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How much information does a fermionic state contain? To address this fundamental question, we define the
complexity of a particle-conserving many-fermion state as the entropy of its Fock space probability distribu-
tion, minimized over all Fock representations. The complexity characterizes the minimum computational and
physical resources required to represent the state and store the information obtained from it by measurements.
Alternatively, the complexity can be regarded as a Fock space entanglement measure describing the intrinsic
many-particle entanglement in the state. We establish a universal lower bound for the complexity in terms of the
single-particle correlation matrix eigenvalues and formulate a finite-size complexity scaling hypothesis. Remark-
ably, numerical studies on interacting lattice models suggest a general model-independent complexity hierarchy:
ground states are exponentially less complex than average excited states, which, in turn, are exponentially less
complex than generic states in the Fock space. Our work has fundamental implications on how much information
is encoded in fermionic states.
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I. INTRODUCTION

The complexity of an object or a process quantifies how
something can be generated from simple building blocks in
an optimal way. For example, the computational complexity
of a mathematical operation is defined in terms of the number
of elementary operations required in its execution, or the
complexity of a unitary operation in a quantum computer is
defined as a the minimum number of elementary quantum
gate operations required in its generation [1,2]. Various
notions of complexity in quantum systems and their relation
to quantum information processing have been actively studied
recently [3–5]. In this work, we introduce the complexity of
N-particle fermionic states. The complexity quantifies how
resource intensive it is to express a given state as a linear
combination of Slater states (fermionic product states), which
are the building blocks of the fermionic Fock space. If the
complexity of a state is C, to express this state in any Fock
basis, one needs to specify at least C nonzero coefficients.
We show rigorously that the Fock representation of a state
cannot be compressed to less than nqubits = log2 C qubits,
showing how the complexity determines the minimal physical
and computational resources required to represent the state.
Sophisticated numerical methods [6,7] have been developed
to mitigate the exponential complexity of correlated systems;
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however, only a genuine quantum simulation [8] can be
expected to incorporate it in general. Our results provide a
quantitative estimate for the complexity of distinct classes
of states, outlining required resources for the quantum
simulation targeting fermionic states [9–12].

Besides its computational and information-theoretic impli-
cations, the complexity constitutes an entanglement measure
in the Fock space. In contrast to widely studied partition
entanglement measures [13], the complexity describes intrin-
sic partition-independent properties of N-particle states. It
sharply distinguishes between the states of interacting and
noninteracting Hamiltonians: all nondegenerate eigenstates of
noninteracting systems can be represented as a single Slater
state, thus having a trivial complexity.

The central finding in our work is that the complexity for
distinct classes of states can be faithfully estimated from the
correlation entropy Sc, defined essentially as the entanglement
entropy between a single particle and the rest of the system.
The quantity Sc, exhibiting intensive size scaling, is calculated
from the eigenvalues of the single-particle correlation matrix
(i.e., the natural occupations), and thus is easily available in
many numerical and theoretical methods. By relating the com-
plexity C to Sc, we thus quantify and give a precise meaning to
the idea, put forward already in the seminal works of Löwdin
[14], that the natural occupations can be used to estimate how
far the state is from a single Slater configuration [15–18].
Furthermore, this relates C as a newly defined entanglement
measure to the widely studied entanglement entropies of the
N-particle reduced density matrices [19–22]. Specifically, (1)
we establish a universal lower bound for the complexity
SP � Sc, where SP is the logarithmic complexity C = eSP ,
(2) we introduce a model-independent finite size complexity
scaling hypothesis SP ∼ αNpSc for homogeneous Np-particle
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FIG. 1. Complexity hierarchy of fermionic states as a function
of particles Np and the correlation entropy Sc at fixed filling fraction.
Ground states and excited states refer to eigenstates of interacting
lattice Hamiltonians at strong coupling exceeding the bandwidth and
1 � αg � 2, depending on the filling.

states with constant filling fraction, and (3) numerical studies
of interacting lattice models suggest that the coefficient α

characterizes universal features of distinct classes of states,
implying the exponential complexity hierarchy summarized in
Fig. 1. In strongly coupled lattice models, the ground states are
exponentially less complex than average excited states, which
in turn are exponentially less complex than the generic states
in the Fock space. Due to the model-independent nature of
the scaling hypothesis, we postulate that the same complexity
scaling is applicable for a broad class of local Hamiltonians.
Our work has fundamental implications on how much infor-
mation is contained in fermionic states.

II. FERMIONIC COMPLEXITY

We begin by defining the complexity for an arbitrary
fermionic state |�〉 in the Fock space of Np identical particles
and No available single-particle orbitals. This state can be
expanded as

|�〉 =
kmax∑
k=1

a{nBi }k

∣∣{nBi

}
k

〉
,

where Bi denotes orbital i in the single-particle basis B, and
{nBi}k labels the distinct sets of single-particle occupation
numbers nBi = 0, 1. The Np-particle Slater basis states are
defined as |{nBi}k〉 = ĉ†

BjNp
. . . ĉ†

Bj2
ĉ†

Bj1
|0〉, where the product

of fermion creation operators contains the populated orbitals
in the set {nBi}k . Each Slater state is multiplied with a nonzero
complex probability amplitude a{nBi }k �= 0. Depending on |�〉
and the employed single-particle orbitals B, the number of
terms kmax varies between 1 and the Fock space dimension
Q = (No

Np

)
. We now consider the second Renyi entropy of the

probability distribution of the Slater states,

SPB = − ln
∑

k

P2
k ,

where Pk = |a{nBi }k |2 denotes the probability weight of |{nBi}k〉
in |�〉. To eliminate the dependence on B, we define the
logarithmic complexity as

SP = min
B

SPB , (1)

where the minimization is carried over all possible single-
particle bases B. Finally, we define the complexity of the state
|�〉 as

C = eSP .

In practical calculations, carrying out the minimization in
Eq. (1) is a highly nontrivial task. Remarkably, as seen below,
for the eigenstates of the studied lattice Hamiltonians, the
optimal basis is excellently approximated by the correlation
matrix eigenbasis and the position basis at weak and strong
coupling.

The complexity, as defined above, has two illuminating
interpretations: (1) The complexity of a state determines
its maximum compression in the Fock space, characterizing
the number of terms in the most compact representation.
By employing fundamental results in classical and quantum
information theory [23–25], we show in Appendix A that
the maximum compression of the quantum information in
a fermionic state is determined by its complexity. Specifi-
cally, we prove that the number of qubits required to encode
the Fock space information of a state is, at least, nqubit =
SP log2 e. This characterizes the minimum physical resources
required to represent and store general fermionic many-body
states. We emphasize that the result, which has close paral-
lels with Shannon’s and Schumacher’s encoding theorems in
classical and quantum information theory, is universal and
applies to generic quantum simulation and quantum infor-
mation platforms. (2) The complexity of a state describes its
intrinsic N-particle entanglement. Without entanglement, the
state could be represented as a single Slater state. If the state
has complexity C, the amount of entanglement corresponds
to that in an equal superposition of C Slater states. Different
aspects of Fock space (or mode) entanglement have been
studied extensively over the years [19–22,26,27]. However,
none of the previous mode entanglement measures capture
the same information as the complexity studied here. In fact,
the complexity is unique in establishing a concrete connec-
tion between the information content of the state and the
N-particle entanglement. In contrast to the entanglement en-
tropy and other partition-based measures, the complexity does
not depend on arbitrary case-specific partition. Moreover, the
complexity sharply distinguishes interacting and noninteract-
ing systems since all nondegenerate eigenstates of quadratic
Hamiltonians can be represented as a single Slater state with
SP = 0, irrespective of whether they obey the area-law [28],
the volume-law [29], or the critical entanglement entropy
scaling.

