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Fluctuating entropy production on the coarse-grained
level: Inference and localization of irreversibility
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Stochastic thermodynamics provides the framework to analyze thermodynamic laws and quantities along
individual trajectories of small but fully observable systems. If the observable level fails to capture all relevant
degrees of freedom, some form of effective, coarse-grained dynamics naturally emerges for which the principles
of stochastic thermodynamics generally cease to be applicable straightforwardly. Our work unifies the notion
of entropy production along an individual trajectory with that of a coarse-grained dynamics by establishing
a framework based on snippets and Markovian events as fundamental building blocks. A key asset of a
trajectory-based fluctuating entropy production is the ability to localize individual contributions to the total
entropy production in time and space. As an illustration and potential application for inference we introduce
a method for the detection of hidden driving. The framework applies equally to even and odd variables and,
therefore, includes the peculiar case of entropy production in underdamped Langevin dynamics.
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I. INTRODUCTION

How can we apply the principles of stochastic thermo-
dynamics to effective descriptions? Originally, stochastic
thermodynamics emerged as a framework to identify and
formulate thermodynamic laws for small-scale systems cou-
pled to the environment via, e.g., random thermal fluctuations
and driving forces [1,2]. As the dynamics itself and, con-
sequently, associated thermodynamic quantities like heat,
work, or entropy become inherently stochastic, the notion
of a “system” only makes sense if there is a meaningful,
“clean” separation from the environment. More specifi-
cally, a meaningful notion of energy or entropy requires a
notion of “thermodynamic consistency” when implement-
ing external effects into the stochastic dynamics of the
system.

Thus, if such a system can be identified, e.g., in the form of
a Langevin equation or Markovian dynamics on a discrete set
of states, the framework of stochastic thermodynamics pro-
vides far-reaching, universal relations like, e.g., the Jarzynski
equality and its generalizations [3–5], different formulations
of fluctuation theorems [6–10], the Hatano-Sasa relation [11],
and the Harada-Sasa relation [12], many of which have been
realized experimentally, as reviewed in Ref. [13].

These results are formulated for a complete system in the
sense that the stochastic dynamics gives rise to trajectories
that include all relevant degrees of freedom. With complex
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real-world systems in mind, we can ask what remains if we
are unable to observe the full system or, even worse, if a clear
distinction between system and environment cannot be made
based on the available data. Such questions have seen growing
interest in recent research, leading to a point where the study
of partially accessible information might be regarded as an
emerging pillar of stochastic thermodynamics in its own right.

Up to now, the study of stochastic thermodynamics of
partial information contains two mostly disjoined aspects.
Existing methods of thermodynamic inference [14] mainly
focus on extracting or deducing particular averaged quantities
based on thermodynamic relations and limited access to ob-
servables. However, a partially accessible system features its
own effective dynamical laws, which emerge as a projection
of the underlying dynamics. Thus, inference techniques for-
mulated on such a dynamical level should be able to provide
thermodynamic bounds on a fluctuating level beyond simple
averages.

In contrast, thermodynamic inference employs a variety
of methods primarily aiming at the estimation of mean en-
tropy production. Most prominently, various formulations and
generalizations of the thermodynamic uncertainty relation
[15–17] provide bounds on the minimal thermodynamic cost
to achieve a certain precision of, e.g., a current. Furthermore,
lower bounds on entropy production can also be based on
an identification as a Kullback-Leibler divergence [18–24],
the speed at which the system evolves in time [25,26], stop-
ping times [27], waiting times [28], and counting events [29].
Novel recent approaches include dynamical correlations into
entropy estimation techniques by relating entropy production
to the asymmetry of cross-correlations of accessible observ-
ables [30–32], their power spectral density [33], correlation
times [34], or, more technically, the spectrum associated with
the dynamics [35]. Beyond estimating the average value of
entropy production, inference techniques for the topology of
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the underlying system [36,37] and its driving affinities [30,38]
have also been proposed.

The dynamics of coarse-grained systems received much
attention in earlier works on stochastic thermodynamics, usu-
ally in the context of state lumping [39,40]. More recently,
a gradual paradigm shift in the conception of coarse graining
challenges established paradigms [41,42]. To fully understand
real-world scenarios it seems indispensable to find descrip-
tions for dynamics on the coarse-grained level, with recent
approaches including milestoning [43,44] or semi-Markov
dynamics [38].

The present work unifies the notion of entropy production
along a single trajectory with that of coarse-grained dynamics.
We establish a framework that allows us to identify entropy
production along individual trajectories that retains meaning
on the levels of both the underlying system and the coarse-
grained, observable one, even if the coarse-grained dynamics
does not obey simple rules like a master or Langevin equation.
The concept of fluctuating entropy production for individual,
coarse-grained paths comes along with the ability to localize
individual contributions to the total entropy production in time
and space within the coarse-grained description. This new
aspect enables the inference of more detailed information far
beyond the average total entropy production of a system. In
this sense, the present work extends and complements the con-
ceptually related Ref. [22], which derives a general estimator
for the mean entropy production. From a practical viewpoint,
we demonstrate that the ability to attribute irreversibility to
specific events or transitions between these provides access to
complex settings like the localization of entropy production in
the absence of any visible states as well as the qualitative and
quantitative detection of irreversibility in hidden parts of the
system.

The paper is structured as follows. In Sec. II, we start
with an outline of our main results and the setup under
consideration. We then present our theoretical framework
by introducing the two crucial concepts through which the
identification of the fluctuating entropy production becomes
possible. Based on this framework, we derive methods to
detect and quantify hidden driving by localizing entropy pro-
duction and estimating affinities of hidden cycles, as described
in Sec. III. In Sec. IV, we discuss the intricacies of entropy
production in the presence of odd variables. In particular,
we show that the present identification of entropy production
is compatible with odd variables that occur in underdamped
Langevin dynamics and transition-based coarse graining. We
conclude in Sec. V.

II. MAIN RESULTS AND FRAMEWORK

A. Illustration of the main concept

In real-world scenarios we commonly encounter systems
for which a description that can be considered “complete”
or “fundamental” in an appropriate sense would be highly
complex. Thus, simplified descriptions for such systems that
capture its key characteristics are indispensable. In this con-
text, Markov networks have become one of the predominant
paradigms for which the entire well-established framework of
stochastic thermodynamics is available. A description based

FIG. 1. Projection of a continuous energy landscape onto a set
of five discrete states. States 2 and 5 cannot be modeled as Markov
states due to their shallow local minima. For transitions involving
these states, there is no clear timescale separation as illustrated by
the time series in the lower part. The curve in the landscape in the
upper part shows a section of an individual microscopic trajectory.
In the lower part we show this section and how it is embedded
into a longer trajectory. In both parts, the red lines depict the cor-
responding section of the coarse-grained trajectory. We assign an
entropy production to such sections that are both localized in time
and space. This identification of entropy productions retains physical
significance even on the coarse-grained level.

on Markov networks typically requires the presence of clear
timescale separations to separate system and environment.
However, the nature of the underlying system or insufficient
observational data may jeopardize such a clear timescale sep-
aration. Our framework is designed for descriptions that lack
this clear separation.

These aspects are qualitatively illustrated in Fig. 1. The
energy landscape gives rise to five observable discrete states.
The local minima at states 1, 3, and 4 are sufficiently deep to
justify a description as Markov states, in contrast to the shal-
low minima of states 2 and 5. The red line shows an exemplary
trajectory, which, on the observable level, reads 1 → 2 → 3.
We will show how to identify a fluctuating entropy production
for such trajectories that include non-Markovian observables
like, in this case, state 2. This coarse-grained entropy pro-
duction obeys several consistency conditions and provides an
estimator for the entropy production on the fundamental level.

The ability to localize entropy production in this example
translates into the ability to discern contributions to the total
entropy production of, e.g., trajectory sections of the type
1 → 2 → 3 from the remaining ones as indicated in the lower
part of Fig. 1. Similarly, it is possible to localize the entropy
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production in time. Depending on the application, one might
be interested in the contributions that arise from, e.g., particu-
larly fast trajectories.

B. General setup

We consider a stochastic physical system whose micro-
scopic trajectories γ are drawn according to some path
weight P[γ ]. For example, if the time evolution γ (t ) obeys a
Langevin or master equation, a corresponding path weight is
known [1]. We now assume that an observer can only measure
particular observables, which give rise to a coarse-grained
trajectory, rather than accessing this underlying level of de-
scription directly.

