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The quantum alternating operator ansatz (QAOA) is a generalized approach for solving challenging opti-
mization problems that builds on the alternating structure of the quantum approximate optimization algorithm.
Finding high-quality parameters efficiently for QAOA remains a major challenge in practice. In this work, we
introduce a classical strategy for parameter setting, suitable for cases in which the number of distinct cost values
grows only polynomially with the problem size, such as is common for constraint-satisfaction problems. The crux
of our strategy is that we replace the cost function expectation value step of QAOA with a classical model that can
be efficiently evaluated classically and has parameters which play an analogous role to the QAOA parameters.
This model is based on empirical observations that, in some QAOA states, variable configurations with the
same cost have the same amplitudes from step to step. We define this class of states as homogeneous states.
For problems with particular symmetries, QAOA states are guaranteed to be homogeneous. More generally,
high overlaps between QAOA states and homogeneous states have been empirically observed in a number of
settings. Building on this idea, we define a classical homogeneous proxy for QAOA in which this property
holds exactly and which yields information describing both states and expectation values. We then classically
determine high-quality parameters for this proxy and then use these parameters in QAOA, an approach we
label the homogeneous heuristic for parameter setting. We numerically examine this heuristic for MaxCut
on unweighted Erdős-Rényi random graphs. For up to three QAOA levels we demonstrate that the heuristic
is easily able to find parameters that match approximation ratios corresponding to previously found globally
optimized approaches. For levels up to 20 we obtain parameters using our heuristic with approximation ratios
monotonically increasing with depth, while a strategy that uses parameter transfer instead fails to converge with
comparable classical resources. These results suggest that our heuristic may find good parameters in regimes
that are intractable with noisy intermediate-scale quantum devices. Finally, we outline how our heuristic may be
applied to wider classes of problems.
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I. INTRODUCTION

The quantum alternating operator ansatz (QAOA) [1] is a
widely studied parametrized quantum algorithm for tackling
combinatorial optimization problems. It uses the alternating
structure of Farhi et al.’s quantum approximate optimization
algorithm [2], a structure that was also studied in special cases
in much earlier work [3,4]. Recent work has explored regimes
for which suitable parameters for QAOA are difficult to pre-
compute. This includes extensive research viewing QAOA as
a variational quantum-classical algorithm (VQA), in which
results from runs on quantum hardware are fed into a classical
outer loop algorithm for updating the parameters. Optimiz-
ing parameters for VQAs can be quite challenging, as one
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typically needs to search over a large parameter space with
a complex cost landscape. While, for a successful algorithm,
one does not necessarily need to find optimal parameters, but
rather good enough parameters for a given target outcome,
finding good parameters can be difficult due to the number
of local optima [5,6] and in some cases barren plateaus [7,8].
Moreover, the high levels of noise present on current quantum
devices can exacerbate these challenges [9].

We propose an approach to QAOA parameter optimization
that maps the QAOA circuit to a simpler classical model.
The crux of our approach is that in the parameter objective
function (as introduced below), we replace the cost function
expectation value, which is typically evaluated either on quan-
tum hardware or using expensive classical evaluation, with a
simpler model that has parameters which play an analogous
role to the QAOA parameters, but can be efficiently evalu-
ated classically. This approach is based on the observation,
originally due to Hogg [3,4], that one may leverage a clas-
sical “mean-field” or “homogeneous” model where variable
configurations with the same cost have the same amplitudes
from step to step. Extending this idea, we define a classical
homogeneous proxy for QAOA (“proxy” for short) in which
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FIG. 1. Flowchart of parameter setting procedure using the clas-
sical homogeneous proxy for QAOA. The boxes to the left of the
dashed line denote inputs that can be viewed as classical precom-
putations, as described in Sec. II. Given these inputs, along with
an initial guess of parameters, one can perform parameter setting,
in which a classical optimizer and the proxy are used in a loop to
search for parameters for the algorithm. Here the proxy is used to
estimate values of the cost function in order to reduce the time and
space complexity for cost function evaluation, while the choice of
classical optimizer and initial parameters is left open. In the end, the
procedure outputs good parameters for the proxy that are then used
as parameters for QAOA.

this property holds exactly and which yields both information
describing states and expectation values. We note that this
proxy is not a rigorous approximation to QAOA in general
and does not yield energies guaranteed to be within some fixed
error with respect to QAOA. Rather the proxy is theoretically
motivated and numerically explored and we demonstrate cases
where the proxy is empirically seen to provide energies close
to that of QAOA. We then introduce the strategy of classically
determined high-quality parameters for this proxy and, using
these parameters in QAOA, an approach we label the homo-
geneous heuristic for parameter setting (“heuristic” for short).
This heuristic is visualized in Fig. 1.

The heuristic is efficient for classes of constraint satis-
faction problems (CSPs) for which the number of distinct
cost function values is polynomial and we describe the
proxy for four such classes of CSPs: random kSAT, MaxCut
on unweighted Erdős-Rényi model graphs, random Max-
EkLin2, and random Max-k-XOR. For these examples, the
proxy leverages information only about the class, rather than
problem instance, so that the proxy describes states and expec-
tation values for the entire class. We then explore the heuristic
for parameter setting on classes of MaxCut problems. This
heuristic returns a set of parameters for the entire class, which
can then be tested on instances from that class. Our results
indicate that, for MaxCut, the heuristic on 20-node graphs is
able to—for p = 1, 2, and 3—identify parameters yielding
approximation ratios comparable to those returned by the
commonly used strategy of transferring globally optimized
parameters [10,11]. We then demonstrate out to depth p = 20
that the heuristic identifies parameters yielding monotonically
increasing approximation ratios as the depth of the algorithm
increases. A parameter setting strategy that uses an identical
outer loop parameter update scheme but does not leverage the
proxy fails to converge given identical classical resources.

The practical implication of this work is that for classes
of optimization problems, such as CSPs with a fixed number
of randomly selected clauses on a fixed number of variables,

the classical homogeneous proxy for QAOA can be computed
with solely classical resources in time polynomially scaling
with respect to p as well as n. Thus the proxy avoids the
issue of exponentially growing resources (with respect to p
or n) when using exact classical simulators and avoids the
noise present on NISQ devices. The homogeneous heuristic
for parameter setting leverages this proxy, so the subrou-
tine evaluating cost expectation values may be much quicker.
However, the parameter landscape may still be challenging
to optimize over, especially in cases in which the number of
free parameters grows with the problem size. Nevertheless,
we demonstrate for MaxCut that our heuristic is able to out-
perform previous results of parameter transfer [10], indicating
the potential of our heuristic approach (which may also be
combined with other advancements in parameter setting, as
discussed briefly later in the paper) to achieve further im-
provements in practice.

Quantum alternating operator ansatz. Her we briefly de-
scribe the structure of QAOA [1–4]. Given a cost function c(x)
to optimize, a QAOA circuit consists of p repeated applica-
tions of a mixing and cost Hamiltonian B and C in alternation,
parametrized by 2p parameters (�γ , �β ):

|�(�γ , �β )〉 = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |ψ0〉 , (1)

where |ψ0〉 is an easily prepared initial state. There is freedom
in choosing the Hamiltonians B and C, although typically
(as is followed in this work), C is chosen such that C |x〉 =
c(x) |x〉 for all x and B is a mixer that is simple to implement
on hardware. More general operators and initial states for
QAOA are proposed in [1]. Throughout this work we analyze
QAOA with the X mixer B = ∑n

i=1 Xi, where n represents the
total number of qubits in the circuit, and the starting state
|ψ0〉 is chosen to be the uniform superposition over all 2n

bitstrings, as originally considered in [2]. The goal of QAOA
is then to produce a state �(�γ , �β ) such that repeated sampling
in the computational basis yields either an optimal or high-
quality approximate solution to the problem. Finding such
good parameters is the parameter setting problem and may
be approached in a number of ways with different tradeoffs,
ranging from black-box optimization techniques to applica-
tion specific approaches. We refer to fixed QAOA parameters
p, �γ , �β as a parameter schedule.

