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Maximum power of coupled-qubit Otto engines
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We put forward four schemes of a coupled-qubit quantum Otto machine, a generalization of the single-qubit
quantum Otto machine, based on work and heat transfer between an internal system consisting of a coupled pair
of qubits and an external environment consisting of two heat baths and two work storages. The four schemes
of our model are defined by the positions of attaching the heat baths, which play a key role in the power of the
coupled-qubit engine. First, for the single-qubit heat engine, we find a maximum-power relation, and the fact that
its efficiency at the maximum power is equal to the Otto efficiency, which is greater than the Curzon-Ahlborn
efficiency. Second, we compare the coupled-qubit engines to the single-qubit engine from the point of view of
achieving the maximum power based on the same energy-level change for work production and find that the
coupling between the two qubits can lead to greater powers but the system efficiency at the maximum power is
lower than the single-qubit system’s efficiency and the Curzon-Ahlborn efficiency.
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I. INTRODUCTION

Quantum thermal machines [1–3] are attracting much at-
tention recently, not only for their better performance than
classical machines, but also for their value on exploring the
potential applications of several quantum theories in different
fields, such as quantum information and quantum thermody-
namics. In particular, the quantum heat engine [4–9] occupies
an important position for its broad application scenarios and
development prospects.

Preliminary analyses of the characteristics of quantum en-
gines have been made in previous research, especially for
work production and efficiency [10–13]. Some quantum heat
engines have been put forward in these years under the as-
sumption of Maxwell’s demon, validating a series of quantum
information theories and their applications to the quantum
heat engine [14–16]. Another aspect of quantum heat engines
is given by quantum thermodynamics. The theory of open
quantum systems [17–19] plays a key role for quantum ther-
mal machines by quantifying the evolution and simulating
the interaction between the internal system and the external
environment.

Improving the efficiency of quantum heat engines and the
coefficient of performance of quantum refrigerators based on
the Otto cycle or the Carnot cycle has been an attractive topic
in these years [4,20–24]. In contrast, the power has been less
studied [25–28], but it can be more important for practical
applications because of the concern on the time cost. As the
Carnot cycle achieves the Carnot efficiency only in the limit of
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an infinitely long period and zero power [29–47], considering
the maximum power might be more significant in practice
than considering the efficiency.

For the concern on the time cost, we use an indirect-
measurement model [48,49] in the isochoric processes for
the work extraction. The time costs in these processes are
trivial and negligible, which helps us to obtain greater power.
In contrast, it is unnecessary for studying the efficiency, and
hence few have paid attention to the time cost, particularly for
the work-extraction processes. Some researchers even used
friction to achieve the work-production processes [23,24], for
which the time cost is inevitable.

In the present paper, we focus on the power of two types
of quantum Otto engines. Previous research on the power of
quantum heat engines tends to concentrate on the efficiency
at the maximum power by adjusting the time cost [50–56],
similarly to the Curzon-Ahlborn efficiency [57]. In the present
paper, for more device-oriented purposes, we rather fix the
time cost and aim at finding the maximum power in the steady
cycle by adjusting physical parameters, including the temper-
atures of baths and the energy levels of the internal systems.

The two types of the quantum Otto engines that we con-
sider here are single-qubit and double-qubit engines. Since the
coupling between two qubits of the internal system often plays
a key role in a quantum system, it is meaningful to extend the
quantum Otto engine to the coupled-qubit system. Hitherto,
there have been several models of the coupled-qubit system,
and several researchers have tried to apply these models to the
construction of quantum devices [3,58–64]. These researches
and applications has shown that the coupling in the internal
system makes the entire system present some unique proper-
ties and phenomena. In Ref. [65], for example, the study of
the coupled-qubit system shows that the coupling improves
the efficiency. As previous research has already revealed the
impact of the coupling between internal degrees of freedom
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on the efficiency of quantum thermal machines [3,58], it is
natural to be curious about its influence on the power of the
quantum Otto engine. This is the main focus of the present
paper.

So far, there have been a lot of applications of quantum
thermal machines with different kinds of coupling [59–61].
Different couplings can play different roles in quantum ther-
mal machines, as demonstrated in Ref. [64] for the minimal
two-body quantum absorption refrigerator with XX and ZZ
couplings. To examine the influence of the coupling between
two qubits in the internal system, we consider here the XX
coupling [62–64] in our coupled-qubit system. In the present
paper, we resolve questions from the viewpoint of gaining
greater power and observe several interesting conclusions.

We first find for the single-qubit Otto engine an approxi-
mately linear relation between the temperature difference of
the heat baths and the energy-level difference of the internal
system for the maximum power. We can thereby tune other pa-
rameters to achieve the maximum power under the fixed ratio
of the heat-bath temperatures. We then define four models of
the coupled-qubit quantum heat system based on a quantum
optical two-atom thermal diode [66]. The two qubits named
Q1 and Q2 here can have different energy levels, but for the
comparison we make the qubit Q1, which produces the work,
maintain the energy-level change given by the linear relation
for the single-qubit Otto engine to obtain the maximum power
for a fixed ratio of bath temperatures.

Utilizing the simulation assisted by a Python quantum tool
called QuTip [67,68], we numerically observe that the cou-
pling and the positions of attaching the heat baths influence
the coupled-qubit system in various ways. First, the positions
of attaching the heat baths and the coupling affects the dif-
ficulties of achieving convergence to a limit cycle for our
couple-qubit systems. When each heat bath interacts with the
internal system always through one unique qubit, which we
refer to as Model 11 and Model 22, the coupling strength
should be stronger for obtaining a limit cycle from an initial
state when the energy levels of Q1 become higher. In con-
trast, when each bath interacts with the coupled-qubit system
through different qubits, which we refer to as Model 12 and
Model 21, the cycle quickly converges to a limit cycle.

Second, we find that all of our models break the maximum-
power relation of the single-qubit system and achieve much
greater power than the single-qubit one, when we keep the
other parameters except the coupling equal to those in the
single-qubit case. With a fixed coupling strength, Model 11,
Model 21 and Model 12, and Model 22 produce the maximum
power from the greatest to the lowest in this order, and the
maximum powers of all of them are greater than that of the
single-qubit one. However, Model 11 achieves the maximum
power only with high energy levels of Q1, and hence the
influence of the coupling is not very visible. Besides, Model
11 does not converge to a limit cycle quickly. We thus fo-
cus on the other three models for application purposes. For
all of these systems, the system efficiency at the maximum
power is lower than the Otto efficiency, not being equal to
the Otto efficiency as the single-qubit system. In short, the
coupling increases the maximum power while it decreases the
system efficiency, which is consistent with a trade-off relation
between the efficiency and the power [50–56]. The system

FIG. 1. Schematic view of the single-qubit Otto cycle

efficiency of the maximum power in our schemes is lower than
the Curzon-Ahlborn efficiency [57], which is the efficiency
when the Carnot cycle produces the maximum power, whereas
the single-qubit system yields a higher system efficiency than
the Curzon-Ahlborn efficiency.

This paper is organized as follows: In Sec. II, we review
the model of the single-qubit system and explain the method
and results of its analysis, particularly from the point of view
of the maximum power, focusing on the discovery of a linear
relation between the temperatures of the heat baths and the
energy levels of the internal qubit. In Sec. III, we outline
our coupled-qubit models, discuss the physical mechanism
behind our Otto quantum thermal machines, and define the
main physical quantities. In Sec. IV, we explain the dynamics
for the interaction between the internal system and the exter-
nal environment in the process of heat and work exchanges.
In Sec. V, we present the results and compare the models.
Finally, Sec. VI is devoted to a summary and conclusions.

II. SINGLE-QUBIT SYSTEM

In this section, we overview the model and calculation of a
single-qubit cycle [4,48] for later comparison with a double-
qubit cycle examined in the following sections. Focusing on
the power, we find a linear relation between the temperature
difference between the heat baths and the energy-level dif-
ference of the internal system at the point of achieving the
maximum power, which will be useful for us to come up with
schemes of the coupled-qubit heat machine in Sec. III.

A. Single-qubit Otto cycle

The most elementary quantum Otto heat engine is com-
posed of one qubit, two heat baths, and two work storages
going through two isochoric processes and two adiabatic
work-production processes [48,49]. The single-qubit quantum
Otto cycle operates in six steps (a)–(f) as shown in Fig. 1,
where we assume that heat and work are positive when they
flow from the external environment to the internal system.
Initially, the qubit of the energy gap ωh is at the ground
state. (a) When it interacts with the hot bath of temperature
Th for the time duration th, it is excited, obtaining heat Qh

from the hot bath. (b) A projection measurement of the qubit
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is carried out, severing quantum entanglement with the hot
bath. (c) The energy gap is decreased from ωh to ωc when the
qubit interacts with the work storage, transferring energy −W1

to the storage. (d) The qubit of the energy gap ωc interacts
with the cold bath of temperature Tc for the time duration of
tc and is deexcited, discarding heat −Qc into the cold bath.
(e) The projection measurement of the qubit is carried out
again, severing quantum entanglement with the cold bath; (f)
the energy gap is increased back from ωc to ωh when the
qubit interacts with the work storage, transferring the energy
W2 from the storage. The cycle goes back to ] step (a). We
let the cycle continue until it converges to a limit cycle. In
numerical simulations we use the convergence criteria based
on the energy conservation:

�E := |Qh + Qc + W1 + W2|
� min[|Qh|, |Qc|, |W1|, |W2|] × 10−2, (1)

where we define Qh, Qc, W1, and W2 below in Eqs. (6)–
(10). We let N denote the number of iterations before the
convergence.