The probability to observe a particular coarse-grained tra-
jectory � is encoded in its path weight P[�] and uniquely
determined by the microscopic path weight P[γ ] and the
coarse graining γ �→ �. Similarly, the probability to observe
the corresponding time-reversed trajectory �̃ is determined
by γ̃ . Thus, calculating P[�̃] either requires knowing the
microscopic time-reversal operation γ �→ γ̃ or knowing how
the coarse-grained observables behave under time reversal.
Reversing the coarse-grained trajectory � generally not only
means to read � backwards, but also to modify its observables.
This is the case when measuring, e.g., momenta or transitions.
Put informally, a physical time-reversal operation not only re-
quires “playing the movie backwards” but also “knowing what
the movie shows,” i.e., understanding the physical meaning
of the model and the observables. This knowledge about the
observables determines their time reversal.

C. Markovian events

We define Markovian events as particular observables
whose detection implies conditional independence between
past and future time evolution of γ . Such an instantaneous
event determines the underlying state of the system from a
dynamical point of view. We formalize the defining property
for a Markovian event I as

P[γ+|I, γ−] = P[γ+|I] (1)

for any trajectory γ− → I → γ+, which contains I between
its past and future time evolution γ− and γ+, respectively.
Importantly, these events are Markovian on the microscopic
level.

Generally, the state of the system is fully described by
including both a suitable observation I and the absolute time
τ at which it occurs. Therefore, a Markovian event takes the
form of a tuple,

I ≡ (I, τ ). (2)

Suitable observations I are, for example, registering a transi-
tion or the current state of the system in the case of master
equation dynamics on a Markov network. In the continuous
case, measuring the position or both position and momen-
tum qualifies as a Markovian event for overdamped and
underdamped Langevin dynamics, respectively. We denote
Markovian events by script letters I,J , . . . to emphasize an
explicit time dependence. If a Markovian event occurs at time
τ , we denote the probability that this event is I by P(I ). Note

FIG. 2. (a) Qualitative illustration of Markovian events, non-
Markovian events, and snippets. The upper part shows four
microscopic trajectories in a two-dimensional configuration space.
The elapsed time in this system is encoded in the color gradient
along each trajectory. In the lower part, we show the coarse-grained
trajectory � corresponding to the microscopic one denoted by γ .
(b) Markov network with six states. We assume that only the tran-
sitions K and L and their reversed K̃ and L̃ can be observed.
(c) Coarse-grained description of the network shown in (a).

that in stationary systems the information about the absolute
time τ is not required, which makes I itself the Marko-
vian event. In particular, P(I ) then becomes the probability
that a registered event in the stationary state corresponds to
observation I .

A coarse-grained trajectory may contain additional data
besides Markovian events. We summarize such observables
under the (potentially multidimensional) symbol Ok , which
includes any additional non-Markovian observables between
the Markovian events Ik−1 and Ik whose behavior under
time reversal is known, in accordance with the discussion in
Sec. II B. Thus, we write a coarse-grained trajectory as

� = (I0
t1,O1−−→ I1

t2,O2−−→ · · · tn,On−−→ In), (3)

where the waiting times tk between the Markovian events
Ik−1 and Ik are explicitly highlighted. We emphasize that the
coarse-grained trajectory � is initialized and terminated with
a Markovian event. The additional data summarized under Ok

may contain variables that take continuous values like, e.g.,
the precise time we register a transition in a Markov network
if we lack the knowledge which microscopic states this transi-
tion connects or if we resolve some but not all position (and/or
momentum, if applicable) coordinates of a Langevin particle.
It is also possible to include variables that take discrete values
like the binary information whether a lumped state has been
visited or not, as we will illustrate in an explicit example in
Sec. III B.

We illustrate these different types of events in Fig. 2(a).
The upper part shows four different microscopic trajectories
in a two-dimensional configuration space. In this setup of
incomplete information, we are limited to certain observations
here denoted by I , J , H , and G as well as the elapsed time in
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the system indicated by the color gradient of the trajectories,
which leads to coarse-grained trajectories like the one shown
in the lower part of Fig. 2(a). In this case, a Markovian event is
the observation of I or J in conjunction with the correspond-
ing absolute time since these entirely determine the current
microscopic configuration of the system. The non-Markovian
events G and H provide additional information about the
microscopic path without fully resolving the microscopic state
of the system.

D. Snippets

Given a coarse-grained trajectory (3), we define a snippet
[22] �s as a section of �, which starts with a Markovian event
I and ends with the subsequent Markovian event J :

�s : I t,O−−→ J (4)

(I, τ )
O−→ (J, τ + t ).

In Fig. 2(a), we illustrate a snippet that starts and ends with
the Markovian events I and J , respectively, and additionally
contains the observations G and H along with the waiting
times t1, t2, t3, and t4. In general, any coarse-grained trajec-
tory � comprises several of such snippets. In particular, the
path weight associated with the trajectory (3) factorizes into
contributions from the individual snippets,

P[�|I0] = P
[
�s

1

∣∣I0
] · · ·P[

�s
n

∣∣In−1
]
, (5)

where �s
i denotes the snippet between the Markovian events

Ii−1 and Ii.
In the case of stationary systems, an alternative notation for

the path weight of a snippet (4) is given by

ψI→J (t ;O) ≡ P[�s|I], (6)

which concisely presents all relevant information, since the
absolute time τ is not required so that the Markovian events
are just the observations, i.e., I = I and J = J . Addition-
ally, it highlights the waiting time characteristics of the path
weights P[�s|I]. Although useful for explicit calculations,
this notation easily appears overloaded if the system evolves
in time. Therefore, we exclusively use it for systems in a
stationary state.

E. Entropy production

Markovian events and snippets are the fundamental build-
ing blocks that allow us to extend the concept of a fluctuating
entropy production to the coarse-grained level. For a system
with constant driving but not necessarily in a stationary state,
we identify

�S[�s] = ln
P(I )P[�s|I]

P(J )P[�̃s|J̃ ]
(7)

as the entropy production of a snippet �s. It generally depends
on the initial and final events I and J as well as the duration t
and the remaining observables O. For this identification to be
physically meaningful, we assume that the entropy production
on the microscopic level �s[γ ] is of the form that is fur-
ther detailed below in Sec. II G. This assumption is justified
for virtually all classes of systems that are described in the

general setup and for which a physical entropy production is
of interest, such as Markov networks or Langevin dynamics.
For Eq. (7), we do not need to discern between descriptions
based on observables that are even under time reversal, such as
state-based descriptions or overdamped Langevin dynamics,
and descriptions based on observables that are odd under
time reversal, such as transition-based descriptions or under-
damped Langevin dynamics. In Sec. IV we provide further
details regarding the peculiar odd observables, which provide
further support for the identification (7).

The following properties embed this notion of entropy
production along the coarse-grained trajectory (7) into the
framework of stochastic thermodynamics. First, it is additive
in the sense that the entropy production of a coarse-grained
trajectory (3) is the sum of the entropy production of its
snippets,

�S[�] = ln

(
P(I0)P[�|I0]

P(In)P[�̃|Ĩn]

)
=

n∑
i=1

�S
[
�s

i

]
, (8)

where we use Eqs. (5) and (7). Entropy production has to be
assigned in a way to avoid overcounting at the start and end
points, respectively. In Eq. (7), the entropy production of a
snippet includes its initial Markovian event but not the con-
cluding one, which becomes more apparent when rewriting
the entropy production (7) as

�S[�s] = ln
Pcf[�s|J ]

P[�̃s|J̃ ]
, (9)

where the path weights exclude J and J̃ , respectively. The
superscript “cf” indicates that the path weight Pcf[�s|J ] is
conditioned on the final event of the trajectory snippet rather
than the initial one.

