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Thermodynamic and stoichiometric laws ruling the fates of growing systems
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We delve into growing open chemical reaction systems (CRSs) characterized by autocatalytic reactions within
a variable volume, which changes in response to these reactions. Understanding the thermodynamics of such
systems is crucial for comprehending biological cells and constructing protocells because it sheds light on
the physical conditions necessary for their self-replication. Building on our recent work, where we developed
a thermodynamic theory for growing CRSs featuring basic autocatalytic motifs with regular stoichiometric
matrices, we now expand this theory to include scenarios where the stoichiometric matrix has a nontrivial
left kernel space. This extension introduces conservation laws, which limit the variations in chemical species
due to reactions, thereby confining the system’s possible states to those compatible with its initial conditions.
By considering both thermodynamic and stoichiometric constraints, we clarify the environmental and initial
conditions that dictate the CRSs’ fate—whether they grow, shrink, or reach equilibrium. We also find that the
conserved quantities significantly influence the equilibrium state achieved by a growing CRS. These results
are derived independently of specific thermodynamic potentials or reaction kinetics, therefore underscoring the
fundamental impact of conservation laws on the growth of the system.
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I. INTRODUCTION

Chemical thermodynamics provides solid physical princi-
ples for explaining the energetics and for predicting the fate
of chemical reaction processes [1,2]. Applications of these
principles to autocatalytic reactions are essential to elucidate
physical constraints on the capability of self-replication [3,4].
In the self-replication process, both the chemical components
and the encapsulating volume of the system have to grow
in a coherent manner [5–8]. This consideration introduces a
unique theoretical challenge to establish the thermodynamic
consistency between autocatalytic reactions and volume ex-
pansion because the conventional chemical thermodynamics
is based solely on the density (concentration) of chemicals,
presuming a constant volume [9–18].

We have recently established a thermodynamic theory for
growing systems, in which the number of chemicals and the
volume are treated based on the rigorous thermodynamic basis
[19]. Accordingly, the theory generally formulates physical
conditions to realize the growth of the system, identifies sev-
eral thermodynamic constraints for the possible states of the
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growing system, and derives the form of entropy production
and heat dissipation accompanying growth. However, this
theory can only address systems with regular (full-rank) stoi-
chiometric matrices, thus limiting its applicability to a set of
minimum autocatalytic motifs [20]. Given that chemical reac-
tion systems (CRSs) are subject to stoichiometric constraints
in general, and various biological functions are robustly real-
ized by specific stoichiometric properties [21,22], it becomes
imperative to delve into the influence of stoichiometry to
growing systems for a comprehensive understanding of the
thermodynamics of self-replication.

In this work, we clarify how stoichiometric conservation
laws shape the fate of growing systems. The stoichiometry
gives rise to linear combinations of the numbers of chemicals
being conserved during the dynamics of chemical reactions
[9,12–16,23–30]. These conservation laws stringently restrict
possible changes in the number of chemicals within the stoi-
chiometric compatibility class, defined by the stoichiometric
matrix’s left kernel and the initial condition. In biological
contexts, particularly in metabolic networks, these laws are
crucial in linking the dynamic variations of different chem-
icals (metabolites) and also in providing insights into cells’
production capabilities [31–38].

This study elucidates the complex interplay between ther-
modynamics and stoichiometric conservation laws for the
growing system and its consequence to the fate of the growing
systems. By disentangling the geometric relationship among
chemical numbers, densities, and potentials, we establish the
conditions for the system to grow, shrink, or equilibrate, while
simultaneously satisfying the second law of thermodynamics
and the conservation laws. Furthermore, we show that the
existence of conservation laws qualitatively alter the fate of
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the system and the geometric properties of the equilibrium
state.

These results are derived solely based on thermodynamic
and stoichiometric requirements and thus remain indepen-
dent of specific thermodynamic potentials or reaction kinetics.
This renders our theory universally applicable, enhancing our
understanding of the origins of life and the construction of
protocells [20,39–62], and enabling the search for the univer-
sal laws of biological cells [63–76].

This paper is organized as follows: We devote Sec. II to
outline our main results accompanying with an illustrative ex-
ample of a growing CRS. Here, we clarify the environmental
and initial conditions that determine the fate of the system:
growth, shrinking or equilibration. In Sec. III, we explain the
geometric structure of the growing system to characterize the
equilibrium state as a maximum of the total entropy function,
which the system may achieve. In Sec. IV, the form of the
total entropy function is further investigated to determine if
the system grows or shrinks by following the second law of
thermodynamics. In Sec. V, we provide a mathematical proof
of our main results outlined in Sec. II. Finally, we summa-
rize our work with further discussions in Sec. VI. For better
readability, we list the symbols and notations in Appendix L
(Tables II–IV).

II. OUTLINE OF THE MAIN RESULTS

We outline our main results before presenting their deriva-
tions. In Sec. II A, we give a thermodynamic setup of a
growing chemical reaction system (CRS). By introducing the
chemical-potential space, we analyze candidates of chemical
equilibrium states in Sec. II B. By computing accessible re-
gions of the system, we characterize the equilibrium state as
an intersection of the accessible region and the candidates in
Sec. II C. In Sec. II D, we present our main claims with the
above preparation. We comment our claims for a special class
of the growing CRS in Sec. II E. These results are summarized
in Table I. Then, we demonstrate the claims by numerical
simulations using a simple example of the growing CRS in
Sec. II F. Finally, in Sec. II G, we outline the derivations of our
results, which will be presented in the subsequent sections.

A. Thermodynamic setup

We consider the following thermodynamic setup in the
present paper (Fig. 1). A growing open chemical reaction
system is surrounded by an environment. We assume that
the system is always in a well-mixed state (a local equi-
librium state), and, therefore, we can completely describe it
by extensive variables (E ,�, N, X ). Here, E and � repre-
sent the internal energy and the volume of the system. N =
{Nm} ∈ RNN

>0 denotes the number of chemicals that can move
across the membrane between the system and the environ-
ment, which we call open chemicals hereafter. X = {X i} ∈
X = RNX

>0 is the number of chemicals confined within the
system; the indices m and i, respectively run from m = 1
to NN and from i = 1 to NX , where NN and NX are the
number of species of the open and the confined chemicals. The
environment is characterized by intensive variables (T̃ , �̃, μ̃),
where T̃ and �̃ are the temperature and the pressure; μ̃ =
{μ̃m} ∈ RNN is the chemical potential corresponding to the

FIG. 1. Diagrammatic representation of open CRSs. The chem-
ical reactions occur with the reaction flux J (t ) = {Jr (t )}, the rth
reaction of which is represented as the chemical equation at the
bottom. Here, A = {Ai} is the label of the confined chemicals, and
B = {Bm} is the label of the open chemicals, which can move across
the membrane with the diffusion flux JD(t ) = {Jm

D (t )}. In addition,
JE (t ) denotes the energy exchange rate with the environment, and
J�(t ) is the volume expansion rate. Let X = {X i} and N = {Nm}
denote the numbers of the confined and the open chemicals in the
system, respectively. Also, (S+)i

r and (O+)m
r denote stoichiometric

coefficients of the reactants in the rth reaction, whereas (S−)i
r and

(O−)m
r are those of the products. The stoichiometric matrices are

given as Si
r = (S−)i

r − (S+)i
r and Om

r = (O−)m
r − (O+)m

r . For theoret-
ical simplicity, we ignore the tension of the membrane and assume
that the membrane never bursts. The stoichiometric matrix S = {Si

r}
has only a left kernel space. By representing the basis matrix of
Ker[ST ] by U , L = UX is conserved under the chemical reaction
dynamics.

open chemicals. Also, (Ẽ , �̃, Ñ ) denote the corresponding
extensive variables.

In thermodynamics, the entropy function is defined
on (E ,�, N, X ) as a concave and smooth function
�[E ,�, N, X ]. We also write the entropy function for the
environment as �̃T̃ ,�̃,μ̃[Ẽ , �̃, Ñ], and the total entropy can be
expressed as

�tot = �[E ,�, N, X ] + �̃T̃ ,�̃,μ̃[Ẽ , �̃, Ñ], (1)

where we use the additivity of the entropy. Furthermore, the
entropy function for the system has the homogeneity. There-
fore, without loss of generality, we can write it as

�[E ,�, N, X ] = �σ [ε, n, x], (2)

where σ [ε, n, x] is the entropy density and (ε, n, x) :=
(E/�, N/�, X/�). In this work, we consider only a situa-
tion without phase transition, and therefore, we assume that
σ [ε, n, x] is strictly concave.
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The dynamics of the number of confined chemicals X (t ) is
described by

dX i

dt
= Si

rJr (t ), (3)

where J (t ) = {Jr (t )} represents the chemical reaction flux;
S = {Si

r} denotes the stoichiometric matrix for the confined
chemicals (see Fig. 1). The index r runs from r = 1 to NR,
where NR is the number of reactions. Also, Einstein’s sum-
mation convention has been employed in Eq. (3) for notational
simplicity. By integrating Eq. (3), we obtain

X i(t ) = X i
0 + Si

r�
r (t ), (4)

where X0 = {X i
0} denotes the initial condition and �(t ) =

{�r (t )} is the integration of J (t ), i.e., the extent of reaction.
In this work, we assume that the stoichiometric matrix S

does not have the right kernel space,

dim Ker[S] = 0. (5)

By contrast, the left kernel space exists and generates a set of
conserved quantities:

L = {
Ll = U l

i X i
0

}
, (6)

i.e., the vector L ∈ L = Rdim Ker[ST ]. Here, U is a basis matrix:
{U l

i } := (U1, U2, . . .)T whose row vectors Ul form the basis
of Ker[ST ], i.e., US = 0, and l runs from 1 to dim Ker[ST ].
Since we are mainly interested in the growth of the system, the
time evolution of X (t ) should perpetually increase the number
of all confined chemicals while satisfying the conservation
laws [Eq. (6)]. To realize this situation, the stoichiometric
matrix S should satisfy

Im[S] ∩ RNX
>0 �= ∅, (7)

which is known as the condition for the productive S [20]. The
productive S excludes the mass conservation-type laws, the
existence of which trivially precludes the number of confined
chemicals to increase continuously.

The number of open chemicals changes through the reac-
tions and the diffusions. By defining the stoichiometric matrix
for open chemicals as O = {Om

r } and the diffusion fluxes as
JD(t ) = {Jm

D (t )}, we have

dNm

dt
= Om

r Jr (t ) + Jm
D (t ). (8)

Example 1. To give an illustrative example, we consider the
following chemical reactions:

R1 : A1 + A3 + B1 � 2A2,

R2 : A2 � A1 + A3 + B2. (9)

Here, three confined chemicals A = (A1, A2, A3) and two open
chemicals B = (B1, B2) are involved in two reactions R1 and
R2.1 The stoichiometric matrices S and O for the confined and

1One may feel that the order of the reactions in Eq. (9) is high. The
reason why we consider this example is just because it is straight-
forward to visualize our geometric representation in Sec. III. Since
NX = dim Ker[ST ] + dim Im[S] and we can visualize up to three-
dimensional space (NX = 3), relevant cases are when dim Im[S] is

open chemicals, respectively, are

S =

⎛
⎜⎜⎝

R1 R2

A1 −1 1

A2 2 −1

A3 −1 1

⎞
⎟⎟⎠, O =

⎛
⎝

R1 R2

B1 −1 0

B2 0 1

⎞
⎠. (10)

Since NR = 2 in this case, we can represent the number of
confined chemicals by introducing � = (�1, �2)T as⎛

⎝X 1

X 2

X 3

⎞
⎠ −

⎛
⎜⎝X 1

0

X 2
0

X 3
0

⎞
⎟⎠ = S� =

⎛
⎝−1

2
−1

⎞
⎠�1 +

⎛
⎝ 1

−1
1

⎞
⎠�2. (11)

For this example, dim Ker[ST ] is one, and U = (−1, 0, 1)
satisfies US = 0. Thus, the reactions have the conserved
quantity L = UX = −X 1 + X 3. We can intuitively see the
conserved quantity from the chemical equations in Eq. (9) as
follows. The numbers of A1 and A3, i.e., X 1 and X 3, change in
the same manner: each chemical is consumed by one molecule
in the forward reaction of R1 and is produced by one in that
of R2. Thus, the difference between X 1 and X 3 is conserved
when each of the reactions occurs. �

In this paper, we assume that the timescale of the chem-
ical reactions is much slower than that of the others, i.e.,
J � JE , J�, JD. This means that we consider the isothermal
and isobaric process with a balance of chemical potentials
for open chemicals. This assumption allows us to separately
analyze the slow dynamics of chemical reactions from the fast
dynamics of the energy, the volume, and the chemical diffu-
sion. As shown in Appendix A, our dynamics is effectively
governed by Eq. (3), and the other variables (E ,�, N ) are
rapidly relaxed to the values at the equilibrium state of the
fast dynamics. As a result, (E ,�, N ) = (E (X ),�(X ), N (X ))
is obtained as a function of X .

