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Work statistics for quantum spin chains: Characterizing quantum phase transitions, benchmarking
time evolution, and examining passivity of quantum states
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We study three aspects of work statistics in the context of the fluctuation theorem for quantum spin chains
up to 1024 sites by numerical methods based on matrix-product states (MPSs). First, we use our numerical
method to evaluate the moments/cumulants of work done by the sudden quench process on the Ising or Haldane
spin chains, and we study their behaviors across the quantum phase transitions. Our results show that, up to the
fourth cumulant, the work statistics can indicate the quantum phase transition characterized by the local order
parameters but barely for purely topological phase transitions. Second, we propose to use the fluctuation theorem,
such as Jarzynski’s equality, which relates the real-time correlator to the ratio of the thermal partition functions,
as a benchmark indicator for the numerical real-time evolving methods. Third, we study the passivity of ground
and thermal states of quantum spin chains under some cyclic impulse processes. We show that the passivity
of thermal states and ground states under the Hermitian actions is ensured by the second laws and variational
principles, respectively, and we also verify this by numerical calculations. In addition, we also consider the
passivity of ground states under non-Hermitian actions, for which the variational principle cannot be applied.
Despite that, we find no violation of passivity from our numerical results for all the cases considered in the
Ising and Haldane chains. Overall, we demonstrate that the work statistics for the sudden quench and impulse
processes can be evaluated precisely by the numerical MPS method to characterize quantum phase transitions and
examine the passivity of quantum states. We also propose to exploit the universality of the fluctuation theorem
to benchmark the numerical real-time evolutions in an algorithmic and model-independent way.
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I. INTRODUCTION

Motivated by the progress of quantum simulations in cold-
atom experiments [1–5] and the theoretical understanding
of the thermalization of isolated quantum systems [6–8],
the nonequilibrium dynamics of quantum systems have been
studied extensively [9–13]. A system can be driven into
nonequilibrium simply by introducing a time-dependent inter-
action or a time-dependent coupling constant, and the system
can return to equilibrium after turning off the time dependence
of the coupling. For a many-body system, obtaining the exact
dynamical evolution is generally difficult. Given a numerical
method of evaluating the dynamical evolution, finding a way
to estimate the numerical accuracy becomes a challenging
task, especially for a system without prior knowledge of the
exact dynamics. One would expect that the numerical er-
ror accumulates as the system evolves. Therefore, a reliable
real-time error estimator will help compare the numerical
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results with the experimental ones, such as the quantum
simulation.

For nonequilibrium dynamics of an isolated quantum sys-
tem, one would expect that the underlying microreversibility
should manifest in some way, in contrast with the macroscopic
second law of thermodynamics. Indeed, equality relations
exist, collectively known as fluctuation theorem [14–23], for
such a manifestation. The work done in a nonequilibrium
process is not a state variable and will depend on the path
connecting the initial and final state. The fluctuation theorem
relates the average work to the free-energy difference between
the initial and final states. To calculate the average work or the
higher moments, one can construct the corresponding char-
acteristic function (or generating function of work statistics),
which can be rewritten as the real-time correlation function
[17,19,24]. This characteristic function of work takes a form
similar to the out-of-time-ordered correlator (OTOC) in char-
acterizing the quantum chaos [25–27]. In general, one needs
to adopt some numerical method to calculate this generating
function or some OTOC-like quantities involving nonequi-
librium dynamical evaluation, which may be spoiled by the
accumulation of numerical errors. On the other hand, the
difference in free energy only depends on the initial and final
states. It will require disproportionately less numerical effort
than that needed for the characteristic function. Exploiting
a feature of such disproportionality in the numerical efforts
on both sides of the fluctuation theorem, one can use it to
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monitor the accuracy of any numerical method for evaluat-
ing the real-time nonequilibrium dynamical evolution of a
quantum system. In recent works [28], a numerical method
based on the matrix-product-state (MPS) approach [29,30]
was adopted to evaluate the characteristic function for Ising
spin chains and to verify the fluctuation theorem; see also
[31] for a similar method for evaluating the heat statistics
of open systems. This method can also be generalized to
two-dimensional spin lattices, called the tensor-network state
(TNS) [32]. In this paper, we will adopt the MPS method
to evaluate the characteristic function of other quantum spin
chains, and we will use the fluctuation theorem to benchmark
the capability of these numerical time-evolving methods.