Second, the coarse-grained entropy production �S and the
microscopic entropy production �s are linked by the exact
relation

e−�S[�] = 〈e−�s|�〉, (10)

as we show in Appendix A. The conditional mean 〈·|�〉 de-
notes an average over all microscopic trajectories that are
mapped to � under coarse graining. In particular, this implies
�S[�] = 0 if the underlying system is in equilibrium, where
�s[γ ] = 0 holds for all γ . Furthermore, equality (10) implies
the thermodynamic consistency condition

�S[�] � 〈�s|�〉 (11)

for the coarse-grained entropy production. While equality (10)
might typically be of a more theoretical rather than practical
significance due to the statistically demanding nature of the
mean [3], inequality (11) will prove to be a useful and versatile
tool for thermodynamic inference. In particular, it enables us
to estimate entropy production localized in space and time. As
a side note, inequality (11) directly implies the estimator

〈�S〉 � 〈�s〉 (12)

for the mean total entropy production of the system, which
recovers the result in Ref. [22] for the mean total entropy
production rate following a different reasoning. In contrast to
Ref. [22], we a priori do not assume that the coarse-grained
entropy production is related to the logarithmic ratio of path
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FIG. 3. Entropy production as a fluctuating quantity on the coarse-grained level in the steady state. All data are generated using the
network shown in Fig. 2(b). The rates used for simulations and further numerical details are provided in Appendix D. Blue lines and markers
indicate quantities on the microscopic level, whereas the coarse-grained level is denoted with red lines and markers. (a) The solid lines show
the change in total entropy as a function of time along an individual trajectory both on the microscopic and the coarse-grained level. The
dashed lines show the corresponding expectation values. (b) The solid lines show the total entropy production rate as a function of time along
an individual trajectory for a sample of five trajectories on the microscopic and the coarse-grained level. The darker dashed lines show the
corresponding expectation values 〈σ 〉 � 2.9 and 〈σ̂ 〉 � 1.7. (c) The markers show the localized entropy production both on the microscopic
and the coarse-grained level as defined in Eqs. (14) and (15), respectively. The statistics is obtained by considering a long trajectory in which
occasionally snippets occur that start and end with the transition K̃ = (21) [see Fig. 2(b)]. As shown in the inset, the entropy production
rates σK̃→K̃ (N ) → 1.15 and σ̂K̃→K̃ (N ) → 0.70 converge towards their expectation values as N → ∞, i.e., for a sufficiently large number of
occurrences. An inequality of the form of Eq. (11) that involves a conditional average does not hold directly for the blue dots, which depict
individual microscopic realizations of a snippet K̃ → K̃ .

weights on the coarse-grained level. Instead, the reasoning
is based on the microscopic level on which a meaningful
entropy production on the trajectory level can be assumed.
Therefore, a consistency condition of the form of Eq. (10)
requires Markovian events on the microscopic level, whereas
the derivation of a single bound on the mean values of the form
of Eq. (12) only requires Markovian events on the coarse-
grained level in Ref. [22].

Third, the coarse-grained entropy production �S[�] ex-
tends the notion of a fluctuating entropy production to the
coarse-grained level. One of the major achievements of
stochastic thermodynamics has been to identify entropy pro-
duction as a fluctuating quantity along individual trajectories
[45], which Eq. (7) generalizes beyond microscopic trajecto-
ries. Conceptually, it is a key novelty to have a coarse-grained
entropy production, which is endowed with physical meaning
beyond its expectation value.

F. Fluctuating entropy production on the coarse-grained level

We illustrate key aspects of the fluctuating entropy pro-
duction using the concrete example shown in Fig. 2(b), a
six-state Markov network in its nonequilibrium steady state.
We assume that in the coarse-grained description only tran-
sitions K = (12) and L = (34) as well as their time-reversed
counterparts K̃ = (21) and L̃ = (43) can be observed, which
gives rise to the coarse-grained network shown in Fig. 2(c).
In this system, the observable transitions serve as Markovian
events and the resulting snippets contain no additional non-
Markovian events. For the following examples we generate
the coarse-grained trajectories by simulating the microscopic
ones, to which the coarse-graining is applied subsequently.
This procedure is in accordance with real-world scenarios
in the sense that the actual dynamics takes place on the

microscopic level, but only data on the coarse-grained level
are available to the observer. Since a snippet necessarily
starts with a Markovian event we have to discard the ini-
tial section of a microscopic trajectory prior to the first
Markovian event to ensure a simultaneous initialization of
the coarse-grained and microscopic process. Analogously, the
microscopic trajectories need to end with a Markovian event.

The previously exclusively microscopic concept of a
fluctuating entropy production can now be applied to a coarse-
grained description. We denote the total entropy production up
to time t on the microscopic level as �s(t ) and, analogously,
on the coarse-grained level as �S(t ). These quantities relate
to the corresponding entropy production rates via

σ (t ) ≡ �s(t )/t and σ̂ (t ) ≡ �S(t )/t, (13)

respectively. For some trajectories of the system from
Fig. 2(b), the total entropy production and the total entropy
production rate along individual fluctuating trajectories on
both levels is shown in Figs. 3(a) and 3(b), respectively. In the
coarse-grained description, the rate of jumps is lower due to
the lower rate of events that contribute to the entropy produc-
tion. The respective expectation values fulfill inequality (12).
The rate of coarse-grained entropy production converges to-
wards its expectation value for each trajectory � individually
in the long-time limit, similarly to its microscopic counterpart.

The localized entropy production exhibits a similar fluctu-
ating behavior. We define the entropy production rate after N
realizations {γ1, . . . , γN } of trajectories that all start in I and
end in J as

σI→J (N ) ≡ 1

T (N )

N∑
i=1

�s[γi] (14)
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and similarly its coarse-grained analog that is defined through
the corresponding snippets {�s

1, . . . , �
s
N } as

σ̂I→J (N ) ≡ 1

T (N )

N∑
i=1

�S
[
�s

i

]
(15)

with T (N ) as the total elapsed time from the start of the
observation until the end of the snippet �s

N . This entropy
production rate fluctuates with each realization as shown
for K̃ → K̃ in Fig. 3(c). On the microscopic level, these
fluctuations are due to different paths that all start with
K̃ and end with K̃ . Although these paths cannot be re-
solved on the coarse-grained level, different paths typically
lead to a different waiting time between the initial and
final events. Therefore, the fluctuating duration of the snip-
pets leads to a fluctuating entropy production. The entropy
production rate converges towards its expectation value for
a sufficient number of realizations as shown by the inset
in Fig. 3(c).

G. Assumption on the microscopic level

The entropy production (7) for the coarse-grained trajec-
tory � can be derived from a similar form on the microscopic
level. We assume that the entropy production associated with
a microscopic trajectory γ that starts with γ0 and ends with
γ1 in a possibly time-dependent but not time-dependently
driven system, like, e.g., a steady state or relaxation into it, is
given by

�s[γ ] = ln
P(γ0)P[γ |γ0]

P(γ1)P[γ̃ |γ̃0]
. (16)

Here, γ̃0 = γ̃1, i.e., the time-reversed trajectory γ̃ is initial-
ized by the time-reversed final event of the original trajectory
γ1. If the process is not stationary, the probabilities P(γ0)
and P(γ1) depend on the initial and final times of the pro-
cess, respectively. The identification (16) is well known to
be correct for Markovian and overdamped Langevin dynam-
ics as well as underdamped Langevin dynamics, as further
detailed in Sec. IV A. Beyond these major system classes,
Eq. (7) cannot be derived without further knowledge about
the specific system and its energetics. However, we argue
that even for such systems, Eq. (7) is a reasonable start-
ing point if appropriate Markovian events can be identified,
as the identification is physically correct for all verifiable
classes of systems. Note that in the case of even observables
we recover

�s[γ ] = ln
P[γ ]

P[γ̃ ]
(17)

due to γ̃0 = γ̃1 = γ1. We discuss the suggested relationship
between Eq. (7) and the detailed fluctuation theorem (17) later
in Sec. IV C.

At first glance unrelated, a comparison of the microscopic
entropy production [Eq. (16)] to its coarse-grained counterpart
[Eq. (7)] may stimulate the question whether a consistency
relation of the form of Eq. (10) or Eq. (11) can be established
beyond the setting considered above in which I and J are
Markovian events on the microscopic level. More specifi-
cally, let us consider the case where the start and end of the
microscopic trajectory map to the corresponding initial and

final events through a coarse graining of the form γ0 �→ I
and γ1 �→ J , respectively. As we prove in Appendix B, both
Eq. (10) and Eq. (11) remain valid if both the microscopic and
the coarse-grained level contain even variables only, but can
be violated in the presence of odd variables. We will return to
the discussion of odd variables and their peculiarities from a
different angle in Sec. IV.

III. INFERENCE OF HIDDEN DRIVING

In a coarse-grained setup, the hidden part of a system is
often not in equilibrium. It might even contain nonequilibrium
processes, which do not directly drive any visible current or,
more generally, any transition between two visible Markovian
events. We refer to such processes as hidden driving, which
arises if, e.g., the hidden part of a Markov network contains
cycles with nonzero affinity.

In principle, the framework introduced in Sec. II allows
for two strategies to localize and quantify nonequilibrium
effects in a stationary state. First, we can use inequality (11)
directly to bound the entropy production of microscopic tra-
jectories that lead to particular snippets. Second, we can use
the language of Markovian events to localize affinities A
of hidden driving, which can be regarded as the source of
nonvanishing entropy production on the microscopic level.
More formally, we can decompose the mean entropy produc-
tion rate into contributions from individual cycles C in the
form [46,47]

〈σ 〉 =
∑
C

jCAC (18)

in the steady state, where jC is the expected number of com-
pletions of the cycle C per unit time and AC , the affinity of the
cycle C, is defined below in Sec. III B.

