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Single-piston quantum engine
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A single-piston quantum engine based on a harmonic oscillator acting as the working fluid is proposed. Using
the fact that the interaction between the piston and the oscillator depends on the extent of the oscillator wave
function, one can control this interaction by modifying the oscillator temperature. By retracting the piston when
the interaction is weak (hot oscillator) and returning it to the original position when the coupling is strong
(cold oscillator), useful work can be performed assuming the interaction is attractive. The cycle of the engine is
simulated numerically using two different powering protocols: bath and measurement. Using the collision model
for the baths, the engine is shown to reach a steady state with positive work output.
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I. INTRODUCTION

The purpose of an engine is to convert energy into work
while operating cyclically. Although essentially all common-
place implementations are rooted in classical physics for their
operation, there is a growing interest in quantum engines [1,2].
Unlike their classical analogs, where the working fluid is
typically a liquid or a gas, quantum engines employ quantum
components. Some examples of these quantum working fluids
are two-level systems [3–6], single [7–18] or multiple [19,20]
harmonic oscillators, or photons [21,22]. Another feature that
sets quantum and classical varieties apart is how they are
powered. Classical implementations rely on hot reservoirs as
energy sources and require cold baths to expel waste heat.
Quantum versions, on the other hand, can also obtain the
required energy from measurements [23–32], which act as
effective hot baths.

When discussing quantum engines, one generally assumes
that there is a way to transfer the work released during the
power stroke of the cycle to some piston without explic-
itly focusing on this engine component. A recent work [22]
addressed the problem of energy transfer by describing an
engine that uses modes in an optical cavity as the working
fluid. In the proposed engine, one of the cavity walls is mo-
bile and acts as a piston, allowing the fluid to compress and
expand. The fluid, in turn, exerts radiation pressure on the
mobile piston, transferring energy to it. The engine is powered
by heat baths coupled to the working fluid in an alternating
fashion, as is typical for heat engines. Because the frequency
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of the optical modes is inversely related to the cavity length,
the proposed configuration is an elegant implementation of
the prototypical quantum heat engine which uses a harmonic
oscillator as the working fluid and relies on the variation of
the oscillator frequency in the course of operation.

Introduced in this paper is another implementation of
a quantum engine in which the piston plays an integral
role. Even though the working fluid employed here is the
commonly used harmonic oscillator, the operation principle
fundamentally differs from the approaches that draw their in-
spiration from the classical analogs. This engine does not rely
on expansion and compression of the working fluid, setting it
apart from the previously studied systems, including Ref. [22].
Instead, the engine uses the fact that it is possible to modify
the coupling strength between quantum engine components
by controlling their energies [33].

The proposed cycle is shown in Fig. 1. The system consists
of a harmonic oscillator acting as the working fluid and a mov-
ing piston. The two components are coupled via an attractive
interaction. The cycle starts with the oscillator in a low-energy
state and the piston positioned close to the equilibrium point
of the oscillator. As the first step, the energy of the oscillator
is increased by adding heat. This heating increases the ex-
tent of the oscillator wave function, reducing the interaction
strength between the oscillator and the piston. The weakened
interaction allows the piston to be retracted from the oscillator
in the second step of the cycle with a reduced energy cost.
With the piston retracted, the oscillator is cooled down using
a cold bath, reducing the extent of its probability distribution.
Finally, the piston returns to its initial position. Due to the
enhanced interaction because of the narrower oscillator wave
function in the final step, more work is released during this
phase than was required for retraction, resulting in a net-
positive work output.

As mentioned above, the heat required for quantum engine
operation can originate either from heat baths or measure-
ments. Therefore, after introducing the general model for the
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engine in Sec. II, two prototypical approaches using a hot
bath and measurements are demonstrated in Sec. III. The
summary of this paper as well as the discussion regarding the
experimental implementation are given in Sec. IV.