The steps (a) and (d) are isochoric processes, whereas the
steps (c) and (f) correspond to the adiabatic expansion and
compression of the classical Otto cycle, respectively. The
whole Hamiltonians of the first and second isochoric pro-
cesses are given by

Hα
iso = Hα

S + Hα
B + Hα

int, (2)

where α = h, c denote the instance of the interaction with the
hot and cold baths, respectively. The system Hamiltonians
of the first and second halves of the cycle are respectively
given by

Hα
S =

(
0 0
0 ωα

)
, (3)

with α = h, c, where ωh > ωc > 0, and we put h̄ to unity
hereinafter. We use ωc as the energy unit and 1/ωc as the time
unit. For the isochoric processes in the steps (a) and (d), we
employ bosonic heat baths whose Hamiltonian is given by

Hα
B =

∑
μ

εμ,α â†
μ,α âμ,α, (4)

where â†
μ,α and âμ,α are the creation and annihilation operators

of the mode k of the bath α. The contact Hamiltonian between
the single-qubit system and each bath α = h, c is

Hα
int =

∑
μ

gμ,ασ x
S (â†

μ,α + âμ,α ), (5)

where σ x
S represents the x component of the Pauli matrices of

the qubit, gμ,α is the coupling strength between the internal
qubit and the mode μ of the bath α.

As detailed in Sec. II B, we analyze the time evolution
of the single-qubit system under the interaction with heat
baths by means of the standard master equation. As we de-
scribe details in Sec. II C, on the other hand, we perform
the work production processes as an indirect-measurement
model [48,49] using quantum measurement theory; we mea-
sure the energy increase and decrease of the work storage after
interaction between the work storage and the system. Since
these work-production processes do not change the state of the

system, we assume that it takes a negligible time of extracting
work.

We define t = 0 as the starting point of step (a) after the
Otto cycle achieves the convergence; the interaction between
the internal system and the hot bath leads the state of the in-
ternal system to change from ρ(0) to ρ(th), and the interaction
between the internal system and the cold bath lets the state of
the internal system evolve from ρ(th) to ρ(th + tc). We then
follow the standard definition of heat transfer:

Qh = tr
[
Hh

S (ρ(th) − ρ(0))
]
, (6)

Qc = tr
[
Hc

S (ρ(tc + th) − ρ(th))
]
. (7)

On the other hand, the work production is typically defined as

W = W1 + W2, (8)

W1 = tr
[
ρ(th)

(
Hc

S − Hh
S

)]
, (9)

W2 = tr
[
ρ(th + tc)

(
Hh

S − Hc
S

)]
. (10)

We reconsider the definition of work in Sec. II C using the
indirect measurement theory, but the bottom line will be the
same.

There are three possible types of thermal machines depend-
ing on the signs of heat and work. When the system makes
the heat flow from the hot bath at a higher temperature to
the cold bath at a lower temperature obtaining work from the
environment, the quantum Otto thermal machine operates as
a heater. If the thermal machine extracts the heat from the
cold bath and makes it flow into the hot bath, there must be
work given by the external environment to the internal system
because of the second law of thermodynamics, and it is a
refrigerator. The last one is a quantum heat engine, which is
the focus of the present paper. In the case of the quantum heat
engine, the heat flows from the hot bath to the cold bath, which
is similar to the heat exchange of the heater, but the work is
produced by the internal system to the external environment.

In other words, the definitions of these different thermal
machines are given as follows; (a) for a heater, Qh > 0, Qc <

0, W > 0; (b) for a cooler, Qh < 0, Qc > 0, W > 0; and (c) for
an engine, Qh > 0, Qc < 0, W < 0. The heater’s coefficient
of performance (HCOP) for the case (a) and the cooler’s
coefficient of the performance (CCOP) for the case (b) as well
as the power and the efficiency for the case (c) are defined by

HCOP = − Qc

W1 + W2
, (11)

CCOP = Qc

W1 + W2
, (12)

P = − (W1 + W2)

th + tc
, (13)

η = −W1 + W2

Qh
. (14)

In the paper, we focus on the situation in which the quan-
tum Otto thermal machine operates as the engine. We use the
two coefficients of the performance only in Fig. 2 below in
order to overview the structure of the entire phase diagram.

023172-3



JINGYI GAO AND NAOMICHI HATANO PHYSICAL REVIEW RESEARCH 6, 023172 (2024)

FIG. 2. (a) Power, (b) efficiency, (c) HCOP, and (d) CCOP for the single-qubit Otto machine as functions of the energy levels ωh/ωc and
the heat-bath temperatures Th/Tc. Parameters: energy unit ωc = 1; the temperature of the cold bath Tc = 5; the transition rate κh = κc = 0.005;
the time durations th = tc = 50.

B. Standard master equation

For the single-qubit quantum Otto cycle [69], we em-
ploy the standard Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) [70,71] master equation under the Born-Markov
approximation and the weak-coupling approximation to sim-
ulate the single-qubit machine numerically using the Python
toolbox QuTip [67,68].

In the process of interaction between the qubit and each
heat bath α = h, c at steps (a) and (d), respectively, we
simulate

dρ

dt
= −i

[
Hα

S , ρ
] + L̂αρ, (15)

where the Liouville superoperator L̂α (α = h, c) is given by

L̂αρ = (Gα (−ωα )D̂[σ−] + Gα (ωα )D̂[σ+])ρ, (16)

with the Lindblad dissipators

D̂[ô]ρ = 1
2 (2ôρô† − ô†ôρ − ρô†ô), (17)

and the spectral response functions of the thermal baths

Gα (ω) = γα (ω)[1 + n̄α (ω)] + γα (−ω)n̄α (ω) (18)

for heat baths α = h, c, where nα (ω) is the Bose-Einstein
distribution at temperature T given by

n̄α (ω) = 1

eω/kbT − 1
, (19)

with the zero chemical potential. The function γα (ω) is the
energy damping rate [72] for the interaction between the qubit
and the bath α, given by

γα (ω) =
{

2π
∑

μ g2
μ,αδ(ω − ωμ,α ) = 2πJα (ω) for ω > 0

0 for ω � 0,

(20)

where gμ,α is the interaction strength between the qubit and
the μth oscillator of the bath α, ωμ,α is the frequency of the
oscillator, and the function Jα (ω) is given by

Jα (ω) = κα

ωs

ω1−s
ct

exp

(
− ω

ωct

)
, (21)

with the cutoff frequency ωct and the transition rates κα of heat
bath α. Since the Lindblad master equation, which use in the
present paper, is valid only for the Ohmic spectrum [73,74],
we consider the Ohmic spectral density for each bath with
s = 1.

C. Work-extraction process

As we describe above, we perform the working production
processes as an indirect-measurement model [48,49] using
quantum-measurement theory, by measuring the energy in-
crease of the work storage after interaction between the work
storage and the system.

To keep track of the variation of the qubits Hamiltonian in
the interaction process, we introduce a clock as an additional
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degree of freedom. The Hamiltonian HSW of the total system
thus consists of the qubit Hα

S (α = h, c), the clock C, and the
work storage HW in the first process of the work production in
the step (c) of Fig. 1:

HSW =Hh
S ⊗ |0〉C 〈0| ⊗ IW + Hc

S ⊗ |1〉C 〈1| ⊗ IW + HW ,

(22)

HW =IS ⊗ IC ⊗ (ωc − ωh) |1〉W 〈1| . (23)

We set the state of the total system before the work extraction
to

ρ i
SW = (ρ00 |0〉S 〈0| + ρ11 |1〉S 〈1|) ⊗ |0〉C 〈0| ⊗ |0〉W 〈0| ,

(24)

while after the work extraction, the clock flips, but the state
of the work storage changes only for the excited state of the
internal single-qubit system. Therefore, the state of the total
system becomes

ρf
SW = ρ00 |0〉S 〈0| ⊗ |1〉C 〈1| ⊗ |0〉W 〈0|

+ ρ11 |1〉S 〈1| ⊗ |1〉C 〈1| ⊗ |1〉W 〈1| . (25)

Naturally, we can define a quenched unitary transformation
for the process:

USW = |0〉S 〈0| ⊗ (|0〉C 〈1| + |1〉C 〈0|) ⊗ IW

+ |1〉S 〈1| ⊗ (|00〉CW 〈11| + |11〉CW 〈00|
+ |01〉CW 〈01| + |10〉CW 〈10|). (26)

This unitary operation commutes with the total Hamiltonian
HSW, hence satisfying the energy conservation law.