Both methods utilize the framework of Markovian events
to derive quantitative bounds based on ratios of waiting-time
distributions of the form of Eq. (7), which in the simplest case
without additional data O can be rewritten as

�S[I
t−→ J] = ln

P(I )ψI→J (t )

P(J )ψJ̃→Ĩ (t )
(19)

for two Markovian events I, J . With the identification as a
coarse-grained entropy production (7), the bound (11) pro-
vides an entropy estimator for every I, J and each value
of t , whose practical use is demonstrated in Sec. III A. We
can extract even more information if expression (19) takes
different values as a function of t for fixed I, J . We will
detail in Sec. III B how differences in �S[I

t−→ J] due to its
t dependence can be used to bound the affinity AC of hidden
cycles C.

A. Localizing entropy production

The coarse-grained entropy production (19) grants access
to information far beyond its total mean. Since inequality
(11) holds true for any snippet �s, averaging over some but
not all �s still leads to a lower bound on the corresponding
microscopic entropy production. For example, we might be
interested in the entropy production of short snippets with a
duration below a certain threshold. Alternatively, we might
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TABLE I. Localization of entropy production in space and time for the Markov network shown in Fig. 2(b) in its steady state. Each pair
of entries corresponds to one of the bounds stated in Eq. (21) with the microscopic entropy production rate σcon on the left-hand side and its
coarse-grained analog σ̂con on the right-hand side. Each condition selects a path I → J , with I, J ∈ {K, L, K̃, L̃}, and selects whether the snippet
exceeds the duration t0 = 1 or not. Adding the colored numbers yields the microscopic and coarse-grained entropy production rate for paths
of the form K̃ → K̃ shown by the blue and red dashed lines in Fig. 3(c), respectively. Summing over all numbers on the right-hand side yields
the estimator 〈σ̂ 〉 � 1.7 as a bound on the mean total entropy production rate 〈σ 〉 � 2.9, which is the sum over all numbers on the left-hand
side. These values are shown by the darker blue and red dashed lines in Fig. 3(c). The rates used for simulations and further numerical details
are provided in Appendix D.

First event

K L K̃ L̃

σcon σ̂con σcon σ̂con σcon σ̂con σcon σ̂con

Final event t � t0 K −4.0 × 10−3 −4.9 × 10−3 −2.6 × 10−4 −3.7 × 10−4 1.4 × 10−1 1.4 × 10−1 3.2 × 10−3 3.6 × 10−4

L −5.4 × 10−3 −8.1 × 10−3 −7.4 × 10−4 −8.9 × 10−4 5.1 × 10−2 3.7 × 10−2 3.0 × 10−2 2.4 × 10−2

K̃ −8.8 × 10−2 −1.0 × 10−1 −3.0 × 10−3 −5.0 × 10−3 3.7 × 10−1 2.8 × 10−1 2.3 × 10−1 1.9 × 10−1

L̃ 1.1 × 10−2 1.6 × 10−4 −7.2 × 10−2 −7.2 × 10−2 2.8 × 10−1 2.4 × 10−1 7.5 × 10−2 5.5 × 10−2

t > t0 K −1.4 × 10−3 −5.7 × 10−3 −4.3 × 10−4 −8.4 × 10−4 4.6 × 10−2 2.2 × 10−2 1.0 × 10−2 3.8 × 10−4

L 2.5 × 10−3 −4.4 × 10−3 −9.5 × 10−5 −8.9 × 10−4 8.5 × 10−2 4.3 × 10−2 2.4 × 10−2 8.0 × 10−3

K̃ 2.6 × 10−2 −3.4 × 10−2 −9.0 × 10−4 −7.3 × 10−3 7.8 × 10−1 4.2 × 10−1 2.2 × 10−1 8.9 × 10−2

L̃ 3.1 × 10−2 1.1 × 10−3 −1.6 × 10−3 −4.2 × 10−3 5.0 × 10−1 3.3 × 10−1 1.4 × 10−1 7.8 × 10−2

compare the entropy production of snippets I → J for differ-
ent events I, J . More formally, we can derive

σ̂con ≡
∑

�s|con

1

〈t〉P[�s]�S[�s]

�
∑

�s|con

1

〈t〉P[�s]〈�s|�s〉 ≡ σcon (20)

from inequality (11), where the index “con” denotes that
only those snippets that fulfill a certain condition contribute
to the respective entropy production rate. The conversion
constant 1/〈t〉 designates the rate at which snippets occur
and mediates between entropy production per snippet and
entropy production rates, which are given per unit time. With
Eq. (20) as a quantitative tool, we are able to resolve con-
tributions due to, say, short snippets or snippets between
particular events. This spatial and/or temporal “localization”
of entropy production yields a more refined picture than
the mean total entropy production rate, where such details
are lost.

We use the example shown in Fig. 2(b) to demonstrate
the localization aspect implied by Eq. (20) and the resulting
bounds on the microscopic entropy production rate. In this
case, we have access to four observed transitions, K , K̃ , L, and
L̃, as well as the time elapsed between two consecutive events.
Hence, we can resolve the total entropy production rate into
contributions from different possible paths I → J . In addition,
we distinguish whether the duration of this path exceeded
a threshold t0 or not. Such a coarse, binary classification of
short and long snippets can be useful even in the case of
poor waiting time statistics, where the time-series data do not
suffice to sample the full waiting time distributions that would
be required to apply the identification (7) and the bound (11)
directly. In total, the spatial and temporal classification leads
to the 32 cases shown in Table I. For each combination, we

show both sides of the inequality

σI→J,t≶t0 � σ̂I→J,t≶t0 , (21)

where each of the operationally accessible quantities on
the right provides a lower bound on the corresponding
microscopic entropy production term on the left, which
is obtained by averaging all trajectories that satisfy the
respective conditions.

The quantity σ̂I→J (N ) introduced in Eq. (15) to illus-
trate the fluctuating properties of the coarse-grained entropy
production approaches σ̂I→J in the limit of N → ∞. Accord-
ingly, we identify the expectation value of σ̂I→J (N ) indicated
by the red dashed line in Fig. 3(c) as the sum of σ̂I→J,t>t0 and
σ̂I→J,t<t0 highlighted in red in Table I. Analogous relations
apply to the corresponding microscopic quantities.

Adding all the numbers for σcon and σ̂con in Table I yields
the mean total entropy production rate 〈σ 〉 and its estimator
〈σ̂ 〉 established in Ref. [22], respectively. This example il-
lustrates in which sense the localized coarse-grained entropy
production (rate) allows us to infer much more detailed infor-
mation than a single bound on its mean while, importantly,
utilizing the same observables and waiting-time statistics.

The quality of estimator (20) varies depending on the con-
dition, which becomes apparent when comparing different
pairs of microscopic and corresponding coarse-grained en-
tropy production in Table I. Consequently, the ratio of σ̂con to
〈σ̂ 〉 holds no implications on the corresponding microscopic
ratio. Our method provides lower bounds on the entropy pro-
ductions that are due to snippets of some particular type but
not on their relative share of total entropy production.

B. Driving affinities

In this section, we describe how our framework can be used
to detect hidden driven cycles and to bound the correspond-
ing affinities from below. We assume an underlying Markov
network in a stationary state, which is necessary to have a
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well-defined notion of a cycle affinity of the form

AC =
∑

(i j)∈C
ln

ki j

k ji
, (22)

where the sum runs over all transitions (i j) that point towards
the same direction within a cycle C. The rate with which a
transition (i j) occurs if the system is in state i is denoted by
ki j . For now, we consider snippets of the form

�s : I
t−→ J, (23)

and postpone the discussion of additional non-Markovian in-
formation O. We introduce the quantity

�aI→J ≡ sup
t

�S[I
t−→ J] − inf

t
�S[I

t−→ J], (24)

which allows us to bound the largest affinity of all cycles C
hidden between I and J via

max
C

|AC| � �aI→J , (25)

as proved in Appendix C. This bound becomes more informa-
tive and therefore tighter whenever it is possible to distinguish

between different microscopic paths that realize I
t−→ J based

on the duration t . This affinity bound is related to similar
bounds obtained independently in a recent work, which are
formulated for logarithmic ratios of propagators rather than
waiting time distributions [48].