All computations are performed using JULIA [34]. The plots
are made using the Makie.jl package [35] using the color
scheme designed for colorblind readers [36]. The scripts used
for computing and plotting can be found at Ref. [37].

II. MODEL

A. Oscillator-piston interaction

The time-dependent Hamiltonian for an isolated oscillator-
piston system, expressed in terms of the oscillator energy h̄�,
is given by

Ĥ (τ ) = (
â†â + 1

2

) + �[x̂, y(τ )]. (1)

Here, the first term describes an independent oscillator using
the second-quantization operators, and � is the interaction
between the two engine components, where x̂ is the position
operator of the oscillator, and y(τ ) is the piston coordinate. In
addition to using h̄� as the energy scale, it is convenient to
express lengths in terms of the quantum oscillator length and
time in terms of the oscillator periods so that t = 2πτ/�.

For this paper, the interaction is set to

�[x̂, y(τ )] = �0 exp

[
− x̂2 + y2(τ )

2σ 2

]
. (2)

There are two reasons for choosing this form of �. First, the
amplitude and the extent of the Gaussian are easily tunable,
making this type of interaction very convenient for illustrating
the relevant behavior. Second, y and x̂ are separable, simplify-
ing the computational procedure. With this choice, the matrix
elements of Ĥ (τ ) in the Fock space become

〈 j|Ĥ (τ )|k〉 =
(

j + 1

2

)
δ j,k + �0 e−[y2(τ )]/(2σ 2 )

×〈 j| exp

(
− x̂2

2σ 2

)
|k〉. (3)

The form of Eq. (3) indicates that the interaction matrix must
be computed only once for a particular choice of σ and scaled
based on y(τ ) as the piston moves, substantially speeding
up numerical calculations. Although 〈 j| exp(−x̂2/2σ 2)|k〉 can
be computed analytically for the quantum oscillator wave
functions, producing Gaussian hypergeometric functions, the
integrals in the simulations are taken using Gaussian quadra-
tures to avoid potential issues associated with the numerical
implementation of these special functions.

A key ingredient in the engine operation is the temperature-
dependent interaction between the working fluid and the
piston. To illustrate this effect, let the oscillator-piston system
be in a thermal state, described by the density opera-
tor ρ̂(ωT , Ĥ ) = exp(−Ĥ/ωT )/tr[exp(−Ĥ/ωT )], where ωT =
kBT/h̄� is the thermal frequency corresponding to temper-
ature T , kB is the Boltzmann constant, and Ĥ is given by
Eq. (1). The interaction energy is computed from tr(�̂ρ̂ )
with �̂ matrix elements given by the second term in Eq. (3).
Setting �0 = −5, the value that will be used in subsequent
simulations, the energy is calculated as a function of ωT and

FIG. 1. Engine cycle schematic. The four phases of the engine
cycle proceed in the direction indicated by the arrows. The working
fluid is a quantum harmonic oscillator. It is coupled to an externally
controlled piston via an attractive interaction, so adding heat to the
working fluid reduces the coupling strength. Conversely, cooling
the oscillator makes the interaction stronger. The power stroke of the
cycle occurs when the piston is advanced, as denoted by the orange
arrow.

y for several values of σ with the results given in Fig. 2. As
expected, the energy of the system is the lowest for a wide
interaction term (large σ ) when the piston is close to the
oscillator and the temperature is low. Increasing either ωT or
y reduces the magnitude of the interaction.