The complexity SP can be contrasted with other quantities
derived from coefficients in the Fock basis. The Slater rank
[30,31] of a state is the minimal number of Slater determinants
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required to exactly expand the state, and has been studied in
low-dimensional systems. This is related to the generalized
Pauli constraints [32,33], as exactly satisfying a constraint can
lead to lower-dimensional representation of the state even if
the average occupations do not take values of 0 or 1 (c.f. the
discussion on Sc below), although this may again be mostly
relevant in low-dimensional systems [34]. Measures similar to
the Slater rank have also been considered in bosonic systems
[35,36]. Another extreme is to consider only the weight of
the largest Slater determinant [37,38], which was considered
as an entanglement measure for the Laughlin wave function
[39]. The complexity C, the Slater rank, and the largest weight
are related to Renyi-n entropies of the Slater weights with
n = 2, n = 0, and n = ∞. Indeed, the generalization of the
complexity for other Renyi entropies and the Shannon entropy
is immediate, and the relation to the corresponding single-
particle entanglement entropies discussed below in the n = 2
case will be developed in a forthcoming work for general n.
The Renyi-2 entropy has the advantage of an elementary proof
of the lower bound property discussed below and admitting
certain analysis tools [40] used in Appendix G, while the
Shannon entropy has a more direct relation to asymptotic
information content of the state, as discussed in Appendix A.

A. Complexity lower bound from natural orbitals

A central role in the complexity is played by the single-
particle correlation matrix, also known as the one-body
reduced density matrix,

Ci j = 〈�|ĉ†
j ĉi|�〉,

where ĉ†
i , ĉ j denote the fermionic creation and annihilation

operators and indices i, j ∈ 1, . . . , No label all possible single-
particle orbitals in a fixed basis. If we have a system with
No available orbitals, the correlation matrix has dimension
No × No. Due to Fermi statistics, the correlation matrix eigen-
values satisfy 0 � λi � 1 and

∑
i λi = Np. Thus, they can be

interpreted as single-orbital occupation probabilities in the
eigenbasis of Ci j . The eigenstates of Ci j are commonly re-
ferred to as the natural orbitals [14], which have found modern
applications in analyzing strongly correlated many-body sys-
tems [41,42]. We can define one-particle correlation entropy
in the state |�〉 as

Sp
c = − ln

∑
i λ

2
i

Np
,

which is a measure of how the occupation probabilities of the
natural orbitals collectively differ from 1 or 0. As discussed
in Appendix B, up to a trivial constant, Sp

c is equal to the
Renyi entanglement entropy between a single particle and the
rest of the system. Generic properties of entanglement en-
tropies of fermionic N-particle reduced density matrices have
been discussed extensively [19–22], and quantities similar to
Sp

c have been employed to characterize phase transitions in
many-particle systems [43,44] and as measures of correlation
[14–17] and complexity [18]. It is thus useful to establish a
connection between SP and Sc, clarifying the role of SP as a
novel entanglement measure.

By interchanging the role of particles and holes, we de-
fine single-hole occupation probabilities λ̃i = 1 − λi, which

satisfy 0 � λ̃i � 1 and
∑

i λ̃i = No − Np. We then define a
single-hole correlation entropy as

Sh
c = − ln

∑
i λ̃

2
i

No − Np
,

and the correlation entropy as the larger of the two

Sc = max
{
Sp

c , Sh
c

}
. (2)

In Appendix C we prove that, for arbitrary fermionic state
|�〉, the correlation entropy provides a lower bound for the
logarithmic complexity

SP � Sc. (3)

This complexity bound is nontrivial: there exist states with
nonzero logarithmic complexity for which the lower bound
is saturated. A simple example is obtained by considering
states where the number of particles Np and available orbitals
No satisfy nNp � No with n � 2. Given a single-orbital basis,
one can find at least n disjoint occupation number sets {nBi}k

where each occupied orbital with nBi = 1 belongs precisely
to one set. Forming a superposition of such occupation sets
|ψ〉 = ∑n

k=1

√
Pk|{nBi}k〉, with

∑
k Pk = 1, yields an example

of a complexity bound saturating state. For these states the
correlation matrix C is diagonal, and the natural occupations
λi = Cii = Pk for each of the Np occupied orbitals in the set
{nBi}k . Thus, Sc = Sp = − ln

∑n
i P2

i , and the lower bound in
Eq. (3) is saturated. The state |ψ〉 can also be regarded as an
n-orbital generalization of the Greenberger-Horne-Zeilinger
state 1√

2
(| ↑↑↑ . . .〉 + | ↓↓↓ . . .〉) [45]. These types of states,

whose complexity do not scale with the total number of parti-
cles at fixed filling fraction ν = Np

No
, define the low-complexity

category in Fig. 1. This category includes, for example, eigen-
states of impurity systems with a nonextensive number of
scattering centers, such as the Kondo model. Despite a macro-
scopic reorganization of the Fermi sea, the eigenstates have
only a few correlation matrix eigenvalues that differ from 0 or
1 [46].

B. Complexity scaling

The existence of the lower-bound Eq. (3) saturating states
suggests that the bound cannot be significantly improved
without making additional assumptions of the states of inter-
est. Eigenstates of local interacting Hamiltonians and other
large-scale homogeneous states defined on a d-dimensional
spatial lattice constitute a class of central importance. They
define a family of states which can be studied as a function
of the system size for a fixed filling fraction ν. How is the
complexity of such states scaling as the system size grows?
For a generic filling fraction ν �= 0, 1, the dimension of the
Fock space of such states grows exponentially in Np. Thus,
in the leading order, we expect that the logarithmic com-
plexity scales as SP ∼ Np. However, the maximum value of
the correlation entropy does not scale with the system size
Sc � max{− ln ν,− ln(1 − ν)}. This shows that Sc alone does
not provide an accurate approximation for the complexity of
these states. However, the role of Sc in Eq. (3) suggests that it
encodes some universal features of the complexity. Combin-
ing this idea with the exponential scaling in the system size,
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FIG. 2. Complexity of ground states. (a) Ground-state complexity of a half-filled Hubbard chain as a function of interaction. The system
length is L = 8 sites (No = 16 orbitals). The numerically optimized complexity (black dots) is well approximated from below by the ground-
state scaling form SP = 1

2 NpSc (green dashed line). The solid lines correspond to complexities calculated in the momentum and position
orbitals. Complexity at weak coupling does not approach zero due to ground-state degeneracy in the noninteracting model. (b) Complexity
scaling of the half-filled Hubbard chain as a function of the particle number Np. The complexity SP is approximated by Smin = min(Spos, Smom ),
as we cannot perform the full optimization for large systems. (c) Tentative extrapolation of the coefficient α = SP/(NpSc ) to infinite system
size. The dashed lines are a quadratic fit. At strong coupling the value approaches α ≈ 1/2. [(d–f)] The same quantities for the t − V model
but at ν = 1/3 filling. Here, we also explicitly include the complexity Snat in natural orbitals, which always gives the approximated minimal
complexity Smin. Again, the ground-state complexity follows closely the scaling form SP = 1

2 NpSc.

we postulate that the complexity of uniform states follows, in
the leading order, the scaling form

SP ∼ αNiSc, (4)

where α > 0 captures universal features of distinct classes of
states. Here, Ni is the number of particles Ni = Np when ν �
1
2 , and the number of holes Ni = No − Np when ν > 1

2 . We
illustrate this hypothesis for three paradigmatic examples: the
Hubbard model of spinful fermions

Ĥ = t
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + H.c.) + U
∑

〈i, j〉,σ
n̂iσ n̂iσ̄ ,

the t − V model of spinless fermions

Ĥ =
∑
〈i, j〉

(t ĉ†
i ĉ j + H.c. + V n̂in̂ j ),

and Haar-distributed states, which we call “generic states” as
they represent uniformly distributed unit vectors in the Fock
space (see Appendix D). We observe that, indeed, the value of
α distinguishes different broad classes of states:

(1) The generic states have α = αg, where 1 � αg � 2,
depending on the filling fraction. The maximum αg = 2 is
obtained at ν = 1

2 , while αg → 1 when ν → 0 or ν → 1.
(2) For nondegenerate ground states, α = 1

2 provides an
excellent lower bound, which can become tight in various
limits.