We now describe QAOA as a VQA: given some classi-
cal cost function c(x) on n variable bitstrings {0, 1}n, and
a quantum circuit ansatz with parameters ��, one defines a
parameter objective function f ( ��) and optimizes over �� with
respect to f . In order to optimize over ��, a two-part cycle is
typically employed. First, a classical outer loop chooses one
or more parameters �� for which evaluations of f ( ��) or its
partial derivatives are requested, based on initial or prior cycle
information. Then, a subroutine evaluates f and its derivatives
for all �� requested by the outer loop. Given these evaluations,
the parameter update scheme can then update the current best
�� and choose a new set of parameters to test. Throughout
this work we refer to the outer loop as the parameter update
scheme and the inner subroutine as parameter objective func-
tion evaluation. Typically in QAOA, f ( ��) = f (�γ , �β ) is taken
to be 〈�γ , �β|C|�γ , �β〉. This choice of f measures the expected
cost function value obtained from sampling the QAOA state,
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which we refer to as the typical parameter objective function.
In this work, we will replace it with what we define as the
homogeneous parameter objective function, which utilizes the
classical homogeneous proxy for QAOA.

Related work. There have been numerous parameter setting
strategies proposed for QAOA. Most of these strategies focus
on improving the parameter update scheme, while keeping the
typical parameter objective function. These strategies range
from the simplest approach of directly applying classical
optimizers to approaches incorporating more sophisticated
machine learning techniques [12–20]. In practice, however,
efficiently finding high-quality parameters remains a chal-
lenging task. Global optimization strategies often get stuck
in navigating the parameter optimization landscape due to
barren plateaus [7–9] or multitudes of local optima [5,6] and
the problem becomes especially challenging as the number
of parameters grows due to the curse of dimensionality. In
some circumstances parameter optimization can even become
NP-hard [21]. There have been multiple methods proposed
that attempt to alleviate these issues. The first of these include
initializing parameters to be close to parameters informed by
previous information or intuition [22–24]. One such example
is to use parameters that represent a discretized linear quantum
annealing schedule [25,26]. Another example is based on the
principle that globally optimal parameters for random QAOA
instances drawn from the same distribution tend to concentrate
[2,13,27,28]. Thus, if globally optimal parameters are known
for one or many instances of a specific class of problems,
these exact parameters (or median parameters for more than
one instance) empirically perform well on a new, unseen
instance from the same class [11,29]. Another approach for
improving parameter setting is reparametrizing the circuit,
which places constraints on the allowed parameter schedules,
thereby reducing the number of parameters so that they are
optimized more easily. In some cases, this reparametrization
can be informed by optimized parameters for typical instances
or by connections to quantum annealing [13,23,24,26,30].

An alternative paradigm for parameter setting are methods
that modify the parameter objective function itself. Indeed,
one can find closed form expressions for expected cost as
a function of parameters in some cases—for example, Max-
Cut at p = 1 [31] or p = 2 for high-girth regular graphs
[32]. Moreover, when applicable one can take advantage of
problem locality considerations (such as graphs of bounded
vertex degree for MaxCut) to compute the necessary expec-
tation values without requiring the full quantum state vector
[2,31]. In these cases, then, one could optimize parameters
with respect to these expressions rather than by evaluating
the entire dynamics. Other examples of parameter objective
function modification include using conditional value at risk
[33] and Gibbs-like functions [34], which are closely related
to the usual parameter objective function. Similar in spirit to
our approach, recent work [35–37] has proposed the use of
surrogate models, which use quantum circuit measurement
outcomes to construct an approximate parameter objective
function. In contrast, our approach is entirely classical and
the parameters it outputs may be used directly, or possibly
improved further, given access to a quantum device. Addi-
tionally, a related perspective was recently proposed in [38],
wherein the authors study the connection between single-layer

QAOA states and pseudo-Boltzmann states where computa-
tional basis amplitudes are also expressed as functions of the
corresponding costs (which we define as homogeneous in this
work). While [38] provides additional motivation for our ap-
proach, the authors there do not consider cases beyond p = 1
and so their results do not immediately apply to parameter
setting in the same way.

Outline of paper. In Sec. II we define the classical homo-
geneous proxy for QAOA. In Sec. III, we demonstrate how
to implement the proxy for classes of CSPs with a fixed,
polynomial number of randomly drawn clauses. In Sec. IV
we introduce the homogeneous heuristic for parameter setting.
In Sec. V we provide numerical evidence for the efficacy of
the proxy and the heuristic applied to MaxCut on unweighted
Erdős-Rényi model graphs. Finally in Sec. VI we present the
results of the heuristic for the MaxCut on the same class of
graphs. We conclude in Sec. VII with a discussion of our
results and several future research directions.

II. CLASSICAL HOMOGENEOUS PROXY FOR QAOA

This section generalizes the mean-field approach of [3],
updating the notation to match current notation for QAOA
and allowing for easier extension to other CSPs. We describe
the so-called classical homogeneous proxy for QAOA from a
sum-of-paths perspective [3,39] using a set of classical equa-
tions that ensure that our intermediate states are homogeneous,
as we define below.

Definition 1. Homogeneous state. Let |�〉 be a quantum
state |�〉 = ∑

x={0,1}n q(x) |x〉, where q(x) is the amplitude
of bitstring x ∈ {0, 1}n when written in the computational
basis, and c be a function from x ∈ {0, 1}n → R. Then |�〉
is homogeneous if and only if the amplitude q(x) of all x
can be written solely as a function of c(x), i.e., Q(c(x)). Then
|�〉 = ∑

x={0,1}n Q(c(x)) |x〉.
Simply put, given a cost function c, homogeneous states

are those such that bitstrings of the same cost have the same
amplitudes. For example, QAOA states are homogeneous if
the cost function is nondegenerate [where each bitstring x
has a unique cost c(x)], as well as the maximally degen-
erate case where the cost function is constant. Importantly,
the standard QAOA initial state |ψ〉 = |+〉⊗n = 1√

2n

∑
y |y〉 is

homogeneous for all cost functions.
A less trivial example is the class of cost functions that

depend only on the Hamming weight of each bitstring, c(x) =
c(|x|), such as the Hamming ramp c(x) = |x|. For this class,
symmetry arguments [23] imply that the QAOA state is
homogeneous for any choice of QAOA circuit depth and
parameters. Indeed, useful intuition for homogeneity can be
gained from the symmetry perspective; in [23, Lemma 1]
it is shown that, for a classical cost function with sym-
metries compatible with the QAOA mixer and initial state,
bitstrings that are connected by these symmetries will have
identical QAOA amplitudes. A state being homogeneous is
an even stronger condition: all bitstrings with the same cost
have identical amplitudes, not just those connected by mixer-
compatible symmetries. While homogeneity does not hold
in general, it can be seen empirically from [3] and similar
numerical experiments on CSPs that, under certain parameter
assumptions, QAOA produces close to homogeneous states,
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in that the amplitudes of bitstrings with identical cost have
similar amplitudes. This observation motivates our classical
proxy. Given this intuition, we begin from the sum-of-paths
perspective [3,39] for QAOA to describe our proxy.