At each of the four phases of the proposed cycle, the
corresponding system energies are given by

Ehot
A = tr

[
ĤAρ̂

(
ωhot

T , ĤA
)]

,

Ehot
R = tr

[
ĤRÛ ρ̂

(
ωhot

T , ĤA
)
Û†

]
,

E cold
R = tr

[
ĤRρ̂

(
ωcold

T , ĤR
)]

,

E cold
A = tr

[
ĤAÛ†ρ̂

(
ωcold

T , ĤR
)
Û

]
, (4)

in this order. The subscripts R and A denote the position of
the piston as retracted and advanced. The superscripts hot and
cold indicate whether the last bath that the system contacted
was hot or cold. The unitary operator Û describes the evolu-
tion of the system during the piston retraction. For simplicity,
the piston is assumed to move at a constant speed so that
y(τ ) = yinit + τ (yfinal − yinit )/τp for 0 � τ � τp, where τp is
the duration of the retraction and advancing phases. For finite
τp, Û can be computed numerically from

d

dτ
Û (τ, τ ′) = −2π iĤ (τ )Û (τ, τ ′), (5)

FIG. 2. Controlling the interaction. Dependence of the inter-
action energy on temperature and piston position for �0 = −5
and several values of σ . The black lines are energy equicontours
separated by 0.2. Retracting the piston or raising the oscillator tem-
perature reduces the interaction strength.

023174-2



SINGLE-PISTON QUANTUM ENGINE PHYSICAL REVIEW RESEARCH 6, 023174 (2024)

where the factor of 2π originates from the definition of τ .
In the next section, the fifth-order Runge-Kutta method with
Û (τ ′, τ ′) = 1 is used to obtain this operator. First, however,
it is instructive to explore the efficiency of the cycle in the
adiabatic limit.

B. Efficiency

Adiabatic piston motion means that the matrix correspond-
ing to the density operator remains fixed in the instantaneous
basis as the Hamiltonian is varied. Thus, if ρhot is the ma-
trix representation of ρ̂(ωhot

T , ĤA) computed in the basis of
eigenstates of ĤA, the post-retraction state Û ρ̂(ωhot

T , ĤA)Û†

computed in the basis of eigenstates of ĤR will also be ρhot.
Similarly, ρ̂(ωcold

T , ĤR) and Û†ρ̂(ωcold
T , ĤR)Û will also take

the same form ρcold but correspond to two different bases.
The cycle efficiency η = W/Qin in the adiabatic regime is

given by

η = tr
[
(ρhot − ρcold )

(
ĤD

A − ĤD
R

)]
tr
[
(ρhot − ρcold )ĤD

A

]

= 1 − tr
[
(ρhot − ρcold )ĤD

R

]
tr
[
(ρhot − ρcold )ĤD

A

] , (6)

where W = Ehot
A − Ehot

R + E cold
R − E cold

A > 0 and Qin =
Ehot

A − E cold
A > 0 correspond to the work performed and the

heat input, respectively. The superscript D indicates that the
Hamiltonian matrices are diagonal.

The efficiency of the adiabatic cycle is bounded by the
Carnot limit. Specifically, when ωcold

T → 0, the Carnot effi-
ciency approaches 1. In the present case,

η → 1 − tr
[
ρhotĤD

R

] − E0
R

tr
[
ρhotĤD

A

] − E0
A

< 1, (7)

where E0
A/R are the ground state energies of the working

fluid when the piston is in the advanced/retracted position.
Hence, the efficiency of this cycle is strictly below the Carnot
efficiency in the ωcold

T → 0 limit. Raising ωcold
T decreases the

denominator and numerator as the heat flow between the
working fluid and the baths diminishes. Crucially, the de-
nominator decreases faster because tr[ρcold(ĤD

R − ĤD
A )] > 0

for an attractive piston-oscillator interaction. As a result, the
efficiency decreased monotonically with increasing ωcold

T .
Raising ωhot

T does not take η to 1, as happens in Carnot
engines with ωhot

T → ∞. The reason for this behavior is the
fact that �̂ affects lower working fluid states more by design.
Thus, if the temperature of the hot bath gets sufficiently high,
Ehot

A and Ehot
R tend to ωhot

T as the interaction portion becomes
irrelevant. Thus, in the ωhot

T → ∞ limit, the fraction in Eq. (6)
tends to 1, setting η to zero.

