1|ρ̂1|n1〉, (40)

where |n1〉 ≡ P̂n1
1 |ψ〉. Doing this for all p possible mea-

surement outcomes yields the full probability distribution
satisfying ∑

n1

P(n1) = 1. (41)

We randomly choose one of the p eigenvalues representing
the measurement outcome in accordance to their probability
distribution P(n1).

Finally, we project the MPS site-tensor in the drawn site-
local product-state and normalize it by means of a singular
value decomposition in order to shift the canonical center
towards the second site

|ψ1〉 = P̂n1
1 |ψ〉√

〈ψ |P̂n1
1 |ψ〉

. (42)

This one-site sampling step is now repeated for each of the L
lattice sites. The initial state |ψk〉 of the kth sampling step is
given by

|ψk〉 = P̂nk
k |ψk−1〉√

〈ψ |P̂nk
k |ψk−1〉

. (43)

The sampling probabilities at each step are conditioned by all
already projected site tensors and therefore the final probabil-
ity distribution P(n1, . . . , nL ) ≡ P(�n) is given by

P(�n) = P(n1) · P(n2|n1) · · · P(nL|nL−1, . . . , n2, n1). (44)

Consequently, by sweeping over the full lattice we obtain a
single snapshot-tuple (n1, . . . , nL ) drawn according to P(�n).
The whole perfect sampling scheme for MPS is illustrated in
Fig. 8.
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FIG. 8. Schematic sketch of the one-site perfect sampling of site-local density operators n̂ j for the MPS representation of a state |ψ〉
on a lattice with three sites. Starting at site 1 in the right-canonical gauge of the MPS we obtain the probability distribution

∑
n1

P(n1) = 1
via the diagonal elements of the one-site reduced density matrix ρn1n1 = 〈n1|ρ̂1|n1〉 = P(n1). Upon drawing a certain eigenvalue n1 from the
probability distribution the state is projected in the corresponding site-local product state. By moving the active site of the projected state to
the second site, one can read out the conditioned probability distribution

∑
n2

P(n2|n1) = 1 via ρn2n2 = 〈n1, n2|ρ̂2|n1, n2〉. Finally, one obtains
a single-full lattice snapshot of the form (n1, n2, n3) from P(n1, n2, n3) = P(n1) · P(n2|n1) · P(n3|n2, n1).

D. Sampling two-site operators

In the context of revealing HODLRO, we are interested in
sampling an operator expectation value of the type〈

â†
j âl

∏
k 	= j,l

n̂k

〉
(45)

where we adopted the notation of Sec. II, i.e., a bold letter
corresponds to a discrete coordinate tuple (x, y). Eq. (45)
underlines that we want to simultaneously sample Fock basis
snapshots on all but two sites, and on the two remaining sites
we are interested in the bosonic one-particle correlation func-
tion. Such operators are not accessible through the introduced
one-site perfect sampling scheme, however, by generalizing
the method in fact any kind of multisite observable can be
probed.

Here we will present the modification needed in order to
sample operators of the type of Eq. (45), i.e., we need to
additionally extract probabilities for eigenvalues of nonlocal
two-site operators. Analogously to the single-site case, these
probabilities are contained within the two-site reduced density
matrix

ρ̂ j,l = Trk 	= j,l ρ̂. (46)

We can simplify sampling Eq. (46) by exploiting the invari-
ance of the trace under permutations P̂, which are involutory,
i.e., fulfill P̂P̂ = 1. Hence, in order to sample an arbitrary
nonlocal two-site observable q̂ j,l with | j − l | > 1, we can
use the permutation P̂ to change the ordering of the sites
{ j, l} → { j′, l ′}, such that | j′ − l ′| = 1. From a MPS per-
spective this is beneficial, as we do not need to account for
nonlocal operations. That means, we can safely assume that
we are interested in sampling the following set of local opera-
tors (n̂1, . . . , n̂ j−1, q̂ j, j+1, n̂ j+2, . . . , n̂L) where the coordinate
arithmetic j ± 1 corresponds to the two adjacent lattice points
of site j in an arbitrary mapping of the two-dimensional lattice
to a one-dimensional chain. In this way, up until to the jth
sampling step we can follow the single-site procedure, i.e., we
begin by sampling a pattern of site-local occupation number
eigenvalues of the form (n1, . . . , n j−1) in accordance to the
probability distribution P(n1, . . . , n j−1).