We demonstrate a potential biochemical application of
bound (25), which illustrates a method to infer cycle affinities
in systems that are not directly observable. As an example,
we consider the toy model shown in Fig. 4(a). We assume
that we cannot measure any of the states that contribute to
the cycle driving the system out of equilibrium. This remains
true even after introducing an additional chemical species that
is specifically designed to bind to the system in the fashion
described in Fig. 4(a). However, this procedure allows to infer
the chemical affinity of the driving cycle while remaining
agnostic about states or transitions of the original system.

In Fig. 4(c) we present the results of the affinity estimation
for the network shown in Fig. 4(b). We introduce the quantity

aI→J (t ) = ln
ψI→J (t )

ψJ̃→Ĩ (t )
, (26)

which is sufficient to determine �aI→J from Eq. (24) through

�aI→J = sup
t

aI→J (t ) − inf
t

aI→J (t ) (27)

since the probabilities P(I ) and P(J ) do not depend on the
duration of the snippet t . In the present case with I = 1 and
J = 6, the estimation yields �a1→6 � 3.3 compared to the
real cycle affinity of A � 4.8. Note that although this example
relies on a unicyclic toy model, the same procedure can be
applied to more complex systems, which then leads to a bound
on the hidden cycle with the highest affinity.

We now give a heuristic explanation why a quantity of the
form �aI→J results in an estimator for affinities rather than for
entropy production as one might expect naively. We consider a
snippet from state 1 to state 6 in Fig. 4(b) and assume that the
cycle C = (23452) has nonvanishing affinity. In this case, dif-
ferent microscopic paths lead to different entropy production,

FIG. 4. (a) Toy model for the experimental inference of the
affinity in a chemically driven system. We imagine a system in a
solution of fuel-carrying molecules, similar to systems driven by the
hydrolysis of ATP. The original system has four states, states 2 to 5,
which are interconnected by the following four steps: the binding
and unbinding of the molecule carrying the fuel, (23) and (45),
respectively, the consumption of the fuel (52), and an intermediate
step (34). For all of these steps, the reverse is also possible in
accordance with the condition of thermodynamic consistency, which
makes the transitions bidirectional. The green triangles represent an
additional chemical species, which may bind to the system if it is not
occupied by a fuel-carrying molecule, i.e., if the system is in state 2
or 5. Its binding prevents any further steps along the cycle leading to
the two additional states 1 and 6. (b) The network corresponding to
the system shown in (a). We assume that only states 1 and 6 can be
observed. (c) Affinity estimation for the network shown in (b) leading
to �a1→6 � 3.3. The rates used for simulations and further numerical
details are provided in Appendix D.

because they may include the cycle or not. Since on average
shorter paths tend to avoid the cycle, the cycle manifests as

a nontrivial time dependence in �S[I
t−→ J]. We might try to

interpret Eq. (24) as a difference between averaged entropy
productions of possible paths or, equivalently, as the averaged
entropy production of the loop obtained by following one
path forward and the other in reverse. However, it is then not
obvious how to formulate a bound on this quantity, because in
principle a microscopic path can contain the cycle C arbitrarily
often, especially if C is strongly driven. Instead, the derivation
of Eq. (25) does not rely on interpreting Eq. (24) as entropy
production, but introduces a dual dynamics that uses an invo-
lution R different to the time-reversal operation T . As further
detailed in Appendix C, the cycle-based methods to construct
R result in an interpretation of Eq. (24) as a quantity related
to a cycle affinity instead of an entropy production.
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FIG. 5. (a) Markov network with nine states. We assume that
only states 1 and 4 and the compound state H , consisting of states
8 and 9, can be observed. (b) Affinity estimation for the network
shown in (a). The yellow line shows a(t ) � −0.51 independent of

t for snippets 1
no H−−→ 4 that do not pass H . The green line shows

a(t ) for snippets 1
H−→ 4 that pass H at least once, which leads to

�a � 3.4. For the blue line, the information about visiting H is
discarded, i.e., both aforementioned types of snippets are included
but not distinguished, which leads to �a � 0.9. The largest real cycle
affinity in this network is A � 7.8. The rates used for simulations and
further numerical details are provided in Appendix D. (c) Markov
network with five states. We assume that only states 1 and 2 can
be observed. The cycle 3 → 4 → 5 → 3 is driven in a clockwise
direction.

Moreover, the derivation of bound (25) shows that addi-
tional observables besides I , J , and the time in between can
be utilized as well if an additional consistency condition is
satisfied. The proof primarily relies on constructing a suitable
involution R, which is referred to as partial [48,49] or math-
ematical [38] reversal R and has to be indistinguishable from
the true, physical time reversal for the given coarse graining.
This condition has to be met also after introducing additional
observables. In our case, R acts like the true time-reversal
operation on some parts of the trajectory while leaving other
parts unchanged. Thus, any additional observables need to be
even under time reversal. In particular, we cannot use waiting
times between events for data O in general, except for the
duration of the snippet t .

An example for eligible further information is to include
whether or not a compound state was visited during the snip-
pet without including the time of the event. Including such
additional information generally leads to an improvement
of bound (25) and allows us to further localize the hidden
driving. We illustrate this procedure on the example network
shown in Fig. 5(a) where we observe the states 1 and 4 as
well as the lumped state H . If we discard the information
concerning H , we obtain an estimate for the affinity in a
similar way as for the model illustrated in Fig. 4, as shown
by the blue line in Fig. 5(b). When additionally observing H ,
we are able to extract two bounds. The first one applies to
all cycles between 1 and 4 that do contain H , whereas the
second one applies to all cycles between 1 and 4 that do not

contain H , shown by the green and yellow lines, respectively.
We are able to correctly identify that there is no hidden driving
outside of H and its connecting edges while also improving on
the affinity estimator that does not discern whether H has been
visited or not.

Finally we mention a case in which Eq. (24) fails to detect
hidden driving, i.e., �a = 0 despite A 
= 0. If the driven cycle
is connected to the remaining network only through a single
state as shown in the example of Fig. 5(c), then its affinity
does not result in a time-dependent a(t ). Put more generally, if
a cycle can be located inside a compound state with direction-
time independence [50,51] for all transitions to and from it, we
are not able to infer its irreversibility from observables located
entirely outside the compound state.

IV. INTRICACIES OF ODD VARIABLES

The identification of entropy production is particularly sub-
tle in the case of odd observables since the observations I
and Ĩ denote genuinely different objects. In the following, we
examine two model classes based on such odd observables in
detail.

A. Underdamped Langevin dynamics

For underdamped Langevin dynamics, the physically cor-
rect entropy production can be derived from the laws of
stochastic energetics [52]. However, a detailed fluctuation
theorem of the form of Eq. (17) does not hold [53–56]. In
the following, we show and illustrate with some simple and
well-understood examples that our approach is consistent with
requirements for a physically meaningful entropy production
in underdamped Langevin systems.

Consider an underdamped Brownian particle of mass M on
a one-dimensional ring subject to a potential V and addition-
ally to a nonconservative external force f in a nonequilibrium
steady state. It is described by the Langevin equation

M∂2
t x = −γ ∂t x − ∂xV (x) + f + Mξ (t ), (28)

in which ξ models uncorrelated Gaussian white noise

〈ξ (t )〉 = 0, (29)

〈ξ (t )ξ (t ′)〉 = (2γ T/M2)δ(t − t ′). (30)

In this setup γ and T denote the friction constant, which is
not to be confused with the microscopic trajectories, and the
temperature in units of energy, i.e., kB = 1, respectively.

Its entropy production has two contributions, one due to
the stochastic entropy production �Sst and one associated
with dissipation into the medium �Sm. First, we examine
the entropy production along a trajectory �a that starts with
I = (x0, v0) at time T = 0 and ends with J = I after complet-
ing the cycle of length L at time T exactly once, as shown in
Fig. 6(a) for x0 = −L/2 = L/2. The stochastic contribution
has to vanish since the initial and final states are identical.
Therefore, we expect the total entropy production to be the
cycle affinity A = f L. Indeed, this is consistent with Eq. (7),
which here becomes

�S = ln
P(I )

P(J )
+ ln

P[�|I]

P[�̃|J̃]
= �Sst + �Sm, (31)

023175-9



DEGÜNTHER, VAN DER MEER, AND SEIFERT PHYSICAL REVIEW RESEARCH 6, 023175 (2024)

FIG. 6. Sketches of underdamped trajectories in phase space.
(a) A trajectory �a that starts and ends in I and completes the circle
exactly once (green line) and its time reverse (blue line). (b) A
trajectory �b for which the velocity decreases linearly in time until
the particle returns to its starting point (green curve). Its time reverse
is identical to the forward trajectory (blue curve).

with �Sst = 0 and �Sm = ∫ T
0 f ẋdt = f L.