As can be seen from the analysis, unlike certain other
quantum engines, the cycle proposed here does not make it
possible to surpass the Carnot limit in the adiabatic regime.
Nevertheless, future research could explore variations of this
engine to potentially overcome the Carnot efficiency.

C. Nonadiabatic effects

If the time of piston movement τp is finite, as it will be dur-
ing engine operation, the evolution of the system is no longer

FIG. 3. Role of finite τp. System energy as a function of time of
piston retraction and advance τp for �0 = −5 and several values of
σ . The piston moves between y = 0 and y = 10σ . The numerically
computed results for finite τp are bounded by the adiabatic (τp →
∞) and instantaneous (τp → 0) results. Smaller σ leads to greater
nonadiabatic effects.

guaranteed to be adiabatic. Therefore, it is useful to explore
how slowly the piston has to move for the nonadiabatic effects
to be negligible using the following procedure.

Starting with the Hamiltonians corresponding to retracted
(y = 10σ ) and advanced (y = 0) pistons, one determines their
ground states |R〉 and |A〉, respectively. If the piston were
retracted (advanced) adiabatically, the energy of the system
would end up as 〈R|ĤR|R〉 (〈A|ĤA|A〉) because the system
would remain in its ground state. Conversely, for an instanta-
neous change of piston position, the state would not have time
to evolve, and the final energy would be 〈A|ĤR|A〉 (〈R|ĤA|R〉).
Hence, the actual final energy is bounded by these two values.

To obtain the system energy for a finite piston movement
time τp, one uses the fact that the state evolves following the
time-dependent Schrödinger equation:

d

dτ
|�(τ )〉 = −2π iĤ (τ )|�(τ )〉. (8)

Solving Eq. (8) using the fifth-order Runge-Kutta method
starting with |�(0)〉 = |A〉 and |�(0)〉 = |R〉, the final energy
can be computed as a function of τp for a constant-speed pis-
ton with the results given in Fig. 3. As expected, the finite-τp

energies lie between the adiabatic and instantaneous results
for both retraction and advance of the piston. Figure 3 sug-
gests that τp � 5 is sufficiently slow to avoid the nonadiabatic
effects associated with the piston movement even for small
values of σ considered here. However, care should be taken
because, even at τp = 5, one can observe an energy creep after
a sufficient number of engine cycles, as shown below.

III. ENGINE OPERATION

A. Simulation protocol

Conceptually, the most straightforward way to heat up
or cool down the working fluid is to connect it to a bath.
For the sake of illustration, modeled in this paper are the
baths using single-oscillator modes described by a density
operator corresponding to a thermal state, as was done in
Ref. [18]. The bath contact is described using the collision
model [38]: every time the working fluid is connected to a
bath, the latter is reset to the appropriate thermal state ρ̂b =
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exp(−b†b/ωT )/tr[exp(−b†b/ωT )]. Naturally, the single-bath
modes do not operate as true thermal reservoirs and do not
bring the working fluid to a thermal state with the bath tem-
perature [18]. They can, instead, be regarded as ancillae that
deliver energy to or extract it from the working fluid, func-
tioning as energy bridges. While a bath mode is disconnected
from the engine, it can be returned to its precontact state
using optical means (like laser cooling) or coupling it to a true
thermodynamic reservoir at the desired temperature.

To streamline the discussion, the frequency of the bath
oscillators is taken to be identical to that of the working fluid.
In addition to eliminating a parameter, setting the oscillator
frequencies to the same value facilitates the energy exchange
between the modes. There are various ways of coupling the
baths to the engine, with the simplest being a linear interaction
a†b + b†a. Here, however, assume that the coupling between
the oscillators decreases with their separation and use a Gaus-
sian term, just as the piston interaction, given by

Y (x̂, ẑ) = Y0 exp

[
− (x̂ − x0)2 + (ẑ − z0)2

2λ2

]
, (9)

where ẑ is the position of the bath oscillator. The offsets x0

and z0 mean that the equilibrium points of the two oscillators
do not coincide in the xz plane and are introduced to allow
modes with different parities to couple, which would be for-
bidden by a symmetric potential exp(−x̂2/2λ2). Setting x0 =
z0 = λ = 1 and using the separability of the interaction term,
one can write the full interaction matrix Y = Y0Ysingle ⊗ Ysingle,
where Ysingle elements are given with elements 〈 j| exp[−(x −
x0)2/2λ2]|k〉 for all the Fock states in the single-oscillator
basis. Like the matrix elements in Eq. (3), these are computed
using Gaussian quadratures.