Next, we take the projected state |ψ j−1〉 and bring it in
a mixed canonical form, but this time both site j and j + 1
form the canonical center. This enables us to trivially compute

the two-site reduced density matrix granting access to the
conditioned sampling probabilities.

The next step is to spectrally decompose q̂ j, j+1. On the
tensor network level q̂ j, j+1 is now a rank 6 tensor, which
increases the complexity in fusing it down to its compactified
rank 2 form yielding

q̂ j, j+1 =
∑
q j, j+1

q j, j+1P̂q j, j+1

j, j+1. (47)

Analogously to the single-site step, we obtain the probability
P(q j, j+1|n j, . . . , nL) ≡ P̄ to draw the eigenvalue q j, j+1 via

P̄ = 〈n1, . . . , nL, q j, j+1|ρ̂ j, j+1|n1, . . . , nL, q j, j+1〉, (48)

where |n1, . . . , nL, q j, j+1〉 ≡ P̂q j, j+1

j, j+1 |n1, . . . , nL〉.
After having done that for all possible measurement out-

comes of the two-site operator, once again we obtain an
eigenvalue q j, j+1 by randomly drawing from P̄ and the up-
dated snapshot takes the form (n1, . . . , n j−1, q j, j+1). The
two-site step is completed by the projection on the corre-
sponding two-site product state:

|ψ j〉 = P̂q j, j+1

j, j+1 |ψ j−1〉 , (49)

and ultimately, by moving the canonical center towards the
site j + 2. The extended perfect sampling algorithm in its
tensor network notation is shown in Fig. 9.

From here onward, the procedure is just the
plain one-site algorithm again until we finally obtain
(n1, . . . , n j−1, q j, j+1, n j+2, . . . , nL). How a snapshot of
this form can be used to probe HODLRO is discussed in
detail in Appendices F and G.

V. CONCLUSION AND OUTLOOK

The main result of our work is the demonstration that
state-of-the-art quantum simulation platforms, and cold atoms
in particular, can be used to directly detect HODLRO in
fractional Chern insulators. This finding is based on strong
numerical evidence for the existence of HODLRO in a lattice
analog of the ν = 1/2-Laughlin state, which has far-reaching
consequences for topologically ordered lattice systems. We
explicitly generalized existing continuum results to lattice
systems and described how correlations of the emergent com-
posite bosons give rise to HODLRO in this context. Such
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FIG. 9. Schematic sketch of the modification of the one-site algorithm towards the mixed one-site/ two-site sampling to evaluate
expectation values of the form 〈n̂1 . . . n̂ j−1q̂ j, j+1n̂ j+2 . . . n̂L〉. After j − 1 single-site steps we bring the projected MPS state |ψ j−1〉 in a
canonical gauge where both site j and site j + 1 are the active sites (round nodes). We are now interested in the probability distribution∑

q j, j+1
P(qj, j+1|nj−1, . . . , n1) = 1 which is now accessible via the diagonal elements of the two-site reduced density matrix ρ

q j, j+1q j, j+1
j, j+1 =

〈n1, . . . , nj−1, qj, j+1|ρ̂ j, j+1|n1, . . . , nj−1, qj, j+1〉 = P(qj, j+1|nj−1, . . . , n1). After drawing qj, j+1 in accordance to P(qj, j+1|nj−1, . . . , n1) the
scheme is continued by performing single-site measurements starting at site j + 2 until we obtain a full-lattice snapshot of the type
(n1, . . . , nj−1, qj, j+1, nj+2, . . . , nL ).

correlators are of interest to probe the condensation of emer-
gent composite bosons and to deepen our understanding of the
intrinsic topological order in the quantum state.

In view of the current abilities of cold atom quantum sim-
ulators, we proposed an experimentally accessible scheme to
extract long-range correlations of the form 〈â†

j âl

∏
k 	= j,l n̂k〉.

Our proposal is based on realizing a bilayer system which
is coupled along one edge to realize an effective extended
single-layer Hofstadter-Bose-Hubbard model. This allows to
measure nonlocal coherence ∼â†