Another interesting aspect of work statistics is charac-
terizing the (dynamical) quantum phase transitions (QPTs).
This was first demonstrated in [33] for the Ising chain and
later in [34] for the random matrix models under a sudden
quench process, i.e., with a sudden change of the Hamiltonian,
for which the work characteristic function is related to the
Loschmidt echo. Moreover, the average work done on the
isolated system measures the expectation value of the jump
of the Hamiltonian across the quenching point with respect
to the initial state. Then, a similar trick is applied to show
the universal scaling behavior of the kink statistics for the
dynamical quantum phase transition under the Kibble-Zurek
mechanism (KZM) for the (Ising) spin chains [35–38], and for
the Kitaev honeycomb model [39]. This approach to charac-
terizing QPTs by work statistics is extended to the (exactly
solvable) spin/fermion chain models under the nonquench
processes [35,40,41].

It is also known that entanglement structures like entan-
glement entropy can also characterize QPTs by showing a
discontinuity at critical points in many cases of QPTs; e.g.,
see [42,43]. As both the entanglement entropy and the work
statistics can be encoded as some combinations of multipoint
correlations, this may explain why both can characterize QPTs
through some singular multipoint correlations. This perspec-
tive has been explored in [44] for the fermionic Hubbard
model with random impurities. It was shown that the entan-
glement is minimized while the work average is maximized
at the critical point, but the second moment of work vanishes.
In this paper, we will study this issue further for Ising and
Haldane chains.

When considering the quantum phase transition, the initial
state is the ground state. After the sudden quench, it be-
comes a linear combination of the various excited states of
the new Hamiltonian close in energy. If both initial and final
Hamiltonians are noncritical and gapped, then only the
gapped excited states with their energies less than the av-
erage work done on the system can be induced. However,
if the final Hamiltonian happens to be at the quantum crit-
ical point, it describes a gapless system, and an infinite
number of gapless excitations will be induced. We expect
the work statistics to differ from those for the noncriti-
cal cases because this large number of gapless excitations
will provide more dynamic paths for the quenching pro-
cess for retrieving a definite amount of work. This implies
that the average work excitation can display discontinuous
behavior when the sudden quench connects a noncriti-
cal Hamiltonian to a critical one. In this sense, the work

statistics, i.e., the average work done or the higher cumu-
lants, can be adopted to characterize the quantum phase
transitions, i.e., as an order parameter. Since the above reason-
ing concerns only the gapless feature of the critical systems,
it can work for both the quantum phase transition of the
Landau-Ginzburg type due to spontaneously-symmetry break-
ing (SSB), or the topological type characterized by nonlocal
order parameters. Finding the appropriate order parameter to
indicate the topological phase transition is usually more diffi-
cult. In this paper, we will explore the power of the numerical
MPS-based algorithm to evaluate the moments/cumulants of
work statistics and demonstrate their capability and limita-
tions in characterizing the QPTs of the quantum Ising and
Haldane chains. With the help of the quantum-state RG of
MPSs, we can evaluate the work statistics for chains up to
1024 sites. This will effectively suppress the finite-size effect,
especially when near the quantum critical point.

Finally, we would like to study the issue of the passivity of
ground states of quantum spin chains under cyclic impulse
processes. It had been known that the relativistic thermal
states are always passive, i.e., no work can be extracted from
the system in any cyclic process [45–47]. We first show that
the passivity of thermal states is guaranteed by the fluctuation
theorem or, equivalently, the second law of thermodynamics.
It is also straightforward to see that the passivity of ground
states under Hermitian action is guaranteed by the variational
principle, i.e., the ground state has the lowest energy. How-
ever, the variational principle fails to ensure the passivity of
the ground states if the action for driving nonequilibrium is
non-Hermitian. We then adopt the MPS numerical method to
examine the passivity for such cases. In all cases we checked,
we found no active ground states even under non-Hermitian
action. In addition, the patterns of average work extraction
show some interesting features.