Additional intuition comes from the case of strictly k-local
problem Hamiltonians (such as, for instance, MaxCut), where
the QAOA state can easily be shown to be homogeneous to
leading order in |γ |, independent of β, with amplitude of
bitstring x given by 1√

2n [1 − iγ c(x)ei2k] in the p = 1 case.
Similar analysis for the higher-p case also yields homoge-
neous states to first order in the γ j parameters. This connection
is considered further in Sec. V B.

A. Classical homogeneous proxy for QAOA from the
sum-of-paths perspective for QAOA

In this section, we first consider the evolution of a single
step of QAOA exactly. Exactly computing this step classically
can require exponentially scaling resources to track all of the
quantum amplitudes, so we introduce a series of approxima-
tions to relax the calculation into one that is of polynomial size
in particular cases of interest. We name the altered evolution
the classical homogeneous proxy to QAOA and defer analysis
of the validity of these approximations to later sections.

We begin by exactly analyzing the �th step of QAOA using
the sum-of-paths perspective described in [39, Appendix A].
Let q�−1(x) denote the amplitude of a bitstring x after step
� − 1 steps of QAOA with parameters γ1, β1, . . . , γ�−1, β�−1.
Applying an additional layer of QAOA with parameters γ�, β�

[i.e., application of the operators e−β�Be−iγ�C from Eq. (1)] the
amplitudes become

q�(x) = 〈x|�γ , �β〉 =
∑

y

q�−1(y) cosn−dxy β(−i sin β )dxy e−iγ cy ,

(2)

where dxy is the Hamming (bit-flip) distance be-
tween bitstrings x and y, the factors 〈x| e−iβB |y〉 =
cos βn−dxy (−i sin β )dxy are the mixing operator matrix
elements, cy = c(y) is the cost of bitstring y, and the sum is
over all possible bitstrings y ∈ {0, 1}n.

Here, we see that the QAOA amplitude q�(x) at step �

results as a sum of contributions from the amplitudes at the
previous step of all possible bit strings, weighted by factors
that depend on the respective costs and Hamming distances.

Grouping the terms in Eq. (2), we can rewrite the sum as

q�(x) =
∑
d,c

cosn−d β(−i sin β )d e−iγ c
∑

y|dxy=d,cy=c

q�−1(y),

(3)

where the sum over d runs from [0, n] and the sum over c
runs over the set of unique costs allowed by the cost function,
which we describe in Sec. II B. If we assume that the QAOA
state at step � is homogeneous, then it is the case that the
amplitudes q�−1(x) of all bitstrings with cost c′ are identical,
so we can substitute q(x) with Q(c(x)) for all x. For the rest
of this text we use this upper case Q(c(x)) to denote that Q
depends on c = c(x) rather than the bitstring x itself. This

substitution yields

q�(x) 

∑
d,c

cosn−d β(−i sin β )d e−iγ cy Q�−1(c)n(x; d, c),

(4)

where n(x; d, c) represents the number of bitstrings with cost
c that are of Hamming distance d from x. Importantly, in this
step we note that this replacement is motivated by empirical
observations in QAOA and we do not claim its validity in
general or the extent to which the replacement approximates
QAOA; rather we provide empirical evidence of the utility of
the replacement in Sec. V. We also note that for this equa-
tion, and all following equations, this evolution is no longer
restricted to unitary evolution. As such, the values q and Q no
longer represent strictly quantum amplitudes, but rather track
an object that is an analog to the quantum amplitude under the
proxy.

We now apply our final simplification to the sum-of-paths
equation. Observe that n(x; d, c) are the only terms in the
sum of Eq. (4) that depend explicitly on x. Hence if we can
suitably approximate n(x; d, c) by a quantity that depends
only c, d , this will yield a sum that depends on significantly
fewer terms. To this end, we replace n(x; d, c) in the sum
above with a distribution N (c′; d, c) with c′ = cx, where we
again adopt the upper case N to indicate dependence only
on bitstring costs. While this replacement may not be valid
in general, in Sec. III we exhibit cases where N (c′; d, c) is
efficiently computable and adequately replaces n(x; d, c) for
the purpose of algorithm parameter setting. We emphasize that
we do not make specific claims regarding the accuracy of this
substitution for particular problem instances, but rather that it
is motivated by empirical observations [3]; its effectiveness is
further explored numerically in Secs. V and VI.

Hence, using N (c′; d, c) to replace n(x; d, c), then, we can
further rewrite the sum as

q�(x) 
 Q�(c′) =
∑
d,c

cosn−d β(−i sin β )d e−iγ cQ�−1(c)

× N (c′; d, c), (5)

where Q�(c′) is used to make explicit that the substitutions
yield an expression for q�(x) that depends solely on the
cost c′ of bitstring x. This leads to a crucial point for our
analysis: if we start in a homogeneous state, and if the distri-
butions n(x; d, c) can be replaced by distributions N (c′; d, c),
which solely depend on the cost c′ of x, then subsequent lay-
ers ensure the state remains homogeneous, yielding analogs
of amplitudes Q(c′). Thus, applying the same substitutions
to Q�−1, Q�−2, and so on, Eq. (5) gives a recursive equa-
tion yielding homogeneous analogs of quantum states, which
we label the classical homogeneous proxy for QAOA. Here
we note that, importantly, the proxy will not return the analog
of amplitude of some bitstring x, but rather the analog of
amplitude of bitstrings with cost c′, as explicit knowledge of
which bitstrings x have cost c′ would solve the underlying
objective function. In Sec. V we argue that there are cases
where these analog of amplitudes Q(c′) are close to all q(x)
with cx = c′.

At a high level, this section introduced a classical proxy
for approximating QAOA dynamics such that the states are
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homogeneous at each step. We next explain how to use the
proxy to estimate important QAOA quantities such as expec-
tation values of quantum observables.

B. Cost distributions

In order to evaluate Eq. (5), we first observe that the
set of costs to which indices c and c′ belong must be de-
fined. Ideally, this set represents exactly the unique objective
function values allowed by the underlying cost function. For
optimization problems, however, the range of this set is not
known exactly and moreover is precisely what we would
like to solve. Instead, we can form a reasonable estimate by
determining upper and lower bounds on the cost function
values. We denote this estimated set of unique costs as C.
As an example, for CSPs with binary-valued clauses, the cost
function counts the number of satisfied clauses, trivially yield-
ing C = {0, 1, . . . , m}, where m is the number of clauses. In
practice smaller sets may be obtained using problem instance-
specific information. The set C also allows us to define the
initial state Q0(c′) for the algorithm. QAOA typically begins
with a uniform superposition over all bitstrings x, such that
q0(x) = 1√

2n for all x. Thus we can set Q0(c′) = 1√
2n for all c′

in C.
While Eq. (5) yields analogs of amplitudes Q�(c′), one

may also wish to use the classical homogeneous proxy for
QAOA to return an estimate of expected value of the cost
function. This requires computing a distribution P(c′) for all c′
in C, representing the probability a randomly chosen bitstring
has cost c′, averaged over the entire class. Much like in the
case of computing C, this computation is approximate, as a
perfect computation of this distribution would solve the un-
derlying objective function. Examples of estimations of P(c′)
are shown in Sec. III. In order to compute our estimate of
expected value of the cost, then, we simply sum over costs
c′, weighting by the expected number of bitstrings with cost c′
[2nP(c′)] and the squared analog to the amplitude |Q�(c′)|2,

〈̃C〉 =
∑

c′
2nP(c′)|Q�(c′)|2c′, (6)

with the tilde indicating the use of the proxy and that this is no
longer a strictly normalized quantum expectation value. This
is exactly the equation we use for the homogeneous parameter
objective function as described in the Introduction. Note that
P(c′) does not give a bona fide probability distribution unless
it is renormalized by dividing by

∑
c′ 2nP(c′)|Q�(c′)|2 at each

step; nevertheless, we have found these factors remain close to
unity for the parameter-setting experiments considered below
and so we neglect them going forward, which yields further
computational savings. It is straightforward to introduce these
factors into Eq. (6) if desired in other applications.