In contrast, the tentative identification

�S(i)
st = ln(P(I )/P(J̃ )), (32)

for which �S(i) ≡ �Sm + �S(i)
st would obey a detailed fluc-

tuation theorem of the form of Eq. (17), leads to �S(i)
st 
= 0

without a clear physical interpretation. First, this identification
�S(i)

st would not warrant the property of the stochastic entropy
to purely depend on the state of the system. Second, the
entropy production would not be additive. The sum of the
entropy productions of two trajectories of the form shown in
Fig. 6(a) would not be the same as the entropy production
of the corresponding joint trajectory that completes the cycle
twice.

A second identification of �Sst that reproduces the correct
entropy production for the particular trajectory �a would be

�S(ii)
st = ln(P(Ĩ )/P(J̃ )). (33)

However, we can eliminate this possibility by considering a
trajectory �b from I = (x0, v0) to J = (x0,−v0) where the ve-
locity initially is parallel to the nonconservative driving force
and then linearly decreases with time as shown in Fig. 6(b).
This trajectory is identical to its time reverse and, therefore,
satisfies P[�|I] = P[�̃|J̃] by construction. Due to the nega-
tive velocity, the final state of this trajectory is less probable
than the initial one, which implies that the stochastic entropy
should increase, as is indeed the case for

�Sst = ln
P(I )

P(J )
= ln

P(I )

P(Ĩ )
, (34)

while the alternative �S(ii)
st gives the wrong sign.

Finally, note that − ln(P(Ĩ )/P(J̃ )) can be identified as
the stochastic entropy production of the reverse trajectory
in agreement with our formalism by applying Eq. (34) to
�̃ = J̃ → Ĩ .

B. Observed transitions

Transitions on a Markov network form a second class of
systems with a description based on odd observables. We as-
sume a system in a stationary state with only a few observable
edges similar to the settings described in Refs. [23,38]. In this
case, we can show that Eq. (7) is the correct identification
of the entropy production through explicit calculations. We

consider a coarse-grained trajectory � = I → J that starts
with transition I and ends with transition J . The corresponding
microscopic trajectories share the form

γ = i
I→ j → · · · → k

J→ l, (35)

where i, j and k, l are the Markov states associated with the
transitions I and J , respectively. For the probabilities of these
events as introduced in Sec. II C, we get the relations

P(I )/〈t〉 = piki j and P(J )/〈t〉 = pkkkl , (36)

where pi denotes the steady-state probability of microstate
i. The right-hand sides are explicit expressions for the rates
at which the respective transitions occur. For the left-hand
sides, we write the rate for an observable transition I , J as the
product of the total rate 1/〈t〉 that any observable transition
occurs and the probability for that particular observable tran-
sition, P(I ) or P(J ), respectively. The normalization constant
1/〈t〉 disappears in ratios, e.g., of the form of Eq. (7), and
denotes the inverse of the average length of a snippet [22].The
remaining path weights read

P[I → J|I] = P[ j → k| j]kkl (37)

and

P[J̃ → Ĩ|J̃] = P[k → j|k]k ji. (38)

The term P[ j → k| j] denotes the path weight for the trajec-
tory starting immediately after entry into j until immediately
before exiting k, given that the system starts in j. Inserting
Eqs. (36), (37), and (38) into the coarse-grained entropy pro-
duction [Eq. (7)] yields

�S[�] = ln
P(I )P[I → J|I]

P(J )P[J̃ → Ĩ|J̃]
= ln

piki jP[ j → k| j]kkl

pkkklP[k → j|k]k ji

= ln
piki j

p jk ji
+ ln

P[ j → k]

P[k → j]
, (39)

where we identify �S[�] as the sum of the entropy pro-
duction of the initial event I and the entropy production of
the remaining part of the trajectory until immediately before
the concluding event J . The final event is not included in the
entropy production �S[�] in accordance with Sec. II E.

By analogy to the cases of Markov networks and under-
damped Langevin dynamics, Eq. (39)uggests an identification
of stochastic and medium entropy production in the form

�S = ln
P(I )

P(J )
+ ln

P[I → J|I]

P[J̃ → Ĩ|J̃]
= �Sst + �Sm. (40)

This identification of �Sst and �Sm must be clearly distin-
guished from the identification �s = �sst + �sm that can be
made on the microscopic level for the Markov network [45].
We emphasize that the two identifications do not coincide
even if the coarse graining retains the full entropy production,
i.e., even if 〈�s〉 = 〈�S〉, which is the case for, e.g., unicyclic
Markov networks with a single observed transition [38]. In
such a scenario, we have two physically sensible splittings
into stochastic and medium entropy production. Thus, we
interpret that the conception of “system” and “medium” can
depend on the available information even if both descriptions
apply to the same physical process on the microscopic level.
For example, while stochastic entropy on the microscopic
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level of the Markov network may change whenever the actual
state i of the system changes, a corresponding quantity on the
coarse-grained level updates when an observed transition I is
registered.

Lastly, we point out that trying to transfer the concept of
a fluctuating coarse-grained entropy production to lumped
transitions, i.e., to events I that are triggered when one of
several microscopic transitions occurs, causes two problems.
First, an additivity property in the form of Eq. (8) is not valid
in general because such events are not Markovian, i.e., do not
satisfy Eq. (1). Second, in the general case we cannot establish
a consistency condition of the form of Eqs. (10) or (11), which
is demonstrated in a counterexample in Appendix B.

C. Discussion

The previous analysis of odd variables shows that even
when considering stationary situations only, entropy produc-
tion, in general, does not obey the detailed fluctuation theorem
that applies to a Markovian dynamics [45]. Even if such an
underlying Markovian description exists and Eq. (7) can be
applied, we cannot expect a detailed fluctuation theorem of the
same functional form as on the microscopic level, because the
coarse-grained level involves different observables. However,
validity is granted if all observables are even under time rever-
sal, as seen by plugging P(J̃ ) = P(J ) into Eq. (7). Thus, a
refined understanding of the detailed fluctuation theorem may
be as a symmetry associated with the special case of a de-
scription based on even observables in a Markovian dynamics
rather than a general property of entropy production itself.

For underdamped Langevin dynamics in particular, en-
tropy production is often expressed using some “modified”
path weight for the reverse process [53,54,56], which leads to
a formulation that appears similar to the detailed fluctuation
theorem. However, this modified path weight and, therefore,
the entire approach lack a clear physical interpretation. In
light of the above insights regarding the detailed fluctuation
theorem, it seems neither useful nor instructive to employ such
a modified path weight.

An immediate consequence is that an expression of the
form ln(P[γ ]/P[γ̃ ]) or ln(P[�]/P[�̃]) cannot be regarded as
a guiding principle for the identification of entropy production
in arbitrary systems. For any system that on the underly-
ing level fulfills the conditions described in Sec. II G, one
should resort to the identification in Eq. (7). Beyond these,
the identification of an entropy production requires knowledge
of the underlying energetics and, additionally, considerations
similar to the ones in Sec. IV A. The analysis of scenarios for
which we understand the corresponding entropy production
physically, such as in equilibrium or for simple trajectories,
gives rise to consistency conditions that entropy production
has to fulfill.

V. CONCLUDING PERSPECTIVE

In this work, we have established requirements to identify
a fluctuating entropy production on a coarse-grained level.
This concept offers practical advantages in resolving sources
of irreversibility. Depending on the information available, we
can quantify the contribution of particular snippets of a long

trajectory to the total entropy production and localize hidden
driving with the aid of bounds on their affinity. As our identifi-
cation is model-free, we put particular emphasis on the subtle
case of odd variables.

Our framework does not rely on distinguishing slow and
fast degrees of freedom. Such knowledge typically is hard to
come by, particularly in the realistic case where some degrees
of freedom are hidden. Thus, it is not necessary to identify
a “correct fundamental layer,” i.e., a system comprising all
slow-moving degrees of freedom which is surrounded by an
environment that equilibrates on a faster timescale. Instead,
the hidden parts of the system and the surrounding system are
treated in the same way without making particular distinctions
beforehand.

Finally, we point out that, in the general case, one should
not expect to identify a physically meaningful entropy produc-
tion on the coarse-grained level solely based on our approach
in the absence of Markovian events, since our formalism
necessarily requires a coarse-grained trajectory to start and
end with a Markovian event. Applying Eq. (7) to arbitrary
sections of a coarse-grained trajectory would generally imply
a violation of the properties mentioned in Sec. II E, which
would undermine the corresponding physical interpretation.
In particular, the correspondence between microscopic and
coarse-grained entropy production relies on the defining prop-
erty of Markovian events.