(3) Average excited states have 1 � α < αg when the in-
teraction exceeds the bandwidth.

The difference in α, despite its innocent appearance, trans-
lates into an exponential difference in the complexity. The

complexity of generic states provides a baseline reference to
compare other types of states. The analytical expression for
αg is derived in Appendix D. The generic states saturate the
maximum value of the correlation entropy Sc and the maximal
leading-order complexity allowed by the dimensionality of the
Fock space. As seen below, the eigenstates of local Hamilto-
nians allow exponential compression compared to the generic
states.

In Fig. 2 we illustrate the ground-state complexity for the
Hubbard model for ν = 1

2 and the t − V for ν = 1
3 . The min-

imizing basis, found by the conjugate gradient optimization
(see Appendix H for details), is well approximated by the mo-
mentum states at weak coupling. In this case, the momentum
basis is a natural orbital basis; however, the natural orbitals
are not unique due to degeneracies in the natural occupations.
For the t − V model, the natural orbitals are essentially the
optimal basis also at strong coupling, while for the Hub-
bard chain, the optimal basis at strong coupling coincides
with the position orbitals. The ground-state complexity for
both models is seen to satisfy SP � 1

2 NpSc, where the lower
bound appears tight for small V and large U . In the Hubbard
chain, the correlation entropy saturates the maximum value
Sc = ln 2 at strong coupling. Thus, the logarithmic complexity
of a generic state at half-filling, SP = 2Np ln 2, is four times
larger than that of the ground state of the Hubbard chain
SP ≈ 1

2 Np ln 2 at strong coupling. Furthermore, the size scal-
ing suggests that α converges reasonably close to α = 1

2 for all
coupling strengths. This is observed for both models at fillings
for which the ground state is nondegenerate. For the t − V
model at half-filling, the ground state corresponds to two near-
degenerate charge density wave configurations. In this case,
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FIG. 3. Complexity of excited states in the Hubbard and the t − V model in the ground-state parity and momentum sector. (a) and
(b) Comparison of numerically optimized results Sopt with Smin = min(Snat, Smom, Spos ), where Snat , Smom, and Spos are the natural orbital,
momentum, and position basis complexities in a Hubbard chain of length L = 8. (c and d) Distribution of the excited state complexity ratio
S/(NpSc ) for a larger system of L = 12. (e) and (f) Mean complexity ratio in the ground-state sector of the Hubbard model for filling factors
ν = 1/2 and ν = 1/3. The colored areas around the mean (dashed line) have a width of one standard deviation. (g) Scaling of the mean
complexity with the number of particles Np. For comparison, generic states have αg = 2 at ν = 1/2 and αg at ν = 1/3 is marked on the axis.
[(h–j)] The same as (e) and (f) but for the t,V model instead of the Hubbard model.

we observe that the complexity of each charge-density wave
state is well captured by SP ∼ 1

2 NpSc. We discuss the mecha-
nism leading to the specific value α = 1/2 in Appendix G, and
provide further data for other filling fractions in Appendix F.

In Fig. 3 we analyze the complexity of excited states, for
the same systems as in Fig. 2, by performing a full diago-
nalization in the parity and center-of-mass momentum sector
which contains the ground state. For the excited states, finding
numerically the minimizing basis becomes more challenging.
As seen in Figs. 3(a) and 3(b), the numerical optimization
does not find the true minimum for some high-complexity
states. However, in the vast majority of cases, the optimiza-
tion converges very close to the minimum value over natural,
momentum, and position orbitals. This indicates that, like
for the ground states, one obtains an accurate approximation
for the complexity by analyzing only these orbitals, espe-
cially when considering averages over many states. For both
models, the average complexity of the excited states grows
as a function of interaction and saturates to a constant at
U/t,V/t ≈ 4. At strong coupling, the average complexity is
substantially higher than for the ground states. While the
full diagonalization is restricted to modest system sizes, a
fact one should be conscious of in extrapolating the results,
Figs. 3(g) and 3(f) imply that the ratio SP/(NpSc) for the
average excited states converges to a constant α < αg. The
specific value of α depends on the coupling strength and

filling, but the average excited states remain, even around the
midspectrum, significantly less complex than generic states.
This behavior is markedly different from the entanglement
entropy, which exhibits identical leading-order volume-law
scaling for the midspectrum states of nonintegrable Hamil-
tonians and generic states [29,47,48]. We also note that the
quantity SP/ log(Q), where Q is the number of basis states,
can be seen as a basis-independent multifractal coefficient,
which is connected to quantum ergodicity and thermalization.
We present an outlook on this connection in Appendix E.

III. DISCUSSION

In the above, we have seen how the complexity hierarchy
summarized in Fig. 1 emerges. The single-Slater states, such
as the eigenstates of quadratic Hamiltonians, have trivial com-
plexity and are regarded as the fundamental building blocks of
more complex states. For the low-complexity states, for which
the complexity is not scaling with the system size when filling
fraction is fixed, the complexity can be estimated from the uni-
versal lower bound Sc. As seen above, the ground-state com-
plexity is typically well captured by the scaling ansatz Eq. (4)
with prefactor α = 1/2. When the interaction exceeds the
bandwidth, the complexity of average excited states follows
Eq. (4) with 1 � α < αg, where the upper bound determines
the complexity of generic states. The model-independent
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nature of the scaling hypothesis and the qualitative agree-
ment of different models suggest that the above results
are not sensitive to the specific form of the Hamiltonian, as
long as some broad features, such as locality and large-scale
homogeneity, are satisfied.

IV. CONCLUSION AND OUTLOOK

We introduced the complexity of a fermionic state to quan-
tify the amount of information in it. The complexity provides
a bound to the quantum state compression by choosing an
optimal Fock basis, determining the minimum computational
and physical resources to represent states. We showed that, for
distinct classes of states, the complexity can be estimated from
the eigenvalues of the single-particle correlation matrix. Con-
sidering the rapidly increasing interest in fermionic quantum
simulation and quantum information processing, our results
open several topical avenues of research. Do the observed
complexity scaling laws for ground states and excited states
represent a fundamental limit in encoding information to the
eigenstates of local Hamiltonians? Do the complexity scaling
laws, as their model-independent form suggests, also hold for
higher-dimensional systems? How can the scaling laws for
eigenstates be derived from general arguments? To what ex-
tent does the discovered complexity structure apply to bosonic
states? How does the notion of Fock complexity, as stud-
ied here, reflect the circuit complexity of concrete fermionic
quantum simulation schemes [9,49]? Here, we especially want
to mention the concept of “magic,” [50], a property of the
quantum states critical to speedup over classical computation,
and the fact that all non-Gaussian fermionic states can be con-
sidered to possess “magic” [51]. Answers to these questions
would provide fundamental insight in many-body systems and
their quantum information applications.
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APPENDIX A: COMPLEXITY AS A FUNDAMENTAL
BOUND TO QUANTUM STATE COMPRESSION

Here, we illustrate two key aspects of the complexity: its
role as the minimum resources required to store the informa-
tion of a many-body state and the characteristic number of
terms in the optimal Fock representation.