Performing the projective measurement to the work stor-
age, we can observe the probabilities of work state without
destroying the state of the internal system. Let us set the
projection operators as follows:

P0 = |0〉W 〈0| , (27)

P1 = |1〉W 〈1| . (28)

Then the work extraction through the observation is calcul-
ated by

W1 = tr[HW (ρ11 |1〉W 〈1| + ρ00 |0〉W 〈0|)] (29)

= (ωh − ωc)ρ11. (30)

Obviously, it is equal to the result we would obtain by the ele-
mentary definition of work in Eq. (9) for the particular choice
of the projection operators (27) and (28). We can similarly
derive Eq. (10) employing the indirect-measurement scheme.

D. Numerical results

We can analytically calculate the power of the single-qubit
Otto engine after achieving the steady cycle; see the Ap-
pendix. For numerical simulation in the section, we set the
lower excited energy level to ωc = 1, which is also the energy
unit, and fix the temperature of the cold bath to Tc = 5 for later
comparison. We also fix the transition rate to κh = κc = 0.005
and the time durations of the interaction between the internal
single-qubit system and each heat bath to th = tc = 50. We

then pursue the dependence of physical quantities, varying the
higher energy level ωh and the hot-bath temperatures Th. We
observe that the single-qubit Otto cycle operates as different
thermal machines under diverse circumstances with different
parameters. As shown in Fig. 2, the single-qubit machine acts
as an engine when Th/Tc > ωh/ωc > 1 or Th/Tc < ωh/ωc < 1,
as a heater when ωh/ωc < 1 and Th/Tc > 1 or ωh/ωc > 1
and Th/Tc < 1, and as a cooler when 1 < Th/Tc < ωh/ωc or
1 > Th/Tc > ωh/ωc. We hereafter focus on the first case.

When the single-qubit Otto system runs as a quantum heat
engine, its efficiency η and the power P behave as shown in
Figs. 2(a) and 2(b), respectively, depending on the ratio of the
energy gaps and the temperatures. As shown in Fig. 2(a), the
power has a shape of a semicircular cone depending on
the ratio of the heat baths’ temperatures Th/Tc and the sys-
tem’s energy levels ωh/ωc. Therefore, it is easy to find a peak
of the power as we scan the ratio of energy levels with the
temperatures fixed; as shown explicitly in Fig. 3(a), the power
of the single-qubit Otto engine always has a unique peak point
as a function of the ratio of the system’s energy levels for a
fixed ratio of the heat baths’ temperatures. We define this peak
as the maximum power of the single-qubit Otto engine that we
are interested in:

Pm = Pm(Th/Tc) := max
ωh/ωc

P(Th/Tc, ωh/ωc). (31)

We also define the ratio of the energy levels and the effi-
ciency at the parameter point of the maximum power:

(ωh/ωc)Pm
:= argmax

ωh/ωc

P(Th/Tc, ωh/ωc), (32)

ηPm := η(Th/Tc, (ωh/ωc)Pm
), (33)

which are presented in Fig. 4.
At a fixed temperature of the cold bath, the maximum

power increases as the hot-bath temperature grows. We notice
in Fig. 4(b) that there is a linear relation between (ωh/ωc)Pm

and Th/Tc of the form(
ωh

ωc

)
Pm

= 1

2

(
1 + Th

Tc

)
. (34)

In other words, the power becomes maximum when ωh is
set to

�h = ωc

2

(
1 + Th

Tc

)
, (35)

and hence the energy-level change of the qubit is set to

ω = �h − ωc = ωc

2

(
Th

Tc
− 1

)
. (36)

This is because of the following simple scaling for the
single-qubit Otto engine. If we fix the temperature Tc of the
cold bath, the lower excited energy level ωc of the single-qubit
system and the time cost tα for each bath α, all thermody-
namic quantities including the power are functions of the
scaling variable kω/kT , where kω := ωh/ωc, and kT = Th/Tc.
Therefore, maximizing the power with respect to kω and kT

are mathematically equivalent and hence the linear relation in
Fig. 4.

The four efficiencies, namely, the system efficiency, the
Otto efficiency, the Carnot efficiency and the Curzon-Ahlborn
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FIG. 3. Dependence of (a) power P and (b) efficiency η of the single-qubit engine on the energy levels ωh/ωc. Parameters: energy unit
ωc = 1, the temperature of cold bath Tc = 5; the transition rate κh = κc = 0.005; the time durations th = tc = 50.

efficiency are plotted in Fig. 4(c), at the maximum power
point of the single-qubit Otto engine. The efficiency of the
single-qubit engine is equal to the quantum Otto efficiency
[4]:

η = ηOtto = 1 − ωc

ωh
. (37)

The Curzon-Ahlborn efficiency is the efficiency when the
Carnot cycle achieves the maximum power. Although we
achieve our maximum power under different circumstances
from the Curzon-Ahlborn efficiency, we suspect that some
readers may want to see the difference in values, and thus
quantitatively compare our maximum power with the Curzon-
Ahlborn efficiency in figures below. The Otto efficiency at
the maximum power is greater than the Curzon-Ahlborn effi-
ciency, which means that the efficiency at the maximum power
point in the present single-qubit Otto engine is greater than the
Carnot-engine one.

III. COUPLED-QUBIT MODEL

In this section, we propose the same quantum Otto cycle
but in which the working medium is composed of two qubits
with the XX coupling. In Sec. III A, based on the quantum
Otto cycle and the maximum-power relations (34)–(36) of the
single-qubit Otto system given in Sec. II, we define four mod-
els of the coupled-qubit engine in which each bath contacts
each qubit. In Sec. III B, we present the Hamiltonians and
physical quantities of our coupled-qubit Otto engines.

A. Four models

We now consider the Otto cycle comprised of an internal
system of two qubits coupled with an XX coupling and four
environment components including two heat baths and two
work storages. Initially, both the first qubit Q1 and the second
qubit Q2 are at their ground states. The operation protocol
is achieved by the following six steps: (a) the system has a

FIG. 4. Dependence of (a) the maximum power Pm, (b) the energy levels (ωh/ωc )Pm and (c) the efficiency ηPm on the heat-bath temperatures
Th/Tc for single-qubit Otto engine. Parameters: energy unit ωc = 1, temperature of cold bath Tc = 5, transition rate: κh = κc = 0.005, time
durations: th = tc = 50.
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TABLE I. Four schemes of our coupled-qubit Otto engines.

QC

Q1 Q2

QH
Q1 Model 11 Model 12
Q2 Model 21 Model 22

contact with the hot bath at QH (=Q1 or Q2) and get excited,
leading to heat transfer of Qh from the hot bath to the system.
(b) The projection measurement is carried out to severe the
quantum entanglement between the system and the hot bath.
(c) Q1 interacts with the work storage, and the Hamiltonian
of Q1 is updated from Hh

S to Hc
S , leading to work production

−W1. (d) The system has a contact with the cold bath at
QC (=Q1 or Q2) and get deexcited, leading to heat transfer
of −Qc from the system to the cold bath. (e) The projec-
tion measurement is carried out again to severe the quantum
entanglement between the system and the cold bath. (f) Q1
interacts with the work storage, and the Hamiltonian of Q1
is changed from Hh

S back to Hc
S , leading to work intake W2.

Then the cycle completes and comes back to the step (a). We
let the cycle continue until it converges to a steady limit cycle.
For the convergence criteria in numerical simulations, we use
the same condition as Eq. (1), and we again let N denote the
number of the Otto cycle iterations before the convergence.

The symbols QH and QC denote the qubits of the internal
systems with H = 1, 2 and C = 1, 2, so that we have four
possible schemes of our model, namely, Model 11, Model
12, Model 21 and Model 22 as shown in Table I. Schematic
views of the four models are shown in Fig. 5. Note that all
four models are only different from each other in the positions
to which the heat baths are attached; they follow the same
operation protocol, and hence we use the common labels (a)–
(f) to represent the steps of the operation for the four models.

B. Hamiltonians

For the Otto cycle defined in Sec. III A, the whole Hamil-
tonians of each isochoric process is given by

Hα
iso = Hα

S + Hα
B + Hq,α

int , (38)

FIG. 5. Schematic views of (a) Model 11, (b) Model 12, (c) Model 21, and (d) Model 22.
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FIG. 6. Schematic view of the coupled-qubit Otto engine’s
energy spectrum.

where α = h, c denote the case of contact with hot and cold
baths, respectively. In the system Hamiltonian

Hα
S = Hα

1 + H2 + Hcp, (39)

we make only Q1’s Hamiltonians Hα
1 (α = h, c) change in the

process of the work extraction:

Hα
1 = ωα

1

I1 − σ z
1

2
⊗ I2, (40)

with α = h, c, where I1 and I2 denote the identity operators
for the spaces of Q1 and Q2, respectively. Meanwhile, Q2’s
Hamiltonian H2 and the coupling Hamiltonian Hcp are fixed:

H2 = ω2I1 ⊗ I2 − σ z
2

2
, (41)

Hcp = g

2

(
σ x

1 σ x
2 + σ

y
1 σ

y
2

)
(42)

= g(σ+
1 σ−

2 + σ−
1 σ+

2 ). (43)

Therefore, the system Hamiltonian (39) is given by

Hα
S =

⎛
⎜⎜⎝

0 0 0 0
0 ω2 g 0
0 g ωα

1 0
0 0 0 ω2 + ωα

1

⎞
⎟⎟⎠, (44)

under the representation bases |Q1, Q2〉 = (|↓↓〉, |↓↑〉, |↑↓〉,
and |↑↑〉) in this order. For the heat-bath Hamiltonians Hq,α

int ,
we employ the same bosonic ones as the single-qubit Otto
engine given by Eq. (4). The interaction Hamiltonians Hq,α

between either of the system qubits Q1 and Q2 and the heat
baths α(= h, c) is given by

Hq,α

int =
∑

μ

Vμ,ασ x
q (â†

μ,α + âμ,α ), (45)

where σ k
q with k = x, y, z and q = 1 or 2 denote the Pauli

matrices for the spaces of Q1 and Q2, respectively.
For g = 0, Model 11 should reduce to the single-qubit Otto

cycle and the other three models cannot operate successfully.
Therefore, by comparing our coupled-qubit models to the
single-qubit engine, we examine whether the XX coupling
contributes to a greater power and analyze the four models
for better applications in various situations.