The set C and estimate to cost 〈̃C〉 are critically determined
by the class of problems one is working with. Examples of
these values for a sample of classes are given in Sec. III.

C. Algorithm for computing the classical
homogeneous proxy for QAOA

Formalizing the results of the section, we now present
Algorithm 1, which describes how, given QAOA parameters

Algorithm 1. Classical Homogeneous Proxy for QAOA.

Input: p, �γ , �β, n, m, C. N (c′; d, c) ∀c′ ∈ C, P(c′) ∀c′ ∈ C.
Output: Qp(c′) ∀c′ ∈ C, Optionally 〈C(�γ , �β )〉h

Q0(c′) ← 1
√

2n ∀c′ ∈ C
for � in [1, p] do

Q�(c′)←∑
d,c cos βn−d (−i sin β )d e−iγ cQ�−1(c)N (c′; d, c)∀c′ ∈ C

end for
If desired, 〈̃C〉 ← ∑

c′ 2nP(c′)|Q�(c′)|2c′

p, �γ , �β, a set of possible costs C, and assumed cost distribution
N (c′; d, c), we can compute the classical homogeneous proxy
for QAOA using Eq. (5) and Eq. (6).

At a high level, this algorithm says, for each step � from 1
to p, to apply a layer of the classical homogeneous proxy to
QAOA from Eq. (5), starting from the initial state described
in Sec. II B.

Time complexity. Given N (c′; d, c) as well as Q�−1(c′) for
all c′ in C, the calculation of each amplitude Q�(c′) using
Eq. (5) is O(n|C|). Thus the calculation of all |C| amplitudes
Q�(c′) is O(n|C|2). Computing all Qp(c′) elements then is
O(np|C|2). If desired, the evaluation of the approximate cost
expectation value, given in Eq. (6), involves a sum over C
elements and thus is O(|C|).

Thus, if |C| is O(poly(n)), then Algorithm 1 is efficient.
Simply, if there are a polynomial number of possible costs
allowed by the cost function, the proxy is efficient. Indeed,
we show such a case in the following section, demonstrating
how to calculate the necessary precomputations of C, as well
as N (c′; d, c) and P(c′) for all c′ in C.

III. COST DISTRIBUTIONS
FOR RANDOMLY DRAWN CSPS

In this section we demonstrate several classes of CSPs
where we can efficiently derive and implement the classical
homogeneous proxy to QAOA as described in Sec. II A. In
particular, we look at classes of CSPs where clauses are drawn
uniformly at random from some fixed distribution. For these
classes, we show that the distributions N (c′; d, c) necessary
in the proxy can be computed in polynomial time and these
distributions can reasonably replace the exact distributions for
each instance. The question of how reasonable the replace-
ments are is left to Sec. V.

Particularly, we focus on CSPs with a fixed number m of
Boolean clauses, each acting on k variables selected at random
from the set of n variables. The types of allowed clauses
is determined by the problem, for example, SAT problems
consider disjunctive clauses. We note that the analysis here
generalizes a similar method in [3] applied to 3-SAT, allowing
for easy extension to any CSP matching the above criteria.
For these problems, the procedure is as follows, noting that
all calculations done here are averaged over the entire class.

First, we observe that, assuming clauses are drawn uni-
formly at random, we can rewrite the expected number of
bitstrings with cost c at distance d from a random bitstring
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Algorithm 2. Classical Homogeneous Proxy for QAOA Pre-
computation for Randomly Drawn Cost Function.

Input: n, m, Description of problem class
Output: C. N (c′; d, c), P(c′) ∀c′ ∈ C
Determine C via Sec. II B.
Compute Pboth, Pone, Pneither, and P(c′) ∀c′ ∈ C given the problem class
Use these values to compute N (c′) and N (c′; d, c) ∀c′ ∈ C via 2nP(c′)
and Eq. (11)

of cost c′ as

N (c′; d, c) =
(

n

d

)
P(c|d, c′), (7)

where P(c|d, c′) represents the probability that a bitstring
at distance d from a bitstring with cost c′ has cost c. This
probability can then be rewritten as

P(c|d, c′) = P(c′, c|d )

P(c′)
, (8)

where P(c′, c|d ) represents the probability that two bitstrings
separated with Hamming distance d have costs c and c′ and
P(c′) represents the probability that a randomly chosen bit-
string has cost c′. The numerator can be calculated as follows:

P(c′, c|d ) =
min(c′,c)∑

b=max(0,c′+c−m)

P(b, c′ − b, c − b|d ), (9)

where P(b, c′ − b, c − b|d ) represents the probability that two
randomly chosen bitstrings with Hamming distance d have b
satisfied clauses in common, along with cost c′ and c. This
expression can be evaluated via the multinomial distribution

P(b, c′− b, c− b|d ) = m!

b!(c′ − b)!(c − b)![m + b − (c′ + c)]!

× Pb
bothP(c′+c)−2b

one Pm+b−(c′+c)
neither , (10)

where Pboth, Pone, and Pneither represent the probability that a
randomly selected clause is satisfied by both, one, or neither of
the bitstrings separated by Hamming distance d , respectively.
Since Pboth + 2Pone + Pneither = 1, one only needs to calculate
two of these three variables. The previous equations then
allow computing N (c′; d, c) for any value c′ as

N (c′; d, c) =
(

n

d

)
1

P(c′)

min(c′,c)∑
b=max(0,c′+c−m)

× m!

b!(c′ − b)!(c − b)![m + b − (c′ + c)]!

× Pb
bothP(c′+c)−2b

one Pm+b−(c′+c)
neither . (11)

We summarize this approach in Algorithm 2.
Time complexity. There are |C| distributions N (c′; d, c)

with (n + 1)|C| elements each. For fixed c′, d , and c, we
must sum over |C| terms that can be evaluated in O(|C|)
steps, given by the time complexity of evaluating factorials
of O(|C|). Thus the evaluation of all distributions is O(n|C|4).

We once again note that if |C| is O(poly(n)), Algorithm 2 runs
in polynomial time.

We now demonstrate Algorithm 2 for several common
problem classes.

A. MaxCut

We first analyze MaxCut on Erdős-Rényi random graphs
G(n, pe). In this model, a graph G is generated by scanning
over all possible

(n
2

)
edges in an n node graph and including

each edge with independent probability pe. The MaxCut prob-
lem on G is to partition the n nodes into two sets such that the
number of cut edges crossing the partition is maximized. With
respect to the class G(n, pe) of graphs the cost function to be
maximized over configurations x is

c(x) =
∑

〈i, j〉∈(n
2)

ei jxi ⊕ x j, (12)

where ei j are independent binary random variables that take
on value 0 with probability 1 − pe and 1 with probability pe.
We use this cost function to evaluate the relevant distributions
in Eq. (11). We start by noting that for a fixed graph G with
m edges, we have 0 � c(x) � m, and the expected number
of edges E[m] in graphs drawn from G(n, pe) is pe

(n
2

)
, with

a standard deviation proportional to the square root of this
value as determined by the binomial distribution. Hence, as
n becomes large, the expected number of edges concentrates
to pe

(n
2

)
and so for simplicity in the remainder of this work

we set C = {0, 1, . . . , �E[m]�}. Note that, in practice, to ac-
commodate the possibility of a given instance with maximum
cut greater than this quantity, one may increase C by several
standard deviations as desired.