1. Complexity and the optimal many-body compression rate

In information theory, the notion of entropy was intro-
duced to quantify the compression of strings of data which
follows a known distribution [23]. Analogously, the logarith-
mic complexity, which is an entropy quantity, characterizes
the compression of the quantum information in a many-body
state. Here, we provide a derivation of this fundamental
property. Following similar steps as in the entanglement dis-
tillation [2], we consider an optimal encoding of n copies of
a fermionic many-body state |�〉 = ∑

k a{nBi }k |{nBi}k〉, where

{nBi}k denotes an occupation number set in the single-orbital
basis B, and k ∈ {1, 2, . . . Q}, where Q is the Fock space
dimension. Thus, the object of interest is a composite state

|�〉 =
n∏

j=1

⊗|�〉 = |�〉 . . . ⊗ |�〉 ⊗ |�〉

=
∑

k1...kn

√
PB

k1
PB

k2
. . . PB

kn
|{nBi}1〉 ⊗ |{nBi}2〉 . . . |{nBi}n〉,

which is an element of Qn-dimensional composite Fock space.
In the above, the probabilities are defined as PB

ki
= |a{nBi }k |2

and the complex phases of amplitudes are absorbed in the
Fock basis states. In general, composite states |�〉 live in a
lower-dimensional subspace H of Qn. Schumacher’s encoding
theorem implies that, in the limit of large n, state |�〉 can be
projected into a typical subspace of dimension 2nH (PB

k ) with
arbitrary high accuracy, where H (PB

k ) = −∑
k PB

k log2 PB
k is

the Shannon entropy [23,25]. The projection operator into the
δ-typical subspace is of the form

P(δ, n) =
∑

δ−typical

|k1〉〈k1| ⊗ |k2〉〈k2| . . . |kn〉〈kn|,

where the δ-typical states are defined by |Pk1 Pk2 . . . Pkn −
2−nH (PB

k )| � ε, and the number of such states is at most
2n(H (PB

k )+δ). For arbitrary ε, δ > 0, it is always possible to
achieve

||P(δ, n)|�〉|| = 1 − ε,

by allowing for sufficiently large n [2]. This implies that

|�〉 =
∑

k1...kn

√
Pk1 Pk2 . . . Pkn |k1〉 ⊗ |k2〉 . . . |kn〉

=
∑

δ−typical

√
Pk1 Pk2 . . . Pkn |k1〉 ⊗ |k2〉 . . . |kn〉 + O(ε)

= 2−nH (PB
k )/2

∑
δ−typical

|k1〉 ⊗ |k2〉 . . . |kn〉 + O(ε).

Thus, for sufficiently large n, the state can be compressed into
2nH (PB

k )-dimensional subspace H. The maximum compression
is obtained in the Fock basis B, which minimizes H (PB

k ).
Since the Shannon entropy is bounded from below by the sec-
ond Renyi entropy H (PB

k ) � − log2

∑
k (PB

k )2, the minimum
H (PB

k ) is bounded by the logarithmic complexity and

ln(dim H) � nSP, (A1)

or, equivalently, dim H � Cn. This result has fundamen-
tal importance in the quantum information applications of
many-body physics. The dimension of H should be re-
garded as the physical resource, and the asymptotic cost,
required in storing n copies of |�〉. Thus, to represent
and store the quantum information in n copies of |�〉 re-
quires at least Nqubit = log2 Cn = log2 enSP qubits, or nqubit =
Nqubit/n = log2 eSP qubits per copy. To properly appreciate
the fundamental nature of the results, we recall Shannon’s
classical result which states that a string of n � 1 letters, each
appearing with probability Pk , can be optimally compressed
to nbit = log2 2nH (Pk ) bits. This shows that the logarithmic
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complexity has a similar role in encoding quantum informa-
tion of many-body states to what the Shannon entropy has
in encoding classical information [52] Had we defined the
complexity in terms of the minimized Shannon entropy of
the Fock distribution, the analogy would be even more exact.
However, working with the Renyi entropy is technically con-
venient in the present work, and the complexity still provides
the lower bound for the number of qubits required to repre-
sent the state. In summary, the complexity characterizes the
minimum resources to represent many-body states in the Fock
space and underlines the physical requirements of all quantum
simulation and quantum information applications.

2. Complexity and quantum information from measurements

In addition to characterizing the optimal information com-
pression, the complexity also characterizes the information
that can be obtained from a many-body state by measure-
ments. This section can be regarded as a complementary way
to understand the formal result Eq. (A1) in more physical
terms. Let us consider that we prepare multiple copies of
state |�〉 and perform repeated Np-particle measurements in
some Fock basis |{nBi}k〉, where {nBi}k denotes an occupation
number set in the single-orbital basis B, and k ∈ {1, 2, . . . Q},
where Q is the Fock space dimension. The resulting quantum
states, obtained as outcomes of the n measurements, constitute
the total information obtained from the measurements. This
information can be stored as a composite state of the form

|{nBi}k1〉 ⊗ |{nBi}k2〉 ⊗ . . . ⊗ |{nBi , }kn〉, (A2)

which is an element of Qn-dimensional Hilbert space. Again,
we will see that the complexity of |ψ〉 provides a funda-
mental lower bound of how much of the Qn-dimensional
space such states cover. In the language of quantum informa-
tion theory, these composite states, obtained with probability
PB

k1
PB

k2
PB

k3
. . . PB

kn
, can be regarded as quantum messages con-

structed from individual letters, where each letter is a quantum
state drawn from the ensemble {|{nBi}k〉, PB

k }. Now, one can
ask how much these quantum messages can be compressed,
or what is the minimum dimension of space H in which
the messages can be accurately stored when n is large. The
dimension of H determines the physical resources needed to
store information extracted from |ψ〉. This formulation turns
the problem into an application of Schumacher’s encoding
theorem [24,25] in the special case where the letters form an
orthogonal set. In this case, the quantum state of the messages
is uniquely indexed by strings k1k2 . . . kn. When n is large,
Shannon’s noiseless coding theorem implies that these strings
can be faithfully compressed to 2nH (PB

k ) long strings, where
H (PB

k ) is the Shannon entropy [23,25]. Thus, in this limit, al-
most all messages fit into a space of dimension log2(dim H) =
nH (PB

k ). The maximum compression is obtained in the Fock
basis that minimizes H (PB

k ) bounded by the logarithmic com-
plexity ln(dim H) � nSP, in agreement with Eq. (A1). Thus,
the complexity provides a lower bound to the dimension of H,
where the states obtained by n measurements can be stored.
Whenever the logarithmic complexity is smaller than its max-
imum value ln Q, the composite states obtained from |ψ〉 by
n measurements do not fill the whole Qn-dimensional space
exhaustively but only a subspace of it.