To compare the single-qubit and coupled-qubit systems on
an equal footing, we consider the four models of the coupled-
qubit system with the same energy-level change as the case
of the maximum power of the single-qubit engine, following
the maximum-power relation (34)–(36) in Sec. II D. Figure 6

shows the change of the system at each step of the Otto
cycle. Q1’s energy levels ωα

1 in Hα
S can be different from the

excited energy ωα (α = h, c) of the single-qubit system, but
for comparison we set the level change ωh

1 − ωc
1 equal to ω

in Eq. (36) of the single-qubit case. In other words, we set
the energy-level change of Q1 of our coupled-qubit system as
follows:

ωh
1 − ωc

1 = ω = ωc

2

(
Th

Tc
− 1

)
. (46)

On the other hand, we set the excited energy level ω2 of Q2
always equal to the lower excited energy ωc of the single-qubit
Otto engine, which is also the energy unit in the present
section:

ω2 = ωc. (47)

In Fig. 6, the red arrows show that the internal system gets
excited by the interaction between the internal system and the
hot bath, the blue arrows show that the internal system gets
deexcited by the interaction between the internal system and
the cold bath, and the green arrows show change of the energy
levels in the processes of producing and intaking the work.

IV. DYNAMICS

For interaction between systems and heat baths, we
can address the question as to which of the standard
and global Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equations for better describing the evolution of the
coupled-qubit quantum heat machines [70,71]. Both of these
master equations are derived in the Born-Markov approxi-
mation [75] and the weak-coupling approximation. For the
coupled-qubit machine, we extend the local GKSL master
equation to a global one whose derivation we present in
Sec. IV A, considering the impact of coupling in the inter-
nal system. We diagonalize the system Hamiltonians of the
coupled-qubit system and calculate the master equation on the
transformed basis.

On the other hand, utilizing the indirect-measurement the-
ory [48,49] for the whole system as we describe in Sec. IV B,
we quantify the work production in the work-extraction pro-
cess without destroying the state of the internal system. Since
we use the measurement as work-production operation, we
assume that the time cost in the process is negligible.

A. Global master equation

Owing to the coupling between Q1 and Q2, different from
the standard master equation in which each bath couples to
the system in a local degree of freedom, we propose a global
approach of the GKSL master equation taking the interdot
coupling into account.

Derivation of the global Liouville superoperators ˆ̄L is more
complicated than the standard one. To analyze the influence of
the coupling to the coupled-qubit system, we diagonalize the
system Hamiltonian (39) and calculate physical quantities in
the diagonalizing basis. The diagonalized system Hamiltonian
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H̃α
S is given by

H̃α
S = U †

α · Hα
S · Uα =

⎛
⎜⎜⎝

0 0 0 0
0 ω̃α

2 0 0
0 0 ω̃α

1 0
0 0 0 ωα

1 + ω2

⎞
⎟⎟⎠, (48)

where the eigenvalues ω̃α
1 and ω̃α

2 of the dressed system
Hamiltonian are given by

ω̃α
1 = 1

2

(
ωα

1 + ω2 +
√

4g2 + (
ωα

1 − ω2
)2)

, (49)

ω̃α
2 = 1

2

(
ωα

1 + ω2 −
√

4g2 + (
ωα

1 − ω2
)2)

, (50)

and the diagonalizing unitary transformation Uα is given by

Uα =

⎛
⎜⎜⎝

1 0 0 0
0 cos (βα ) sin (βα ) 0
0 − sin (βα ) cos (βα ) 0
0 0 0 1

⎞
⎟⎟⎠, (51)

with βα = θα/2 and tan(θα ) = 2g/(ωα
1 − ω2).

The contact Hamiltonians Hα.q
int between the internal

coupled-qubit system and the heat baths are set to either of

Hα,1
int = (

σ x
1 ⊗ I2

)
Vk (â†

k,α
+ âk,α ), (52)

Hα,2
int = (

I1 ⊗ σ x
2

)
Vk (â†

k,C + âk,C ). (53)

Depending on which qubit of Q1 or Q2 contacts with the hot
and cold baths, we transform the contact Hamiltonians to the
diagonalizing basis as

H̃α,q
int = U †

α Hα,q
int Uα, (54)

where q = 1, 2 indicates the qubit of the internal system.
We conduct all the calculations in the diagonalizing basis,

so that the transformed interactions between the qubit and the
heat baths are given by

(σ̃ α )x
1(t ) = eiH̃α

S t H̃α,1
int e−iH̃α

S t (55)

= cos(β )Ĩα
2

[
(σ̃ α )+1 e−iω̃α

1 t + (σ̃ α )−1 eiω̃α
1 t
]

− sin(β )(σ̃ α )z
1

[
(σ̃ α )+2 e−iω̃α

2 t + (σ̃ α )−2 eiω̃α
2 t
]
,

(56)

(σ̃ α )x
2(t ) = eiH̃α

S t H̃α,2
int e−iH̃α

S t (57)

= sin(β )(σ̃ α )z
2

[
(σ̃ α )+1 e−iω̃α

1 t + (σ̃ α )−1 eiω̃α
1 t
]

+ cos(β )Ĩα
1

[
(σ̃ α )+2 e−iω̃α

2 t + (σ̃ α )−2 eiω̃α
2 t
]
, (58)

where (σ̃ α )k
q and Ĩα

q are the k (k = x, y, z,+,−) component of
the Pauli matrices and the identity matrix in the diagonalizing
basis, respectively. The global master equation

dρ

dt
= −i[H, ρ] + ˆ̄Lαρ (59)

and the Liouville superoperators are transformed as
ˆ̃Lα,1ρ = [

cos[2](βα )GH (−ω̃α
1 )D̂

[
σ̃ α−

1

]
+ cos[2](βα )Gα

(
ω̃α

1

)
D̂

[
σ̃ α+

1

]
+ sin[2](βα )Gα

(−ω̃α
2

)
D̂

[
σ̃ α−

2

]
+ sin[2](βα )Gα

(
ω̃α

2

)
D̂

[
σ̃ α+

2

]]
ρ, (60)

ˆ̃Lα,2ρ =[sin[2](βα )Gα

(−ω̃α
1

)
D̂

[
σ̃ α−

1

]
+ sin[2](βα )Gα

(
ω̃α

1

)
D̂

[
σ̃ α+

1

]
+ cos[2](βα )Gα

(−ω̃α
2

)
D̂

[
σ̃ α−

2

]
+ cos[2](βα )Gα

(
ω̃α

2

)
D̂

[
σ̃ α+

2

]]
ρ. (61)

Note that the definitions of the Lindblad dissipators and other
quantities are the same as in the single-qubit case given by
Eqs. (17)–(21).

With the assistant of Python quantum tool QuTip [67,68],
we simulate the models and compare them from several an-
gles. We follow the standard definitions for heat flowing,
obtaining

Qh = tr
[
H̃h

S (ρ(th) − ρ(0))
]
, (62)

Qc = tr
[
H̃c

S (ρ(tc + th) − ρ(th))
]
, (63)

where tα denote the time costs of the interaction between
the internal coupled-qubit system and each heat bath α. The
definition of the work production is given below.

B. Work-extraction process

Extending the indirect-measurement method in
Refs. [48,49] for the calculation of work production in
the single-qubit heat engine, we come up with a method for
the coupled-qubit heat engine in our scheme. We update the
work-production process in Sec. II C by transforming it to
the diagonalizing basis and changing the work storages from
the single two-level system for the single-qubit cycle to the
double two-level systems for our coupled-qubit system. We
also let tα denote the time costs of the interaction between
the internal coupled-qubit system and each heat bath α. We
obtain the work production that still satisfies the standard
definition:

W1 = tr
[
ρ(th)

(
H̃c

S − H̃h
S

)]
, (64)

W2 = tr
[
ρ(th + tc)

(
H̃h

S − H̃c
S

)]
. (65)

Since the work-extraction process is achieved by the indirect
measurement, we assume that it takes negligible time.