We can then easily calculate P(c′), which is the probability
a random bitstring has cost c′ for Eq. (12). For a bitstring
drawn uniformly at random, the probability of satisfying any
given clause xi ⊕ x j is 1/2, as there are two satisfying as-
signments (01 and 10) and two nonsatisfying assignments (00
and 11). Thus the probability P(c′) also follows a binomial
distribution and is simply

P(c′) =
(

1

2

)m(
m

c′

)
. (13)

We can then calculate Pboth, Pone, and Pneither, where we show
all three for didactic purposes (since Pboth + 2Pone + Pneither =
1). To see this, consider two randomly chosen bitstrings y and
z, separated by Hamming distance d . We note that there are
(n − d ) bits in common between y and z and d bits different.
Thus yi ⊕ y j = zi ⊕ z j requires that either both i and j are
from the set of (n − d ) same bits or the set of d different bits,
which has probability

Psame =
(n−d

2

)(n
2

) +
(d

2

)(n
2

) . (14)

From this expression, we can easily see that Pboth =
Pneither = 1

2 Psame. Since Psame represents the probability that
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yi ⊕ y j = zi ⊕ z j , for a random clause and a random bitstring,
the probability that yi ⊕ y j = 1 is 1/2 and the same is true for
yi ⊕ y j = 0 by symmetry. Thus we have

Pboth = Pneither = 1

2

((n−d
2

)(n
2

) +
(d

2

)(n
2

))
. (15)

For completion, we can calculate Pone, which is (1 − Psame −
Pboth)/2 as shown in Sec. II A. For this term we need yi ⊕ y j �=
zi ⊕ z j , which can be accomplished if one of i or j is chosen
from the (n − d ) bits in common and the other is chosen from
the d differing bits. This probability is

Pdif =
(n−d

1

)(d
1

)(n
2

) . (16)

Thus Pone, which is the probability of specifically y satisfying
and z not satisfying (or vice versa), is half of Pdif, so

Pone = 1

2

((n−d
1

)(d
1

)(n
2

) )
. (17)

Using these quantities N (c′; d, c) is then obtained from
Eq. (11).

B. MaxE3Lin2/Max-3-XOR

We next consider the MaxE3Lin2 problem which general-
izes MaxCut. QAOA for MaxE3Lin2 was analyzed by Farhi
et al. [2], who showed an advantage over classical approxi-
mation algorithms, only to inspire better classical approaches
[40,41]. The analogous random class of MaxE3Lin2 problems
has cost function

c(x) =
∑

a<b<c

dabc(xa ⊕ xb ⊕ xc ⊕ zabc), (18)

where the zabc, , dabc are independent random variables with
equal probability of being 0 or 1.

Using Eq. (18) we can again calculate the relevant prob-
ability distributions. First note that a random bitstring x will
satisfy an individual clause (i.e., term in the sum) with prob-
ability 1/2, as (xa + xb + xc) mod 2 has an equal probability
to be 0 or 1. Thus

P(c′) =
(

1

2

)m(
m

c′

)
, (19)

using the binomial distribution. Then we note that, as in
Sec. III A, the probability of (ya + yb + yc) mod 2 = (za +
zb + zc) mod 2 for two random bitstrings with d (x, y) = d is
given by

Psame =
(n−d

3

) + (d
2

)(n−d
1

)(n
3

) , (20)

since the value of (xa + xb + xc) mod 2 is preserved if none
or two of xa, xb, xc are flipped, which is satisfied if a, b, c are

all from the n − d identical bits, or two of a, b, c are chosen
from the d differing bits. Thus we can easily compute Pboth =
Pneither = Psame/2, since there is an equal chance (ya + yb +
yc) mod 2 = (za + zb + zc) mod 2 = 0/1. Pone can then be
calculated by a similar argument or by taking Pone = (1 −
Pboth − Pneither )/2. We note that the probability distributions
calculated here are exactly equivalent to those for the Max-3-
XOR problem, where all zabc in Eq. (18) are taken to be 1.

C. MaxEkLin2/Max-k-XOR

The MaxEkLin2 problem is a further generalization of
MaxE3Lin2 for arbitrary fixed k, where we replace the a, b, c
with a1, . . . , ak in the cost function and the sum is taken over
hyperedges of size k. This class of problems was previously
studied for QAOA in [42,43]. For each k, P(c′) is the same as
for MaxE3Lin2 above. However, Psame is given by

Psame =
∑�k/2�

h=0

(d
2l

)(n−d
k−2l

)(n
k

) , (21)

where the terms in the sum represent all possible ways to
choose an even number of bits to flip from the k bits in
the clause out of d total bits. Then, again, we have Pboth =
Pneither = Psame/2 and Pone = (1 − Pboth − Pneither )/2. A sim-
ilar calculation for the Max-k-XOR problem again yields
identical probability distributions.

D. Rand-k-SAT

The case of random k-SAT is analyzed by Hogg in [3]. This
cost function is defined as the sum over m clauses of a logical
OR of k variables randomly drawn from a set of n variables,
each of which may be negated. In the notation used in this
paper, the distributions of interest are

P(c′) = 2−km(2k − 1)m−c′
(

m

c′

)
, Pboth = 2−k

(n−d
k

)(n
k

) ,

Pone = 2−k − Pboth, Pneither = 1 − 2Pone − Pboth. (22)

IV. HOMOGENEOUS HEURISTIC
FOR PARAMETER SETTING

Leveraging the classical homogeneous proxy for QAOA,
here we propose a strategy for finding good algorithm param-
eters, which we call the homogeneous heuristic for parameter
setting, as pictured in Fig. 1 and formalized in Algorithm 3.
The main idea is that instead of using tight estimates of the
expected cost values, which can be expensive to obtain, one
may instead search parameter space using the approximate
expectation values obtained from the classical proxy. Only
after this classical parameter setting stage would the quantum
computer be used to sample from the true quantum state and
obtain candidate problem solutions.
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Algorithm 3. Homogeneous Heuristic for Parameter Setting.

Input: p, �γin, �βin, n, m, C. N (c′; d, c) ∀c′ ∈ C, P(c′) ∀c′ ∈ C,
constraints on (�γ , �β ).

Output: �γout, �βout

�γ , �β ← �γin, �βin

while Desired do
(1) Using any suitable parameter update scheme, perform one

update of (�γ , �β )
(2) Evaluate the homogeneous parameter objective function

([Eq. (6)] using the classical homogeneous proxy for QAOA for
all (�γ , �β ) required to perform next parameter update in 1)
end while
�γout, �βout ← �γ , �β

Here, a “suitable parameter update scheme” is intended to
encapsulate a wide variety of general or specific approaches
proposed for this in the literature, “Desired” denotes that the
while-loop can be iterated until the update scheme terminates
or some desired convergence criteria is met, and “Constraints
on (�γ , �β )” denotes any restrictions on the domain of values
allowed for �γ , �β, including restrictions to schedules of a pre-
scribed form such as linear ramps introduced in Sec. V B.

With the heuristic, we replace the typical cost expectation
value with the homogeneous parameter objective function,
where each function evaluation takes time as determined by
Algorithms 1 and 2. This heuristic is purposefully defined in
broad terms, in order to maintain complete freedom in the
choice of parameter update schemes. Thus one can still apply
a myriad of approaches explored in the parameter-setting liter-
ature, such as parameter initialization, reparametrization, and
the use of different global or local optimization algorithms.

On the other hand, we emphasize that, while our approach
can significantly speed up the parameter setting task, it is
by no means a panacea. Indeed, in cases where the num-
ber of parameters to optimize grows with the problem size
(e.g., when p = n), this problem suffers generically from the
curse of dimensionality, as well as other potential difficulties
such as barren plateaus or plentiful local optima. Hence the
incorporation of a variety of parameter setting strategies or ap-
proximations that seek to ameliorate these difficulties within
our approach is well motivated.