With the above assumptions, we obtain the following ex-
pression for the total entropy [see Eq. (A11) in Appendix A],

�tot (�) = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �(X )�̃ + μ̃mOm

r �r

}

+ const, (12)

where X = X0 + S�. Here, ϕ(·) is the partial grand poten-
tial density, which is given by a Legendre transformation of
σ [ε, n, x]:

ϕ(x) := ϕ[T̃ , μ̃; x] = min
ε,n

{ε − T̃ σ [ε, n, x] − μ̃mnm}. (13)

Note that ϕ(x) is strictly convex because σ is strictly concave.
The volume �(X ) is variationally determined under isobaric
conditions as

�(X ) = arg min
�

{
�ϕ

(
X

�

)
+ ��̃

}
. (14)

one, two, or three. The present example corresponds to the case
in which dim Im[S] is two. In Secs. I and II of the Supplemental
Material [77], we also consider other examples with which dim Im[S]
is one and three, respectively.
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Example 2. If we assume that the system and the environ-
ment are composed of ideal gas or solution, the partial grand
potential density ϕ(x) is expressed as

ϕ(x) = xiνo
i (T̃ ) + RT̃

∑
i

{xi log xi − xi}

− RT̃
∑

m

e {μ̃m−μo
m(T̃ )}/ RT̃ , (15)

where R is the gas constant, and νo(T̃ ) = {νo
i (T̃ )} and

μo(T̃ ) = {μo
m(T̃ )} are the standard chemical potentials of the

confined and the open chemicals, respectively [78].
Since we assume that the environment also consists of the

ideal gas, the chemical potential μ̃ in Eq. (15) is represented
as

μ̃m = μo
m(T̃ ) + RT̃ log ñm, (16)

where ñ = {ñm} is the density of the open chemicals in the
environment. Furthermore, Eq. (14) gives the following ex-
pression for the volume �,

�(X ) = RT̃
∑

i X i

�̃ − RT̃
∑

m ñm
, (17)

which corresponds to the equation of state. �
From Eq. (14), the density x ∈ X = RNX

>0 is obtained by a
nonlinear function ρX (X ) of X as

ρX (X ) := x(X ) = X/�(X ) ∈ X . (18)

Since �(X ) is homogeneous, we have ρX (αX ) = ρX (X )
for α > 0. This fact implies that ρX induces one-to-one cor-
respondence between rays in the number space X and points
in the density space X . Here, we write the corresponding ray
to a density x, i.e., the fiber of x for ρX , as

rX (x) := {X | ρX (X ) = x, X > 0} ⊂ X,

= {X | X = αx, α > 0}. (19)

B. Candidates of chemical equilibrium states

We define the full grand potential density ϕ∗(y) =
ϕ∗[T̃ , μ̃; y] by the Legendre transformation of ϕ(x) in
Eq. (13):

ϕ∗(y) := max
x

{yix
i − ϕ(x)}. (20)

We mention that ϕ∗(y) is strictly convex. Because of the
one-to-one correspondence of the Legendre transformation by
ϕ(x) and ϕ∗(y), a state of the system is equivalently specified
either by the density x ∈ X = RNX

>0 of the confined chemicals
or by its Legendre dual variable y = ∂ϕ(x) ∈ Y = RNX .2 The
thermodynamic interpretation of y is the corresponding chem-
ical potential to x. In addition, ϕ∗(y) can be interpreted as the
pressure of the system at the state y. Recalling the one-to-one
correspondence by ρX between rays in X and points in X ,
we notice that there exists the one-to-one correspondence

2The inverse transformation is given by x = ∂ϕ∗(y). The existence
of one-to-one correspondence between RNX

>0 and RNX is physically
reasonable (See Sec. III A).

between rays in X and points in Y . Here, we write the cor-
responding ray to a chemical potential y as

rY (y) := {X |∂ϕ ◦ ρX (X ) = y, X > 0} ⊂ X. (21)

The chemical equilibrium states are given by the balance
of chemical potentials between reactants and products [78]:

yiS
i
r + μ̃mOm

r = 0. (22)

Thus, we can obtain the candidates of chemical equilibrium
states by the solutions to Eq. (22):

MY
EQ(μ̃) := {

y
∣∣yiS

i
r + μ̃mOm

r = 0
}
, (23)

which we term the equilibrium manifold. Here, we note that
MY

EQ(μ̃) �= ∅, because we have assumed dim Ker[S] = 0 in
Eq. (5), i.e., dim Im[ST ] = NR.

C. An equilibrium state as the intersection

The reaction dynamics in Eq. (3) with its conserved quan-
tities L restricts the accessible region in X as

MX
STO(L) := {

X
∣∣U l

i X i = Ll , X > 0
}
. (24)

This subspace is known as the stoichiometric compatibility
class [79]. By using the mappings ρX in Eq. (18) and ∂ϕ, the
accessible regions in the density space X and the chemical
potential space Y are respectively obtained as

MX
STO(L) = ρX

(
MX

STO(L)
)
, (25)

MY
STO(L) = ∂ϕ

(
MX

STO(L)
)
. (26)

Since the system evolves only on MY
STO(L) ∈ Y , the equi-

librium state to which the system converges is represented by
the intersection

MY
STO(L) ∩ MY

EQ(μ̃), (27)

if it is not empty. If the intersection is empty, the system
never converges to the equilibrium state and the growth of the
volume may happen.

D. Main claims of the present paper

In this section, we state our two main claims of this work
before presenting their derivations in the following sections.

Our first claim provides the conditions to determine the
fate of the system, i.e., growth, shrinking or equilibration. To
formulate our claim, we define ymin as

ymin := arg min
y

{
ϕ∗(y)|y ∈ MY

EQ(μ̃)
}
. (28)

Note that the productivity of S in Eq. (7) guarantees the
existence and the uniqueness of ymin (see the latter half of
Appendix F). This ymin gives the chemical equilibrium state
whose pressure ϕ∗(ymin) is the minimum in the candidates,
MY

EQ(μ̃).
Claim 1. The fate of the system is classified by ymin and the

conserved quantities L in Eq. (6) as follows (see also Table I):
(1) If ϕ∗(ymin) − �̃ > 0, the system grows and finally di-

verges for any L.
(2) If ϕ∗(ymin) − �̃ = 0, the system converges to an equi-

librium state when L = 0, whereas it grows when L �= 0.
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TABLE I. The fate of the system is classified by the sign of
ϕ∗(ymin ) − �̃ and the conserved quantities L = {Ll}. Equilibration
is indicated by EQ(D) and EQ(I). For EQ(D), the equilibrium state
depends on the initial conditions and the functional form of the
reaction flux J (t ). For EQ(I), it is independent for a given L. Here,
ymin = {ymin

i } is defined in Eq. (28) and it is identical with yEQ
i =

−μ̃mOm
r (S−1)r

i for regular S.

L �= 0 L = 0 Regular S

ϕ∗(ymin ) − �̃ > 0 Growing Growing Growing
ϕ∗(ymin ) − �̃ = 0 Growing EQ (D) EQ (D)
ϕ∗(ymin ) − �̃ < 0 EQ (I) Shrinking Shrinking

(3) If ϕ∗(ymin) − �̃ < 0, the system shrinks and finally
vanishes when L = 0, whereas it converges to an equilibrium
state when L �= 0.

Here, L = 0 represents the case in which Ll = 0 for all the
components of L = {Ll} in Eq. (6), and L �= 0 indicates that
at least one of the components is not zero.

We first notice that one of the conditions in the claim is
given by the sign of ϕ∗(ymin) − �̃. Here, ϕ∗(ymin) represents
the minimum pressure of the system within MY

EQ(μ̃) [see
Eq. (28)], whereas �̃ is the pressure of the environment. The
growth of the system occurs independently of the value of
L when ϕ∗(ymin) > �̃, because the environmental pressure
cannot prevent the system from growing by counteracting any
internal pressures ϕ∗(y) for y ∈ MY

EQ(μ̃).
The equilibration becomes possible only when ϕ∗(ymin) −

�̃ � 0 is fulfilled. For the singular case of L = 0, the equi-
libration occurs only when the minimum internal pressure
perfectly balances with the external one, namely, ϕ∗(ymin) −
�̃ = 0. When ϕ∗(ymin) − �̃ < 0, the system shrinks and X (t )
approaches 0 as t → ∞ because the external pressure domi-
nates the internal one at the equilibrium state. For the generic
L �= 0, the fate of the system is qualitatively altered. The
system equilibrates even if ϕ∗(ymin) − �̃ < 0 owing to the
nonsingular conservation laws, which prevent X (t ) from ap-
proaching zero, i.e., shrinking. In fact, the equilibrium state
y ∈ MY

EQ(μ̃) can have a higher pressure in this case than
ϕ∗(ymin), and it balances with the external pressure �̃. In
addition, the system grows for ϕ∗(ymin) − �̃ = 0.

From claim 1, the system converges to an equilibrium state
when (1) ϕ∗(ymin) − �̃ = 0 and L = 0, and (2) ϕ∗(ymin) −
�̃ < 0 and L �= 0. For these cases, our second claim describes
how the equilibrium states appear in the number space X.

Claim 2. In the number space X, the equilibrium states
appear as follows (see also Table I):

(1) When ϕ∗(ymin) − �̃ = 0 and L = 0, the equilibrium
state to which the system converges depends on the initial
condition X0 ∈ MX

STO(L = 0) and the functional form of the
reaction flux J (t ). Such an equilibrium state lies on the ray
rY (ymin) in Eq. (21).

(2) When ϕ∗(ymin) − �̃ < 0 and L �= 0, the equilibrium
state is uniquely determined, irrespective of the initial con-
dition X0 ∈ MX

STO(L �= 0) and the form of the reaction flux
J (t ).

E. Regular stoichiometric matrix S

The fates of the system for the singular case of L = 0 are
basically the same as the case that S is regular; no conservation
laws exist so that dim Ker[ST ] = 0, and dim Ker[S] = 0 from
Eq. (5) 3 (see Sec. V C for the reason why regular S can be
interpreted as L = 0). Thus, the two claims clarify that the
existence of conservation laws is a fundamental determinant
of the fate of the growing system. We investigated the case of
regular S in our previous work [19] (see also the footnote4).
For comparison, we summarize the results here (see the cases
for L = 0 and regular S in Table I).

For a regular S, the candidates of chemical equilibrium
states, MY

EQ(μ̃) in Eq. (23), consist of precisely one point

yEQ
i = −μ̃mOm

r (S−1)r
i . Here, we note that ymin is identical with

yEQ by Eq. (28). Then, we obtain the following:
Corollary 1. When the stoichiometric matrix S is regular,

the fate of the system is classified by yEQ
i = −μ̃mOm

r (S−1)r
i as

follows (see also Table I):
(1) If ϕ∗(yEQ) − �̃ > 0, the system grows and finally di-

verges.
(2) If ϕ∗(yEQ) − �̃ = 0, equilibrium states form the ray

rY (yEQ) in Eq. (21). The system converges to one of them,
depending on the initial condition X0 ∈ X and the functional
form of the reaction flux J (t ).

(3) If ϕ∗(yEQ) − �̃ < 0, the system shrinks and finally
vanishes.

This statement corresponds to claim 1 in Ref. [19].

F. Numerical demonstrations

In this section, we demonstrate our claims by using the
specific reactions in Example 1 with the ideal-gas case (see
Example 2).

We first calculate the equilibrium manifold MY
EQ(μ̃) in

Eq. (23) to obtain ymin in Eq. (28). For the specific reactions
in Eq. (9) and the stoichiometric matrices in Eq. (10), the
simultaneous equations in Eq. (22) are written as(−y1 + 2y2 − y3 − μ̃1

y1 − y2 + y3 + μ̃2

)
=

(
0
0

)
. (29)

The solutions y = {yi} are expressed as⎛
⎝y1

y2

y3

⎞
⎠ =

⎛
⎝ −h

μ̃1 − μ̃2

μ̃1 − 2μ̃2 + h

⎞
⎠, (30)

where h ∈ R is the coordinate of Ker[ST ]. The set of solutions
in Eq. (30) represents the equilibrium manifold MY

EQ(μ̃).
Second, using Eqs. (15) and (20), the full grand poten-

tial density ϕ∗(y) is obtained for the ideal gas or solution
as

ϕ∗(y) = RT̃
∑

i

e {yi−νo
i (T̃ )}/ RT̃ + RT̃

∑
m

e {μ̃m−μo
m(T̃ )}/ RT̃ .

(31)

3Note that regular S is productive in Eq. (7).
4In Sec. II of the Supplemental Material [77], we show an example

when S is regular in which the dimension of Ker[ST ] is zero and that
of Im[S] is three.
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Using the solutions in Eq. (30), ϕ∗(y) is represented on
MY

EQ(μ̃) as

ϕ̄∗(h) = RT̃
[
e {−h−νo

1 (T̃ )}/ RT̃ + e {μ̃1−μ̃2−νo
2 (T̃ )}/ RT̃

+ e {μ̃1−2μ̃2+h−νo
3 (T̃ )}/ RT̃

]
+ RT̃

[
e {μ̃1−μo

1(T̃ )}/ RT̃ + e {μ̃2−μo
2(T̃ )}/ RT̃

]
. (32)

In Fig. 2(a), we numerically plot the pressure ϕ̄∗(h) on
MY

EQ(μ̃). Here, we have a unique hmin = (−νo
1 + νo

3 − μ̃1 +
2μ̃2)/2 that attains the minimum ϕ̄∗(h). Substituting it into
Eq. (30), we obtain ymin and the minimum pressure ϕ∗(ymin).
With the parameters given in the caption, ϕ∗(ymin) = 14.25.

To demonstrate that the fate of the system is classified
by ymin and the conserved quantities L in claim 1, we show
numerical simulations of the dynamics, Eq. (3). From the
solution X (t ), the volume �(X ) of the system is determined
by the equation of state, Eq. (17). To numerically solve Eq. (3)
with the stoichiometric matrix S in Eq. (10), we employ the
mass-action kinetics with the local detailed balance condition
to specify the flux function J (t ) (see Appendix B).