For its derivation, we introduce a one-qubit clock and a
two-qubit work storage so that we can observe the work pro-
duction of the internal system through the measurement of the
work storage but do not destroy the system state. To consider
the influence of the coupling, which plays a key role in our
research, we conduct the measurement in the transformed
basis with the diagonalized Hamiltonian

H̃α
S = ω̃α

2 |↓↑〉S 〈↓↑| + ω̃α
1 |↑↓〉S 〈↑↓|

+ (
ωα

1 + ω2
) |↑↑〉S 〈↑↑| . (66)

In the instance of the step (c) in Fig. 5 that the system Hamil-
tonian changes from H̄h

S to H̄c
S , the entire Hamiltonian of the

internal system and external environment after the introduc-
tion of the clock and the work storage is given by

HSE = H̃h
S ⊗ |0〉C 〈0| ⊗ IW

+ H̃c
S ⊗ |1〉C 〈1| ⊗ IW + HW , (67)
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where HW is the Hamiltonian of the work storage given by

HW = IS ⊗ IC ⊗ [(
ω̃C

2 − ω̃H
2

) |↓↑〉W 〈↓↑|
+ (

ω̃C
1 − ω̃H

1

) |↑↓〉W 〈↑↓| + (
ωC

1 − ωH
1

) |↑↑〉W 〈↑↑| ].
(68)

The unitary transformation is given by

UW = |↓↓〉S 〈↓↓| ⊗ (|0〉C 〈1| + |1〉C 〈0|) ⊗ IW

+
∑

b=↓↑,↑↓,↑↑
|b〉S 〈b| ⊗ [|0〉C 〈1| ⊗ |↓↓〉W 〈b|

+ |1〉C 〈0| ⊗ |b〉W 〈↓↓|
+ |0〉C 〈0| ⊗ (IW − |↓↓〉W 〈↓↓|)
+ |1〉C 〈1| ⊗ (IW − |b〉W 〈b|)], (69)

where |b〉S 〈b|, (b =↓↓,↓↑,↑↓,↑↑) are the eigenbases of our
coupled-qubit system. Since UW commutes with the entire
Hamiltonian HSE , the energy in this process of work extraction
is conserved, which satisfies the first thermodynamical law.
The initial and final density matrices of the entire state are
given by

ρi =
∑

b

pb |b〉S 〈b| ⊗ |0〉C 〈0| ⊗ |↓↓〉W 〈↓↓| , (70)

ρ f =
∑

b

pb |b〉S 〈b| ⊗ |1〉C 〈1| ⊗ |w〉W 〈w| , (71)

respectively, where pb is the probability for the internal system
existing in each eigenstate.

We do the projection measurement on the work storage and
find its state as

ρW =
∑
w

pw |w〉W 〈w| , (72)

which gives the energy of the work storage in the form

W = tr[HW ρW ] (73)

= p↓↑
(
ω̃H

2 − ω̃C
2

) + p↑↓
(
ω̃H

1 − ω̃C
1

) + p↑↑
(
ωH

1 − ωC
1

)
(74)

= tr
[
ρ(th)

(
H̃c

S − H̃h
S

)] = W1. (75)

This indeed is equivalent to Eq. (64) based on the standard
definition. We can similarly derive Eq. (65), employing the
indirect-measurement scheme. The power and the efficiency
of the engine are defined in Eqs. (13) and (14).

V. NUMERICAL CALCULATION

Hitherto, properties of the single-qubit Otto engine are
summarized in Sec. II, and the four schemes of our coupled-
qubit Otto engine and their main dynamics are explained in
Secs. III and IV. In this section, we numerically analyze the
coupled-qubit system and compare its maximum power to that
of the single-qubit engine. In Secs. IV A–IV D, we analyze
the results of the four models of our coupled-qubit engine and
find the maximum power. We mainly focus on Model 12 and
Model 21 in Secs. IV A and IV B, respectively, which are the
most interesting parts among our coupled-qubit models. We
also analyze Model 11 and Model 22 in Secs. IV C and IV D,

respectively, which might be also useful in some applications.
In Sec. IV E, we compare the four coupled-qubit engines to
the single-qubit engine, which demonstrates the effects of the
coupling on the Otto engine, and make the comparison of the
coupled-qubit systems in different situations, which plays a
key role for versatile applications.

For our numerical simulations of the coupled-qubit Otto
cycle, we set relevant parameters by assuming the energy
unit as Eunit = ωc = ω2 = 1. We also fix the transition rate
as κh = κc = 0.005 and the time costs of the evolution in the
isochoric processes as tc = th = 50, exactly the same as in the
analysis of the single-qubit case. Similarly to the maximum
power of the single-qubit engine, which happens as the peak
of the power depending on the energy levels ωα of the internal
system under specific temperatures Tα of the heat baths, we
define the maximum power of our coupled-qubit engine as
the peak of the power depending on the energy level ωc

1 of
Q1 under specific temperatures Tα of the heat baths and the
coupling strength g. Note that, as indicated in Fig. 6, we fix
ωh

1 according to Eq. (35).

A. Model 12

As defined in Sec. III A, Q1 and Q2 of the Model 12
interacts with the hot and the cold bath, respectively, in the
isochoric processes. In the processes of the work production,
on the other hand, the energy level ω2 of Q2 is fixed and the
work storages interact with the internal system only through
Q1.

As shown in Fig. 7(a), for the fixed energy levels of Q1,
the power of Model 12 increases and approaches to a greatest
value when the coupling strength g gets stronger. On the other
hand, for a fixed coupling strength g, the power of Model
12 increases first but decreases after a peak when the energy
level ωc

1 of Q1 increases, and we can find a peak of power in
Model 12 depending on the energy levels of Q1, as shown
in Fig. 8(a), which we define as the maximum power of
Model 12 for specific coupling strength g = 0.55 and heat-
bath temperatures Tc = 5, Th = 15.5; we hereafter use the
values for comparison. Figure 7(b) shows that the efficiency
at the maximum power is lower than the possibly greatest
efficiency, which is consistent with the theory of trade-off
relation [50–53,56]. As shown in Fig. 8(b), the efficiency of
Model 12 is lower than its Otto efficiency while the coupling
improves the power, unlike the single-qubit system, for which
the efficiency at the maximum power is equal to its Otto
efficiency; see Eq. (37)

Figure 9(a) presents the maximum power of the Model
12 for different temperatures of the heat baths Tα when the
coupling strength g is fixed to 0.55. The energy level ωc

1
of Q1 for achieving the maximum power remains constant
for different heat-bath temperatures, as shown in Fig. 9(b).
Although the level change ω of our coupled-qubit models
is set to be equal to the one that maximizes the power of the
single-qubit system as in Eq. (36), Model 12 achieves much
greater powers when Q1’s energy level ωc

1 is about two times
higher than the energy levels of the single-qubit system, ωc. In
other words, Model 12 breaks the maximum-power relation
(34) of the single-qubit engine and achieves a greater maxi-
mum power with higher energy levels, thanks to the existence
of the other qubit Q2 and the coupling between the two qubits.
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FIG. 7. Dependence of (a) the power P and (b) the efficiency η of Model 12 on the Q1’s energy level ωc
1/ωc and the coupling strength g

under the fixed heat-bath temperatures. Parameters: energy unit ωc = 1; temperature of heat baths Tc = 5, Th = 15; transition rate: κh = κc =
0.005; time durations: th = tc = 50.

Comparison of different efficiencies is shown in Fig. 9(c).
As mentioned in Sec. II D, the efficiency of the single-qubit
system is equal to its Otto efficiency (purple line) at the
maximum power as Eq. (37). Since the energy level ωc

1 of Q1
is higher than the energy level ωc of the single-qubit system,
the Otto efficiency of Model 12 (pink line) is lower than the
single-qubit Otto efficiency (purple line). Besides, as men-
tioned before, when the coupling improves the power of the
coupled-qubit engine, the efficiency at the maximum power
decreases, which is the reason why the system efficiency of
Model 12 (blue line) is lower than the Otto efficiency of Model
12 (pink line). In other words, similar to the Curzon-Ahlborn
efficiency (gray line), which is the efficiency at the maxi-
mum power of the Carnot cycle and lower than the Carnot

efficiency (brown line), the efficiency at the maximum power
of Model 12 is lower than its Otto efficiency. As a result, the
system efficiency of Model 12 (blue line) at the maximum
power for a specific coupling strength g = 0.55 and heat-
bath temperatures Tα is lowest among the efficiencies listed
above.

B. Model 21

As defined in Sec. III A, for Model 21, Q2 and Q1 interact
with the hot and the cold baths, respectively, in the isochoric
processes. In the processes of work production, the energy
level ω2 of Q2 is fixed and the work storages interact with
the internal system only through Q1.

Similarly to the case of Model 12, we search for the maxi-
mum power of Model 21 by adjusting the energy levels ωα

1 of

FIG. 8. Dependence of (a) the power P and (b) efficiency η of Model 12 on the Q1’s energy level ωc
1/ωc for the fixed coupling strength

g = 0.55. The blue lines indicates the results of the single-qubit engine for comparison. Parameters: energy unit ωc = 1; temperature of heat
baths Tc = 5, Th = 15.5; transition rate κh = κc = 0.005; time durations th = tc = 50.
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FIG. 9. Dependence of (a) the maximum power Pm, (b) the energy level (ωc
1/ωc )Pm of Q1 and (c) the efficiency ηPm of Model 12 on

the heat-bath temperatures Th/Tc for the fixed coupling strength g = 0.55. Parameters: energy unit ωc = 1; temperature of cold bath Tc = 5;
transition rate κh = κc = 0.005; time cost th = tc = 50.