j âl in current setups.
Our numerical results are based on the extension of the

existing perfect sampling scheme [48] to allow to projectively
sample more complex, multiparticle correlation functions like
HODLRO. The application of this sampling algorithm al-
lowed us to probe HODLRO, thus demonstrating that this
concept persists in lattice systems accessible to near-term
quantum simulators. In particular, we showed that already
relatively few snapshots [Nsnaps = O(103)] are sufficient to
distinguish the exponentially decaying correlations of the un-
derlying bosons from the quasi-long-ranged power-law decay
of the composite boson correlations. Furthermore, we were
able to resolve the exponent of the algebraic decay which is
directly related to the filling factor of the Laughlin state and
gives direct qualitative insights about the intrinsic topologi-
cal order of the state, specifically its K matrix. The recent
progress in studying FQH states in cold atom experiments
[23] calls for additional ways to probe these states directly.
The snapshot-based protocol discussed here provides a way
to explore the unconventional correlators needed, for exam-
ple, to reveal the intrinsic topological order of such states.
Having revealed the exotic correlations present in such sys-
tems, a next step would be further investigations of their
origin. Microscopically, computing the entire one-particle re-
duced density matrix for the composite bosons employing the
snapshot protocol could give further insights into the specu-
lated condensation of the composite bosons in the Laughlin
state. Another intriguing possibility is to explore the fate of
HODLRO in systems out-of equilibrium. While we restricted
our analysis to a particularly simple FQH state, we believe
that the concepts introduced here are also applicable to more
exotic FQH states, like for example the Pfaffian state [63] or
parafermion states [64]. Furthermore, applying similar ideas
to other systems exhibiting topological order, like chiral spin

liquids [65], might deepen our understanding of such exotic
states of matter. These more complex states should be in prin-
ciple accessible to quantum simulator platforms like ultracold
atoms or superconducting qubits where our approach can be
readily applied.
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APPENDIX A: SINGULAR GAUGE TRANSFORMATION

Consider a single charged particle in a plane with position
r′ = (0, 0). We can endow this particle with a magnetic flux
quantum �0 by introducing a differential form A which satis-
fies

∇ ∧ A = B(r) = �0δ
(2)(r). (A1)

where ∧ is the exterior product in two spatial dimensions, i.e.,
∇ ∧ A = ∂xAy − ∂yAx. A generates an infinitesimal, singular
magnetic field which vanishes everywhere but on the particle
itself. We find A by solving∫

R
dx

∫
R

dy(∂xAy − ∂yAx ) = 1. (A2)

Imposing symmetry and using
∫
R du 1

1+u2 = arctan (u)|+∞
−∞ =

π, we find

A = �0

2π

( −y

x2 + y2
x̂ + x

x2 + y2
ŷ
)

= �0

2π
∇ arctan

(y

x

)
.

(A3)
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In order to attach m multiple flux solenoids we can sim-
ply write mA. Now consider a system with N particles
parameterized by a set of position vectors {r1, . . . , rN }. We
look for a transformation such that each particle acquires m
flux tubes relative to all remaining charges which is found as
the multiparticle extension of (A3)

A j (x j, y j ) = m

2π

∑
k 	= j

∇ j arctan

(
yk − y j

xk − x j

)
. (A4)

Using the complex representation of the position vectors, i.e.,
zk = xk + iyk , we can identify

arctan

(
yk − y j

xk − x j

)
= arg (zk − z j ), (A5)

which via ln (z) = ln (|z|) + i arg (z) is just Im{ln (zk − z j )}
and it follows the expression for the singular gauge transfor-
mation used in the main text

A j (z j ) = m�0

2π

∑
k 	= j

∇ jIm{ln(zk − z j )}. (A6)

If we consider the Laughlin wave function ψLN = ∏
j<k (z j −

zk )me− 1
4

∑
l |zl |2 , such a transformation on each particle brings

us to

ψLN
A−→ e

∑
j

∫
dr jA j (z j )ψLN =

∏
j<k

|z j − zk|me− 1
4

∑
l |zl |2 . (A7)

Independent of m, the transformed wave function is purely
real and symmetric and hence, describes a bosonic composite
of flux quanta and a charged particle.

APPENDIX B: GAUGE INDEPENDENCE

We introduced the Hofstadter-Bose-Hubbard model in
Landau gauge and hence, all calculations have been carried
out using this particular gauge choice. It is straightforward
to show that the emergence of HODLRO found in Sec. III
is independent of the gauge. Consider the original two-point
correlation function

ρx,x′;y,y′ = 〈â†
x,yâx′,y′ 〉. (B1)

Under a gauge transformation on the physical vector potential
A of the form

Ak
x,y −→ Ak

x,y − ∂kχx,y, (B2)

the bosonic annihilation (creation) operators transform as

â(†)
x,y −→ e(−)iχx,y â(†)

x,y. (B3)

For instance, going from Landau gauge Ax,y;L = 2πα(−y, 0)
to the symmetric gauge Ax,y;S = πα(−y, x) corresponds to a
gauge transformation χx,y = −παxy. Consequently, the cor-
relation function of Eq. (B1) simply picks up an additional
local phase under general gauge transformations χx,y main-
taining a homogeneous magnetic field

ρx,x′;y,y′ −→ e−i(χx,y−χx′ ,y′ )ρx,x′;y,y′ , (B4)

which in particular implies that the absolute value of ρ is
preserved.