V. NUMERICALLY INVESTIGATING THE CLASSICAL
HOMOGENEOUS PROXY FOR QAOA FOR MAXCUT

In this section, we explore the application of the classical
homogeneous proxy for QAOA to MaxCut on Erdős-Rényi
G(n, pe) model graphs as considered in Sec. III A. We
present numerical evidence justifying the methods presented
in Secs. II, III, and IV.

A. Viability of replacement distance and cost distributions

Here we numerically study the accuracy of replacing
n(x; d, c) distributions with N (c′; d, c) distributions as cal-
culated via the methods presented in Sec. III. For these
experiments, we first choose 10 G(10, 1/3) Erdős-Rényi
model graphs and calculate the n(x; d, c) for all bitstrings

FIG. 2. Heat map of the standard deviation/mean of N (c′; d, c)
distributions for 10 instances of G(10, 1/3) graphs, with c′ fixed at 7.
Hatched out squares correspond to those elements of the distribution
for which N (c′; d, c) is always 0, meaning that no bitstring at distance
d from a bitstring with cost 7 has cost c. c′ = 7 was chosen because,
for G(10, 1/3) graphs, P(c′) is peaked near 7, so this represents a
typical instance of an N (c′; d, c) distribution.

x ∈ {0, 1}n, all d ∈ [0, n], and all c ∈ [0, m], with m being
an upper bound on the maximum cost [here we use pe

(n
2

)
, as

described in Sec. III A; in this case m = 15]. For each cost c′,
we consider n(x; d, c) for all states x with cost c′ across all 10
graphs. In order to evaluate the viability of replacing n(x; d, c)
with N (c′; d, c), we present the following intuition: the better
that N (c′; d, c) estimates the average of n(x; d, c) over all x
with c(x) = c′, and the less n(x; d, c) deviates over x with
c(x) = c′, the better N (c′; d, c) should estimate n(x; d, c) for
all x with c(x) = c′. We thus aim to numerically demonstrate
the extent to which both the analytically derived N (c′; d, c)
estimate the average n(x; d, c) and to which n(x; d, c) deviates
from its average. We first demonstrate the latter. To do this,
we take the elementwise averages of these distributions. This
average is one way of computing the distributions N (c′; d, c),
as described in Sec. II A. We also take the elementwise stan-
dard deviations of these distributions. In Fig. 2 we display
the elementwise ratio of standard deviation to mean of these
distributions for c′ = 7, chosen because P(c′) is maximal near
7, such that this term has large weight in Eq. (5).

From the figure, we see that for costs near m/2 (7.5)
and distances near n/2 (5), there is minimal deviation in the
N (c′; d, c) distributions among multiple instances of Erdős-
Rényi model graphs and multiple bitstrings x with cost c′. We
note that the relative deviation is highest at the edges of the
plot, where d → 0, d → n, c → cmin, and c → cmax. We note,
however, that, at these points, the expected value of n(x; d, c)
is smaller, such that the contribution of these deviations to the
sum in Eq. (4) is less than those with distance and cost near the
center of the distribution. As an example, there are

(10
5

) = 252
bitstrings at distance 5 from a given bitstring x, as opposed to(10

1

) = 10 bitstrings at distance 1. A similar argument can be
made using the values of P(c′) derived in Sec. III. This nu-
merical evidence thus suggests that replacing n(x; d, c) with
N (c′; d, c) determined via an averaging over all x with cost c′
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FIG. 3. (Middle) Pearson correlation coefficients between N (c′; d, c), calculated through the averaging over 10 G(10, 1/3) graph instances
and through the analytical method presented in Sec. III. P(c′), the probability of a random bitstring having cost c′, is also displayed to elucidate
dominant terms in the sum of Eq. (5). Insets display the distribution for fixed c′ for (left) c′ = 7 using (top) the analytical approach and (bottom)
the averaging approach. (Right) Inset displays the same for c′ = 13.

over multiple instances may introduce deviations from Eq. (5)
precisely in cases that contribute to less Eq. (2), allowing for
near-homogeneous evolution.

This result provides evidence that the deviation in n(x; d, c)
is small for the “bulk” of contributions to the sum in Eq. (2),
such that we can replace n(x; d, c) with N (c′; d, c), the av-
erage over x with c(x) = c′ for the entire class of problems.
We then would like to understand how the analytically derived
expressions for N (c′; d, c) in Sec. III estimate these averaged
distributions. We perform the comparison of N (c′; d, c) com-
puted by averaging and the methods in Sec. III for MaxCut
on Erdős-Rényi model graphs in Fig. 3, showing the Pearson
correlation coefficient between the two distributions for each
c′ in [0, m]. We likewise display P(c′), in order to elucidate
the dominant distributions in the sum of Eq. (5).

From the figure we see that, for dominant terms [with high
P(c′)], the two distributions align well visually, corresponding
to a high correlation coefficient. For less important terms, the
analytical distributions do not match the average over many
instances, but the effect of this mismatch may be reduced due
to the lesser weight on these terms as determined by P(c′) in
the sums of Eq. (5).

Combined, Figs. 2 and 3 show that, for dominant terms,
there is little deviation in n(x; d, c) distributions from their av-
erage N (c′; d, c) and the analytically computed distributions
match these average distributions well. Thus they together
indicate that the analytical methods for calculating N (c′; d, c)
should approximate n(x; d, c) with c(x) = c′ for terms that
dominate the sum in Eq. (5).

B. Numerical overlaps

In this section we numerically show that the proxy main-
tains large overlaps with the true QAOA state for certain
parameter schedules of interest. To do this, we perform nu-
merical simulations of the proxy on MaxCut on Erdős-Rényi
graphs G(10, 1/2) and display the squared overlap between

classical full state vector simulation and the proxy as a func-
tion of p for various parameter schedules motivated by QAOA
literature. For this analysis, we choose linear ramp parameter
schedules, inspired by quantum annealing. In particular, we
fix a starting and ending point for �γ and �β, which is kept
constant regardless of p, and the schedule is defined as

γ� = γ1 + (γ f − γ1)
�

p
, β� = β1 + (β f − β1)

�

p
(23)

for each layer �. Given these linear ramp schedules, the
squared overlaps between the replaced and original quantities
are calculated as follows. First, state vector simulation was
performed using HYBRIDQ, an open-source package for large-
scale quantum circuit simulation [44]. Next, the N (c′; d, c)
distributions are computed according to Sec. III. Then, for the
purposes of comparison, we compute the proxy slightly differ-
ently from above, by starting with the uniform superposition
over all 2n bitstrings and simply plugging in N (c(x); d, c) for
all n(x; d, c) in Eq. (4), keeping all 2n amplitudes q�(x) at
each step �. This allows us to compute the overlap between
the proxy and true state using standard quantum state overlap,
although we lose the gain in complexity from performing the
proxy on only the set of unique costs, as we are working with
2n bitstrings rather than |C| costs. Then, using this method,
we plot the squared overlaps between the replace and original
quantities as a function of p with varying values of γ1 and γ f

in Fig. 4.
From the figure, we can see that the overlap gradually

decreases as the number of QAOA layers increases. However,
the decline is less dramatic when γ1 and γ f are lower in
magnitude. Thus we see that as we move towards the γ � 1
regime for these problems (or, more precisely γ � ‖C‖ [39]),
the true QAOA state remains closer to the proxy even as the
algorithm progresses, as remarked in Sec. II. We stress that
this behavior is empirical and the numerics are limited to
the MaxCut examples analyzed presently. This behavior does
however align with the analytical fact mentioned in Sec. II
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FIG. 4. Squared overlap between p = 20 MaxCut QAOA runs
on a G(8, 1/2) Erdős-Rényi model graph instance using full state
simulation vs Eq. (5), with distributions calculated as in Sec. III as a
function of the current QAOA layer. A fixed linear ramp parameter
schedule is chosen, with γ increasing and β decreasing at each step.
Each curve corresponds to differing values of γ1 and γ f .

that, to first order in γ , QAOA states are homogeneous for
strictly k-local Hamiltonians.