Q1 and the coupling strength g for fixed temperature Tα of the
heat baths and the energy-level change ω; see Fig. 10(a).
We also plot the efficiency in Fig. 10(b) in order to analyze
the influence of different factors for the efficiency at the max-
imum power. The dependence of the power of Model 21 on the
coupling strength g and the energy level ωc

1 of Q1 is similar
to the case of Model 12. For the fixed energy levels of Q1,
the power of Model 21 increases when the coupling strength
gets stronger. On the other hand, for a fixed coupling strength,
the power of Model 21 increases first but decreases after a
peak when the energy levels ωα

1 of Q1 increase. Therefore, as
shown in Fig. 11(a), we can find a peak of power depending
on the energy levels of Q1 by fixing the coupling strength
for specific temperatures of the heat baths, which we define
as the maximum power of Model 21 for specific coupling
strength g and heat-bath temperatures Tα . Similarly to Model
12, as shown in Figs. 10(b) and 11(b), the system efficiency
of Model 21 is lower than the one at the maximum power of
the single-qubit system for the specific heat-bath temperatures
and the Otto efficiency of Model 21 for various values of the

energy level ωc
1 of Q1. The coupling decreases the efficiency

when it improves the power of Model 21. Similarly to the
case of Model 12 in Fig. 9(a), although the level change ω

of Model 21 is equal to the one which maximizes the power
of the single-qubit system, Model 21 also achieves much
greater powers than the single-qubit one. However, unlike the
Model 12, for which the energy levels of Q1 for achieving
the maximum power remain constant [Fig. 9(b)] for different
heat-bath temperatures, for Model 21 in Fig. 12(b), the energy
level ωc

1 of Q1 achieving the maximum power becomes higher
when the ratio Th/Tc of the heat-bath temperatures increases.
Model 21 also breaks the maximum-power relation (34) of the
single-qubit system and achieves much greater powers than
the single-qubit one when its Q1’s energy level ωc

1 is higher
than the energy level of the single-qubit system ωc.

For the comparison of different efficiencies in Fig. 12(c),
the efficiency of Model 21 plotted by the blue line is again the
lowest among the efficiency listed here. Due to the influence
of the XX coupling on the coupled-qubit system, the system
efficiency of Model 21 at the maximum power (blue line) is

FIG. 10. Dependence of (a) the power P and (b) the efficiency η of Model 21 on the Q1’s energy level ωc
1/ωc and the coupling strength g

under the fixed heat-bath temperatures. Parameters: energy unit ωc = 1; temperature of heat baths Tc = 5, Th = 15; transition rates: κh = κc =
0.005; time durations: th = tc = 50.
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FIG. 11. Dependence of (a) the power P and (b) efficiency η of Model 21 on the Q1’s energy level ωc
1/ωc for the fixed coupling strength

g = 0.55. The blue lines indicates the results of the single-qubit engine for comparison. Parameters: energy unit ωc = 1; temperature of heat
baths Tc = 5, Th = 15.5; transition rates κh = κc = 0.005; time durations th = tc = 50.

lower than its Otto efficiency (pink line), which is similar to
the case of the Carnot cycle in that the Curzon-Ahlborn effi-
ciency (gray line) is lower than the Carnot efficiency (brown
line). Besides, the Otto efficiency of Model 21 at the maxi-
mum power (blue line) is lower than the single-qubit system’s
Otto efficiency (purple line), due to the higher energy level ωc

1
of Q1 than the energy level ωc of the single-qubit system. Un-
like the single-qubit system, for which the system efficiency
at the maximum power is higher than the Curzon-Ahlborn
efficiency, the system efficiency of Model 21 at the maximum
power is lower than the Curzon-Ahlborn efficiency, as the blue
and purple lines show in Fig. 12(c).

C. Model 11

As defined in Sec. III A, Model 11 interacts with each
heat bath only through Q1 during the isochoric processes and
with the work storages only through Q1 in the processes of
work production. We again search for the maximum power
of Model 11 by adjusting the energy levels ωα

1 of Q1 and
the coupling strength g for fixed temperatures Tα of heat
baths and the energy-level change ω of Q1 in Eq. (36);
see Fig. 13(a). We also plot the efficiency in Fig. 13(b) to
analyze the influence of different factors for the efficiency at
the maximum power. The dependence of the power on the
energy levels of Q1 with fixed coupling strength is similar

FIG. 12. Dependence of (a) the maximum power Pm, (b) the energy level (ωc
1/ωc )Pm of Q1, and (c) the efficiency ηPm of Model 21 on

the heat-bath temperatures Th/Tc for the fixed coupling strength g = 0.55. Parameters: energy unit ωc = 1; temperature of cold bath Tc = 5;
transition rates: κh = κc = 0.005; time durations: th = tc = 50.
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FIG. 13. Dependence of (a) the power P and (b) the efficiency η of Model 11 on the Q1’s energy level ωc
1/ωc and the coupling strength g

under the fixed heat-bath temperatures. Parameters: transition rate: κh = κc = 0.005, time cost: th = tc = 50, Energy unit ωc = 1, temperature
of heat baths Tc = 5, Th = 15.

to the previous models in that the power increases first but
decreases after a peak when the energy levels of Q1 increase
with a specific coupling strength, as shown in Fig. 14(a).
Therefore, by fixing the coupling strength to a constant value,
we can still define the peak of the power depending on the
energy levels of Q1 as the maximum power of Model 11
under specific heat-bath temperatures and coupling strength.
However, if we fix the energy level of Q1 to the one which
maximizes the power, unlike Model 12 and Model 21, the
power and efficiency are almost independent of the coupling
strength g.

As shown in Fig. 15(a), Model 11 achieves much greater
powers than the single-qubit one. However, unlike Model 12

and Model 21, which achieve the maximum power for the en-
ergy levels of Q1 around two to three times higher than the one
that maximizes the power of the single-qubit system, Model
11 achieves the maximum power with much higher energy
level ωc

1 of Q1, over ten times higher than the single-qubit
case, as shown in Fig. 15(b). Such a high energy level ωc

1 of
Q1 might not be suitable for many applications. As another
point, when the energy levels of Q1 are much higher than the
energy level ω2 of Q2 and the coupling strength g for Model
11, the influence of the coupling to Q2 becomes relatively
weak, which is the reason why the maximum power of Model
11 is almost constant independent of the coupling strength.
Therefore, although Model 11 achieves the greater power than

FIG. 14. Dependence of (a) the power P and (b) efficiency η of Model 11 on the Q1’s energy level ωc
1/ωc for the fixed coupling strength

g = 0.55. The blue line indicates the results of the single-qubit engine for comparison. Parameters: energy unit: ωc = 1; temperature of heat
baths: Tc = 5, Th = 15.5; transition rates: κh = κc = 0.005; time durations: th = tc = 50.
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FIG. 15. Dependence of (a) the maximum power Pm, (c) the energy levels (ωc
1/ωc )Pm of Q1 and (d) the efficiency ηPm of Model 11 on

the heat-bath temperatures Th/Tc for the fixed coupling strength g = 0.55. Parameters: energy unit: ωc = 1; temperature of cold bath: Tc = 5;
transition rates: κh = κc = 0.005; time durations: th = tc = 50.

Model 12, Model 21 and the single-qubit system, we should
pay less attention to Model 11.

As the blue and pink lines that overlap in Fig. 15(c), at
the maximum power, unlike Model 12 and Model 21, which
obtain the system efficiency at the maximum power lower than
the Otto efficiency, Model 11 achieves the system efficiency
at the maximum power equal to its Otto efficiency, which is
similar to the case of the single-qubit engine. In other words,
the efficiency of Model 11 at the maximum power is only
influenced by the energy levels of Q1, because the energy
level ωc

1 of Q1 that maximizes the power of Model 11 is
so high that the influence of the coupling strength becomes
trivial. Since the energy levels of Q1 at the maximum power
are much higher than the case of the single-qubit Otto en-
gine, the efficiency of the Model 11 (blue line) is lower than
the single-qubit one (purple line). Different from the single-
qubit Otto engine, whose system efficiency (purple line) at
the maximum power is greater than the Curzon-Alhborn
efficiency (gray line), the system efficiency of Model 11
(blue line) is lower than the Curzon-Alhborn efficiency (gray
line).

Unlike Model 12 and Model 21, which can always achieve
the energy convergence easily, it is difficult for Model 11
to achieve the energy convergence (1) under some circum-
stances, so that the iterations N for energy convergence is also
a significant factor of Model 11 that we cannot neglect. As
shown in Fig. 16, if we fix the coupling strength g and the heat-
bath temperatures Tα , the number of iterations N of the Model
11 to achieve the energy conservation (1) increases when the
energy level ωc

1 of Q1 becomes big, and becomes significantly
large near the maximum-power point, which could be vital in
some practical experiments and applications.

D. Model 22

As Model 22 defined in Sec. III A, the coupled-qubit
system contacts with each bath only through Q2 in the
isochoric processes, while the work storages interacts

with the internal system and produces the work through
only Q1.