Based on the work statistics and the fluctuation theorem,
we will use reliable numerical methods to investigate the
above three aspects of the quantum spin lattice models in this
paper: characterizing the quantum phase transitions, bench-
marking the accuracy of the numerical real-time evolution,
and examining the passivity. These studies enlarge the per-
spective of the work done and the fluctuation theorem. In
summary, in this work we will demonstrate the power of
the numerical MPS method in evaluating the work statistics
precisely enough to characterize the quantum phase transi-
tions and examine the passivity of quantum states, even for
the non-Hermitian actions. Moreover, we will also show how
to exploit the simplicity and universality of the fluctuation
theorem to benchmark the numerical real-time evolutions for
generic models and numerical algorithms.

The rest of the paper is organized as follows. For com-
pleteness, in the next section we briefly review the basics
of work statistics and the fluctuation theorem and elaborate
on the theoretical frameworks of the three aspects of work
statistics that we address in this paper. In Sec. III, we review
the numerical methods for evaluating the real-time correlators
based on MPSs and then apply them to evaluate the generat-
ing function of work statistics and the expectation values of
physical observables. In Sec. IV, we apply the above numer-
ical methods to Ising-like and Haldane-like spin chains. Our
numerical results demonstrate that the work statistics from the
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sudden quench can be used to characterize the quantum phase
transitions for all spin models. In Sec. V, we show the results
of using Jarzynski’s equality as the benchmark to gauge the
numerical accuracy of the real-time evolving methods. In
Sec. VI, we present our results of examining the passivity
of the ground states of the quantum spin chains under both
Hermitian and non-Hermitian actions. Finally, in Sec. VII,
we summarize our work and discuss the possible extensions.
Some numerical consistency checks and supplements are pre-
sented in the Appendixes.

II. WORK STATISTICS AND ITS APPLICATIONS

A. Work statistics and fluctuation theorem

We first give a brief sketch of the basics of work statistics
in the context of the fluctuation theorem, which provides an
elegant framework for describing and characterizing thermal
or quantum fluctuations in statistical mechanics.

Unlike some conservative quantities, work is not a state
variable, and it will depend on the microscopic details/paths
of the nonequilibrium process. In short, work is a random
variable and is characterized by a distribution function defined
for work statistics as follows:

p(W ) =
∑
a,b

δ(W − [Eb(t f ) − Ea(0)]) p(b, t f |a) pa, (1)

where p(b, t f |a) is the transition probability from the energy
eigenstate |a〉 of energy Ea(0) at time t = 0 to another eigen-
state |b, t f 〉 of energy Eb(t f ). This nonequilibrium process is
driven by a time-dependent Hamiltonian H (t ) from an initial
state of density matrix ρ(0) = ∑

a pa|a〉〈a|, with H (0) |a〉 =
Ea(0) |a〉 and H (t f ) |b, t f 〉 = Eb(t f ) |b, t f 〉. Thus, we have

p(b, t f |a) = |〈b, t f |U (t f )|a〉|2 = |〈a|U †(t f )|b, t f 〉|2 (2)

with U (t f ) = T e−i
∫ t f

0 H (t )dt . For simplicity, in this paper we
will only consider the cases with H (t ) = H0 + λ(t )V with
time-independent H0 and V , so that [H (t ), H (t ′)] = 0 and
the time-ordering symbol T in U (t f ) can be omitted. More-
over, in general we will allow for non-Hermitian H (t ) so
that U (t f ) can be nonunitary, i.e., U †(t f ) �= U −1(t f ). The last
equality implies detailed balance or microreversibility. Sim-
ilarly, one can define the work statistics from the “reverse
process” with an “initial state” of the density matrix ρ(0) =∑

m qm|m, t f 〉〈m, t f | as follows:

p̃(−W ) =
∑
a,b

δ(−W + [Eb(0) − Ea(0)]) p̃(a|b, t f ) qb, (3)

where the transition probability for the reverse process
is p̃(a|b, t f ) = |〈a|U †(t f )|b, t f 〉|2 = p(b, t f |a), with the last
equality ensured by microreversibility.

The fluctuation theorem is usually formulated for the
canonical initial and final states, i.e., pa = e−β[Ea (0)−F (0)] and
qb = e−β[Eb(t f )−F (t f )], with β = 1

kBT the inverse temperature,
and F (0) and F (t f ) are the free energy for the initial and final
states, which are defined by the partition functions Z (0) =
e−βF (0) and Z (t f ) = e−βF (t f ), respectively. Then, the fluctua-
tion theorem taking the form of Crooks’ relation [16] can be
obtained by construction from Eqs. (1)–(3), and it reads

p(W ) e−β(W −�F ) = p̃(−W ), (4)

where �F = F (t f ) − F (0). Integrating this relation over W ,
we can obtain Jarzynski’s equality [14,17],

e−βW = e−β�F , (5)

where the “overline” denotes the average over work W . Using
Jensen’s inequality, Jarzynski’s equality can yield the second
law: �S := W − �F � 0. The fluctuation theorem for more
general quantum processes and end states can be found in
[20,22,23].