The singular lattice gauge transformation which promotes
the bosonic operators to composite bosonic operators on the

other hand had the form

â(†)
x,y −→ e(−)i�̂(†)

x,y â(†)
x,y. (B5)

Since �̂x,y directly depends on the site-local density operator
n̂m,n where (m, n) 	= (x, y) we cannot treat it as a pure phase
which we can pull out of the ensemble average

However, as e(−)iχx,y is just a complex number it commutes
with any �̂x,y and it follows that the composite bosonic corre-
lation function

ρ̃x,x′;y,y′ = 〈e−i�̂†
x,y â†

x,yâx′,y′ei�̂x′ ,y′ 〉 (B6)

also simply acquires a trivial phase under gauge transforma-
tions on the physical vector potential

ρ̃x,x′;y,y′ −→ e−i(χx,y−χx′ ,y′ )ρ̃x,x′;y,y′ . (B7)

Since the singular gauge transformations is only unique up to
a translation on the connected component covered by the ex-
ponential map of the group U(1), we can choose the extension
of the singular gauge transformation to be

�̂x,y − χx,y (B8)

from which follows

ρ̃
χ−→ ρ̃. (B9)

That means, not only the norm is preserved but generally the
emergence of HODLRO.

APPENDIX C: ERROR ESTIMATION AND
CONVERGENCE OF THE TWO-SITE SAMPLING

In this section, we study the error and the convergence
of the novel two-site sampling scheme. In principle, as the
deviation from the MPS expectation value we are sampling
[see Eq. (36)] should be purely statistical, we expect a conver-
gence of 1/

√
N with N being the number of snapshots taken.

Following Ref. [48], it can be readily shown that the variance
σA of the complete sampling algorithm is indeed the variance
σÂ of the expectation value of the operator Â we are sampling.
Complete here refers to the fact that we probe all lattice sites
of the system. We will elaborate how this translates to the
mixed one-site/two-site scheme.

Let Â be an operator on the tensor product Hilbert space
H which consists of a sum of Hermitian site-local operators
âk ≡ 11 ⊗ · · · ⊗ 1k−1 ⊗ âk ⊗ 1k+1 ⊗ · · · ⊗ 1L on all but two
sites. On the two remaining (adjacent) sites it consists of
a Hermitian two-site tensor product operator q̂ j, j+1 ≡ 11 ⊗
· · · ⊗ 1 ⊗ q̂ j ⊗ q̂ j+1 ⊗ 1 j+2 ⊗ · · · ⊗ 1L with [âk, q̂ j, j+1] = 0.
That is, we can find a basis {|σi〉} in which both all site-local
operators and the two-site operator is diagonal. Furthermore,
we can express the expectation value of Â regarding a state
|ψ〉 ∈ H as

〈ψ | Â |ψ〉 =
∑
�σ∈�

〈ψ |�σ 〉 〈�σ | Â |ψ〉 =
∑
�σ∈�

P(�σ )E (�σ ), (C1)

where we introduced both the probability P(�σ ) to measure the
|ψ〉 in the product state |�σ 〉 = |σ1〉 ⊗ · · · ⊗ |σ j−1〉 ⊗ (|σ j〉 ⊗
|σ j+1〉) ⊗ |σ j+2〉 ⊗ · · · ⊗ |σL〉 given by

P(�σ ) = 〈ψ |�σ 〉 〈�σ |ψ〉 , (C2)
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and the corresponding estimator E (�σ )

E (�σ ) = 〈�σ |Â|ψ〉
〈�σ |ψ〉 . (C3)

The mixed one-site/two-site sampling is based on drawing N
independent samples from the random variable (P(�σ ), E (�σ )).
The mean of this random variable is then by definition

Ā =
∑
�σ∈�

P(�σ )E (�σ ) = 〈ψ |Â|ψ〉 . (C4)

Consequently, we can also construct the variance of the vari-
able as

σ 2
A ≡

∑
�σ∈�

P(�σ )|E (�σ ) − Ā|2 =
∑
�σ∈�

P(�σ )|E (�σ )|2 − |Ā|2 = σ 2
Â .