Claim 1. In Figs. 2(b)–2(d), we show numerical trajectories
of the volume �(X ) from three initial conditions for different
pressures �̃. The color of curves corresponds to each initial
condition. The fate of the system changes with �̃ as follows.
When �̃ = 13 < ϕ∗(ymin) = 14.25 [Fig. 2(b)], the volume
of the system increases with time from any initial condi-
tions. As �̃ increases to �̃ = ϕ∗(ymin) = 14.25 [Fig. 2(c)],
the trajectory from an initial condition with L = 0 in light
blue achieves an equilibrium state, whereas trajectories from
the other two with L �= 0 continue growing. As �̃ increases
further, �̃ = 16 > ϕ∗(ymin) = 14.25 [Fig. 2(d)], the trajectory
with L = 0 in light blue decreases and the system shrinks.
By contrast, those from the other two with L �= 0 achieve
equilibrium states. These numerical results demonstrate the
claim 1.

Claim 2. In Figs. 2(e) and 2(f), we demonstrate the time
evolution of the number X . When �̃ = ϕ∗(ymin) = 14.25 and
L = 0, the equilibrium state to which the system converges de-
pends on the initial conditions in MX

STO(L = 0). Furthermore,
it indeed lies on the ray rY (ymin), which is given by Eq. (21)
[see Fig. 2(e)]. In our numerical simulation, we compute it
as follows: From ymin, we obtain the corresponding density
xi

min = ∂ iϕ∗(ymin) = exp{(ymin
i − νo

i )/RT̃ } by using Eq. (31).
The ray rY (ymin) is plotted by the one which includes xmin.
When �̃ = 16 > ϕ∗(ymin) and L = 52 �= 0, the system indeed
converges to the unique equilibrium state, irrespective of the
initial conditions in MX

STO(L = 52) [see Fig. 2(f)].

G. Outline of the derivations of claims 1 and 2, and Corollary 1

The fates of the system stated in claims 1 and 2, and
Corollary 1 are summarized in Table I. Before closing this
section, we outline their derivations, which will be presented
in the subsequent sections. They will be derived in two steps.
In the first step, we investigate the existence of an equilibrium
state, that is the intersection MY

STO(L) ∩ MY
EQ(μ̃) in Eq. (27).

In Sec. III, we show that the intersection is not empty in the
case 2 for L = 0 and in the case 3 for L �= 0 of claim 1,
and is empty for the other cases. This will be summarized in

(a) (b)

(c)
Time

e
mulo

V

Time

e
mulo

V

Time

e
mulo

V

(d)

(e) (f)

FIG. 2. (a) The pressure ϕ̄∗(h) in Eq. (32) is shown by the
red curve. The coordinate h gives each element y ∈ MY

EQ(μ̃) in
Eq. (30). The unique hmin for the minimum pressure is obtained as
hmin = (−νo

1 + νo
3 − μ̃1 + 2μ̃2)/2 = 0.981. The corresponding y is

ymin = (−0.981, −0.288, 1.099) and ϕ̄∗(hmin ) = ϕ∗(ymin ) = 14.25.
The values at ϕ̄∗(h) = 13, 14.25, and 16 are shown in dotted, solid,
and dashed gray lines, respectively. (b)–(d) Numerical plot of the
time evolution for the reactions in Eq. (9) with the assumptions of the
ideal gas and mass-action kinetics. The volume �(X ) is shown for
three different pressures (b) �̃ = 13, (c) �̃ = 14.25, and (d) �̃ = 16.
In panels (b)–(d), different colors indicate different initial condi-
tions: (X 1

0 , X 2
0 , X 3

0 ) = (48, 1, 48) (light blue), (148,25,200) (orange),
(90,5,20) (green). Here, the initial conditions correspond to the con-
served quantities L = 0, L = 52, and L = −70, respectively, where
L is calculated as L = UX0 = −X 1

0 + X 3
0 . (e,f) The time evolution

of X is shown in the number space X for three initial conditions.
(e) We set that all the initial conditions have L = 0 and are given
by (X 1

0 , X 2
0 , X 3

0 ) = (48, 1, 48) (light blue), (25,60,25) (light green),
(10,50,10) (light purple). Each initial condition is indicated by a
circle in the corresponding color. From each initial condition, the
curve is constrained in MX

STO(L = 0) and finally converges to the
square when �̃ = 14.25. All the squares are located on the red ray
rY (ymin ). The black and red circles on this ray indicate the origin
X = 0 and xi

min = ∂ iϕ∗(ymin ) = exp{(ymin
i − νo

i )/RT̃ }, respectively.
(f) We set that the three initial conditions have L = 52 and are given
by (X 1

0 , X 2
0 , X 3

0 ) = (148, 25, 200) (orange), (10,175,62) (blue), and
(1,10,53) (purple), respectively. Each of them is indicated by a circle
in the corresponding color. The curve is constrained in MX

STO(L =
52) and finally converges to the unique point (square). The parame-
ters are fixed as R = T̃ = 1, x1

o = 8, x2
o = 7, x3

o = 1, n1
o = 2, ñ1 = 1,

n2
o = 3, ñ2 = 2. Given the parameters, the rate constants ŵr

+ and ŵr
−

are determined by Eq. (B6) with ŵr
− = 1 in Appendix B.

023173-6



THERMODYNAMIC AND STOICHIOMETRIC LAWS RULING … PHYSICAL REVIEW RESEARCH 6, 023173 (2024)

Theorem 1. Following Theorem 1, we derive claim 2 from
the correspondence in Eq. (21) between the number space
X and the chemical-potential space Y . In the second step,
when the intersection is empty, we investigate the landscape of
the total entropy function �tot to classify whether the system
grows or shrinks in Sec. IV. We show that the system has
two possibilities for L = 0: it grows when �tot is not bounded
above, or it shrinks when the supremum of �tot is at the origin
X = 0. By contrast, the system always grows for L �= 0 when
the intersection is empty because �tot is not bounded above.
This will be summarized in Theorem 2. Mathematical proofs
of Theorems 1 and 2, and Corollary 1 will be presented in
Sec. V.

III. GEOMETRIC REPRESENTATION
OF EQUILIBRIUM STATES

For the derivation of claims 1 and 2, we analyze the ac-
cessible regions in the number space X, the density space
X and the chemical-potential space Y by using a geometric
technique. In Sec. III A, we give the assumptions to the full
grand potential density ϕ∗(y) for the following mathematical
treatment. In Sec. III B, we show that the accessible region
is restricted by the isobaric condition, which we term the
isobaric manifold. This manifold is further partitioned by the
conservation laws in Sec. III C. After defining the equilibrium
manifold as the candidates of chemical equilibrium states in
Sec. III D, we characterize the equilibrium state to which the
system converges as an intersecting point of the accessible re-
gion and the equilibrium manifold in Sec. III E. Furthermore,
by using numerical simulations, we identify the conditions
for the existence of the intersecting point, which we state as
Theorem 1.

A. Assumptions for ϕ∗(y)

The thermodynamic property of the system is encoded in
the full grand potential density ϕ∗(y) [see Eq. (20)]. Here, y ∈
Y = RNX is the chemical potential of the confined chemicals,
and ϕ∗(y) represents the pressure of the system at the state
y. In this work, we assume that ϕ∗(y) is a smooth and strictly
convex function on Y = RNX , and the image of the associated
Legendre transformation,

∂ϕ∗(y) : y ∈ Y �→ ∂ϕ∗(y) = {∂ iϕ∗} =
{

∂ϕ∗

∂yi

}
, (33)

is equal to X = RNX
>0 . In addition, we assume the following

properties; (1) ϕ∗(y) strictly increases with yi for an arbitrary
fixed {y j} j �=i. (2) ∂ iϕ∗(y) → 0 when yi → −∞. They are sat-
isfied in most thermodynamic systems such as the ideal gas in
Eq. (31).

Furthermore, we assume that the mapping ∂ϕ∗ : RNX →
RNX

>0 is bijective, and we consider that its inverse map is given
by ∂ϕ : RNX

>0 → RNX [see Eq. (13) for ϕ(x)]. By using this,
the above property (2) is rephrased as yi = ∂iϕ(x) → −∞
when xi → 0.

Finally, we assume that the pressure of the environment �̃

is greater than �min, to guarantee that the volume �(X ) is
uniquely determined (see Appendix C). Here, �min denotes

the minimum pressure that the system can take as

�min := inf
y∈Y

ϕ∗(y) = lim
{yi}→{−∞}

ϕ∗(y). (34)

The second equality holds from the above property (1).

B. The isobaric manifold and the projection ρX

We remind that the density x is given by the mapping ρX
in Eq. (18):

ρX := X ∈ X �→ ρX (X ) = x(X ) =
{

X i

�(X )

}
∈ X . (35)

The range of the mapping ρX describes possible states of the
density x under the isobaric condition. To calculate the range,
we compute the volume � by solving the minimization in
Eq. (14). Its critical equation is given by

ϕ

(
X

�

)
− X i

�
∂iϕ

(
X

�

)
+ �̃ = 0. (36)

Therefore, the possible region in X under the isobaric condi-
tion is constrained in

IX (
�̃, μ̃

)
:= { x | ϕ(x) − xi∂iϕ(x) + �̃ = 0, x > 0}, (37)

which we call the isobaric manifold. Since the range of ρX
is represented in Eq. (37), we find that the mapping ρX (X )
is a projection of X ∈ X into IX (�̃, μ̃) along the ray which
includes X .

Example 3. For the ideal-gas case, by substituting ϕ(x) in
Eqs. (15) into (37), we obtain

IX (
�̃, μ̃

) =
{

x

∣∣∣∣∣
∑

i

xi = �̃

RT̃
−

∑
m

ñm, x > 0

}
, (38)

where ñm is the density of the open chemicals in the en-
vironment [see Eq. (16)]. Thus, the isobaric manifold in X
represents a simplex for the ideal-gas case [Fig. 3(a)].

The mapping ρX is the projection of X ∈ X = RNX
>0 into

this simplex [see Fig. 3(b)]. �
Finally, by using the mapping ∂ϕ, the isobaric manifold in

Y is represented as

IY(
�̃, μ̃

)
:= ∂ϕ(IX ) = {y|ϕ∗(y) − �̃ = 0}, (39)

which is straightforward to interpret that the pressure of the
system ϕ∗(y) at the chemical potential y is balanced with �̃ in
this manifold.

C. The stoichiometric manifold as partition
of the isobaric manifold

The accessible subspace of the state X (t ) from an initial
condition X0 in Eq. (4) is

MX
STO(L) := {

X
∣∣U l

i X i = U l
i X i

0 = Ll , X > 0
}
, (40)

which we call the stoichiometric manifold in X.
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(a) (b)

(c)

(f)

(d)

(e)

FIG. 3. (a) For the ideal-gas case, the isobaric manifold
IX (�̃, μ̃) is represented by a simplex in gray. (b) The mapping
ρX (X ) gives the projection of X ∈ X into IX (�̃, μ̃) along the ray
which includes X . The thick arrow is pointing the corresponding den-
sity x = ρX (X ). (c) For the reactions in Eq. (9), the stoichiometric
manifold MX

STO(L) in Eq. (40) represents a two-dimensional plane
with U = (−1, 0, 1). By applying the mapping ρX (X ) to each point
X ∈ MX

STO(L), we get the corresponding manifold, MX
STO(L) [see

the upper region of the simplex in panel (d) colored by orange].
(d) In the present case, the isobaric manifold IX (�̃, μ̃) is parti-
tioned by MX

STO(L > 0), MX
STO(L < 0), and MX

STO(L = 0). Here,
MX

STO(L > 0) and MX
STO(L < 0) are given by the orange and the

green regions, respectively, and their interface is given by MX
STO(L =

0) in the light-blue line. (e) The stoichiometric manifold MX
STO(L) is

characterized by a ray r in the space L of the conserved quantities
[see the line below Eq. (6) for L]. Since dim Ker[ST ] = 1 in the
present example, we have three characterizations L = 0, L > 0, and
L < 0. In Sec. I of the Supplemental Material [77], we investigate
another example with a higher dimension of Ker[ST ]. (f) Given a ray
r, any plane MX

STO(L) for L ∈ r is mapped to the same region on the
simplex by the mapping ρX . Any plane with L > 0 (e.g., in orange)
is mapped to the upper region of the simplex [see panel (d)], whereas,
any plane with L < 0 (e.g., in green) is mapped to the lower region.
For L = 0, the plane in light blue is mapped to the interface between
the regions for L > 0 and L < 0 [see the light-blue line in panel (d)].

By applying the mapping ρX to MX
STO(L), we have the

stoichiometric manifold in the density space X as

MX
STO(L) :=

{
x

∣∣∣∣ϕ(x) − xi∂iϕ(x) + �̃ = 0,

U l
i xi = Ll

α
, x > 0

}
, (41)

where α > 0 is arbitrary. Using the mapping ∂ϕ, the stoichio-
metric manifold in the chemical-potential space Y is given by

MY
STO(L) :=

{
y

∣∣∣∣∣ϕ∗(y) − �̃ = 0,U l
i ∂

iϕ∗(y) = Ll

α

}
. (42)

Example 4. For the specific stoichiometric matrix in
Eq. (10), MX

STO(L) is schematically depicted in Figs. 3(c) and
3(d) by applying the mapping ρX to MX

STO(L). �
For further investigations, we define the following mani-

fold in X as

M̂X
STO(L̂) := {x|U l

i xi = L̂l , x > 0}, (43)

and that in Y as

M̂Y
STO(L̂) := ∂ϕ

(
M̂X

STO

(
L̂
)) = {

y
∣∣U l

i ∂
iϕ∗(y) = L̂l

}
. (44)

These manifolds correspond to the stoichiometric manifolds
with conserved quantities L̂ under the isochoric condition
[78]. Hereafter, we term the isochoric stoichiometric mani-
folds.