C. Parameter objective function landscapes at low depth

In this section we provide a toy example for a small
graph at p = 3, empirically showing that the typical pa-
rameter objective function correlates significantly with the
corresponding approximations obtained from the homoge-
neous proxy for important parameter regimes. In order to
provide an explicit illustrative example for the efficacy of the
homogeneous heuristic for parameter setting in Algorithm 3,
we depict both the typical and homogeneous parameter objec-
tive function as a function of γ3 and β3 for a randomly drawn
G(8, 1/2) graph and QAOA with p = 3. In this example, our
aim is to visualize similarities between the two parameter

objective functions rather than to exhaustively find optimal
parameters for the graph. As such, we borrow γ1, γ2, β1, and
β2, optimized from a 20 node instance in Sec. VI A. These
landscapes are shown in Fig. 5.

It is visually clear that the two landscapes have signifi-
cant differences. For the typical parameter objective function,
there exists a clearly defined, Gaussian-like peak (yellow)
and valley (blue). For the homogeneous parameter objective
function, there exists a similarly located peak, albeit vertically
compressed, and the corresponding valley comprises almost
the entire rest of the landscape. However, we can see that, in
the small γ regime in particular, the landscapes qualitatively
look very similar. This behavior is suggested by Fig. 4, where
we see quantitatively that the extent to which the classical
homogeneous proxy for QAOA overlaps with the true QAOA
evolution grows as γ decreases. Additionally, as seen in pre-
vious studies of QAOA parameters [10,11,13,14], optimal
values of γ tend to remain relatively small (exact values are
not described as they depend on n, p, and the cost function
being used), especially at the beginning of the algorithm. This
suggests that, while the homogeneous and typical parame-
ter objective functions may deviate significantly in general,
they maintain significant correlations in relevant parameter
regimes, specifically those which are near the maximum in
the landscape. Indeed, for the task of parameter setting, we
expect qualitative feature mapping of the landscape to be
much more important than a precise matching of objective
function values.

It is also worthwhile to consider the difference in compu-
tational resources needed to produce the two plots. For the
typical parameter objective function, in order to classically
evaluate the evolution of the algorithm in each cell of the
presented 30 × 30 landscapes, we perform full state vector
simulation. Farhi et al. show in [2] that, in order to compute
Pauli observable expectation values for the typical parame-
ter objective function, one only needs to include qubits that
are within the reverse causal cone generated by the qubits

FIG. 5. Parameter objective function landscapes displayed as heat maps as a function of γ3 and β3 for p = 3 MaxCut QAOA on a G(8, 1/2)
Erdős-Rényi model graph with γ1, γ2, β1, and β2 fixed. (Left) The typical parameter objective function, computed via classical full state vector
simulation. (Right) The homogeneous parameter objective function computed via the classical homogeneous proxy for QAOA.
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FIG. 6. Box plots of approximation ratios obtained by the transfer of the median of optimal parameters from 10 G(9, 1/2) graphs to
10 G(20, 1/2) graphs vs parameters found via a homogeneous parameter setting for the same 10 G(20, 1/2) graphs, for p = 1, 2, and 3.

involved in the observable and the quantum circuit imple-
menting QAOA. However, for the example analyzed here, at
p = 3, this reverse causal cone includes all 8 qubits for each
observable, so in order to classically compute the evolution,
we perform a full-state simulation. Thus deriving evolution
of the proxy took roughly one-fiftieth of the time required for
simulating full QAOA. We note that it is possible to efficiently
evaluate each cell on an actual quantum computer and that,
if one only wants expectation values given parameters rather
than the full state evolution, there are more efficient classi-
cal methods (e.g., Refs. [2,31]). Current difficulties for this
approach, however, include noise resulting both from finite
sampling error as well as the effects of imperfect quantum
hardware.

VI. RESULTS

In this section we present numerical evidence supporting
the homogeneous heuristic for parameter setting, again using
MaxCut on Erdős-Rényi model graphs as a target application.
Due to the array of possible techniques implementing the
parameter-update scheme as mentioned in Sec. IV, we do not
wish to provide an exhaustive comparison of the heuristic to
previous literature, but rather demonstrate regimes where the
heuristic provides parameters that are either comparable with
previous results or that yield increasing performance out to
larger values of p, where we are not aware of prior methods in
the literature successfully returning well-performing parame-
ter schedules.

A. Global optimization at low depth

Here we present results of the homogeneous heuristic for
parameter setting, as well as comparisons to the transfer of
parameters method outlined in Lotshaw et al. [10], imple-
mented using the QAOAKIT software package [11]. Lotshaw
et al. show that using one set of median (over the entire
data set at a given n and p) parameters performs similarly to
optimized parameters for each instance. Thus we directly pull
the obtained parameters from QAOAKIT, which first calculates
optimal parameters for all connected nonisomorphic graphs

up to size 9 at p = 1, 2, and 3. For each p, the median over
all parameters is calculated and these median parameters are
directly applied to 10 Erdős-Rényi graphs from G(20, 1/2),
yielding average and standard deviation of expectation values
for these median parameters over the 10 graphs. To compare
with these transferred parameters, we display the approxima-
tion ratio achieved by parameters that are optimized with the
heuristic, as described in Sec. IV, over the same 10 graphs.
Here the approximation ratio is defined as follows:

Apx Ratio = 〈C〉 /copt, (24)

i.e., the expected cost value returned by true QAOA, divided
by the true optimal value copt, as determined via brute-force
search over all 2n bitstrings. For this experiment, as well as all
experiments below, the state throughout the algorithm and 〈C〉
are computed via full state vector simulation, even for param-
eters returned via the heuristic. The comparison between the
heuristic and parameter transfer is shown in Fig. 6.

As we can see in Fig. 6, for low depth, the heuris-
tic performs comparably well to parameter transfer. On an
instance-by-instance basis, the approximation ratio achieved
by homogeneous parameter setting minus that achieved by
parameter transfer was −0.0037 ± 0.0062, 0.0164 ± 0.0148,
and 0.0097 ± 0.0183 for p = 1, 2, and 3, respectively. We do
not see statistically significant differences between the two
methods for any three of the depths analyzed, although the
average performance of the heuristic is slightly higher in the
latter two cases. This numerical evidence indicates that the
method is competitive. Furthermore, the optimal parameters
in the transfer case require the optimization of smaller QAOA
instances, which clearly may incur some tradeoff between
the size of the problem one wishes to train parameters on
versus the accuracy of the parameter transfer onto larger and
larger instances. The parameters for comparison were pulled
directly from QAOAKIT data tables, so our purpose here is
not to provide a full timing comparison between the two
methods. However, this demonstrates that our polynomially
scaling heuristic performs comparably with other techniques
used in literature.
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FIG. 7. Box plots of approximation ratios for parameters found
via a homogeneous parameter setting for the same 10 G(20, 1/2)
graphs, for p = 4, 8, 12, 16, and 20, restricted to linear ramp sched-
ules as described in Sec. V C.

B. Parameter optimization at higher depth

To elucidate how the homogeneous heuristic for parameter
setting scales with QAOA depth p, we further depict box
plots of the approximation ratio for a new set of 10 Erdős-
Rényi graphs G(20, 1/2) at p up to 20. For these experiments,
we further restrict to linear-ramp parameter schedules as de-
scribed in Eq. (23) to reduce the number of parameters from
2p to 4. We introduce this reparametrization because having
2p free parameters, even for this relatively moderately sized
p, results in optimization routines that do not converge in a
reasonable time on the device as specified below. The results
for these runs are shown in Fig. 7.