(C5)
This means that the error of the approximation of the expec-
tation value of Â via drawing N independent samples with
standard deviation σ 2

A is simply

�A(N ) � σÂ√
N

. (C6)

justifying the choice of the error used throughout the paper.
Additionally, we probe the convergence by comparing the

MPS expectation value of the two-point correlation function
for the square lattice Hofstadter-Bose-Hubbard model of size
L = 12 where we fix the reference site on the edge, i.e., x′ = 0
at a constant y = 5 value, i.e., we are computing ρx′=0,y=5(x)
for x ∈ [0, . . . , L − 1]. We can store the expectation val-
ues in a vector �Qexact = (ρx′=0,y=5(0), . . . , ρx′=0,y=5(L − 1)).
Analogously, we sample each of the two-point correlation
functions with a certain amount of snapshots N which de-
fines �QN = (ρN

x′=0,y=5(0), . . . , ρN
x′=0,y=5(L − 1)). The distance

between this points should then scale like 1/
√

N , i.e.,

| �Qexact − �QN | � 1√
N

. (C7)

In Fig. 10, we study this distance with increasing N and find
the expected convergence behavior.

APPENDIX D: EDGE MODE

FQH systems with open boundary conditions famously
host chiral edge modes. In particular, the case of ν = 1/2
studied here is supposed to exhibit a chiral Luttinger liquid
edge mode with a phase field operator that is expected to
have considerable overlap with the creation and annihilation
operators on the lattice. The existence of a chiral edge mode
can be probed by considering two-point correlation functions
along the edge of the system. While the two-point correlations
are expected to decay exponentially deep in the bulk of the
system, the presence of an edge mode weakens the fall-off
moving closer to the edge. Measuring correlations explicitly
along the edge one should find an algebraic decay signaling
the presence of the gapless edge mode. Additionally, in sys-
tems with finite size (which we are considering in our studies)
one would also expect the revival of the correlation function
once we approach the opposite edge of the system [32].

In Fig. 11, we study the behavior of the two-point corre-
lation functions along the x-direction for varying values of y

103 104

N

2 × 10−2

3 × 10−2

4 × 10−2

6 × 10−2

|� Q
ex

a
ct
−

� Q
N
|

snapshots

1/
√

N

FIG. 10. Convergence of the hybrid sampling scheme. Deviation
from the quasiexact expectation value of the snapshot averages vs
number of samples N . �Qexact denotes here the vector containing all
expectation values for the one-particle correlation function for a
given set of lattice points. �QN contains the corresponding values from
sampling.

while keeping the reference site fixed on the edge, i.e., x′ = 0.
We find that for values of y � 2 close to the edge the decay is
indeed suppressed resembling signatures of a power-law de-
cay. For values of y � L/2, deep in the bulk, the correlations
are vanishing exponentially. Furthermore, the revival of the
correlation function can be observed for all values of y. Since
the edge mode has a shorter distance to cover between x = 0
and L, we find more pronounced revivals for smaller y. Hence,
we find conclusive evidence for the coexistence of a gapless
edge mode living on the boundary of the system and a gapped
bulk.

APPENDIX E: DEPENDENCE ON THE REFERENCE SITE

For completeness and to deepen the understanding of the
edge effects in the system, we systematically change the
position of the reference site for systems of sizes L = 10
and 12. That is, we compute the composite bosonic two-
point correlation functions ρ̃x,x′;y with y ∈ bulk for a varying
x′ ∈ [0, 1, . . . , L/2] alongside the x-direction. The immediate
consequence is that the maximum distance we can reach in
each of the correlations is limited by L − x′. We observe ∀x′
the emergence of a power-lay decay in the composite bosonic
correlations signaling HODLRO.

Quantitatively, we can study the fit through the data points
giving us insight about the power-law exponent 2/m. The re-
sults are shown in Fig. 12. For both system sizes the m value
obtained increases with increasing x′. We can only reproduce
the correct m value of continuum considerations within the
errorbars for x′ = 0. As discussed in the results in Sec. III,
points x close to x′ and points x close to the edge might be
effected by length scale, finite size and edge effects and are
not considered for the fit. Hence, the bigger x′ the fewer data
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FIG. 11. One-particle correlation function along the x-direction. Clear signatures of a slower decay close to the edge, signaling the presence
of an edge current.

points can be taken into account and the fit quality becomes
less reliable.