We emphasize that, from a practical perspective, a model
based on the identification of Markovian events entails milder
assumptions than assuming that the underlying system obeys
Markovian dynamics in the form of, e.g., a master equation.
Rather than making assumptions about the entire system, for
example, that every state is a Markov state, our framework
only makes such assumptions within the visible part of the
system. Conversely, if knowing the physical mechanisms of a
model allows one to conclude that some observable states are
Markovian, this is sufficient to apply our framework. More-
over, this framework allows one to formulate an operational
criterion to falsify whether an event is Markovian based on
coarse-grained data only [22].

The results of this paper allow for future research beyond
the insights already demonstrated. As knowledge about the
dynamics of the hidden parts of the system is not required,
the improved flexibility of our framework should prove useful
for applications across different model classes. Neverthe-
less, incorporating additional knowledge remains possible, as
demonstrated for the estimation of cycle affinities when sup-
posing an underlying network of Markov states. In a realistic
biochemical setup, cycle affinities might be constrained to
integer multiples of, say, the free energy released in hydrolysis
of one ATP. Thus, if some microscopic states or transitions
can be observed directly, the established affinity bounds that
are able to distinguish different pathways provide a qualita-
tive tool to localize the ATP-driven cycles in the biochemical
network.

We expect that the concept of spatially and temporally lo-
calized entropy estimation can be combined successfully with
other related techniques. Inferring entropy production through
waiting times in snippets provides a physical interpretation for
the waiting time distributions that have received attention in
stochastic thermodynamics in different contexts. For example,
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recently discovered thermodynamic bounds on waiting time
distributions and correlation functions [30,31,33–35] might be
combined with the notion of fluctuating entropy production
to infer not only averages but full distributions of thermody-
namic quantities.

In addition, our framework applies to systems in which
the state of the system is known at some times, but the
full dynamics remains inaccessible or unknown, which gen-
eralizes the paradigmatic cases of fully accessible Markov
networks and overdamped Langevin equations. With this new
perspective, we might speculate whether other concepts of
stochastic thermodynamics beyond total entropy production
like an identification of intrinsic and medium entropy produc-
tion or stochastic energetics can also be extended to genuinely
coarse-grained descriptions.

APPENDIX A: PROOF OF EQUALITY (10)

We consider a coarse-grained trajectory �, which starts
with I and ends with J . Inserting the definition of the mi-
croscopic entropy production [Eq. (16)] into the mean on the
right-hand side of Eq. (10) yields

〈e−�s|�〉 =
∑
γ∈�

P[γ |�]
P(γ1)P[γ̃ |γ̃1]

P(γ0)P[γ |γ0]

=
∑
γ∈�

P[γ |�]
P(J )P[γ̃ |J̃ ]

P(I )P[γ |I]
. (A1)

For the second equality we used that γ is initialized by the
Markovian event I, i.e., γ0 = I, and, likewise, γ1 = J . Note
that P(γ0) does not necessarily correspond to the probability
to observe the microscopic state of the trajectory at the time
of the Markovian event.

Since the coarse graining defines a unique mapping
γ �→ �, each microscopic trajectory γ implies its correspond-
ing coarse-grained trajectory �. Thus, we can write P[γ |�] =
P[γ ]/P[�] = P[γ ]/(P(I )P[�|I]), which allows to
calculate∑
γ∈�

P[γ |�]
P(J )P[γ̃ |J̃ ]

P(I )P[γ |I]

=
∑
γ∈�

P[γ ]

P(I )P[�|I]

P(J )P[γ̃ |J̃ ]

P[γ ]

= P(J )

P(I )P[�|I]

∑
γ∈�

P[γ̃ |J̃ ] = P(J )P[�̃|J̃ ]

P(I )P[�|I]
= e−�S[�].

(A2)

APPENDIX B: COUNTEREXAMPLE FOR
COARSE-GRAINED EVENTS AND ODD VARIABLES

In Sec. II D, we define a snippet as a section of a coarse-
grained trajectory between two events that are Markovian
on the microscopic level. It is sensible to ask whether the
results presented in Sec. II E remain valid if the condition
of Markovianity on the microscopic level, i.e., γ0 = I and
γ1 = J , is relaxed. In this section, we explore this possibility
by making the weaker assumption that the coarse graining that

maps γ �→ � also maps the initial and final events of γ onto
those of � in the form γ0 �→ I and γ1 �→ J , respectively.
Trying to compare 〈e−�s|�〉 and e−�S[�] following the same
steps as in Eqs. (A1) and (A2) leads us to

〈e−�s|�〉 =
∑
γ∈�

P[γ |�]
P(J )P[γ̃ |γ̃1]P(γ1|J )

P(I )P[γ |γ0]P(γ0|I )
(B1)

and

e−�S[�] =
∑
γ∈�

P[γ |�]
P(J )P[γ̃ |J̃ ]

P(I )P[γ |I]
, (B2)

respectively. Although the calculations remain basically un-
changed, the numerators in expressions (B1) and (B2) differ
by a term of the form

eδ ≡ P(γ1|J )

P(γ̃1|J̃ )
. (B3)

Thus, even if the initial and final events of a snip-
pet are defined on the coarse-grained level, we can use
P[γ̃ |γ̃1]P(γ̃1|J̃ ) = P[γ̃ |J̃ ] to establish Eq. (10) provided
δ = 0 vanishes identically. In addition to the model classes
in which no coarse graining happens at the Markovian events,
i.e., γ1 = J , model classes in which any conceivable γ1 and J
are even under time reversal also satisfy this condition δ = 0.
For example, this is the case when considering lumped states
in Markov networks, since residence in such states is even
under time reversal.

However, in the presence of odd variables, we get δ 
= 0 in
the general case. As an example, consider a unicyclic Markov
network that consists of three interconnected states 1, 2, and
3 and is in the steady state. We assume that we observe tran-
sitions in the form I = (31), Ĩ = (13) and J = {(12), (23)},
J̃ = {(21), (32)} which are odd under time reversal, although
the underlying microscopic dynamics is not. Due to the as-
sumption that we cannot discern the transitions 1 → 2 and
2 → 3 or their corresponding reverses, J and its time reverse
J̃ do not satisfy the defining property of Markovian events,
whereas I and Ĩ are Markovian events on the microscopic level
in accordance with Sec. IV B.

Denoting the steady-state distribution by pi and the tran-
sition rates by ki j , we can calculate the rate with which one
of the four events I, J, Ĩ, J̃ occurs as 1/〈t〉 = ∑

i j piki j . We
consider a microscopic trajectory starting with a transition
γ0 = (31) at time zero and ending with a subsequent transition

γ1 = (12) at time t , which is coarse grained into � = I
t−→ J

with time reverse �̃ = J̃
t−→ Ĩ . Since � is only comprised of

this single microscopic trajectory, calculating the average

〈e−�s|�〉 = e−�s = p1k13

p3k31
(B4)

is trivial and includes the microscopic entropy production of
the transition I but not of J as described in Sec. II E. We use
the explicit expressions

P(I )/〈t〉 = p3k31, P[�|I] = e−(k12+k13 )t k12,

P(J )/〈t〉 = p1k12 + p2k23, P[�̃|J̃] = P((21)|J̃ )P[�̃|(21)]

= p2k21

p2k21 + p3k32
e−(k12+k13 )t k13, (B5)
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to compare the coarse-grained and microscopic entropy pro-
duction terms

e−�S[�] = P(J )P[�̃|J̃]

P(I )P[�|I]
= p1k13

p3k31

p2k21

p2k21 + p3k32

p1k12+p2k23

p1k12

=
〈

e−�s P(γ̃1|J̃ )

P(γ1|J )
|�

〉
= 〈e−�s−δ|�〉. (B6)

This counterexample shows that Markovian events on the mi-
croscopic level are required to establish a relation of the form
of Eq. (10) if odd variables are involved. We also note that the
term δ can have either sign, so that the implied inequality (11)
can also be violated if the condition of Markovianity on the
microscopic level is not met. As an explicit example, consider
k12 = k21 = k31 = k13 = 1. If the remaining rates are chosen
as k23 = 1 and k32 = 2, we calculate p1 = 1/3, p2 = 5/12,
p3 = 1/4, and δ � −0.022, whereas for k32 = 1 and k23 = 2
we obtain p1 = 1/3, p2 = 1/4, p3 = 5/12, and δ � 0.065.