From this figure, we see that the heuristic, when im-
plemented with linear ramp schedules, results in monotonic
improvement of approximation ratios as p increases. Notably,
for this regime of N = 20, p = 20, we were not able to find
previous works that efficiently returned optimized parameter
schedules, even when restricted to linear ramps. Thus these
results demonstrate a regime in which the heuristic is able to
return parameters that appear intractable for current devices
and strategies, whether quantum, classical, or hybrid.

Numerical details. For our simulations in this section,
all calculations (excluding those pulled from the QAOAKIT

database) were performed using a laptop with Intel i7-10510U
CPUs @ 1.80 GHz and 16 GB of RAM, with no paral-
lelization utilized. For the 20 node graphs, all experiments
clocked in under 6 h, where the longest times were for
fully parametrized p = 3 circuits (six parameters). Parame-
ters were seeded using linear ramp schedules from [13] and
parameter optimization was performed using the standard
Broyden–Fletcher–Goldfarb–Shanno algorithm [45] from the
SCIPY package [46].

VII. DISCUSSION

In this work we formalized the concepts of homogeneous
states and the classical homogeneous proxy for QAOA. We
demonstrated how to derive the necessary quantities and
efficiently evaluate the proxy for combinatorial satisfaction
problems with a fixed, polynomial number of randomly cho-
sen clauses. We then provided numerical evidence to support

the use of the proxy for estimating the evolution and cost
expectation value of QAOA. Finally, we applied these results
to construct the homogeneous heuristic for QAOA and imple-
mented this strategy for a class of MaxCut instances on graphs
up to n = 20 and p = 20. Our results show that the heuristic
on this class easily yields parameters at p = 1, 2, and 3 that are
comparable to those returned by parameter transfer. We fur-
ther demonstrated that we are able to optimize parameters out
to p = 20 by restricting to a linear ramp schedule, obtaining
the desirable property of monotonically increasing approxi-
mation ratios as the number of QAOA layers is increased.
Notably, we found that the proxy seems to well estimate
both the state and cost expectation of QAOA in the particular
cases when γ remains relatively small throughout the algo-
rithm, as well as for quantum annealing-inspired linear ramp
schedules. These ramp schedules have been frequently pro-
posed as empirically well-performing schedules [10,13,26],
which supports that the proxy may more accurately estimate
QAOA expectation values for important parameter regimes
and schedules of interest, even if these estimates may diverge
somewhat in the case of arbitrarily chosen parameters.

Several interesting research questions and future directions
directly follow from our results. An immediate question is to
better understand the relationship between the problem class
specified, the resulting distributions N (c′; d, c) and P(c′) used
for the proxy, and the effect on the parameters returned by
the homogeneous heuristic for QAOA, especially with re-
spect to a given problem instance to be solved. For example,
a fixed instance can be drawn from a number of different
possible classes, so changing the class considered can have
a significant effect on the parameters returned and resulting
performance. One approach to address this issue would be to
extend the derivations of N (c′; d, c) and P(c′) to incorporate
instance-specific information beyond just the problem class. A
naive example in this vein would be to estimate the distribu-
tions via Monte Carlo sampling of bitstrings and their costs for
the given instance. Furthermore, including instance-specific
information appears a promising route to explicitly extend-
ing the heuristic beyond random problem classes, which can
be used to study parameter schedules and performance in
the worst-case setting. It may also be worthwhile to explore
adaptations of our approach to cases where the number of
unique possible costs may become large. In this case, one
could imagine binning together costs close in value such that
an effective cost function with much fewer possible costs is
produced and to which the proxy may be applied. For ap-
plying our methods more generally, an interesting direction
is to understand whether problem class characteristics such
as the overlap gap property (OGP) [47–49] can be used to
derive better performing approximate n(x; d, c) or N (c′; d, c)
distributions and whether or not techniques for computing
these distributions can lead to progress on determining the
existence of OGPs.

In terms of generalizing both the methods and scope of our
approach, we first reemphasize that parameter optimization
for parametrized quantum circuits consists of two primary
components: a parameter update scheme outer loop and a
parameter objective function evaluation subroutine. The inner
subroutine is typically evaluated using the quantum computer.
The key idea of our approach is to replace the inner subroutine
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with an efficiently computable classical strategy based on the
assumption of homogeneous states. Hence a natural extension
is to consider other efficiently computable proxies for the
inner loop. For example, in cases where the problem instance
comes with a high degree of classical symmetries, the dimen-
sion of the effective Hilbert space can be drastically reduced,
and so the evaluation and optimization of the typical param-
eter objective can be sped up significantly [23]. Similarly,
different proxies may follow from related ideas and results
in the literature such as the small-parameter analysis of [39],
the pseudo-Boltzmann approximation of [38], and classical or
quantum surrogate models [35,36]. We remark that a promis-
ing direction that appears relatively straightforward in light of
our results is to extend the analysis of [38] to QAOA levels
beyond p = 1. Finally, an important direction is to explicitly
generalize our approach to algorithms beyond QAOA and,
more generally, problems beyond combinatorial optimization,
such as the parameter setting problem for variational quantum
eigensolvers. Generally, it is important to better understand
and characterize regimes where such classical proxies are
most advantageous, such as when the noisy computation and
measurements of real-world quantum devices is taken into

account, as well as to what degree undesirable effects such as
barren plateaus may apply when such proxies are utilized for
parameter setting. Lastly, a future extension of our work could
be to derive rigorous approximation bounds for the classical
homogeneous proxy on various problem classes or instances.
This work could determine, among other behavior, how the
accuracy of the proxy scales with increasing γ and number of
layers, as explored in Fig. 4.
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C. J. Carey, İ. Polat et al., SciPy 1.0: fundamental algorithms for
scientific computing in Python, Nat. Methods 17, 261 (2020).

[47] D. Gamarnik and Q. Li, Finding a large submatrix of a Gaussian
random matrix, Ann. Stat. 46, 2511 (2018).

[48] M. Mézard, T. Mora, and R. Zecchina, Clustering of solutions in
the random satisfiability problem, Phys. Rev. Lett. 94, 197205
(2005).

[49] D. Achlioptas and F. Ricci-Tersenghi, On the solution-space
geometry of random constraint satisfaction problems, in Pro-
ceedings of the Thirty-Eighth Annual ACM Symposium on
Theory of Computing, STOC’06 (ACM, New York, 2006),
pp. 130–139.

023171-14

https://doi.org/10.1088/2058-9565/ab8c2b
https://doi.org/10.1007/s11128-021-03298-4
https://doi.org/10.1103/PhysRevLett.126.070505
https://doi.org/10.22331/q-2021-07-01-491
https://doi.org/10.22331/q-2022-01-27-635
https://arxiv.org/abs/1812.04170
https://arxiv.org/abs/2107.01218
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.22331/q-2021-04-20-437
https://doi.org/10.22331/q-2020-04-20-256
https://doi.org/10.1103/PhysRevResearch.2.023074
https://doi.org/10.1088/2058-9565/abb6d9
https://doi.org/10.1103/PhysRevA.107.032415
https://doi.org/10.1103/PhysRevLett.130.050601
https://doi.org/10.1088/2058-9565/aca3ce
https://arxiv.org/abs/1505.03424
https://doi.org/10.22331/q-2022-07-07-757
https://arxiv.org/abs/2111.06868
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1214/17-AOS1628
https://doi.org/10.1103/PhysRevLett.94.197205