3. Complexity as the characteristic number of terms
in the minimal Fock representation

In addition to its rigorous role as an optimal quantum
information compression rate discussed above, the complexity
of a state is also connected to the characteristic number of
terms which are required to span it in the optimal basis. Let
{Pn} be the probabilities in the optimal Fock basis which de-
termine the complexity, and let us assume that the distribution
is arranged in nonincreasing order Pn1 � Pn2 when n1 < n2.
How many terms are needed in the optimal basis to effectively
span the state? Specifically, how large should ñ be to satisfy∑ñ

n=1 Pn ∼ 1? This question is important for the states with
large complexity ñ, C � 1, and the answer depends on the
distribution: (1) for sufficiently uniform distributions with a
well-defined typical probability scale, the required number
of terms is ñ ∼ C, and (2) for heavy-tailed distributions, the
required number of terms can scale nonlinearly in the com-
plexity ñ ∼ Cβ with β > 1.

Let us first study (1) and consider a case where the proba-
bilities have a characteristic order of magnitude Pn ∼ P0 when
n � n′, and are strongly suppressed for n > n′. This implies
that P0 ∼ 1/n′ and C = 1/

∑
n P2 ∼ n′. Thus, the complexity

roughly coincides with the effective cutoff index n′ and we can
conclude that

∑ñ
n=1 Pn ∼ 1 is achieved when ñ ∼ C. When

the distribution is strictly box distribution with constant prob-
abilities P0 = 1/n′, the full probability is exactly recovered
after C terms

∑C
n=1 Pn = 1. In general, to recover the full

probability for distributions with a finite tail above n = n′,
one might need to include a few multiples of C terms. The
linear scaling between ñ and C reflects the typical expectation
that entropy-like quantities scale as the logarithm of the total
number of contributing states.

In case (2), the distribution has a long tail, the probabilities
do not have a well-defined scale, and the previous reasoning
breaks down. For this type of distribution, a nonlinear scal-
ing ñ ∼ Cβ with a model-specific β > 1 becomes possible.
Such behavior can be observed, for example, for power-law
distributions and the distributions of eigenstates of lattice
Hamiltonians, as illustrated in Fig. 4. For the ground state of a
strongly coupled Hubbard model, we find that

∑C
n=1 Pn ∼ 0.5

and that the standard deviation and the complexity of the opti-
mal distribution satisfy σ = Cβ , where β � 2. Because most
of the probability is located within a few standard deviations,
the full probability is covered by

∑mCβ

n=1 Pn ∼ 1, where m is a
small integer.

To summarize, the complexity of a state provides a lower
bound estimate for the characteristic number of terms in the
optimal Fock representation.

APPENDIX B: CORRELATION ENTROPY AS AN
ENTANGLEMENT ENTROPY

The single-particle correlation matrix in state |�〉 is con-
ventionally defined as Cii′ = 〈�|ĉ†

i′ ĉi|�〉, which can also be
written in first quantized notation as

Cii′ = Np

∑
j,k,l,...

�(i, j, k, l, ...)�(i′, j, k, l, ...)∗,
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FIG. 4. Cumulative probability distribution for the ground state
of the Hubbard model at U = 10, as a function of the scaled log-
arithm of the state index log(n)/L. The state probabilities Pn have
been ordered from the largest to smallest. The vertical lines mark
the scaled entropy SP/L and log[σ (n)]/L, where σ (n) is the standard
deviation of n. The inset shows a tentative extrapolation of SP/L and
log[σ (n)]/L to infinite system size.

where �(i, j, k, l, ...) is the antisymmetric wave function of
the particles at coordinates i, j, k, l, ... [14]. Thus, the actual
normalized reduced density matrix of a single particle, defined
as the partial trace over the coordinates of the other particles,
is ρ1 = C/Np [43], and the order n Renyi entanglement en-
tropy is defined as

Sn = 1

1 − n
ln

[
Tr

(
ρn

1

)]
,

and has the von Neumann limit S1 = −Tr[ρ1 log(ρ1)].
If |�〉 is a single Slater determinant, C has Np times

degenerate eigenvalue 1, the rest being zero. Therefore, the
entanglement entropies become

SSlater
n = − 1

1 − n
log

(
Nn−1

p

)
(Slater state).

However, in the spirit of the complexity SP, which is trivial
for Slater states, we subtract the free fermion contribution and
define the single-particle correlation entropies as

Sc,n = Sn − SSlater
n = 1

1 − n
ln

[
Tr

(
Cn

Np

)]
. (B1)

Sc,2 is the particle correlation entropy discussed in the main
text. Thus, the correlation entropy is actually a one-particle
entanglement entropy from which the free fermion contribu-
tion has been subtracted.

APPENDIX C: PROOF OF THE COMPLEXITY
LOWER BOUND

Here, we will give a proof of the complexity lower bound
Eq. (3) in three steps.

Proposition 1: Let us consider a fermionic Np particle
state |�〉. Furthermore, let us assume that λi is the set of
correlation matrix eigenvalues (occupation probabilities of the

natural orbitals) and n̄Bi are the occupation probabilities of
single-particle orbitals in an arbitrary basis B. They always
satisfy

∑
i λ

2
i � ∑

i n̄2
Bi

.
Proof: Let C be the correlation matrix. Then,

∑
i λ

2
i =

Tr C2 = ∑
α,β CαβCβα = ∑

α,β |Cαβ |2 � ∑
α |Cαα|2 ≡∑

α n̄2
Bα

. Here, we used the fact that in the double sum
all entries are positive and that occupation probabilities in a
general basis are defined as diagonal entries of the correlation
matrix. �

Proposition 2: The average occupation numbers n̄Bi and the

state probabilities P{nBi }k always satisfy
∑

i
n̄2

Bi
Np

� ∑
k P2

{nBi }k
.

The first sum is over all the single-particle orbitals, whereas
the second sum is over all kmax occupation number sets in
Eq. (1).

Proof: The average occupation numbers can be written
in terms of the state probabilities as n̄Bi = ∑

k P{nBi }k nk
Bi

,
where nk

Bi
= 0, 1 is the value of the occupation number

of orbital Bi in the set {nBi}k . From this we get∑
i n̄2

Bi
= ∑

i

∑
k,l P{nBi }k nk

Bi
P{nBi }l n

l
Bi
� ∑

i

∑
k P2

{nBi }k
n2

Bik
=∑

k P2
{nBi }k

∑
i n2

Bik
= ∑

k P2
{nBi }k

∑
i nk

Bi
= ∑

k P2
{nBi }k

Np. The
inequality follows from dropping non-negative terms from
the double sum. Comparing the starting and final form, we
have proved Proposition 2. �

Universal lower bound for SP: Using Property 1, and
the monotonicity of logarithm, we deduce that Sp

c =
− log

∑
i λ

2
i

Np
� − log

∑
i n̄2

Bi
Np

. Now, using Property 2, it fol-

lows that Sp
c � − log

∑
i n̄2

Bi
Np

� − log
∑

k P2
{nBi }k

= SPB . Since
this holds for arbitrary basis B, we can minimize the right-
hand side over all bases and it still holds. Thus, we have
proved that Sp

c � SP. The corresponding inequality for the
hole correlation entropy Sh

c � SP can be straightforwardly
established by exchanging the roles of particles and holes and
tracing the same steps. Thus, we arrive at Sc � SP, where Sc

is the larger one of Sp
c , Sh

c .

APPENDIX D: COMPLEXITY OF GENERIC STATES

Here, we derive the complexity of generic states in a
Fock space with M available orbitals and Np particles with
dimension Q = (No

Np

) = No!
(No−Np)!Np! . Let us start with some nor-

malized vector in the Fock space |ψ0〉 = ∑Q
k=1 ak|k〉, where

|k〉 is some basis and
∑

k |ak|2 = 1, and consider all the states
that can be obtained from |ψ0〉 by unitary transformations:

|ψ〉 = U |ψ0〉 =
Q∑

k, j=1

Ujkak| j〉.