From the work statistics, we can define the corresponding
characteristic function as

G(u) =
∫

dW eiuW p(W ). (6)

This function is the generating function of the moments of
work done, e.g.,

W = 1

i
lim
u→0

∂ ln G(u)

∂u
, (7)

σ 2
W := W 2 − W

2 = − lim
u→0

∂2 ln G(u)

∂u2
. (8)

For simplicity, later we will mostly adopt W = lims→0
∂G(−is)

∂s
since G(−is) is real and G(0) = 1.

Moreover, Jarzynski’s equality can be expressed as fol-
lows:

G(iβ ) = e−β�F . (9)

After some straightforward manipulation, the work character-
istic function G(u) of a nonequilibrium process, which drives
the initial state ρ(0) by a time-dependent Hamiltonian H (t )
during the time interval [0, t f ], can be put into the following
form [19]:

G(u; t f ) = Tr[U †(t f )eiuH (t f )U (t f )e−iuH (0)ρ(0) ]

Tr[U †(t f )U (t f )ρ(0) ]
. (10)

The denominator is unity for unitary U (t f ) [or hermitian
H (t )]. The expression of Eq. (10) can be recast into the real-
time correlation function on the extended Schwinger-Keldysh
contour [24] so that techniques of open system dynamics can
be adopted. We usually omit t f and write G(u).

To be specific, in this paper we will only consider the time-
dependent Hamiltonian of the following form:

H (t ) = H0 + λ(t )V, (11)

where we choose the initial Hamiltonian H0 = H (0−) to be
time-independent and Hermitian; however, the driving opera-
tor V is time-independent but could be non-Hermitian. If V is
non-Hermitian, then U (t ) is nonunitary so that the denomina-
tor of Eq. (10) is not unity. An initial state ρ0, which is taken
to be either the thermal state or the ground state of H0, will
be driven away from equilibrium due to the nontrivial time
dependence of the coupling constant λ(t ). The notations 0−
and 0+ used later denote the moments right before and after
t = 0, respectively.

We will consider two particular nonequilibrium processes
in the following:

(i) Sudden quench process with

λ(t ) = �λ	(t ), (12)
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where 	(t ) is the Heaviside step function, and �λ is a con-
stant. For such a process, U (t f )|t f →0 = 1, H (0−) = H0, and
H (0+) = H0 + �λV .

(ii) Impulse process with

λ(t ) = λδ(t ), (13)

where δ(t ) is the Dirac delta function and λ is a constant.
Compared to a sudden quench process, the coupling con-
stant is turned off right before and after the impulse so that
H (0−) = H (0+) = H0. Thus, this process can be considered
cyclic and will be implemented to study passivity.

In both kinds of processes, we will find that the average
work done W extracted from G(u) can characterize (quantum)
phase transitions.

B. Benchmark the numerical real-time evolution

Jarzynski’s equality shown in Eq. (9) is an interesting rela-
tionship that relates a real-time correlator to the ratio of the
partition functions, i.e., e−β�F = Z (t f )

Z (0) . There is usually no
analytical method to calculate the real-time correlators such
as G(u) of Eq. (10) of a many-body system even though there
might be some analytical ways of calculating the partition
function. Even relying on the numerical method to evalu-
ate the real-time correlators, the numerical errors accumulate
more as the evolution continues. On the other hand, the parti-
tion function is a stationary quantity free of the accumulated
error. Therefore, we can characterize the accumulated error by
defining the following ratio:

R(t f ) = G(iβ )

e−β�F
= G(iβ )

Z (0)

Z (t f )
, (14)

which is the ratio of the left-hand side to the right-hand side
of Jarzynski’s equality and is a function of evolution time t f .