Using these manifolds, the stoichiometric manifold under
isobaric condition is represented as follows:

MX
STO(L) =

⋃
α>0

M̂X
STO

(
L

α

)
∩ IX (�̃, μ̃), (45)

and

MY
STO(L) =

⋃
α>0

M̂Y
STO

(
L

α

)
∩ IY (�̃, μ̃). (46)

For arbitrary c > 0, we find MX
STO(cL) = MX

STO(L) and, cor-
respondingly, MY

STO(cL) = MY
STO(L). Hence, each ray r in

the space L of conserved quantities characterizes these man-
ifolds [see also Example 5 below and Figs. 3(d)–3(f)]. To be
more precise, for any L, L′ ∈ r, MX

STO(L) = MX
STO(L′) holds.

We denote the stoichiometric manifold corresponding to a ray
r as MX

STO(L ∈ r).
When L = 0, the stoichiometric manifold in X is written

as

MX
STO(L = 0) = M̂X

STO(L̂ = 0) ∩ IX (�̃, μ̃). (47)

Since the dimension of α in Eq. (45) vanishes for MX
STO(L =

0), we obtain dim MX
STO(L = 0) = dim MX

STO(L �= 0) − 1.
In addition, for any given L �= 0, we find that M̂X

STO(L/α) →
M̂X

STO(L̂ = 0) when α → ∞. Thus, the stoichiometric mani-
fold MX

STO(L = 0) forms an interface of all the stoichiometric
manifolds MX

STO(L �= 0). These properties hold similarly in Y
by replacing the superscript X with Y .

The above statements are summarized as follows:
Lemma 1. Let r denote a ray in the space L of conserved

quantities. For every r, the corresponding stoichiometric
manifold MX

STO(L ∈ r) exists and the set of the stoichio-
metric manifolds partitions the isobaric manifold IX (�̃, μ̃).
In addition, their interface is given by the stoichiomet-
ric manifold MX

STO(L = 0). The isobaric manifold in the
chemical-potential space Y is similarly partitioned by stoi-
chiometric manifolds (replace the superscript X with Y).
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Example 5. In Figs. 3(d)–3(f), we schematically depict the
partition of the isobaric manifold IX (�̃, μ̃) by the stoichio-
metric manifolds MX

STO(L ∈ r) for the ideal-gas case. �

D. The equilibrium manifold

In this section, we confirm that the candidates of the equi-
librium states are given by Eq. (23).

The equilibrium states of the chemical reaction dynamics
are given by the maxima of the total entropy with respect to
the extent of reaction �. From the differentiation of Eq. (12)
and using Eq. (14), we have the critical equation as

∂�tot

∂�r
= − 1

T̃

{
∂iϕ

(
X

�(X )

)
Si

r + μ̃mOm
r

}
= 0, (48)

where X = X0 + S� in Eq. (4) (see Appendix D).
Thus, at any equilibrium states, the density x satisfies

∂iϕ(x)Si
r + μ̃mOm

r = 0. (49)

By using the correspondence yi = ∂iϕ(x), it is represented as

yiS
i
r + μ̃mOm

r = 0, (50)

which confirms the balance of chemical potentials between
reactants and products at the chemical equilibrium [see
Eq. (22)].

The set of solutions to Eq. (49) represents the candidates of
the equilibrium states in the density space X , which we call
an equilibrium manifold:

MX
EQ

(
T̃ , μ̃

)
:= {

x
∣∣∂iϕ(x)Si

r + μ̃mOm
r = 0

}
, (51)

and in the chemical-potential space Y as

MY
EQ(μ̃) := {

y
∣∣yiS

i
r + μ̃mOm

r = 0
}
. (52)

We note that the equilibrium manifold is an affine subspace in
Y , whereas it is generally curved in X . In addition, using the
basis matrix U of Ker[ST ] and solving Eq. (50), the manifold
in Eq. (52) is rewritten as

MY
EQ(μ̃) = {

y
∣∣yi = yP

i + hlU
l
i , h ∈ RdimKer[ST ]}, (53)

where yP is a particular solution to Eq. (50) and h = {hl}
represents a coordinate of Ker[ST ].

E. The equilibrium state as an intersection

If the intersection MY
STO(L) ∩ MY

EQ(μ̃) is not empty, the
system converges to the equilibrium state. We can compute
the equilibrium state in Y by using Eqs. (42) and (52). Sim-
ilarly, we obtain the corresponding state in X as MX

STO(L) ∩
MX

EQ(T̃ , μ̃) by using Eq. (41) and (51). In this section, we
numerically confirm the convergence in X by the dynamics in
Eq. (3) using the specific setup in Sec. II F.

We first consider the equilibrium manifold. The points
in MY

EQ(μ̃) are written in Eq. (30). Here, the second

component y2 is constant p := μ̃1 − μ̃2. Thus, MY
EQ(μ̃) is a

one-dimensional line located on the plane y2 = p in Y [see
the left panel of Fig. 4(a) for the plane y2 = p, and the red
line in the left panel of Fig. 4(b) for MY

EQ(μ̃)]. By applying
the mapping ∂ϕ∗, we can compute MX

EQ(T̃ , μ̃). For the
ideal-gas case in Eq. (31), the mapping is represented as

(a)

(b)

FIG. 4. (a) For the ideal-gas case, the isobaric manifold
IY (�̃, μ̃) in the chemical-potential space Y is a level set for ϕ∗(y)
(left), whereas IX (�̃, μ̃) represents a simplex in the density space
X (right). We consider the planes y2 = p = μ̃1 − μ̃2 in Y and x2 =
q = exp{(μ̃1 − μ̃2 − νo

2 )/RT̃ } in X , respectively. The black curve
in Y and the line in X indicate the cross section of the isobaric
manifolds by the planes, respectively. (b) In the left panel, we plot
MY

EQ(μ̃) (the red line) and IY (�̃, μ̃) (gray curves) on the plane
y2 = p. In the right panel, MX

EQ(T̃ , μ̃) (the red curve) and IX (�̃, μ̃)
(gray lines) are plotted on the plane x2 = q. In Y (left), the three
gray curves correspond to the isobaric manifolds IY (�̃, μ̃) with the
pressures �̃ = 13 (dotted), 14.25 (solid) and 16 (dashed), respec-
tively. When �̃ = 13, the dotted curve does not have the intersection
with MY

EQ(μ̃) (red line). When �̃ = 14.25, the solid curve has the
unique intersecting point with the red line, denoted by the light-blue
square. It is located at ymin = (−0.981, −0.288, 1.099), where ymin

has been obtained in Fig. 2. When �̃ = 16, the dashed curve has
two intersecting points with the red line. The heatmaps represent the
values of ϕ∗(y) − ϕ∗(ymin ). In the right panel, we show the corre-
sponding manifolds in X . Here, the light-blue square is located at
xmin = (3.00, 5.25, 3.00), which is obtained by xi

min = ∂ iϕ∗(ymin ) =
exp{(ymin

i − νo
i )/RT̃ }.

∂ iϕ∗(y) = exp{(yi − νo
i )/RT̃ }. Thus, the points in

MX
EQ(T̃ , μ̃) are computed as⎛

⎝x1

x2

x3

⎞
⎠ =

⎛
⎜⎜⎝

exp
{( − h − νo

1

)
/RT̃

}
exp

{(
μ̃1 − μ̃2 − νo

2

)
/RT̃

}
exp

{(
μ̃1 − 2μ̃2 + h − νo

3

)
/RT̃

}
⎞
⎟⎟⎠, (54)

where h ∈ R plays a role of the coordinate of MX
EQ(T̃ , μ̃).

We note that the second component x2 is also constant q :=
∂ϕ∗(p) = exp{(μ̃1 − μ̃2 − νo

2 )/RT̃ }. Thus, MX
EQ(T̃ , μ̃) is a

one-dimensional curve located on the plane x2 = q [see the
red curve in the right panel of Fig. 4(b)].

We next consider whether the intersection IX (�̃, μ̃) ∩
MX

EQ(T̃ , μ̃) is empty. As the pressure �̃ increases, the num-
ber of intersecting points change as follows. When �̃ =
13 < ϕ∗(ymin) = 14.25, the intersecting point IX (�̃, μ̃) ∩
MX

EQ(T̃ , μ̃) does not exist [see the right panel of Fig. 4(b)].
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(a) (b) (c)

FIG. 5. (a) When �̃ = 13 < ϕ∗(ymin ) = 14.25, MX
EQ(T̃ , μ̃) (red curve) and IX (�̃, μ̃) (gray simplex) do not have an intersecting point.

The black line represents IX (�̃, μ̃) on the plane x2 = q (see also Fig. 4). (b) When �̃ = 14.25 = ϕ∗(ymin ), the intersection consists of the
unique point xmin. It lies on the stoichiometric manifold MX

STO(L = 0) (the light-blue line on the simplex). In numerical simulations, the time
evolution of the system is also shown in a light-blue line with arrows. From the initial condition (circle), it converges to the point xmin (square).
(c) When �̃ = 16 > ϕ∗(ymin ), the intersection consists of two points (orange and green squares). They are located in the upper and the lower
regions of the simplex, which correspond to MX

STO(L) for L > 0 and L < 0, respectively [see Fig. 3(d)]. We also show the time evolution of the
system from the two initial conditions (circles). They respectively converge to the intersecting points (squares). In the numerical simulation,
the initial conditions are given by (X 1

0 , X 2
0 , X 3

0 ) = (48, 1, 48) (light-blue circle), (148, 25, 200) (orange circle), and (90, 5, 20) (green circle).

When �̃ = ϕ∗(ymin), the intersection appears as the unique
contact point corresponding to ymin. When �̃ = 16 >

ϕ∗(ymin), the intersection consists of two points. The above
situation holds similarly in Y [see the left panel of Fig. 4(b)].

We further depict the intersection IX (�̃, μ̃) ∩ MX
EQ(T̃ , μ̃)

by the three-dimensional plot in Fig. 5. From Fig. 3(d),
IX (�̃, μ̃) is partitioned by the stoichiometric manifolds.
When �̃ = ϕ∗(ymin) = 14.25 [Fig. 5(b)], the intersection lies
on MX

STO(L = 0). When �̃ = 16 > ϕ∗(ymin), the two inter-
secting points belong to each of MX

STO(L) for L > 0 and
L < 0, respectively [see Fig. 5(c)]. Thus, for a given L, the
intersecting point is uniquely determined and it depends on a
ray in the space L of the conserved quantities [see Fig. 3(e)
and Lemma 1].

In Figs. 5(b) and 5(c), we also show the time evolution of
the system in the numerical simulation. Indeed, the system
converges to the intersection MX

STO(L) ∩ MX
EQ(T̃ , μ̃).

The above numerical result is an instance of the following
theorem:

Theorem 1. The system converges to the intersecting point
MY

STO(L) ∩ MY
EQ(μ̃) if it exists. Its existence is classified as

follows:
(1) ϕ∗(ymin) − �̃ > 0 ⇒ MY

STO(L) ∩ MY
EQ(μ̃) = ∅.

(2) ϕ∗(ymin) − �̃ = 0 ⇒

MY
STO(L) ∩ MY

EQ(μ̃) =
{{ymin} for L = 0
∅ for L �= 0.

(3) ϕ∗(ymin) − �̃ < 0 ⇒

MY
STO(L) ∩ MY

EQ(μ̃) =
{∅ for L = 0
{yEQ} for L �= 0,

where the intersecting point yEQ is uniquely determined for a
given L, and it depends on a ray in the space L of conserved
quantities.

A mathematical proof of this theorem will be shown in
Sec. V.

From Theorem 1, we can derive claim 2 as follows: For
the case 1 of claim 2 in which ϕ∗(ymin) − �̃ = 0 and L = 0,
Theorem 1 states that the intersection MY

STO(L) ∩ MY
EQ(μ̃)

consists of ymin. From Eq. (21), this ymin is mapped to a
ray rY (ymin) in the number space X. In addition, MX

STO(L =
0) from Eq. (40) indicates that αX ∈ MX

STO(L = 0) if X ∈
MX

STO(L = 0) for arbitrary α > 0. This means that all the
points on the ray rY (ymin) is in MX

STO(L = 0). Thus, all the
points on the ray are equilibrium states and the system con-
verges to one of them. The state is not uniquely determined
only by the entropy function and depends on the initial condi-
tions and the functional form of J (t ). For the case 2 of claim 2
in which ϕ∗(ymin) − �̃ < 0 and L �= 0, Theorem 1 states that
the intersection MY

STO(L) ∩ MY
EQ(μ̃) exists as yEQ. This also

corresponds to a ray rY (yEQ) in the number space X. Since
MX

STO(L �= 0) is an affine subspace which does not include
the origin X = 0, the intersection between MX

STO(L �= 0) and
an arbitrary ray is represented by a point. Thus, the equilib-
rium state is uniquely determined in this case.

Theorem 1 states the cases when the system converges to
an equilibrium state in our claim 1. In the next section, we
investigate the case when the system does not converge to an
equilibrium state, that is MY

STO(L) ∩ MY
EQ(μ̃) = ∅.