These states fill the Fock space uniformly and are referred to
as generic states. To calculate the complexity, we extract the
probabilities Pj = |Ujkak|2 = UjkU ∗

jl aka∗
l (repeated indices

are summed) and their squares P2
j = UjkU ∗

jlUjmU ∗
jnaka∗

l ama∗
n.

To evaluate the average 〈P2
i 〉 over the Haar measure, we can

make use of the circular unitary ensemble result [53]

〈UjkUjmU ∗
jlU

∗
jn〉 = 1

Q2
(δklδmn + δknδml )
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FIG. 5. Complexity of generic, Haar-distributed states in differ-
ent single-particle bases computed as a mean of five samples with the
vertical bars giving the sample standard deviation, except at Np = 6,
where we have only computed one realization. A Q-dimensional
generic state has logarithmic complexity SCUE = − log(2/Q) in the
limit of large Q. The complexity can be reduced by applying single-
particle rotations as demonstrated here by transforming to the natural
orbital basis or a numerically optimized basis. However, to conserve
information, we expect that the typical reduction in the characteristic
number of terms C = exp(−S) in the optimal Fock representation of
a state with no special structure scales with the number of parameters
in the single-particle basis, i.e., polynomially in Np, while C grows
exponentially for a fixed filling fraction. SCUE ,nat and SCUE ,opt are thus
expected to approach SCUE for large Np, while the correlation entropy
approaches its maximal value − log(ν ).

for Q � 1. Employing the above formula, we obtain 〈P2
j 〉 =

2
Q2 , and

Q∑
j=1

〈
P2

j

〉 = 2

Q
.

For large Q � 1, the average logarithmic complexity becomes
SP = 〈− ln

∑
i P2

i 〉 = − ln
∑

i〈P2
i 〉 = − ln(2/Q). The expec-

tation value can be moved inside the logarithm, because the
argument becomes nonfluctuating in the large Q limit. Also,
the minimization over possible single-particle orbitals would
not affect the result in large systems, since the number of opti-
mization parameters scales linearly in orbitals while the inde-
pendent components of the states vectors grow exponentially.
This behavior is illustrated in Fig. 5, showing how the opti-
mized complexity in small systems is approaching the above
analytical results. By employing Stirling’s formula, the
leading-order complexity of generic states becomes

SP = −No ln[νν (1 − ν)1−ν], (D1)

where ν = Np/No. Since the generic states are uniformly
distributed in space and cannot be compressed, their leading-
order complexity is the maximum allowed by the dimen-
sionality of the Fock space. As illustrated in Fig. 5, the
generic states also maximize the particle and hole correla-
tion entropies Sp

c = − ln ν, Sh
c = − ln(1 − ν). Thus, the result

Eq. (D1) can be expressed in the general form Eq. (4) with

FIG. 6. Fractal dimension D2,B of the states in the ground-state
symmetry block of the 1/3-filled t − V model at different interaction
strengths. The left and middle columns show the fractal dimension
in the L = 24 model in position and momentum bases. The right
column shows the scaling of the maximal fractal dimension (i.e., the
highest point in the left and middle panels) as a function of system
size. SB is the Renyi-2 entropy of the Slater configuration distribution
in the indicated basis and Q is the number of states in the Fock space.

α = αg, where

αg = 1 + (1 − ν) ln(1 − ν)

ν ln(ν)
, 0 � ν � 1

2

αg = 1 + ν ln(ν)

(1 − ν) ln(1 − ν)
,

1

2
< ν � 1.

APPENDIX E: OUTLOOK ON MULTIFRACTAL
COEFFICIENTS AND ERGODICITY

The space-filling properties of quantum state vectors have
been intensively studied in the context of the eigenstate
thermalization hypothesis (ETH), quantum ergodicity, and
many-body localization [40,54–57]. Given a fixed basis B,
one can define multifractal coefficients which quantify the
extent of the wave vector relative to the full basis size. For
example, the Fock-basis multifractal coefficient [40] D2,B =
SPB/ log(Q), where Q is the number of basis states, ranges
from D2,B = 0 for a Slater state to D2,B = 1 for a uniformly
distributed state. Using the complexity, one can then define the
basis-independent quantity D2 = SP/ log(Q), which is D2,B

minimized over the single-particle bases B. As an example,
we plot D2,B for the 1/3-filled t − V model in Fig. 6.

For chaotic spin models it has been demonstrated that mid-
spectrum eigenstates are “ergodic”: their fractal dimension
approaches 1 in the thermodynamic limit [55,57]. However, it
is much less clear what fractal dimensions should be expected
from a chaotic Hamiltonian when moving away from the
center of the spectrum, as the states start to develop structure
that may effectively limit the available basis states, poten-
tially lowering the multifractal coefficient. If one considers
assigning temperatures on the eigenstates based on subsystem
density matrices, the midspectrum states are close to infinite
temperature, while away from midspectrum the states have
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FIG. 7. The ratio Smin/Sc for a range of filling factors ν in a Hub-
bard model of size L = 12 and t − V models of size L = 20, 21. Smin

is again the minimal SPB chosen from the natural orbital, momentum,
and position bases. In some cases the ground state is degenerate,
but the degeneracy can be resolved by the total momentum and
reflection parity quantum numbers. We find that the complexity for
the degenerate ground states is the same in all symmetry sectors. The
basis giving the lowest complexity is typically the natural orbital
basis in the t − V model or the momentum basis in the Hubbard
model, where the natural occupations may become degenerate. The
exception is at half-filling (dashed lines) with strong interactions,
where the position basis leads to lower complexity (marked with
dots), and in the case of the t − V model to an apparent departure
from the typical ground-state scaling α � 1/2. This is discussed in
Appendix F.

more structure and the temperature is finite [58]. In analogy
to this, the single-particle density matrix reveals structure
in fermionic states that limits the complexity, and thus the
minimal multifractal coefficients, as quantified by the scal-
ing relation SP = αNpSc. Indeed, reaching D2 = 1 is only
expected if both α and Sc approach the maximal, generic state
values. As long as there is any one-particle structure and thus
Sc remains below the maximum, we expect to find D2 < 1.
For models with density-density interactions the eigenbasis
of both the single-particle and the two-particle parts of the
Hamiltonian is a Slater basis, and one may generically ex-
pect one-particle structure to be present even at midspectrum.
Indeed, the basis-independent fractal dimension D2 does not
seem to reach 1 for any interaction strength in Fig. 6. More
rigorous upper bounds for the Fock-space multifractal coeffi-
cients in terms of single-particle and higher correlations will
be established in future work.