The motivation behind using the Gaussian form instead of
the linear coupling has to do with the envisioned implemen-
tation of the engine. A possible setup would use either a gas
of cold atoms in an optical trap or a particle held by optical
tweezers as the working fluid and bath oscillators. It is then
reasonable to assume that the interaction should decrease with
the separation of the oscillator masses, and a Gaussian term is
a particularly easy form to be used for illustration.

For simplicity, the interaction between the bath and the
working fluid is assumed to be switched on and off instanta-
neously so that, when the piston is stationary, the Hamiltonian
is time independent, leading to

Ĥbath = [(
â†â + 1

2

) + �(x̂, y)
] ⊗ 1

+ 1 ⊗ (
b̂†b̂ + 1

2

) + Y0Ysingle ⊗ Ysingle, (10)

where 1 is the identity. The corresponding time evolution
operator B̂ = exp(−2π iτbĤbath ), where τb is the contact time
between the fluid and the bath, taken to be the same for both
hot and cold baths.

To demonstrate the engine operation, the piston motion
and bath contact are taken to have the same duration τp. Two
different σ ’s ( 1

2 and 2) and τp’s (5 and 10) are used for a
total of four configurations. The bath temperatures are set to
ωcold

T = 1
10 and ωhot

T = 5, and the Fock basis for each oscillator
contains 51 states. For each configuration, the working fluid
is initialized in the thermal state at ωcold

T with the piston in
the advanced position. It is then taken 80 times through the

cycle described by Eq. (11). As will be shown, the system
reaches a steady state in �80 cycles. The reason for the
extended simulation is to demonstrate the long-term stability
and to show the parasitic effect that can arise due to weak
but nonzero nonadiabatic effects, as mentioned at the end of
Sec. II C. At the end of each stroke, the energy of the working
fluid is computed by taking the trace of the product of its
density operator with (â†â + 1

2 ) + �(x̂, y) for the appropriate
value of y.

B. Bath-powered setup

Following Fig. 1, the cycle begins with heat addition. Thus,
if the state of the working fluid in the beginning of the nth
cycle is given by ρ̂n, the state of the fluid in the beginning of
the following cycle is

ρ̂n+1 = Û†trb[B̂{Û trb[B̂(ρ̂n⊗ρ̂h)B̂†]Û†⊗ρ̂c}B̂†]Û , (11)

where Û corresponds to the operator describing the piston re-
traction. Equation (11) should be read from the inside outward
to follow the cycle. First, the fluid is coupled to the hot bath
in thermal state ρ̂h, as shown by the tensor product. After
that, the composite system is allowed to evolve in time by
applying operators B̂ and B̂†. To decouple the working fluid
from the bath, a partial trace trb is performed with respect
to the bath. Next, the piston is retracted by sandwiching the
fluid state between Û and Û†. Then the fluid is coupled to a
cold bath ρ̂c, and the two-oscillator system is evolved using
the same operator B̂ as was used for the hot bath, followed
by a decoupling. Finally, the piston is advanced, as can be
seen from the reversed application of Û† and Û , completing
the cycle. Thus, instead of evolving the state every time the
piston moves, one needs to compute Û only once, making a
multicycle calculation more efficient.