IV. FORM OF TOTAL ENTROPY FUNCTION

When the intersection MY
EQ(μ̃) ∩ MY

STO(L) is empty, the
system cannot converge to an equilibrium state, and it is
expected that the system grows or shrinks. In this section, we
observe if the system grows or shrinks by numerical plots of
the total entropy function.

If MX
STO(L) ∩ MX

EQ(T̃ , μ̃) = ∅, the total entropy function
�tot (�) cannot have the maximum inside of MX

STO(L) (see
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Sec. III D). Thus, the functional form of �tot (�) has the
following two possibilities: (1) �tot (�) is not bounded above.
(2) �tot (�) is bounded above, but the supremum exists on the
boundary of MX

STO(L). In the first case, we find |�(t )| → ∞
for t → ∞, because the second law requires that the system
must climb up the unbounded landscape of the total entropy
function. Since we assume dim Ker[S] = 0, we get |X | → ∞
for |�| → ∞. In addition, �(X ) → ∞ for |X | → ∞ (see Ap-
pendix E). Thus, if �tot (�) is not bounded above, the volume
� grows. In the second case, we can further show that the
supremum is possible only at the origin X = 0 (see Sec. V B).
Thus, the volume � is shrinking and finally vanishes.

In the following part of this section, we numerically plot
the landscape of the total entropy function to determine the
fate of the system. In Fig. 6, we plot the total entropy function
�tot (�) in Eq. (12) for our example setup (see Examples 1
and 2). Following Theorem 1, the intersection MY

STO(L) ∩
MY

EQ(μ̃) is empty for the cases (1) ϕ∗(ymin) − �̃ > 0, (2)
ϕ∗(ymin) − �̃ = 0 and L �= 0, and (3) ϕ∗(ymin) − �̃ < 0 and
L = 0,

In case (1), �̃ = 13 < ϕ∗(ymin) = 14.25, the total entropy
function �tot (�) is not bounded above for both of L = 0 and
L �= 0 [see Fig. 6(a)]. Indeed, |�(t )| → ∞ in the reaction dy-
namics of Eq. (3). In case (2), �̃ = ϕ∗(ymin) and L = 52 �= 0,
�tot (�) is still not bounded above and |�(t )| → ∞ [see right
panel of Fig. 6(b)]. In case (3), �̃ = 16 > ϕ∗(ymin) and L = 0,
the supremum of �tot (�) is at the origin of the number space
X. The system tends to approach the origin [see left panel of
Fig. 6(c)].

The above numerical result demonstrates the following
theorem.

Theorem 2. When MY
STO(L) ∩ MY

EQ(μ̃) = ∅, the land-
scape of �tot (�) is given as follows:

(1) If ϕ∗(ymin) − �̃ > 0, �tot (�) is not bounded above.
(2) If ϕ∗(ymin) − �̃ = 0 and L �= 0, �tot (�) is not

bounded above.
(3) If ϕ∗(ymin) − �̃ < 0 and L = 0, the supremum of

�tot (�) is at the origin of the number space X.
A mathematical proof of this theorem will be shown in

Sec. V.
Theorems 1 and 2 lead to the claim 1 and we find the fate

of the system under isobaric condition.
Before closing this section, we confirm the claim 2 in the

left panel of Fig. 6(b) and the right panel of Fig. 6(c). In the
former panel, the red ray represents the set of the maxima of
�tot (�), which is rY (ymin). We can see the system converges
to a point on the ray. In the latter case, the maximum of
�tot (�) is the unique point and the system converges to it.

V. PROOF OF THE THEOREMS

In this section, we prove Theorems 1 and 2, and Corol-
lary 1.

A. Proof of Theorem 1

We first provide a general proof valid for arbitrary dimen-
sions. After concluding the proof, we schematically illustrate
it for three-dimensional space of Y in Fig. 7.

(a)

(b)

(c)

FIG. 6. The entropy landscapes �tot (�) are shown for (a) �̃ =
13 < ϕ∗(ymin ) = 14.25, (b) �̃ = ϕ∗(ymin ), and (c) �̃ = 16 >

ϕ∗(ymin ). The left and right panels show the cases L = 0 and L =
52 �= 0, respectively. The heatmaps represent the values of �tot (�).
Here, we note that the domain of (�1, �2) is restricted by X ∈ RNX

>0 .
The boundaries at which X 2 = 0 and X 1 = 0 are represented by
dashed and dotted black lines, respectively. The black circles in
the left panels denote the origin X = 0. The time evolutions of
the system are shown by light-blue and orange curves for the two
initial conditions: (left) X0 = (48, 1, 48) with L = 0 and (right) X0 =
(148, 25, 200) with L = 52. (a) The heatmaps in both panels indicate
unbounded landscapes and the system goes to infinity. (b) For L = 0,
�tot (�) has maxima which form the red ray. The system converges
to a point (the light-blue square) on the ray. For L �= 0, the heatmap
shows unbounded landscape and the system goes to infinity. (c) For
L = 0, �tot (�) has the supremum at the origin X = 0 and the system
is approaching this point. For L �= 0, �tot (�) has the unique maxi-
mum (the orange square) and the system converges to the point. See
the caption in Fig. 2 for specific values of the parameters.

To investigate the existence of the intersection MY
STO(L) ∩

MY
EQ(μ̃), we introduce Birth’s trajectory.
Let yB(L̂) represent the unique intersecting point between

the isochoric stoichiometric manifold M̂Y
STO(L̂) in Eq. (44)
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(a)

(b)

FIG. 7. Schematic illustration of the manifolds in Y for
the case ϕ∗(ymin ) − �̃ < 0. In this illustration, we set dim Y =
dim Ker[ST ] + dim Im[S] = 3. The conserved quantities L are gen-
erally represented by L = {Ll = U l

i X i
0} (l = 1, . . . , dim Ker[ST ]).

Panels (a) and (b) represent the case for dim Ker[ST ] = 2 and
dim Im[S] = 1, and the case for dim Ker[ST ] = 1 and dim Im[S] =
2, respectively. We note that dim MY

EQ(μ̃) = dim Ker[ST ] and

dim M̂Y
STO(L/α) = dim Im[S]. The dimensions in the case (b) cor-

respond to the illustrative example of chemical reactions in Eqs. (9)
and (10), whereas those in the case (a) correspond to the one in Sec. I
of the Supplemental Material [77]. (a) In this case, dim MY

EQ(μ̃) = 2

and dim M̂Y
STO(L/α) = 1. Thus, MY

EQ(μ̃) is denoted by the red

plane, and the light-blue curves represent M̂Y
STO(L/α) for α ∈

(0, ∞). The gray surface is IY (�̃, μ̃). From Eq. (46), MY
STO(L) is

given by the orange curve. Equation (56) enables us to depict Birch’s
trajectory b(L) as the green curve. From Eq. (58), the red circle
denotes the intersecting point MY

STO(L) ∩ MY
EQ(μ̃) to which the

system converges as the equilibrium state. (b) In this case, we con-
sider dim MY

EQ(μ̃) = 1 and dim M̂Y
STO(L/α) = 2. Thus, MY

EQ(μ̃)

is denoted by the red line, and M̂Y
STO(L/α) represents the two-

dimensional manifold in light blue. Thus, MY
STO(L) is given by the

orange surface. We note that Birch’s trajectory b(L) overlaps with the
red line of MY

EQ(μ̃). The red circle represents the equilibrium state.

and the equilibrium manifold MY
EQ(μ̃) in Eq. (52):

{yB(L̂)} := M̂Y
STO(L̂) ∩ MY

EQ(μ̃). (55)

The uniqueness of yB(L̂) is guaranteed by Birch’s theorem
and the point is known as Birth’s point [12,17,78,80,81] (see
Appendix F). We define Birch’s trajectory by a collection of
Birch’s point along a ray in the space of conserved quantities.
For given L �= 0, it is defined as

b(L) :=
{

yB

(
L

α

) ∣∣∣∣∣ α > 0

}
. (56)

We find that yB(L/α) → yB(0) for α → ∞. Furthermore,
from Eq. (F5) in Appendix F, we get

{yB(0)} = M̂Y
STO(L̂ = 0) ∩ MY

EQ(μ̃) = {ymin}. (57)

Thus, the point ymin is located at one of the endpoints of
Birch’s trajectory, but is not included in the trajectory.

For this Birch’s trajectory, the following lemma is satisfied:
Lemma 2. ϕ∗(y) is a strictly increasing function along

Birch’s trajectory from the starting point ymin.
A proof of this lemma is shown in Appendix G.
By employing Birch’s trajectory, we can represent the in-

tersection for L �= 0 as

MY
STO(L) ∩ MY

EQ(μ̃)

=
⋃
α>0

M̂Y
STO

(
L

α

)
∩ IY(

�̃, μ̃
) ∩ MY

EQ(μ̃)

= b(L) ∩ IY(
�̃, μ̃

)
, (58)

where we use Eqs. (46), (55), and (56). For L = 0, the inter-
section is

MY
STO(L = 0) ∩ MY

EQ(μ̃)

= M̂Y
STO(L = 0) ∩ IY(

�̃, μ̃
) ∩ MY

EQ(μ̃)

= {ymin} ∩ IY(
�̃, μ̃

)
, (59)

where we use Eqs. (47) and (57).
From Lemma 2, we can determine the existence of the in-

tersection MY
STO(L) ∩ MY

EQ(μ̃) by the position of the starting
point ymin. When ϕ∗(ymin) − �̃ > 0, the starting point ymin

is located in the superlevel set: {y|ϕ∗(y) > �̃}. Taking into
account the fact that IY (�̃, μ̃) is the level set, the intersecting
point MY

STO(L) ∩ MY
EQ(μ̃) does not exist for any L. When

ϕ∗(ymin) − �̃ = 0, the starting point ymin is on IY (�̃, μ̃).
For L = 0, the intersecting point uniquely exists as ymin be-
cause of Eq. (59). For L �= 0, Lemma 2 indicates ϕ∗(y) >

ϕ∗(ymin) = �̃ at any point y on Birch’s trajectory b(L). Thus,
from Eq. (58), the intersecting point does not exist. When
ϕ∗(ymin) − �̃ < 0, the starting point ymin is located in the
sublevel set: {y|ϕ∗(y) < �̃}. For L = 0, the intersecting point
does not exist. For L �= 0, the intersecting point uniquely
exists.

This concludes the proof of Theorem 1. �
In Fig. 7, we provide schematic illustrations in three-

dimensional space of Y for the case ϕ∗(ymin) − �̃ < 0.
To demonstrate the generality of the proof, we visualize
two cases with dim Ker[ST ] = 2 and dim Ker[ST ] = 1 in
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the Figs. 7(a) and 7(b), respectively. From Eq. (6), the
case in Fig. 7(a) has two conserved quantities, whereas
the case in Fig. 7(b) has one conserved quantity. We also
have dim Im[S] = 1 and dim Im[S] = 2 for the two cases,
respectively, because dim Y = dim Ker[ST ] + dim Im[S] and
dim Y = 3. The dimensions for the example in Eqs. (9) and
(10) correspond to the case in Fig. 7(b), whereas the case
Fig. 7(a) corresponds to the one investigated in Sec. I of the
Supplemental Material [77].

In the former case [Fig. 7(a)], the equilibrium manifold
MY

EQ(μ̃) is represented by the two dimensional plane in

red, whereas the isochoric stoichiometric manifold M̂Y
STO(L̂)

is given by a one-dimensional curve in light blue be-
cause dim MY

EQ(μ̃) = dim Ker[ST ] and dim M̂Y
STO(L/α) =

dim Im[S]. Accordingly, the black circles represent the inter-
secting points yB(L̂) in Eq. (55) for L̂ = L/α with varying α.
The green curve indicates Birch’s trajectory b(L) in Eq. (56),
and one of the endpoints is located at ymin in Eq. (57). The iso-
baric manifold IY (�̃, μ̃) is represented by the gray surface,
which is a level set for ϕ∗(y). When ϕ∗(ymin) − �̃ < 0, ymin

is in the sublevel set {y|ϕ∗(y) < �̃}. The stoichiometric man-
ifold MY

STO(L) is given by the orange curve from Eq. (46).
Thus, the intersection MY

STO(L) ∩ MY
EQ(μ̃) is represented by

the red circle, which is also the intersecting point between
b(L) and IY (�̃, μ̃) in Eq. (58).

In the latter case [Fig. 7(b)], MY
EQ(μ̃) is represented by the

red line, whereas M̂Y
STO(L̂) is given by the two-dimensional

surface in light blue. The intersecting point yB(L̂) is indicated
by the black circle in Eq. (55) for L̂ = L/α with a given α.
In this case, the Birch’s trajectory b(L) in Eq. (56) overlaps
with the red line, and one of the endpoints is located at ymin

in Eq. (57). The stoichiometric manifold MY
STO(L) is given

by the orange surface from Eq. (46).5 Thus, the intersection
MY

STO(L) ∩ MY
EQ(μ̃) is represented by the red circle.

B. Proof of Theorem 2

If MX
STO(L) ∩ MX

EQ(T̃ , μ̃) = ∅, the system never relaxes
to the equilibrium state and have the following two possibili-
ties: (1) �tot (�) is not bounded above, and |�(t )| → ∞ with
time. As we noted in Sec. IV, the volume � grows in this
setup. (2) �tot (�) is bounded above and the supremum exists
on the boundary of MX

STO(L).
First, we consider the case L �= 0, where MX

STO(L �= 0)
does not contact with the origin. In this case, �tot (�) is not
bounded above. To prove that, we show that the supremum of
�tot (�) does not exist on the boundary of MX

STO(L �= 0) as
follows.