We again search for the maximum power by adjusting the
energy level ωc

1/ωc of Q1 and the coupling strength g under
fixed temperatures Tα of the heat baths and the energy-level
change ω in Eq. (36), thereby analyzing the influence of
different factors for the efficiency at the maximum power.
The power and the efficiency of Model 22 depend on the
coupling strength g and the energy level ωc

1 of Q1 as shown
in Fig. 17, which is similar to Model 12 and Model 21; the
power of Model 22 increases and approaches to the greatest
value when the coupling strength g gets stronger for the fixed
energy level ωc

1 of Q1, while the efficiency at the maximum
power becomes lower from the highest efficiency. For a fixed
coupling strength, on the other hand, the power of the Model
22 increases first but decreases after a peak when the energy
level ωc

1 of Q1 increases, as shown in Fig. 18(a). We define
the peak as the maximum power of Model 22 under specific

FIG. 16. Dependence of the iterations N of Model 11 on the Q1’s
energy level ωc

1/ωc for the fixed coupling strength g = 0.4. Parame-
ters: energy unit: ωc = 1; temperature of each bath: Tc = 5, Th = 15;
transition rates: κh = κc = 0.005, time durations: th = tc = 50.
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FIG. 17. Dependence of (a) the power P and (b) the efficiency η of Model 22 on the Q1’s energy level ωc
1/ωc and coupling strength g.

Parameters: energy unit: ωc = 1; temperature of heat baths: Tc = 5, Th = 15; transition rates: κh = κc = 0.005; time durations: th = tc = 50.

heat-bath temperatures and coupling strength. As shown in
Fig. 18(b), the efficiency of Model 22 is lower than its Otto
efficiency and the system efficiency of the single-qubit system
at the maximum power for the specific heat-bath temperature.
In other words, the coupling decreases the efficiency when it
improves the power of Model 22, which is similar to Model
12 and Model 21.

As shown in Fig. 19(a), Model 22 yields the maxi-
mum power greater than the single-qubit one. Similarly to
Model 12, when the cold-bath temperature and the coupling
strength are fixed, although the maximum power increases
when the temperature of the hot bath increases, the energy
level ωc

1 of Q1 that maximizes the power of Model 22 re-
mains constant for different hot-bath temperature, as shown in
Fig. 19(b).

For the comparison of different efficiencies of Model 22,
as the blue line shown in Fig. 19(c), similarly to Model 12
and Model 21, the system efficiency is the lowest among
the listed efficiencies, due to the influence of the coupling.
Because the energy level ωc

1 of Q1 that maximizes the power
of Model 22 is higher than the energy level ωc that maximizes
the power of the single-qubit system, the system efficiency
(blue line) is lower than the single-qubit system’s effi-
ciency (purple line) and the Curzon-Ahlborn efficiency (gray
line).

Similarly to Model 11, it is difficult for Model 22 to obtain
the energy convergence (1) under some circumstances. The
number of iterations N for the energy conservation increases
when the energy level ωc

1 of Q1 becomes higher, as shown
in Fig. 20, and it becomes difficult for Model 22 to achieve

FIG. 18. Dependence of the (a) power P and (b) efficiency η of Model 22 on the Q1’s energy level ωc
1/ωc for the fixed coupling strength

g = 0.55. Parameters: energy unit: ωc = 1, temperature of heat baths: Tc = 5, Th = 15.5, transition rates: κh = κc = 0.005; time durations:
th = tc = 50.
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FIG. 19. Dependence of (a) the maximum power Pm, (b) the energy level (ωc
1/ωc )Pm of Q1 and (c) the efficiency ηPm of Model 22 on the

fixed heat-bath temperatures Th/Tc for the fixed coupling strength g = 0.55. Parameters: energy unit: ωc = 1; temperature of cold bath: Tc = 5;
transition rates: κh = κc = 0.005; time durations: th = tc = 50.

the energy convergence, which is similar to the case of Model
11.

E. Comparison

Hitherto, from Secs. V A to V D, we analyze the results of
the four models of our coupled-qubit Otto engine and verify
that the coupled-qubit Otto engine can achieve greater powers
than the single-qubit Otto engine in various situations. Let us
finally compare these four models of our coupled-qubit Otto
engine and the single-qubit system to each other.

For the maximum power obtained by scanning the energy
level ωc

1 of Q1 with fixed coupling strength g, as shown in
Fig. 21, all of the coupled-qubit systems can achieve greater
powers than the single-qubit Otto engine. All of our coupled-
qubit models break the maximum-power relation (34) of the
single-qubit Otto engine and achieve much greater power with
a higher energy level ωc

1 of Q1 than the level ωc of the single-
qubit system. The power is from the largest to the smallest for
Model 11, Model 21, Model 12, Model 22 in this order, and

FIG. 20. Dependence of the iterations N of Model 22 on the Q1’s
energy level ωc

1/ωc for the fixed coupling strength g = 0.4. Parame-
ters: energy unit: ωc = 1; temperature of each baths: Tc = 5, Th = 15;
transition rates: κh = κc = 0.005; time durations: th = tc = 50.

the single-qubit system at last, corresponding to the energy
levels of Q1 from the highest to the lowest.

However, as we mentioned before, although Model 11
achieves the greatest power, its energy level ωc

1 of Q1 for
achieving the maximum power is so high that the influence
of the coupling on Model 11 at the point of maximum power
is trivial, and such high energy levels might be impractical.
Therefore, we mainly focus on Model 12 and Model 21, which
achieves the maximum power greater than the one of Model
22 and the single-qubit system. Model 12 and Model 21
achieve the maximum power almost twice of the single-qubit
one by the energy level ωc

1 of Q1 about two to three times
higher than the single-qubit case, which is quite practical,
and the efficiency at the maximum power is still acceptable
comparing with Model 11, whose efficiency at the maximum
power is much lower than the other models.

For a better understanding of the influence of the cou-
pling of the internal system, we search for another maximum
power by scanning the coupling strength g and setting other
parameters of the coupled-qubit Otto system to the same as
the single-qubit one. In other words, we define another type
of maximum power depending on the coupling strength g by
fixing the energy levels ωα

1 of Q1 equal to the single-qubit
case ωα , in order to examine the impact of the XX coupling of
our system. When the energy levels ωα

1 of Q1 are equal to the
levels ωα of the single-qubit system, our coupled-qubit models
achieve almost equal maximum power under the similar cir-
cumstances, as shown in Fig. 22(a). In the situation, the power
of these coupled-qubit systems are greater than the single-
qubit case, verifying that the coupling in the coupled-qubit
system can improve the power. As shown in Fig. 22(b), for the
energy level ωc

1 of Q1 which is the same as the single-qubit
one, the coupling strength g that maximizes the power of
Model 11 (blue dots) and Model 12 (orange-pluses) are almost
equal to each other, and the one that maximizes the power of
Model 21 (green ×) and Model 22 (red-dotted line) are almost
equal to each other. For the fixed energy level ωc

1 of Q1 and the
heat-bath temperatures Tα , as shown in Fig. 22(c), depending
on different coupling strengths g, the system efficiencies of
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FIG. 21. Dependence of (a) the maximum power Pm, (b) the efficiency ηPm , and (c) the energy levels (ωc
1/ω)Pm on the heat-bath temperatures

Th/Tc for the fixed coupling strength g = 0.55. Parameters: energy unit: ωc = 1; temperature of cold bath: Tc = 5; transition rates: κh = κc =
0.005; time durations: th = tc = 50.

the coupled-qubit systems at the maximum power are lower
than the single-qubit one (purple line), and they are lower
than their Otto efficiency (pink line) for the specific heat-bath
temperature, verifying that the coupling leads the efficiency
at the maximum power to decrease while it improves the
power.

VI. CONCLUSIONS

In the present paper, we investigate different factors’ im-
pacts on the power of several Otto quantum heat engines,
comparing the similarity and the difference between the
single-qubit and the coupled-qubit systems. For the simulation
of these Otto cycles, we utilized the Python toolbox QuTip
[67,68] to calculate the evolution of the systems based on two
types of the GKSL master equation [70,71] and the work pro-
duction processes based on the indirect measurement [48,49]
with different kinds of work storages.

For the single-qubit Otto quantum thermal machine, we
observe that it can act as three types of thermal machines
under diverse heat bath temperatures and system energy gaps.
In maximizing the power of the single-qubit engine, we found
an almost linear relation (34) between the ratio of the heat
baths temperatures Th/Tc and the ratio of system energy levels
ωh/ωc. Utilizing the maximum-power relation, we come up
with parametrization of four different models of the coupled-
qubit Otto machine with XX coupling.

We numerically found that the coupled-qubit systems can
achieve much greater powers than the single-qubit machine
with the same energy-level change. The maximum powers
of our coupled-qubit models are also greater than the single-
qubit one. The energy levels of the coupled-qubit engines
are higher than the single-qubit system when they achieve
the maximum power under the specific hath-temperatures and
coupling strength, although they are in the same energy-level
change as the single-qubit one.