APPENDIX F: ADDITIONAL DATA ON GROUND-STATE
COMPLEXITY

As discussed in Sec. II B, the complexity of the ground
states is generally found to be lower than that of excited states,
with the scaling coefficient α taking values from α ≈ 1/2
up to α ≈ 0.8. We plot data for additional filling factors in
Fig. 7 with largely similar results, except for the half-filled
t − V model, which has a doubly-degenerate ground state and

a significantly lower complexity. In general, a low value of
α means that the state contains structure that is not apparent
in the natural occupations due to the degeneracy. Ground
states are expected to have a lower ratio α than excited states,
because they have more two-particle correlations that restrict
the available Slater determinants. The ground state of the
half-filled t − V model in the limit V → ∞ is an extreme
example of this, as it takes (in position basis) the form

|ψ〉± = (|010101...〉 ± |101010...〉)/
√

2, (F1)

whose natural orbitals are the position orbitals and natural
occupations are all 1/2. This state thus actually belongs to the
low-complexity class with SP = Sc = log(2), and the scaling
ansatz SP = αNpSc does not apply. For large but finite V
the ground state is doubly degenerate with the eigenstates
in the ±1-parity blocks approaching |ψ〉± as V grows, and
α approaching 0. However, one can still form linear combi-
nations of the degenerate ground states such that one of the
components |010101...〉 or |101010...〉 is eliminated. We find
that these states again closely follow the scaling ansatz with
α = 1/2 in their respective natural orbital bases. A similar
conclusion holds if the degeneracy is lifted by an additional
term which discriminates between the two different charge-
density wave states. Thus, the qualitative departure from the
ground-state scaling with α � 1/2 can be directly traced to
the degeneracy of the t − V model at half-filling.

APPENDIX G: GROUND-STATE COMPLEXITY IN A
STOCHASTIC MODEL OF PERTURBATION THEORY

In this section we provide a heuristic model capturing
essential properties of the ground states of locally interacting
lattice models, and show that it leads to the scaling form
SP = 1

2 NpSc. The model is based on a picture where we have
a single highest weight Slater configuration, and the weight
of the other configurations decreases exponentially with the
growing “distance” from this “Fermi sea.” If we fix a basis,
we can think of the Slater configurations as bit strings of the
occupation numbers, and measure such distances using the
Hamming distance. Below we will use heuristic arguments
to explicitly express the Slater weights, thus allowing us to
compute SP, but first we need a result that allows us to connect
the correlation entropy Sc to this picture.

Suppose that we draw two Slater configurations from the
probability distribution pi describing a state of interest |ψ〉.
The expected Hamming distance between these configura-
tions is then

〈x〉 =
Ns∑

i, j=1

pi p jxi j,

where xi j is the Hamming distance between configurations i
and j. Based on the discussion in Orito and Imura [40], one
can express the quantity sc = exp(−Sc) in the natural orbital
basis as

sc = 1 − 〈x〉
2Np

. (G1)

For example, if we draw two configurations from a generic
(Haar distributed) state, the occupied orbital positions are
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essentially random, and thus on average νNp particles of the
second configuration take positions that are occupied in the
first configuration. The expected Hamming distance is thus
〈x〉 = 2(1 − ν)Np, and we recover the generic state result sc =
ν. This is the minimal value of sc at a fixed filling fraction,
while the maximal value sc = 1 is obtained if |ψ〉 is a Slater
state and thus 〈x〉 = 0.

Consider now the structure of a typical ground state in
the weakly interacting limit. For zero interactions the state
is a Slater determinant in the momentum basis where all
orbitals below the Fermi level are occupied and all orbitals
above the Fermi level are empty. Crucially, the interaction
acts perturbatively by lifting pairs of particles from below
the Fermi momentum to above the Fermi momentum. For
example, the interaction terms in the Hubbard model are of
the form U

L c†
↑k1−qc†

↓k2+qc↑k1 c↓k2 , where L is the system size,
and particles at momenta k1 and k2 are lifted to momenta
k1 + q and k2 − q. However, we cannot just use first-order
perturbation theory to model the limit L → ∞, as that would
imply that configurations with more than one pair excitation
have zero weight, which precludes the linear scaling of SP

with system size. Instead, we model a large system by as-
suming that there are NeNp independent pair excitations, each
of which occurs with a small probability γ /Ne. The 1/Ne

scaling is required, as otherwise the number of excitations
would grow with Ne, which may increase with system size, as
the number of possible pair excitations increases faster than
Np. We will also assume that γ is small, which means the
excitations are rare. Thus, we can assume that the excited
pairs do not “overlap,” always affecting a different set of four
orbitals.

According to the above assumptions, the number of excited
pairs is distributed binomially, with NpNe the number of trials
and γ /Ne the success probability. For the sake of comparing
to numerical data, we note that the Hamming distance x f s

measured from the Fermi sea follows the distribution

P(x f s = 4k) =
(

γ

Ne

)k(
1 − γ

Ne

)NpNe−k(NpNe

k

)
, (G2)

and P(x f s) = 0 when x f s is not divisible by four. Figure 8
shows that a reasonable fit to Hubbard model data is obtained
with Ne = 1 and γ /U 2 ∼ 0.004...0.005. It is immediately
clear that the assumption of nonoverlapping pair excitations
is correct to good accuracy, as Hamming distances not di-
visible by four have a very low weight. We also expect that
γ ∼ U 2, because amplitudes in first-order perturbation theory
scale proportionally to U while probabilities scale as U 2. It
would be possible to build a more refined model by taking into
account that some excitations occur with higher probability
than others, but we will leave this to future work.

When we draw a random state from the distribution, it has
on average NpNeγ /Ne = Npγ excited pairs. Drawing two such
states, the expected Hamming distance between them is 〈x〉 =
2(4Npγ ), where the factor 2 is because both states have Npγ

excitations and the factor 4 is because a pair excitation causes
four opposite bits. The factor γ is thus related to sc as

sc ≈ 1 − 4γ .

Note that this is only correct for small γ , as otherwise the
excitations start to overlap and the calculation becomes more

FIG. 8. Fitting Eq. (G2) to ground-state data from the Hubbard
model. The numerical results were computed at half-filling for sys-
tem size L = 10 in momentum orbitals. The dots show the total
weight of Slater configurations with a given Hamming distance from
the Fermi sea, while the lines represent the model distribution. Note
that the weight at Hamming distances not divisible by four is zero in
the model of Eq. (G2), because all excitations from the Fermi sea are
assumed to be pair excitations. This agrees with the numerical data
quite well.

complicated. Indeed, the lower limit for sc is ν, so we should
have 4γ � 1 − ν. We can then compute Sc as

Sc = − log(sc) ≈ 4γ . (G3)

On the other hand, SP is related to the collision probabil-
ity, which in our model means the probability that the two
configurations we draw from the distribution are exactly the
same, i.e., the probability that exactly the same excitations
occur twice. This probability can be written as

P(x = 0) =
NpNe∑
k=0

(
γ

Ne

)2k(
1 − γ

Ne

)2(NpNe−k)(NpNe

k

)

=
[(

γ

Ne

)2

+
(

1 − γ

Ne

)2
]NeNp

. (G4)

Keeping in mind the restriction to rare excitations, we expand
the complexity SP = − log[P(x = 0)] to linear order in γ as

SP = − log[P(x = 0)] ≈ 2γ Np. (G5)

We thus arrive at the relation SP = 1
2 NpSc. We note that this

result can also be obtained simply by approximating P(x = 0)
by the probability of selecting twice the unperturbed Fermi
sea, corresponding to k = 0 in Eq. (G4), as the other contri-
butions are higher order in γ .

The main point in this simplistic model is that Sc ≈
1 − sc ≈ 4γ is proportional to the average number of ex-
citations per particle from the unperturbed Fermi sea, but
the constant of proportionality depends on the type of the
excitations. The scaling coefficient α = 1

2 arises because
the excitations are typically pair excitations. Had we as-
sumed single-particle excitations, we would have obtained
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Sc ≈ 1 − sc ≈ 2γ , and the end result would have been
SP = NpSc.