The extent of reaction � provides a coordinate on the sto-
ichiometric manifold MX

STO(L). Since X = RNX
>0 , the domain

of � has a boundary. We denote the coordinate of a point on a
boundary by �B. Here, at least, one component of the vector
XB := X0 + S�B is zero. We define the index set by IB(XB) =
{i|X i

B = 0}. Since the origin X = 0 is excluded, IB(XB) never
has all the indices. Also, the density xB = XB/�(XB) has zero
components as xi

B = 0 for i ∈ IB(XB).

5Similar to Fig. 3(d), the isobaric manifold IY (�̃, μ̃) is partitioned
by L > 0 and L < 0 in this case.

To investigate the gradient of �tot (�) on the boundary, we
calculate the thermodynamic force as

fr (�) := ∂�tot

∂�r
= − 1

T̃

{
∂iϕ(x(X0 + S�))Si

r + μ̃mOm
r

}
.

(60)

If the supremum of �tot (�) does not exist on the boundary,
we can find a direction from the boundary to the interior of
MX

STO(L) such that �tot (�) increases. To be more precise,
by using fr (�), this statement is mathematically phrased as
follows: If the supremum of �tot (�) does not exist on the
boundary, a vector j = { jr} exists such that fr (�B) jr > 0 and
Si

r jr > 0 for all the indices i ∈ IB. In the next paragraph, we
prove the above statement.

From the assumptions to ϕ∗(y) in Sec. III A, for every i,
yi = ∂iϕ(x) → −∞ when xi → 0. Thus, ∂iϕ(xB) → −∞ for
all i ∈ IB. Choose a vector j satisfying Si

r jr > 0 for i ∈ IB.
Then, we can show that, when � → �B, fr (�) jr → ∞ from
Eq. (60). This indicates that the supremum of �tot (�) does
not exist on the boundary.

Second, we consider the case L = 0. By employing rays
on MX

STO(L = 0), we investigate whether �tot (X ) is bounded
above.

Since we have assumed dim Ker[S] = 0, we can rewrite
�tot (�) as a function of X . Using a particular solution yP to
Eq. (50), we get

�tot (X ) = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �̃�(X )

− yP
i

(
X i − X i

0

)} + const,

= �(X )

T̃
KY(

yP; y(X )
) − yP

i X i
0

T̃
+ const, (61)

where

KY (yP; y) := ϕ∗(yP) − �̃ − DY [yP||y] (62)

(see Appendix H for the details of the calculation). Here,
DY [yP||y] is the Bregman divergence [82–84] induced by
ϕ∗(y), which is defined as

DY [y||y′] = ϕ∗(y) − ϕ∗(y′) − ∂ iϕ∗(y′){yi − y′
i}, (63)

and y(X ) = ∂ϕ ◦ ρX (X ). Although Eq. (61) is apparently a
function of the particular solution yP, the value of �tot does
not depend on the choice of yP, as shown in Appendix I. Since
only the first term �(X )KY (yP; y(X ))/T̃ depends on X , we
consider its landscape.

The stoichiometric manifold with L = 0, MX
STO(L = 0),

can be described by the collection of rays in X because it
contacts with the origin X = 0. Since a ray in the number
space X corresponds to a point in the chemical-potential space
Y as in Eq. (21), the value of KY (yP; y) is constant on each ray.
In addition, �(X ) is increasing along each ray from the origin.
Therefore, by considering the sign of KY (yP; y), we can deter-
mine if �tot (X ) increases along each ray in MX

STO(L = 0). If
KY (yP; y) is positive for a ray, �tot (X ) increases along the
ray. If KY (yP; y) = 0, �tot (X ) is constant along the ray. If
KY (yP; y) is negative for a ray, �tot (X ) decreases along the
ray.
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When ϕ∗(ymin) − �̃ > 0, we can find a point y ∈
MY

STO(L = 0) such that KY (yP; y) is positive (see Ap-
pendix J). If such a point y ∈ MY

STO(L = 0) exists, we can
consider a corresponding ray in X to the point y. Along
the ray, �tot (X ) increases and, thus, is not bounded above.
When ϕ∗(ymin) − �̃ = 0, KY (yP; y) is negative for any y ∈
MY

STO(L = 0) except y = ymin, and KY (yP; ymin) = 0. Thus,
the maxima of �tot (X ) forms the ray corresponding to ymin,
that is rY (ymin) in Eq. (21). When ϕ∗(ymin) − �̃ < 0, we can
show that any y ∈ MY

STO(L = 0) gives negative KY (yP; y)
(see Appendix K). Thus, �tot (X ) decreases along any ray and
the supremum is located at the origin X = 0.

Summarizing the cases for L �= 0 and L = 0, we obtain
Theorem 2. �

C. Proof of Corollary 1

When S is regular, the accessible region covers the whole
space of X, that is MX

STO = X. Thus, MX
STO can be described

by the collection of rays in X. This situation coincides with
the one for L = 0 in the previous section. Therefore, by em-
ploying a similar proof, we can classify the fate of the system
as Corollary 1 (see also Ref. [19]). �

VI. SUMMARY AND DISCUSSIONS

In this work, we have considered chemical thermodynam-
ics of growing CRSs with stoichiometric conservation laws in
which the stoichiometric matrix S has a nontrivial left kernel
space. By clarifying the conditions for the fate of the system
to grow, shrink, or equilibrate, we show that the existence
of conservation laws qualitatively alter the fate of the sys-
tem. It is emphasized again that our results are derived by
general thermodynamic and stoichiometric structures without
assuming any specific thermodynamic potentials or reaction
kinetics; i.e., they are obtained based solely on the second law
of thermodynamics and conservation laws.

Since we are mainly interested in the growth of the system,
we have assumed the productivity of the stoichiometric matrix
S: Im[S] ∩ RNX

>0 �= ∅ [see Eq. (7)]. This condition allows the
time evolution of X (t ) so as to perpetually increase the num-
ber of all confined chemicals while satisfying the conservation
laws. In the following two paragraphs, we comment on the
fate of the system with the other classes of the stoichiometric
matrix. Here, the complement of the productive S is defined
as Im[S] ∩ RNX

>0 = ∅. We divide it into two cases: (1) Im[S] ∩
RNX

�0 = ∅, and (2) Im[S] ∩ RNX
�0 �= ∅ and Im[S] ∩ RNX

>0 = ∅.6

In the first case, (1) Im[S] ∩ RNX
�0 = ∅, a vector v exists

in Ker[ST ] such that all the components of v are positive. As
a result, the conserved quantity viX i = viX i

0 implies that the
total mass of the confined chemicals are conserved, and the
system must converge to the equilibrium state, i.e., the growth
of the system is not possible. We refer to this type of S as
nonproductive. A numerical example for this case is shown in
Sec. III of the Supplemental Material [77].

6Note the equality in �0 of RNX
�0 .

In the second case, (2) Im[S] ∩ RNX
�0 �= ∅ and Im[S] ∩

RNX
>0 = ∅, a vector v exists in Ker[ST ] such that all the compo-

nents of v are non-negative, but Ker[ST ] does not have a vector
v′ such that all the components of v′ are positive. This means
that the mass conservation law exists for a proper subset
of the confined chemicals. Thus, the volume growth of the
system can still be allowed with the increase of the confined
chemicals that do not participate in the mass conservation law.
Although such a situation may not be biologically relevant, we
refer to this type of S as semiproductive. A numerical example
for this case is shown in Sec. IV of the Supplemental Material
[77]. According to the example, it is expected that the claims
1 and 2 still hold for the semiproductive cases.

We can possibly correlate our theoretical findings with em-
pirical observations. Our findings suggest that the fate changes
with the initial conditions (conserved quantities L) even in
the same environment. We especially find that, as shown in
Table I, a CRS does not vanish and is more likely to grow
when it has nonzero L than when it has L = 0 or a regular S.
If we suppose a population of the CRSs with varying initial
conditions, and consider their fates in a slowly changing en-
vironment, surviving CRSs can be selective depending on L,
where a CRS with nonzero L might be advantageous. Identify-
ing a possible mechanism to survive in a varying environment
is biologically essential, and our findings may help explain the
outcome.

Nevertheless, several extensions of our theory remain to
be essential as future work to understand actual experimental
situations of growing protocells or biological cells.

The first extension is to consider the case when the system
may relax to a state that continuously produces entropy with
constant volume, namely, the conventional nonequilibrium
steady state (NESS) [9,10,12–17]. It is possible when the ma-
trix S has a nontrivial right kernel space, i.e., the assumption
in Eq. (5) is not satisfied. It is a major challenge to understand
how the growth of the system can be characterized and real-
ized in such situations, and compatible with the NESS.

The second one is to consider a different hierarchy of the
timescales in which the relaxation of the variables (E ,�, N )
may not be rapid compared with the timescale of chemical re-
actions. Although the present work assumes that the chemical
reactions are slow (see the assumptions made above Eq. (12),
there may be cases in which the timescale of other processes is
slow and/or comparable with that of the chemical reactions. A
typical example is when we consider cell transport processes
[85]. In this case, the timescale of material exchanges between
the system and the environment is relevant, and the processes
may also couple with chemical reactions. In addition, the
osmotic gradient (pressure difference) can play a driving force
to change the volume, whereas isosmotic volume changes are
also commonly known and widely investigated as a relevant
process by alterations in intracellular solute content [86,87].
It is of interest to see how the conditions for the growth of the
system change with relevant processes of the thermodynamic
setup.

The third one is to consider explicitly the effect of the
membrane molecules. Although we neglect the tension of
the membrane in this paper (see Fig. 1), it could be rele-
vant and changes with time because the membrane molecules
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themselves are produced and supplied by the CRSs in biolog-
ical cells. It is important to investigate if and how the effect
changes the results by extending our theoretical framework.

Alternatively, it would also be promising to apply our
framework to fit into an experimental technique using
membrane-free compartments such as droplets based on
liquid-liquid phase separation [88]. Since its nature, a rigorous
thermodynamic treatment would require an extended frame-
work in which the entropy function is not strictly concave [see
the assumption made below Eq. (2)].

In all the above extensions, the present work provides basic
results to clarify the role of conservation laws to the growth of
protocells and biological cells.
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APPENDIX A: CALCULATION OF TOTAL
ENTROPY FUNCTION

The complete dynamics for the system is defined as

dE

dt
= JE (t ),

d�

dt
= J�(t ),

dNm

dt
= Om

r Jr (t ) + Jm
D (t ),

dX i

dt
= Si

rJr (t ), (A1)

where JE (t ), J�(t ), JD(t ) = {Jm
D (t )}, and J (t ) = {Jr (t )} rep-

resent the energy, the volume, the chemical diffusion, and
the chemical reaction fluxes, respectively (see Fig. 1). By
contrast, the dynamics for the environment is given as

dẼ

dt
= −JE (t ),

d�̃

dt
= −J�(t ),

dÑm

dt
= −Jm

D (t ). (A2)

Since we have assumed that the timescale of the reactions
is much slower than that of the others, we can analyze the
dynamics, Eqs. (A1) and (A2), by separating the slow one J (t )
from the fast ones JE (t ), J�(t ), JD(t ). Owing to this timescale
separation, the extensive variables (E ,�, N ) are rapidly re-
laxed to the values at the equilibrium state of the fast dynamics
with a fixed X . They are computed by the thermodynamic
variational problem:

(E (X ),�(X ), N (X ))

= arg max
E ,�,N

{
�[E ,�, N, X ] − E

T̃
− �̃

T̃
� + μ̃m

T̃
Nm

}
(A3)

(see Refs. [78] and [19]). If we use the densities σ , ε, and n,
this variational problem is equivalently written in

(ε(X ),�(X ), n(X ))

= arg max
ε,�,n

{
�

(
T̃ σ

[
ε, n,

X

�

]
− ε − �̃ + μ̃mnm

)}
. (A4)

By defining the partial grand potential density (see Eq. (13)],

ϕ(x) = ϕ
[
T̃ , μ̃; x

]
:= min

ε,n

{
ε − T̃ σ [ε, n, x] − μ̃mnm

}
, (A5)

and taking the maximization with respect to ε and n in
Eq. (A4), we obtain

�(X ) = arg min
�

{
�ϕ

(
X

�

)
+ ��̃

}
. (A6)

This determines the volume � at X [see Eq. (14)].
By substituting (ε(X ),�(X ), n(X )) in Eq. (A4) into

Eqs. (A1) and (A2), we get

dX i

dt
= Si

rJr (t ),
dẼ

dt
= −d�(X )ε(X )

dt
,

d�̃

dt
= −d�(X )

dt
,

dÑm

dt
= Om

r Jr (t ) − d�(X )nm(X )

dt
.