APPENDIX C: PROOF OF THE AFFINITY BOUND (25)

For the proof of the bound (25), we assume an underlying
Markov network in a stationary state, some coarse graining
C, and a time-reversal operation T with T γ = γ̃ , which is an
involution. We consider a second involution R, which has the
property that it is not distinguishable from the time reversal T
under coarse graining, i.e.,

(C1)

Since additionally R is a bijection, we conclude

P[�̃|J̃] =
∑
γ∈�

P[γ̃ |J̃] =
∑
γ∈�

P[Rγ |J̃]. (C2)

For a trajectory γ that starts with the Markovian event I and
ends with the Markovian event J , we define

A[γ ] ≡ ln
P[γ |I]

P[Rγ |J̃]
. (C3)

Note that J̃ necessarily is the initial event of Rγ due to the
relation (C1). Using the definition (C3), we rewrite

P[�|I] =
∑
γ∈�

P[γ |I] =
∑
γ∈�

P[Rγ |J̃]eA[γ ]. (C4)

Combining Eqs. (C2) and (C4), we find

P[�|I]

P[�̃|J̃]
=

∑
γ∈� P[Rγ |J̃]eA[γ ]∑

γ∈� P[Rγ |J̃]
= 〈eA[γ ]〉aux, (C5)

where we identify the expression in the middle as a mean with
respect to some auxiliary probability measure. This relation
implies

inf
γ∈�

eA[γ ] � 〈eA[γ ]〉aux � sup
γ∈�

eA[γ ]. (C6)

Inserting Eq. (C5) into Eq. (C6) yields

inf
γ∈�

A[γ ] � ln
P[�|I]

P[�̃|J̃]
� sup

γ∈�

A[γ ], (C7)

where we also use the monotonicity of the logarithm. In-
equalities (C7) hold for any coarse-grained trajectory �. By
considering all trajectories that start in I and end in J , denoted
symbolically as γ |I → J , we obtain

sup
γ |I→J

A[γ ] − inf
γ |I→J

A[γ ]

� sup
�|I→J

ln
P[�|I]

P[�̃|J̃]
− inf

�|I→J
ln

P[�|I]

P[�̃|J̃]
. (C8)

Since the initial and final events are fixed, the probabilities
P(I ) and P(J ) are identical for all these trajectories, so that the
duration of the snippet becomes the only remaining variable,
which finally results in

sup
γ |I→J

A[γ ] − inf
γ |I→J

A[γ ]

� sup
t

ln
P(I )P[�|I]

P(J )P[�̃|J̃]
− inf

t
ln

P(I )P[�|I]

P(J )P[�̃|J̃]

= sup
t

�S[I
t−→ J] − inf

t
�S[I

t−→ J]. (C9)

To extract a physically meaningful bound from inequality
(C9), we need to explicitly construct R, where we follow
an algorithm similar to Ref. [38]. Consider the microscopic
trajectory on the Markov network γ = I → k → · · · → l →
J = Ik · · · lJ , where I and J are the Markovian events, in this
case states or transitions, and k · · · l the remaining Markov
states visited in between. To construct Rγ , we perform the
following steps:

(1) Separate the trajectory into closed loops and the re-
maining parts. Starting after I and stopping before J , if a
state occurs more than once, we identify a closed loop as
the intermediate section between the first and last appearance
including the states at the beginning and end of the loop,

(· · · axb · · · cxd · · · ) �→ (· · · a)(xb · · · cx)(d · · · ). (C10)

It is not necessary to identify loops within loops.
(2) Reverse the order of sections, i.e.,

(a · · · b)(cd · · · ec)( f · · · g) �→ ( f · · · g)(cd · · · ec)(a · · · b).

(C11)

(3) Reverse the order of states within the sections that do
not form a closed loop. These are the sections with differing
initial and final states, i.e.,

( f · · · g)(cd · · · ec)(a · · · b) �→ (g · · · f )(cd · · · ec)(b · · · a).

(C12)

(4) Reverse I and J , i.e.,

I �→ Ĩ, J �→ J̃. (C13)

(5) Merge the resulting section.
Note that the residence times in each state are not af-

fected by R. This involution satisfies CRγ = �̃ since any
microscopic trajectory Ik · · · lJ maps to the coarse-grained
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trajectory I → J without any additional observables. The in-
volution R treats these initial and final events I and J in the
same way as the original time-reversal operation.

We define γ trim as the trimmed trajectory that results from
removing the closed loops of γ in the form of

γ = abcdec f g ⇒ γ trim = abc f g, (C14)

where the loops are identified in the same way as in step 1.
With this explicit definition of R, we identify

A[γ ] = A[γ trim] + C(I, J ) (C15)

with the affinity

A[γ ] ≡
∑

(i j)∈γ

ln
ki j

k ji
= ln

P[γ |γ0]

P[γ̃ |γ̃0]
, (C16)

where the sum runs over all transitions in γ . C(I, J ) denotes
a boundary term, which exclusively depends on I and J and
vanishes identically if I and J denote Markov states, but in
the general case can be nonzero. For example, if I = (i j)
and J = (mn) denote transitions (and the full trajectory has
the sequence of visited states i jk · · · lmn), the term A[γ ] as
defined in Eq. (C3) differs from A[γ trim] due to the con-
ditioning on I and J̃ in the numerator and denominator,
respectively. In this case, an explicit calculation establishes
A[γ trim] = A[γ ] + ln(ki j/knm). Hence, the resulting boundary
term C(I, J ) is fully determined by I and J and independent
of the microscopic details of γ .

For the reasoning of the proof, an explicit form of the
term C(I, J ) is not required, as this term vanishes after taking
differences in Eq. (C9). We can then identify the resulting
terms as an extremal cycle affinity, i.e.,

sup
γ |I→J

A[γ ] − inf
γ |I→J

A[γ ] = max
C

AC, (C17)

where the maximum runs over all cycles C that can be ob-
tained as a loop formed by going a trimmed path γ trim

1 from
I to J followed by going a trimmed path T γ trim

2 from J̃
back to Ĩ . Symbolically, such cycles C can be written as

γ trim
1 → T γ trim

2 = γ trim
1 → γ̃ trim

2 . Note that each affinity AC
occurs with either sign, so that the maximum selects the cycle
affinity with the highest absolute value. By inserting Eq. (C17)
into bound (C9), we finally arrive at

max
C

AC � sup
t

�S[I
t−→ J] − inf

t
�S[I

t−→ J], (C18)

which is Eq. (25) in the main text.

APPENDIX D: NUMERICAL DETAILS

For the illustrations in Secs. II F, III A, and III B we rely
on the numerical computation of coarse-grained path weights
of the form P(I )P[I → J|I]. The first term, P(I ), can be
calculated from the solution of the corresponding master
equation. The second term, P[I → J|I], is computed by solv-
ing the corresponding absorbing master equation as described
in Ref. [57] and detailed further in the Appendix of Ref. [38].

For Fig. 3, we first use this method of absorbing master
equations to compute the coarse-grained path weights. We
then simulate individual trajectories on the corresponding
underlying Markov network to which we apply the coarse
graining and calculate the coarse-grained entropy production
using these path weights in Eq. (7).

The rates for the network shown in Fig. 2(b) are k12 = 0.6,
k21 = 2, k23 = 2.1, k32 = 5, k26 = 1.4, k62 = 2, k34 = 0.3,
k43 = 3, k35 = 0.9, k53 = 4.3, k36 = 1, k63 = 1.6, k45 = 0.5,
k54 = 2, k56 = 0.8, k65 = 4, k61 = 1.8, and k16 = 3.

The rates for the network shown in Fig. 4(b) are k12 = 2.5,
k21 = 2.5, k23 = 0.7, k25 = 0.1, k32 = 0.3, k34 = 0.7, k43 =
0.3, k45 = 0.7, k52 = 1, k54 = 0.3, k56 = 2.5, and k65 = 2.5

The rates for the network shown in Fig. 5(a) are k12 =
1, k15 = 1.5, k21 = 1, k23 = 1, k26 = 0.5, k32 = 1, k34 = 1,
k37 = 0.5, k43 = 1, k47 = 0.5, k51 = 1.5, k56 = 0.5, k58 = 0.5,
k62 = 0.5, k65 = 0.5, k67 = 0.5, k68 = 0.1, k69 = 0.5, k73 =
0.5, k74 = 0.5, k76 = 0.5, k79 = 0.1, k85 = 0.1, k86 = 0.5,
k89 = 3, k96 = 0.1, k97 = 2, and k98 = 4.
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