The results of the simulation are given in Fig. 4 with the
system energies at the end of each stroke shown in panels
(a)–(d). The x coordinate labels the cycle and, for each cycle,
the order of the points is advanced cold → advanced hot →
retracted hot → retracted cold, after which one moves to ad-
vanced cold of the next cycle. Figures 4(a)–4(d) demonstrate
that even the single-oscillator bath, where the working fluid
does not actually reach a thermal state, is sufficient for the
engine to output work as it reaches a steady state. This fact
is encouraging from the experimental point of view because
even the imperfect thermalization is acceptable, making the
requirement on the experimental realization of the cycle less
stringent. One can see that the faster cycle shows a small
creep in energy, more substantial for σ = 1

2 . This creep can be
attributed to the nonadiabatic effects of the piston movement:
According to Fig. 3, smaller σ ’s are more susceptible to this
effect.

Figure 4(e) plots the cycle-resolved efficiency for each
setup, shown to also reach a steady state. Efficiency for the
adiabatic cycle obtained from Eq. (6), where ρH/C are taken
to be thermal states with ω

hot/cold
T , is plotted along with the

simulation results. Because the cycle operation is not adiabatic
and the working fluid does not thermalize during its contact
with the baths, the efficiencies differ. This, however, does
not present a problem from the experimental perspective, as
discussed above.
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FIG. 4. Bath engine operation. 80 cycles of a bath-powered en-
gine initialized in a thermal state and evolved using Eq. (11) with
ωhot

T = 5 and ωcold
T = 1

10 . The interaction between the baths and the
gas is given by Eq. (9) with Y0 = x0 = z0 = 1. The baths and the
oscillator Fock spaces contain 51 states. The piston interaction is
given by Eq. (2) with �0 = −5. (a)–(d) System energy at each phase
of the cycle as a function of cycle number. For the fast engine (top
row), the time of each stroke is 5, while for the slow one (bottom
row), it is 10. (e) Efficiency for each of the engines as a function
of the cycle number, computed by dividing the total work output by
heat input. (f) The power of the engines, obtained by dividing the
total work output by the duration of a cycle.

Curiously, the efficiency of the fast cycles is higher than the
slow ones. This efficiency gain, however, comes at the expense
of the work performed. Figure 4(f) provides the cycle-resolved
power for each engine configuration obtained by dividing the
net work output by 4τp. Even though the fast cycle takes half
the time compared with the slow one, its power is not doubled,
indicating that the slow cycle delivers more work. One can
confirm this statement by comparing the separation between
red markers for each cycle with that of the blue markers. The
former corresponds to the work done on the engine, while
the latter is the work done by the engine. The greater the
difference, the more net work the engine outputs. It is evident
that the difference is larger for the slow cycles for both σ ’s.

FIG. 5. Measurement engine operation. 80 cycles of a
measurement-powered engine initialized in a thermal state and
evolved using Eq. (12) with ωcold

T = 1
10 . The interaction between the

baths and the gas is given by Eq. (9) with Y0 = x0 = z0 = 1. The
baths and the oscillator Fock spaces contain 51 states. The piston
interaction is given by Eq. (2) with �0 = −5. (a)–(d) System energy
at each phase of the cycle as a function of cycle number. For the fast
engine (top row), the time of each stroke is 5, while for the slow
one (bottom row), it is 10. (e) Efficiency for each of the engines
as a function of the cycle number, computed by dividing the total
work output by heat input. (f) The power of the engines, obtained by
dividing the total work output by the duration of a cycle.