By monitoring the deviation of R(t f ) from unity, one can
estimate the numerical error accumulation of a numerical
method for real-time evolution in a first-principles way with-
out the need to compare with the analytical or other numerical
methods. For different numerical methods for real-time evo-
lution, we can compare the deviations of their R(t f ) from
unity for different numerical methods for real-time evolution
to benchmark their performances. Later, we will demon-
strate benchmarking for the numerical methods adopted in
this paper.

C. Work done by sudden quench and phase transition

In general, the work statistics or its characteristic function
for the many-body system is difficult to evaluate for the com-
plication of real-time dynamics. However, to characterize the
phase transition, we can bypass the difficulty by just consid-
ering the work done by a sudden quench implemented by the
Hamiltonian of Eqs. (11) and (12). Denote the ground state of
H0 by ρ0 ≡ |0〉〈0|, and the Hamiltonian after quench by H+,
i.e., H+ ≡ H0 + �λV . Then the characteristic function can be
simplified as follows:

lim
t f →0+

G(u) = Tr[e−iuH0ρ0eiuH+ ], (15)

which yields moments and the first few cumulants of the work
done as follows:

W m = (�λ)m 〈0|V m|0〉, (16)

σ 2
W = 〈0|H2

+|0〉 − 〈0|H+|0〉2,

= (�λ)2(〈0|V 2|0〉 − 〈0|V |0〉2), (17)

κ3 = W 3 − 3W 2W + W
3
, (18)

κ4 = W 4 − 4W 3W − 3W 2
2 + 12W 2W

2 − 6W
4
. (19)

The quantity W , as shown for the sudden quench, measures
the energy of the “excited state” |0〉 with respect to H+,
while the quantity σW measures the corresponding fluctuation
of �H = �λV . Thus, W (or σ 2

W ) could act as a local order
parameter to characterize the quantum phase transition while
tuning H0. From Eq. (16) we can also calculate the higher
moments W m or higher cumulants κm for the sudden quench
in terms of the expectation value of higher order V m’s.

We now elaborate on why the quantities in Eqs. (16)
and (17) can be used as the order parameter to character-
ize the phase transition. First, suppose the initial and final
states are Gibbs states related by unitary evolution. In that
case, the Hamiltonian can also be understood as the modular
Hamiltonian, i.e., Hmod = − log ρ. In this case, W can be
rewritten as the relative entropy Srel [20], i.e.,

W = Tr[ ρG
−�Hmod ] = Srel(ρ

G
−|ρG

+ ), (20)

where ρG
−,+ are the Gibbs states before and after quench,

respectively. In this case, W measures the distance between
the initial and final Gibbs states. For the case we consider, the
initial and final states are pure, and W is no longer equivalent
to the relative entropy. However, as explained below, W can
still be used to distinguish pure states, especially the critical
and noncritical ones.

The phase transition is usually characterized by the order
parameter, which is the expectation value of some local or
nonlocal observables. We can decompose the Hamiltonian
H+ = ∑

f E f +| f +〉〈 f +|, so that Eq. (16) with m = 1 can be
rewritten as

W =
∑

f

E f + |〈0| f +〉|2 = E f + . (21)

The average work done W can be seen as the expectation
value of E f + with its probability measure given by p( f ) =
|〈0| f +〉|2. We will tune some coupling in H0 over a range
covering different phases. Again, |0〉 looks like the excited
state to H+. When H0 and H+ are in the same phase, we expect
|0+〉 ≈ |0〉 so that p( f ) = δ f ,0 and W 	 E0+ |〈0|0+〉|2 	 E0+ .
On the other hand, if they are in different phases, we should
not expect a sharp distribution for p( f ), and W will be quite
different from E0+ due to the incoherent average. For example,
when H+ is the gapless critical Hamiltonian at the quantum
critical point, we expect the emergence of a dense set of
degenerate gapless states denoted as {0+

c } such that the density
of ground states p(0+) = ∑

{0+
c } p(c) < 1, which is quite dif-

ferent from the case of noncritical gapped H+ with p(0+) 	 1.
This then induces a sudden jump of W from W 	 E+

0 to the
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incoherent average W 	 E0+
∑

{0+
c } p(0+

c ) + ∑
f �={0+} p( f )E f .

Therefore, W can be used as an order parameter for the
phase transition. Similar arguments apply for σ 2

W or higher
moments/cumulants. Some preliminary study of p( f ) for a
quantum Ising chain under sudden quench by the exact diago-
nalization (ED) method is done in Appendix A, and the result
is shown in Fig. 11 therein.