(A7)

Integration of Eq. (A7) leads to

Xt = X0 + S�t ,

Ẽ (Xt ) = Ẽ (X0) − {�(Xt )ε(Xt ) − �(X0)ε(X0)},
�̃(Xt ) = �̃(X0) − {�(Xt ) − �(X0)},
Ñ (Xt ) = Ñ (X0) + O�t − {�(Xt )n(Xt ) − �(X0)n(X0)},

(A8)

where �t is the extent of reaction at time t .
The total entropy in Eq. (1) is represented as

�tot = �(Xt )σ

[
ε(Xt ), n(Xt ),

Xt

�(Xt )

]

+ �̃T̃ ,�̃,μ̃[Ẽ (Xt ), �̃(Xt ), Ñ (Xt )]. (A9)

By substituting Eq. (A8) and employing the Taylor expansion
for �̃T̃ ,�̃,μ̃, we get

�tot = �(X )

[
σ

[
ε(X ), n(X ),

X

�(X )

]

− ε(X )

T̃
− �̃

T̃
− μ̃m

T̃

{
Om

r

�r

�(X )
− nm(X )

}]
+ const,

(A10)

where X = X0 + S�. Here, we used the thermodynamic
relations: ∂�̃T̃ ,�̃,μ̃/∂Ẽ = 1/T̃ , ∂�̃T̃ ,�̃,μ̃/∂�̃ = �̃/T̃ , and
∂�̃T̃ ,�̃,μ̃/∂Ñm = −μ̃m/T̃ . Taking Eq. (A5) into account, we
obtain

�tot = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �(X )�̃ + μ̃mOm

r �r

}

+ const, (A11)

which is Eq. (12).
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APPENDIX B: MASS-ACTION KINETICS

To numerically simulate the dynamics, Eq. (3), we as-
sume mass-action kinetics for the flux function J (t ) =
{J1(t ), J2(t )}. For Example 1, it is given as

J1(t ) = w1
+�

(
X 1

�

)(
X 3

�

)
N1

�
− w1

−�

(
X 2

�

)2

,

J2(t ) = w2
+�

(
X 2

�

)
− w2

−�

(
X 1

�

)(
X 3

�

)
N2

�
, (B1)

where N = (N1, N2) denotes the number of B = (B1, B2) in
the system. The rate constants wr

+ and wr
− satisfy the local

detailed balance condition [11,14,16,78,81]:

log
wr

+
wr−

= − 1

RT̃

{
νo

i (T̃ )Si
r + μo

m(T̃ )Om
r

}
. (B2)

For the ideal-gas case, the density N/� of the open chem-
icals in the system is constant and fixed to that of the
environment ñ. Also, the volume � is given by the equation of
state in Eq. (17). Thus, we can rearrange Eq. (B1) as

J1(t ) = ŵ1
+�

(
X 1

�

)(
X 3

�

)
− ŵ1

−�

(
X 2

�

)2

,

J2(t ) = ŵ2
+�

(
X 2

�

)
− ŵ2

−�

(
X 1

�

)(
X 3

�

)
, (B3)

where we absorb the constant densities of the open chemicals
into the rate constants as ŵr

+ and ŵr
−. For these effective rate

constants, the local detailed balance condition in Eq. (B2) is
written as

log
ŵr

+
ŵr−

= − 1

RT̃

{
νo

i (T̃ )Si
r + μ̃mOm

r

}
, (B4)

where

μ̃m = μo
m

(
T̃

) + RT̃ log ñm, (B5)

in Eq. (16). For our specific case, it is given as

ŵ1
+

ŵ1−
= x2

ox2
oñ1

x1
ox3

on1
o

,
ŵ2

+
ŵ2−

= x1
ox3

on2
o

x2
oñ2

, (B6)

where xi
o := e−νo

i (T̃ )/RT̃ and nm
o := e−μo

m (T̃ )/RT̃ .

APPENDIX C: THE ASSUMPTION FOR PRESSURE �̃

The assumption �̃ > �min is made to guarantee that, for
a given X , the volume �(X ) is uniquely determined and the
system can relax to the equilibrium state of the fast dynamics.

The volume �(X ) is variationally determined in Eq. (14)
as

�(X ) = arg min
�

{
�ϕ

(
X

�

)
+ �̃�

}
. (C1)

For a given X , the critical equation is computed as

h(�) := ϕ

(
X

�

)
− X i

�
∂iϕ

(
X

�

)
+ �̃ = 0. (C2)

The differentiation of h(�) is given as

dh

d�
= �−3X i

[
∂i∂ jϕ

(
X

�

)]
X j . (C3)

Since ϕ is strictly convex, its Hessian ∂i∂ jϕ is positive definite.
Thus, the function h(�) is a strictly increasing function for
� > 0. In addition, h(�) is further calculated as

h(�) = −ϕ∗
(

∂ϕ

(
X

�

))
+ �̃. (C4)

If � → 0, ∂ϕ(X/�) → ∞, and h(�) → −∞. By contrast, if
� → ∞, ∂ϕ(X/�) → −∞, and h(�) → �̃ − �min, because
ϕ∗(y) is strictly increasing and its infimum is given by �min.
Thus, if �̃ > �min, the critical equation has a unique solution
with respect to �, and, therefore, the system can relax to the
equilibrium state of the fast dynamics.

If �̃ � �min, the critical equation h(�) = 0 in Eq. (C2)
does not have a solution, and the volume � diverges from
the variational form in Eq. (C1). This is consistent with our
intuition; if the pressure �̃ of the environment is smaller than
the minimum pressure of the system, the pressures cannot be
balanced and the volume of the system would diverge.

APPENDIX D: DERIVATION OF EQ. (48)

The total entropy function is given in Eq. (12) as

�tot (�) = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �(X )�̃ + μ̃mOm

r �r

}

+ const, (D1)

where X = X0 + S�. It is rewritten as a function of �, X , and
�:

�̄tot (�, X, �) = − 1

T̃

{
�ϕ

(
X

�

)
+ ��̃ + μ̃mOm

r �r

}

+ const. (D2)

Its total derivative is calculated as

d�̄tot = ∂�̄tot

∂�
d� + ∂�̄tot

∂X i
dX i + ∂�̄tot

∂�r
d�r . (D3)

The first coefficient ∂�̄tot/∂� vanishes at � = �(X ) be-
cause of Eq. (14). The second and third coefficients are
computed as ∂�̄tot/∂X i = −∂iϕ(X/�)/T̃ and ∂�̄tot/∂�r =
−μ̃mOm

r /T̃ . Since dX i = Si
rd�r , we obtain

d�̄tot = − 1

T̃

{
∂iϕ

(
X

�(X )

)
Si

r + μ̃mOm
r

}
d�r . (D4)

This corresponds to Eq. (48).

APPENDIX E: PROOF OF �(X ) → ∞ WHEN |X | → ∞
In this Appendix, we show that the volume �(X ) → ∞

when |X | → ∞. For a given X , the volume �(X ) is variation-
ally determined by Eq. (14).

In the number space X, we can show that the volume
function �(X ) satisfies the homogeneity: �(αX ) = α�(X )
for α > 0. Thus, for a given Xr, we have

∂�(αXr)

∂α
= ∂

∂α
{α�(Xr)} = �(Xr). (E1)

This implies that the volume function �(X ) increases with the
rate �(Xr) along the ray including Xr. Therefore, the volume
�(X ) goes to infinity for |X | → ∞.
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APPENDIX F: BIRCH’S THEOREM

In this Appendix, we introduce Birch’s theorem and its
extension.

Consider the following variational problem:

arg min
y

{
ϕ∗(y) − yix

i
0

∣∣y ∈ MY
EQ(μ̃)

}
, (F1)

where x0 ∈ X = RNX
>0 is an arbitrary constant such that Ux0 =

L̂ for a given L̂; it corresponds to the initial condition in
the main text. Also, ϕ∗(y) is a strictly increasing function
as introduced in Sec. III A. From Eq. (53), the variational
problem is rewritten as

arg min
y

{ϕ∗(y) − yix
i
0|y ∈ yP + Im[U T ]} = {yB(L̂)}. (F2)

The point yB(L̂) to attain the minimum uniquely exists, be-
cause ϕ∗(y) − yixi

0 is strictly convex and x0 > 0. To be more
precise, we have ϕ∗(y) − yixi

0 → ∞ as |y| → ∞. By the di-
rectional derivative, the left-hand side of Eq. (F2) can be
represented as

arg min
y

{
ϕ∗(y) − yix

i
0

∣∣ y ∈ yP + Im[U T ]
}

= {y | ∂ϕ∗(y) ∈ x0 + Ker[U ], y ∈ yP + Im[U T ]}
= {

y
∣∣U l

i ∂
iϕ∗(y) = L̂l , y ∈ yP + Im[U T ]

}
. (F3)

Taking Eq. (44) into account, we obtain

M̂Y
STO(L̂) ∩ MY

EQ(μ̃) = {yB(L̂)}, (F4)

which is called Birch’s theorem.
Next, we extend Birch’s theorem to the case x0 → 0. In this

case, Eq. (F1) is formally rewritten as

{ymin} = arg min
y

{
ϕ∗(y)|y ∈ MY

EQ(μ̃)
}

= M̂Y
STO(L̂ = 0) ∩ MY

EQ(μ̃) = {yB(0)}. (F5)

However, the existence of the point ymin is not trivial because
ϕ∗(y) is strictly increasing and ymin may goes to infinity. In
the following, we show that the productivity of S guarantees
its existence.

When we write {U l
i } = (U1, U2, . . .)T , the productivity of

S guarantees that any vector Ul has both positive and negative
components. The directional derivative on MY

EQ(μ̃) leads to

∂ϕ∗

∂ηl
= U l

i ∂
iϕ∗(yP + ηU ), (F6)

where η is a coordinate of Im[U T ]. For a given l , as ηl → ∞,
the following holds:

∂ iϕ∗(yP + ηU ) →

⎧⎪⎨
⎪⎩

∞ for i s.t. U l
i > 0

0 for i s.t. U l
i < 0

∂ iϕ∗(yP
)

for i s.t. U l
i = 0.

Therefore, by taking Eq. (F6) and the productivity of S into ac-
count, we conclude that, for any l , ∂ϕ∗/∂ηl → ∞ as ηl → ∞.
In a similar manner, we can show that, for any l , ∂ϕ∗/∂ηl →
−∞ as ηl → −∞. As a result, ϕ∗(y) restricted on MY

EQ(μ̃)

has a unique minimum. Note that, if S is not productive, the
above statement is not satisfied.

APPENDIX G: PROOF OF LEMMA 2

The starting point ymin of Birch’s trajectory gives the
infimum of ϕ∗(y) in the trajectory because ymin gives the
minimum ϕ∗(y) in the equilibrium manifold MY

EQ(μ̃) [see
Eq. (28)] and any points in the trajectory is in the manifold
MY

EQ(μ̃). Thus, the statement of the Lemma 2 can be proved
if we show that ϕ∗(y) is a strictly monotonic function along
Birch’s trajectory. We prove that by contradiction.

For a given L �= 0, we pick arbitrary two different Birch’s
points on Birch’s trajectory: yB1, yB2 ∈ b(L). We can find α1

and α2 such that yB1 ∈ M̂Y
STO(L/α1) and yB2 ∈ M̂Y

STO(L/α2)
where α1 �= α2 and α1, α2 > 0. From Eq. (44), we have

U l
i ∂

iϕ∗(yB1) = Ll

α1
, U l

i ∂
iϕ∗(yB2) = Ll

α2
. (G1)

Since U is a basis matrix of Ker[ST ]: {U l
i } := (U1, U2, . . .)T ,

and yB1, yB2 ∈ MY
EQ(μ̃), we can choose U1 as yB2 − yB1.

Then, we obtain

U 1
i ∂ iϕ∗(yB1) = α1

α2
U 1

i ∂ iϕ∗(yB2), (G2)

which implies that the signs of U 1
i ∂ iϕ∗(y) are the same at yB1

and yB2.
If ϕ∗(y) is not strictly monotonic along Birch’s trajectory,

we can find yB1 �= yB2 such that ϕ∗(yB1) = ϕ∗(yB2). Since the
vector U1 points in the direction from yB1 to yB2, and ϕ∗(y) is
strictly convex, the signs of U 1

i ∂ iϕ∗(y) are different at yB1 and
yB2. It contradicts with Eq. (G2), and, therefore, ϕ∗(y) should
be strictly monotonic along Birch’s trajectory. �

APPENDIX H: THE FORM OF THE TOTAL ENTROPY
FUNCTION USING A PARTICULAR SOLUTION yP

Substituting a particular solution yP to Eq. (50) into
Eq. (12) [also Eq. (A11)], we get

�tot = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �(X )�̃ − yP

i Si
r�

r

}

+ const. (H1)

Since Si
r�

r = X i − X i
0 from Eq. (4), it can be represented as a

function of the number of the confined chemicals X :

�tot = − 1

T̃

{
�(X )ϕ

(
X

�(X )

)
+ �(X )�̃ − yP

i

(
X i − X i

0

)}

+ const. (H2)
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This is further calculated as

�tot = −�(X )

T̃

{
ϕ

(
X

�(X )

)
− yP

i

X i

�(X )
+ �̃

}
− yP

i X i
0

T̃

= −�(X )

T̃

[
− ϕ∗

(
∂ϕ

(
X

�(X )

))

−
{

yP
i − ∂iϕ

(
X

�(X )

)}
X i

�(X )
+ �̃

]
− yP

i X i
0

T̃
, (H3)

where we omit the constant term in Eq. (H2) for simplicity. In
addition, by defining y(X ) := ∂ϕ(X/�(X )) = ∂ϕ ◦ ρX (X ),
we get

�tot = −�(X )

T̃

[
ϕ∗(yP) − ϕ∗(y(X ))

− ∂ iϕ∗(y(X ))
{
yP

i − yi(X )
} + �̃ − ϕ∗(yP)

] − yP
i X i

0

T̃

= �(X )

T̃
[ϕ∗(yP) − �̃ − DY [yP||y]] − yP

i X i
0

T̃
. (H4)

This corresponds to Eq. (61).