C. Measurement-powered setup

Changing to the power source from a hot bath to mea-
surements while keeping everything else the same amounts
to replacing trb[B̂(ρ̂n ⊗ ρ̂h)B̂†] → diag(ρ̂n) in Eq. (11), cor-
responding to the measurement. Here, diag(ρ̂n) means that the
off-diagonal elements (coherence terms) are set to zero, giving
a classical probability. Hence, the cycle expression becomes

ρ̂n+1 = Û†trb{B̂[Û diag(ρ̂n)Û† ⊗ ρ̂c]B̂†}Û . (12)

The results for a set of four simulations using the same
two values of σ and phase duration as above are given in
Fig. 5. While the σ = 1

2 setup looks qualitatively similar to the
corresponding configurations in Fig. 4, including the energy
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creep in the fast cycle, σ = 2 is drastically different, showing
virtually no work output. This outcome is attributable to the
fact that the piston-generated potential is wide on the scale of
the wave functions of the oscillator, resulting in a very weak
harmonic mixing. Therefore, the measurement does not result
in a substantial transfer of energy to the oscillator since the
oscillator does not transition to higher energy states.

The efficiency for the measurement-powered cycle is sim-
ilar to the bath-powered one, as seen by comparing Figs. 4(e)
and 5(e). To compute the power, the net work output is di-
vided by 3τp since the measurement is assumed to be much
faster than τp. The power for σ = 1

2 is comparable with the
bath-powered setup. In the σ = 2 case, on the other hand, the
vanishing work output results in negligible power.

The key takeaway of this section is that, despite the re-
stricted and artificial form of the baths, the engine reaches
a steady state and can output useful work. Enhancing the
ability of the oscillator to expel the waste heat by using a
real reservoir and optimizing the piston and bath interaction
profiles will improve the work output.

IV. SUMMARY

In this paper, a realization of a single-piston quantum en-
gine has been introduced and simulated, where the role of the
working fluid is played by a harmonic oscillator. By taking
advantage of the fact that the interaction between the working
fluid and the piston can be controlled by modifying the energy
of the oscillator, it has been shown that, by following a cycle
comprised of heating/cooling of the oscillator and piston mo-
tion toward and away from the oscillator, the engine can out-
put work. Two general protocols of engine fueling have been
discussed: bath and measurement powered, with both success-
fully demonstrating stable work output over multiple cycles,
indicating a steady state of operation. For simplicity, the heat
reservoirs used here comprised single thermal harmonic oscil-
lator modes. Even though these modes do not function as true
thermodynamic baths, the fact that the engine produces work
suggests that the engine operation scheme is robust.

It is possible to realize the proposed cycle using existing
techniques. For the bath-powered setup, one can employ the
scheme given in Ref. [39]. In this setup, a single ultracold

atom in an optical trap plays the role of the working fluid,
while a cloud of atoms of different species in the trap acts
as a bath. An external magnetic field is used to control the
interaction between the working fluid and the bath through
Feshbach resonances. Reference [39] uses species-specific
optical tweezers to control the confinement of the working
fluid, demonstrating quantum Otto, Diesel, and Carnot cycles.
For the cycle proposed in this paper, the confining potential
of the working fluid remains fixed, and the role of a piston
can be played by another atom or a nanoparticle held in
optical tweezers which can be moved with respect to the
optical trap containing the bath and the working-fluid atom.
The temperature of the bath can be lowered by laser cooling
and raised by either driving or connecting the bath cloud to
a larger external reservoir, so that the bath functions as an
ancilla, as was described in the text. Alternatively, the energy
of the bath can also be modified by varying its confinement
[39]. Finally, one could use the cloud only as a hot bath and
cool the working fluid using Raman sideband cooling [40].

For projective measurements, one could employ the pro-
tocol described in Ref. [41]. In this approach, the energy of
the oscillator is lowered until it reaches the ground state. The
number of lowering operations n is recorded and the oscilla-
tor is then brought to the nth excited level by performing n
raising operations. A possible difficulty here is that, during
the measurement, the oscillator remains in contact with the
piston. Consequently, performing n raising operations is not
guaranteed to bring it to the nth excited state, as the final state
will depend on the time scale difference between the raising
procedure and eigenstate hybridization due to the piston po-
tential. A simplified setup could replace the oscillator by a
two-state system which interacts differently with the piston. In
this case, one would, at most, need to perform a single raising
operation, thereby reducing the amount of time required for
this procedure.
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