FIG. 22. Dependence of (a) the maximum power Pm, (b) coupling strength gPm , and (c) the efficiency ηPm on the heat-bath temperatures
Th/Tc when the energy levels of Q1 are equal to the single-qubit system. Parameters: energy unit: ωc = 1; temperature of cold bath: Tc = 5;
transition rates: κh = κc = 0.005; time durations: th = tc = 50.
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When the other factors except the coupling strength are the
same as those the single-qubit system’s, a greater power than
the maximum power of the single-qubit system is achieved
by the coupled-qubit engines, verifying that XX coupling
improves the power of the Otto engines. Besides, in all of
our coupled-qubit systems, the existence of the coupling to
the other qubit in the internal system helps the coupled-qubit
Otto engine break the maximum-power relation (34) of the
single-qubit system and achieves greater maximum powers
with higher energy levels of Q1. Particularly for Model 12 and
Model 21, we can achieve much greater powers with practical
and reasonable coupling strength and the energy levels of
Q1, which could be useful for applications that focus on the
power of the quantum Otto engine. This lets us anticipate that
systems with more than two qubits may yield even greater
powers, which offers a good topic for future work.

Although Model 11 produces the maximum power greater
than the other models, the coupling strength influences the
value of power trivially at the maximum power. The impact
of the coupling on the power and efficiency becomes weak
and trivial when the energy levels of Q1 are high, so that the
system efficiency is almost equal to the Otto efficiency at the
maximum power of Model 11. In addition, the XX coupling
of Model 11 makes achieving the energy convergence (1)
difficult, which is critical in practice.

For the other three models, the influence of the coupling
in the power and the efficiency at the maximum power is
always significant. We find that their system efficiencies at the
maximum powers are lower than their Otto efficiency, unlike
the single-qubit system, which yields the system efficiency
equal to the Otto efficiency, verifying that the coupling de-
creases the system efficiency at the maximum power, which
is consistent with a trade-off relation between the efficiency
and the power [50–56]. Due to the higher energy levels of
Q1, all the system efficiencies of our coupled-qubit models
at the maximum power are lower than the Curzon-Ahlborn
efficiency, unlike the single-qubit system, whose efficiency
at the maximum power is higher than the Curzon-Ahlborn
efficiency.
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APPENDIX: STEADY CYCLE
OF THE SINGLE-QUBIT SYSTEM

We here show how we can analytically find the solution for
the single-qubit Otto engine in Fig. 1. The engine consists of
four strokes, two adiabatic processes and two isochoric pro-
cesses. In the isochoric processes given in Sec. II C, when the
system interacts with the work storages, only the Hamiltonian
of the internal system changes, without time consuming nor
state changes. The system state changes only in the adiabatic
processes given in Sec. II B.

In the adiabatic processes, we calculate the evolution of
the system by the standard master equation in Eqs. (15)
and (16) based on the Born-Markov approximation and the

weak-coupling approximation. Using the definitions given in
Sec. III B and the physical quantities in Sec. II B, we can
calculate the evolution of the system by expressing the 2 × 2
density matrix in the form of a four-dimensional vector:

�P(t ) =

⎛
⎜⎜⎝

ρ00(t )
ρ01(t )
ρ10(t )
ρ11(t )

⎞
⎟⎟⎠, (A1)

which makes the governing equation the following matrix
equation:

d

dt
�P = L̂α �P, (A2)

where α = h, c denotes each bath. The Liouvillian superoper-
ator L̂α in Eq. (16) is then given by a 4 × 4 matrix:

L̂α =

⎛
⎜⎜⎝

−G−
α 0 0 G+

α

0 γ −
α 0 0

0 0 γ +
α 0

G−
α 0 0 −G+

α

⎞
⎟⎟⎠, (A3)

where G±
α and γ ±

α are given by

G±
α := Gα (±ωα ), (A4)

γ ±
α := ±[

1
2 (G+

α + G−
α ) − iωh

]
, (A5)

with Gα (±ωα ) being the spectral response functions of the
thermal baths in Eq. (18), and hence

G−
α = 2πκαωαe−ωα/ωct

1

eωα/Tα − 1
, (A6)

G+
α = eωα/Tα G−

α = 2πκαωαe−ωα/ωct
eωα/Tα

eωα/Tα − 1
, (A7)

where ωct is the cutoff frequency and e−ωα/ωct ≈ 1 when
ωct 
 ωα .

Let us notice that each of the off-diagonal elements ρ01

and ρ10 decays exponentially with the decay rates −Reγ ±
α .

Besides, as shown in Fig. 1 and in the operation protocol given
in Sec. II A, for severing the coupling between each bath and
the internal system, we carry out the projector measurement
at the steps (b) and (e) after the interaction between each bath
and the system. Therefore, the evolution of the off-diagonal
components are negligible. We only need to take care of the
diagonal elements ρ00 and ρ11 when we look for the solution
of the limit cycle. The time-evolution of the diagonal elements
are governed by the remaining 2 × 2 block, which simplifies
the following analysis substantially.

In a limit cycle starting from t0, the system state
changes as

�P(th + t0) = eL̂hth �P(t0), (A8)

�P(th + tc + t0) = eL̂ctc �P(th + t0), (A9)

where tα denotes the time consumption in the interaction with
each bath α and P̂(t ) is the vector of the system state ρ̂ at time
t . We now look for the solution for the steady cycle, or the
limit cycle, in which the final state of the system is equal to its
initial state. When the single-qubit Otto engine achieves the
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steady cycle �Psc at time tsc, it should satisfy the requirement,

�Psc := �P(tsc) = �P(th + tc + tsc). (A10)

Since we focus on the evolution of the diagonal elements of
the density matrix, we hereafter analyze the two-dimensional
system vector �P′ comprised only of the diagonal items ρ00 and
ρ11,

�P′(t ) =
(

ρ00(t )
ρ11(t )

)
, (A11)

under the time evolution due to the 2 × 2 Liouvillian superop-
erator L̂′

α:

L̂′
α =

(−G−
α G+

α

G−
α −G+

α

)
. (A12)

After diagonalizing the Liouvillian superoperator as in

D̂α = Û −1
α L̂′

αÛα, (A13)

with

D̂α =
(

0 0
0 −α

)
, (A14)

Ûα =
(

G+
α 1

G−
α −1

)
, (A15)

Û −1
α = 1

α

(
1 1

G−
α −G+

α

)
, (A16)

with α := G+
α + G−

α , we can calculate the time-evolution
superoperator as follows:

eL̂′
αtα = ÛαeD̂αtαÛ −1

α (A17)

= 1

α

(
G+

α + G−
α eαtα G+

α + G+
α eαtα

G−
α − G−

α eαtα G−
α − G+

α eαtα

)
.

(A18)

Note that the zero eigenvalue found in Eq. (A14) corresponds
to the steady-state solution for each α.

The time evolution of the state vector �P′ when system
achieves the steady cycle should satisfy Eq. (A10), which now
reads

�P′
sc = eL̂′

ctc eL̂′
hth �P′

sc = (
ÛceD̂ctcÛ −1

c

)(
ÛheD̂hthÛ −1

h

) �P′
sc (A19)

=
(

G+
c h + hce−ctc + cG−

h e−Bt G+
c h + hce−ctc − cG+

h e−Bt

G−
c h − hce−ctc − cG−

h e−Bt G−
c h − hce−ctc + cG+

h e−Bt

)
�P′
sc, (A20)

where

α := G+
α + G−

α , (A21)

Bt := hth + ctc, (A22)

hc := (G−
c G+

h − G+
c G−

h ), (A23)

with α = h, c. Therefore, the system state �P′
sc should be the

eigenstate of the time-evolution superoperator eL̂′
ctc eL̂′

hth with
the eigenvalue unity, which we find in the form

�P′
sc =

(
ρsc

00

ρsc
11

)
= hc(1 − e−Bt )

×
(

G+
c h + hce−ctc − cG+

h e−Bt

G−
c h − hce−ctc − cG−

h e−Bt

)
. (A24)

Using these diagonal elements, we can calculate the quantities
defined in Eqs. (6)–(10) for the state ρ̂sc of the steady cycle.

We finally arrive at the power of the single-qubit Otto engine
of the form

P = −W1 + W2

th + tc
= Qh + Qc

th + tc
(A25)

= (ωh − ωc)(1 − e−hth )

h(th + tc)

(
G−

h ρsc
00 − G+

h ρsc
11

)
(A26)

= ωh − ωc

th + tc
chhc(e−hth − 1)(e−ctc − 1)(e−Bt − 1).

(A27)

We notice in the definitions in Eqs. (A6) and (A7) that
the power of the single-qubit Otto engine always depends
on a variable ωh/Th when we fix the lower excited en-
ergy level ωc and the cold-bath temperature Tc. This yields
the linear relation in Fig. 4(b), as we describe in the main
text.
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quantum absorption refrigerators with optomechanical-
like interactions, Quantum Sci. Technol. 5, 035006
(2020).

[64] B. Bhandari and A. N. Jordan, Minimal two-body quan-
tum absorption refrigerator, Phys. Rev. B 104, 075442
(2021).

[65] G. Thomas and R. S. Johal, Coupled quantum Otto cycle, Phys.
Rev. E 83, 031135 (2011).

[66] C. Kargı, M. T. Naseem, T. Opatrný, Ö. E. Müstecaplıoğlu,
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