APPENDIX I: THE ENTROPY FUNCTION DOES NOT
DEPEND ON THE CHOICE OF A PARTICULAR

SOLUTION yP

We show that the value of the total entropy function in
Eq. (61) [i.e., Eq. (H2)] does not depend on the particular
choice of yP

i . The general solution to Eq. (50) is represented
by using the particular solution yP as

yi = yP
i + hlU

l
i . (I1)

Then, the term including yP
i in Eq. (H2) is written as

yP
i

(
X i − X i

0

) = yi
(
X i − X i

0

) − hl
(
U l

i X i − U l
i X i

0

)
= yi

(
X i − X i

0

)
. (I2)

Here, the second equality holds because the quantities U l
i X i

is conserved in the time evolution, Eq. (3). Thus, the value in
Eq. (61) does not depend on the choice of yP

i .

APPENDIX J: PROOF OF THE EXISTENCE OF A POINT
y ∈ MY

STO(L = 0) WITH POSITIVE KY (yP; y) WHEN
ϕ∗(ymin ) − �̃ > 0

We show that, when ϕ∗(ymin) − �̃ > 0, we can find y ∈
MY

STO(L = 0) such that KY (yP; y) is positive.
When the stoichiometric matrix S is productive [see

Eq. (7)], we first show that MY
STO(L = 0) �= ∅, i.e., there

exists y ∈ IY (�̃, μ̃) such that U l
i ∂

iϕ∗(y) = 0. From the pro-
ductivity of S, we can construct a vector v = {vi} such that its
components are positive and satisfies U l

i v
i = 0. In addition,

we can find y ∈ IY (�̃, μ̃) such that the vector ∂ϕ∗(y) has the
same direction with v because the range of ∂ iϕ∗(y) covers the
positive orthant. This point y is on the stoichiometric manifold
MY

STO(L = 0). Thus, we get MY
STO(L = 0) �= ∅.

For y ∈ MY
STO(L = 0), we have ϕ∗(y) = �̃ because

MY
STO(L = 0) ⊂ IY (�̃, μ̃). Thus, the expression in Eq. (62)

FIG. 8. Illustration of the proof for the existence of y ∈
MY

STO(L = 0) such that KY (yP; y) > 0 when ϕ∗(ymin ) − �̃ > 0. The
isobaric manifold IY (�̃, μ̃) (solid black curve) represents the level
set {y|ϕ∗(y) = �̃}, which divides the space Y into the sublevel set
(lower left) and the superlevel set (upper right). The equilibrium
manifold MY

EQ(μ̃) (red line) is located in the superlevel set. The
black vector is the normal vector ∂ϕ∗(y) of the level set. Since the
range of ∂ϕ∗(y) = x covers the positive orthant, y ∈ IY (�̃, μ̃) exists
such that it satisfies U∂ϕ∗(y) = 0, shown by the black circle. This
point is on the stoichiometric manifold MY

STO(L = 0). The orange
vector represents (yP − y), and the dashed line expresses the tangent
plane of the level set at the point y. One can find y ∈ MY

STO(L = 0)
such that any yP ∈ MY

EQ(μ̃) is located on the same side of the tangent
plane with the black vector ∂ϕ∗(y). For such y ∈ MY

STO(L = 0), the
inner product ∂ϕ∗(y)(yP − y) is positive.

is rearranged for y ∈ MY
STO(L = 0) as

KY (yP; y) = ϕ∗(yP) − �̃ − DY [yP||y]

= ∂ iϕ∗(y)
(
yP

i − yi
)
. (J1)

The vector ∂ϕ∗(y) = {∂ iϕ∗(y)} represents a gradient of the
convex function ϕ∗(y), which is a normal vector at a point y
of the level set {y|ϕ∗(y) = �̃}. Note that the orientation of the
normal vector points to the superlevel set (see Fig. 8). Also,
(yP − y) is a vector from the point y on the level set to the
point yP ∈ MY

EQ(μ̃). KY (yP; y) represents the inner product
of the two vectors.

To investigate the sign of the inner product, we consider the
tangent plane of the level set at the point y ∈ MY

STO(L = 0)
(see the dashed line in Fig. 8). This plane divides the space
of Y into two regions. If the orientations of the two vectors,
∂ϕ∗(y) and (yP − y), point to the same side of the tangent
plane, their inner product is positive. If they point to the
opposite sides, the inner product is negative.

When ϕ∗(ymin) − �̃ > 0, the equilibrium manifold
MY

EQ(μ̃) is located in the superlevel set. In addition, the

tangent plane at the point y ∈ MY
STO(L = 0) is parallel to

MY
EQ(μ̃). Then, we can find y ∈ MY

STO(L = 0) such that

MY
EQ(μ̃) is located on the same side of the tangent plane

with the orientation of the normal vector ∂ϕ∗(y) at the point
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FIG. 9. Illustration of the proof that KY (yP; y) = ∂ϕ∗(y)(yP − y)
is negative for y ∈ MY

STO(L = 0) when ϕ∗(ymin ) − �̃ < 0. The iso-
baric manifold IY (�̃, μ̃) (solid black curve) represents the level set
{y|ϕ∗(y) = �̃}, which divides the space Y into the sublevel set (lower
left) and the superlevel set (upper right). The equilibrium manifold
MY

EQ(μ̃) (red line) is located both in the sublevel and the superlevel
sets. The black vector is the normal vector ∂ϕ∗(y) of the level set,
which satisfies U∂ϕ∗(y) = 0. Thus, the point y shown by the black
circle is on the stoichiometric manifold MY

STO(L = 0). The orange
vector represents (yP − y) and the dashed line expresses the tangent
plane of the level set at the point y. Any yP ∈ MY

EQ(μ̃) is located on
the opposite side of the tangent plane to the orientation of the black
vector. Thus, the inner product ∂ϕ∗(y)(yP − y) is negative.

y (see Fig. 8). In such a case, the inner product between
∂ϕ∗(y) and (yP

i − yi ) is positive for yP ∈ MY
EQ(μ̃). Thus,

y ∈ MY
STO(L = 0) exists such that KY (yP; y) > 0. �

APPENDIX K: PROOF OF NEGATIVE KY (yP; y) FOR ANY
y ∈ MY

STO(L = 0) WHEN ϕ∗(ymin) − �̃ < 0

We show that, when ϕ∗(ymin) − �̃ < 0, KY (yP; y) is
negative for y ∈ MY

STO(L = 0). Here, we assume that the
stoichiometric matrix S is productive, therefore, MY

STO(L =
0) �= ∅ (see Appendix J).

Consider any point y ∈ MY
STO(L = 0). At the point y, we

can consider the tangent plane of the level set {y|ϕ∗(y) =
�̃}, which divides the space of Y into two regions. Since
KY (yP; y) represents the inner product of the two vectors
∂ϕ∗(y) and (yP − y) in Eq. (J1), the sign of KY (yP; y) is
determined from the sides of the tangent plane to which the
two vectors point. We also note that any point yP ∈ MY

EQ(μ̃)
is on the one side of the tangent plane because the plane is
parallel to the equilibrium manifold MY

EQ(μ̃) (see Fig. 9).
When ϕ∗(ymin) − �̃ < 0, the equilibrium manifold

MY
EQ(μ̃) (the red line in Fig. 9) is located both in the

sublevel and the superlevel sets. From the convexity of the
function ϕ∗(y), any point in the sublevel set is located on
the opposite side of the tangent plane to the orientation of
the normal vector ∂ϕ∗(y) at the point y (see Fig. 9). Since
any point y ∈ MY

EQ(μ̃) is on the one side of the tangent

plane, we can show that the particular solution yP ∈ MY
EQ(μ̃)

is located on the opposite side of the tangent plane to the
orientation of ∂ϕ∗(y). Thus, for yP ∈ MY

EQ(μ̃), the inner
product between ∂ϕ∗(y) and (yP

i − yi ) is negative. Therefore,
for y ∈ MY

STO(L = 0), KY (yP; y) is always negative. �

APPENDIX L: SYMBOLS AND NOTATIONS

TABLE II. List of symbols and notations for open chemical reaction systems (CRSs).

Symbol Description or definition First appearance

X = {X i} The number of confined chemicals (i = 1, . . . ,NX ) Sec. II A
X0 = {X i

0} The initial condition of X Sec. II A, Eq. (4)
N = {Nm} The number of open chemicals (m = 1, . . . ,NN ) Sec. II A
NX The number of species of confined chemicals Sec. II A
NN The number of species of open chemicals Sec. II A
E The energy of the CRS Sec. II A
� The volume of the CRS Sec. II A
μ̃ = {μ̃m} The chemical potential of open chemicals in the environment Sec. II A
T̃ The temperature of the environment Sec. II A
�̃ The pressure of the environment Sec. II A
Ñ = {Ñm} The number of open chemicals in the environment Sec. II A
Ẽ The energy of the environment Sec. II A
�̃ The volume of the environment Sec. II A
�[E ,�, N, X ] The entropy function for the CRS Sec. II A
�̃T̃ ,�̃,μ̃[Ẽ , �̃, Ñ] The entropy function for the environment Sec. II A
�tot The total entropy function Sec. II A, Eq. (1)
σ [ε, n, x] The entropy density Sec. II A, Eq. (2)
(ε, n, x) (E/�, N/�, X/�) Sec. II A
S = {Si

r} The stoichiometric matrix for confined chemicals Sec. II A, Fig. 1
O = {Oi

r} The stoichiometric matrix for open chemicals Sec. II A, Fig. 1
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TABLE II. (Continued.)

Symbol Description or definition First appearance

J (t ) = {Jr (t )} The chemical reaction flux (r = 1, . . . ,NR) Sec. II A, Eq. (3)
NR The number of reactions Sec. II A
JE (t ) The energy exchange rate with the environment Sec. II A, Fig. 1
J�(t ) The volume expansion rate Sec. II A, Fig. 1
JD(t ) = {Jm

D (t )} The diffusion flux for open chemicals Sec. II A, Fig. 1
�(t ) = {�r (t )} The extent of reaction Sec. II A, Eq. (4)
L = {Ll = U l

i X i
0} The conserved quantities (l = 1, . . . , dim Ker[ST ]) Sec. II A, Eq. (6)

U = {U l
i } A basis matrix whose row vectors form the basis of Ker[ST ] Sec. II A, Eq. (6)

L̂ The conserved quantities under the isochoric condition Sec. III C
ϕ(x) The partial grand potential density Sec. II A, Eq. (13)
y The Legendre dual variable of x Sec. II B
ϕ∗(y) The full grand potential density Sec. II B/Eq. (20)
�min The minimum pressure that the CRS can take Sec. III A/Eq. (34)
fr (�) The thermodynamic force Sec. V B/Eq. (60)

TABLE III. List of symbols and notations for geometric descriptions and manifolds.

Symbol Description or definition First appearance

X The number space RNX
>0 Sec. II A

X The density space RNX
>0 Sec. II A

Y The chemical potential space RNX Sec. II B
L The space of conserved quantities Rdim Ker[ST ] Sec. II A

MY
EQ(μ̃) The equilibrium manifold in Y Sec. II B, Eq. (23)

MX
EQ(T̃ , μ̃) The equilibrium manifold in X Sec. III D, Eq.(51)

I#(�̃, μ̃) The isobaric manifold in # = X or Y Sec. III B, Eq. (37), Eq. (39)

M#
STO(L) The stoichiometric manifold/compatibility class in # = X, X , or Y Sec. II C, Eq. (24)-(26)

M̂#
STO(L̂) The stoichiometric manifold in # = X or Y under the isochoric condition Sec. III C, Eq. (43), Eq. (44)

ρX (X ) A nonlinear function of X defined as ρX (X ) = X/�(X ) Sec. II A, Eq. (18)

rX (x) The corresponding ray to x in the space X Sec. II A, Eq. (19)
rY (y) The corresponding ray to y in the space X Sec. II B, Eq. (21)
ymin Eq. (28) Sec. II D
xmin ∂ϕ∗(ymin ) Sec. II F, Fig. 2
yP A particular solution to Eq. (50) Sec. III D, Eq. (53)
h = {hl} A coordinate of Ker[ST ] Sec. III D, Eq. (53)
yEQ The intersecting point MY

STO(L) ∩ MY
EQ(μ̃) Sec. III E, Theorem 1

For regular S, yEQ
i = −μ̃mOm

r (S−1)r
i Sec. II E

yB(L̂) Birch’s point Sec. V A, Eq. (55)

b(L) Birch’s trajectory Sec. V A, Eq. (56)
KY (yP; y) Eq. (62) Sec. V B
DY [y′||y] The Bregman divergence Sec. V B, Eq. (63)
�B The extent of reaction � at the boundary of the domain Sec. V B
XB X0 + S�B Sec. V B
IB(XB) The index set such that X i

B = 0 Sec. V B

TABLE IV. List of symbols and notations used for describing the ideal-gas and mass-action kinetics.

Symbol Description or definition First appearance

R The gas constant Sec.II A
νo(T̃ ) = {νo

i (T̃ )} The standard chemical potentials of confined chemicals Sec.II A
μo(T̃ ) = {μo

m(T̃ )} The standard chemical potentials of open chemicals Sec.II A
ñ = {ñm} The density of open chemicals in the environment Sec.II A, Eq. (16)
xi

o exp[−νo
i (T̃ )/RT̃ ] Fig. 2, Appendix B

nm
o exp[−μo

m(T̃ )/RT̃ ] Fig. 2, Appendix B
wr

+, wr
− The rate constants of rth forward and backward reactions Appendix B

ŵr
+, ŵr

− The rate constants where we absorb the constant densities of open chemicals Appendix B
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