APPENDIX F: SAMPLING NON-HERMITIAN OPERATORS

In the context of HODLRO, we are interested in correlation
functions of the type 〈

â†
j âl

∏
k 	= j,l

n̂k

〉
, (F1)

that is the two-site operator of interest is the bosonic
one-particle correlation â†

j âl . Clearly, this operator is non-

Hermitian, i.e., (â†
j âl )

† = â†
l â j 	= â†

j âl , so that the spectral
decomposition used above does not exist a priori. The
workaround is to decompose the correlator in its Hermitian

FIG. 12. m as obtained from fits of ρ̃LN
x,x′;5 to the data from

Nsnaps = 104 snapshots for varying position of the reference site x′.
The black line indicates the analytical prediction m = 2 for the
ν = 1/2-Laughlin state.

real- and imaginary-parts

Re(â†
j âl ) = â†

j âl + (â†
j âl )

†

2
, Im(â†

j âl ) = i
â†

j âl − (â†
j âl )

†

2
.

(F2)
However, there is another caveat. The real- and the imaginary-
parts are not commuting simply because the creation and
annihilation operators on the same site-local Hilbert space
fulfill

[â j, â†
j ] 	= 0, (F3)

from where it immediately follows that

[Re(â†
j âl ), Im(â†

j âl )] 	= 0. (F4)

This implies that we cannot simultaneously diagonalize them,
i.e., we cannot sample both in the same sweep. That forces us
to perform two (quasi-)independent sweeps over the lattice:
one where we sample the real-part, and one where we sample
the imaginary-part.

In order to obtain physically compatible measurements, we
need to assure that for both the real- and imaginary-parts the
Fock-state snapshots agree on the other sites. This is done in
the following way.

(1) Draw the same random number at each sampling step
for both sweeps.

(2) Sample first all particle position.
The first argument ensures that we draw the same eigen-

value for each site-local tensor, if the probability distribution
coincides. The equality of the probability distribution for the
Fock-state samples is guaranteed by the second condition.
We can achieve this by sweeping first from left-to-right up
until site j − 1. Then we left-normalize |ψ j−1〉, such that the
canonical center is the Lth site. From thereon, we sweep from
right-to-left until we reach site j + 2. Ultimately, we move
the canonical center to ( j, j + 1) and sample â†

j â j+1. The
conditioned probability distribution is then given by

P(p j, j+1/p̃ j, j+1|n j+2, . . . , nL, n j−1, . . . , n1). (F5)
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Here we used p j, j+1/p̃ j, j+1 and nk to denote the drawn eigen-
values of the real- respectively the imaginary-part and the
local Fock-states. Now suppose we perform a single sampling
step, as described above, yielding the snapshot

Real part: (n1, . . . , n j−1, p j, j+1, n j+2, . . . , nL),
(F6)

Imag. part: (n1, . . . , n j−1, p̃ j, j+1, n j+2, . . . , nL).

The local densities coincide.

APPENDIX G: EXTRACTING HODLRO SNAPSHOTS

In this paper, we applied the described algorithm to nu-
merically approximate the expectation value of the composite
boson correlator, i.e.,〈 ∏

k 	= j, j+1

(
z j − zk

|z j − zk|
)−mn̂k

(
z j+1 − zk

|z j+1 − zk|
)mn̂k

â†
j â j+1

〉
. (G1)

We will briefly explore how to evaluate Eq. (G1) by using
the one-site/two-site sampling scheme. For a lattice system

with N particles, the set {nk} with k ∈ [1, 2, . . . , j − 1, j +
2, . . . , L] fulfills the condition∑

nk

nk = N ⇐⇒ p̃ j, j+1 = p j, j+1 = 0,

(G2)∑
nk

nk = N − 1 ⇐⇒ p̃ j, j+1 	= 0 	= p j, j+1.

In the hardcore bosonic case, the local occupations are con-
strained to nk ∈ {0, 1} and we can define:

nk = 1 ⇒ nk ≡ ñl l ∈ {1, 2, . . . , N − 1}. (G3)

The index l is just running up until N − 1, because we can
neglect the case where we find N particles, due to Eq. (G2).
Each nonzero Fock basis snapshot nk is then contributing as a
non trivial phase and the single one-particle composite boson
correlator snapshot reads

N−1∏
l=1

(
z j − zl

|z j − zl |
)−m(

z j+1 − zl

|z j+1 − zl |
)m

(p j, j+1 + i p̃ j, j+1). (G4)
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