APPENDIX H: COMPUTATIONAL DETAILS

We perform exact diagonalization calculations using the
QuSpin package [59,60], which allows easy building of
Hamiltonian matrices for the fermionic lattice models con-
sidered here. The package also allows selecting specific
symmetry sectors of lattice models, fixing, e.g., quantum
numbers corresponding to center-of-mass momentum and par-
ity under reflection p → −p. For the excited state calculations
we perform full diagonalization of the selected symmetry
block using standard dense Hermitian methods, while for the
ground-state results we employ ARPACK-based sparse meth-
ods included in the QuSpin library and SciPy [61].

To study the entropy SPB in different bases B, we need to
change the single-orbital basis for the full many-body eigen-
states which are initially computed in the position basis. In
the second quantized formalism, an orbital transformation for
a system with No orbitals is specified by an No × No unitary
matrix U acting on the annihilation operators as

�c′ = U �c, �c = [
c1, c2, . . . , cNo

]T
. (H1)

The unitary matrix can be parametrized by a Hermitian ma-
trix A such that U = exp(iA), and this transformation can
then be expressed as an operator Û in the many-body Fock

space as

Û = exp(i�c†A�c), (H2)

acting on operators as Û †�cÛ = U �c. That the orbital rotations
can be expressed in such exponentiated form is referred to as
the Thouless theorem [62] in the literature [63].

The operator Â = �c†A�c is represented as a sparse matrix
that only couples basis states connected by a single hop, thus
having NpNhQ nonzero elements, where Np and Nh are the
number of particles and holes, respectively, and Q is the num-
ber of Fock basis states. Applying the operator Û on a state in
the Fock space can be carried out by sparse matrix methods,
where the only large matrix operation is matrix-vector multi-
plication by Â [64,65]. For small systems, the nonzero matrix
elements of Â can be computed and stored in memory in a
sparse matrix format. For large systems, it is advantageous to
compute the matrix elements of Â on the fly when performing
the matrix-vector multiplication, as memory access becomes
the bottleneck of the computation.

For basis optimization we again parametrize the orbital
basis in the form U = exp(iA) and perform a conjugate gradi-
ent minimization of the Renyi entropy SPB with the elements
of the Hermitian matrix A treated as free parameters. For
the single-component models, we use a random matrix U ∼
CUE(No) as the starting point of the minimization, with No

the number of orbitals in the model. For the two-component
Hubbard model, we enforce component conservation, mean-
ing that A is block-diagonal and does not mix different spin
components.
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[48] M. Kliczkowski, R. Świętek, L. Vidmar, and M. Rigol, Average
entanglement entropy of midspectrum eigenstates of quantum-
chaotic interacting Hamiltonians, Phys. Rev. E 107, 064119
(2023).

[49] J. Eisert, Entangling power and quantum circuit complexity,
Phys. Rev. Lett. 127, 020501 (2021).

[50] Z.-W. Liu and A. Winter, Many-body quantum magic, PRX
Quantum 3, 020333 (2022).

[51] M. Hebenstreit, R. Jozsa, B. Kraus, S. Strelchuk, and M.
Yoganathan, All pure fermionic non-Gaussian states are magic
states for matchgate computations, Phys. Rev. Lett. 123, 080503
(2019).

[52] Had we defined the complexity in terms of the minimized
Shannon entropy of the Fock distribution, the analogy would be
even more exact. However, working with the Renyi entropy is
technically convenient in the present work, and the complexity
still provides the lower bound for the number of qubits required
to represent the state.

[53] P. J. Forrester, Log-Gases and Random Matrices (Princeton
University Press, Princeton, 2010).

[54] Y. Y. Atas and E. Bogomolny, Multifractality of eigenfunctions
in spin chains, Phys. Rev. E 86, 021104 (2012).

[55] N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings
across the many-body localization transition, Phys. Rev. Lett.
123, 180601 (2019).

[56] G. De Tomasi and I. M. Khaymovich, Multifractality meets
entanglement: Relation for nonergodic extended states, Phys.
Rev. Lett. 124, 200602 (2020).

[57] A. Bäcker, M. Haque, and I. M. Khaymovich, Multifractal
dimensions for random matrices, chaotic quantum maps, and
many-body systems, Phys. Rev. E 100, 032117 (2019).

[58] P. C. Burke, G. Nakerst, and M. Haque, Assigning temperatures
to eigenstates, Phys. Rev. E 107, 024102 (2023).

[59] P. Weinberg and M. Bukov, QuSpin: A Python package for
dynamics and exact diagonalisation of quantum many body
systems. Part I: spin chains, SciPost Phys. 2, 003 (2017).

[60] P. Weinberg and M. Bukov, QuSpin: A Python package for
dynamics and exact diagonalisation of quantum many body
systems. Part II: bosons, fermions and higher spins, SciPost
Phys. 7, 020 (2019).

[61] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for scien-
tific computing in Python, Nat. Methods 17, 261 (2020).

[62] D. J. Thouless, Stability conditions and nuclear rotations in the
Hartree-Fock theory, Nucl. Phys. 21, 225 (1960).

[63] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-
Guzik, G. K.-L. Chan, and R. Babbush, Quantum simulation

023178-13

https://doi.org/10.1016/j.physrep.2020.07.003
https://doi.org/10.1103/PhysRevA.102.042410
https://doi.org/10.1103/PhysRevA.103.052424
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1103/PhysRevA.51.2738
https://doi.org/10.1103/PhysRevA.67.024301
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PRXQuantum.3.030201
https://doi.org/10.1103/PhysRevA.64.022303
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1007/s00220-008-0552-z
https://doi.org/10.1103/PhysRevLett.110.040404
https://doi.org/10.1063/5.0031419
https://doi.org/10.1103/PhysRevLett.116.080402
https://doi.org/10.1038/s41598-018-24302-5
https://doi.org/10.1103/PhysRevA.89.012504
https://doi.org/10.1103/PhysRevA.94.032513
https://doi.org/10.1088/1367-2630/aa7e72
https://doi.org/10.1103/PhysRevB.103.214206
https://doi.org/10.1021/jz301319v
https://doi.org/10.21468/SciPostPhysCore.6.2.030
https://doi.org/10.1103/PhysRevB.105.115145
https://doi.org/10.1103/PhysRevLett.115.046603
https://doi.org/10.1103/PhysRevA.88.012335
https://doi.org/10.1103/PhysRevB.103.235166
https://doi.org/10.1103/PhysRevLett.119.220603
https://doi.org/10.1103/PhysRevE.107.064119
https://doi.org/10.1103/PhysRevLett.127.020501
https://doi.org/10.1103/PRXQuantum.3.020333
https://doi.org/10.1103/PhysRevLett.123.080503
https://doi.org/10.1103/PhysRevE.86.021104
https://doi.org/10.1103/PhysRevLett.123.180601
https://doi.org/10.1103/PhysRevLett.124.200602
https://doi.org/10.1103/PhysRevE.100.032117
https://doi.org/10.1103/PhysRevE.107.024102
https://doi.org/10.21468/SciPostPhys.2.1.003
https://doi.org/10.21468/SciPostPhys.7.2.020
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/0029-5582(60)90048-1


TUOMAS I. VANHALA AND TEEMU OJANEN PHYSICAL REVIEW RESEARCH 6, 023178 (2024)

of electronic structure with linear depth and connectivity, Phys.
Rev. Lett. 120, 110501 (2018).

[64] A. H. Al-Mohy and N. J. Higham, Computing the ac-
tion of the matrix exponential, with an application to

exponential integrators, SIAM J. Sci. Comput. 33, 488
(2011).

[65] N. J. Higham and A. H. Al-Mohy, Computing matrix functions,
Acta Numer. 19, 159 (2010).

023178-14

https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1137/100788860
https://doi.org/10.1017/S0962492910000036