D. Passivity of a quantum state: Thermal or ground states

A quantum state is called passive if there is no work
extraction, i.e., W � 0, under a cyclic process defined by
H (t f ) = H (0). It was shown that the KMS state [48,49],
i.e., the thermal vacuum state for a relativistic quantum field
theory, is passive [45–47]. Even though there is no general
criterion for checking the passivity of a generic quantum state,
it can be argued from the fluctuation theorem as follows. For a
cyclic process, we shall expect �F = 0 so that the fluctuation
theorem becomes e−βW |cyclic = 1. By Jensen’s inequality, this
implies a second-law statement

�S = W |cyclic � 0. (22)

Therefore, the fluctuation theorem guarantees the thermal
states’ passivity, thus the second law. Since the second law
is established only in the thermodynamic limit, there is evi-
dence that the thermal-like states of finite systems under some
peculiar process can be active [50–52].

Based on the above result, it is worth mentioning the
study in [53], which considered the passivity of the en-
ergy eigenstates of Ising chains under the action of local
Hermitian operations. By adopting the eigenstate thermaliza-
tion hypothesis [8,54,55], an energy eigenstate locally looks
like a thermal state, e.g., the reduced density matrix of a local
region is approximately a thermal one with some effective
temperature. Thus, based on the passivity of the thermal state
and ETH, an energy eigenstate will probably be passive under
the action of local unitary operations. In [53], it was shown
that all the energy eigenstates are passive under local opera-
tions for nonintegrable Ising chains of finite size, while most
energy eigenstates are passive for integrable Ising chains. This
is consistent with the fact that ETH holds only weakly for
integrable systems; see, e.g., [56–58]. The above result could
also help to explain the passivity of the ground states studied
below and imply a negative effective temperature.

Intuitively, the ground states should be passive because the
operation V excites the ground state to those with larger ener-
gies so that one cannot extract energy from the ground state.
We can check passivity by first obtaining the average work
extraction W cyclic

ext ≡ −W for the cyclic process with H (t f ) =
H (0) := H0 from the characteristic function of Eq. (10), i.e.,

W cyclic
ext = Tr[H0ρ1] − Tr[H0ρ2], (23)

where

ρ1 := ρ0U †(t f )U (t f )

Tr[ ρ0U †(t f )U (t f ) ]
, (24)

ρ2 := U (t f )ρ0U †(t f )

Tr[ ρ0U †(t f )U (t f ) ]
. (25)

Note that Trρ1 = Trρ2 = 1. Moreover, if U (t f ) is unitary, i.e.,
U †(t f ) = U −1(t f ), then ρ1 = ρ0 and ρ2 = U (t f )ρ0U †(t f ), so
that Eq. (23) can be reduced to

W cyclic
ext = Tr[H0ρ0] − Tr[H0U (t f )ρ0U

†(t f )], (26)

which is simply the energy difference between the ground
state ρ0 and the excited state U (t f )ρ0U †(t f ). Thus, in such
cases, the passivity of the ground state is guaranteed if the
variational principle holds. On the other hand, if U (t f ) is
nonunitary, then ρ1 �= ρ0 even though ρ2 resembles an excited
state under nonunitary evolution. Therefore, the negativity of
W cyclic

ext of Eq. (23) can no longer be ensured by the variational
principle.

We can conclude from the above discussions that the varia-
tional principle generally ensures the ground state’s passivity.
In this work, we will verify this by numerical calculation and
explore its possible violations by considering the cases of
non-Hermitian V so that the variational principle cannot be
applied to guarantee the negativity of W cyclic

ext of Eq. (23).
For simplicity and numerical implementation, we will only

consider the impulse cyclic processes, i.e., with λ(t ) given by
Eq. (13), for which we have

lim
t f →0+

U (t f ) = lim
t f →0+

e−i
∫ t f

0− dt[H0+λδ(t )V ] = e−iλV . (27)

This yields

G(u) = Tr[eiλV †
eiuH0 e−iλV e−iuH0ρ0]

Tr[eiλV † e−iλV ρ0]
. (28)

It turns out that we can easily implement the MPS formalism
for spin-chain models to evaluate the right side of Eq. (28)
numerically and then extract W impulse

ext from the results. Al-
ternatively, the average work extraction can also be obtained
from Eqs. (23)–(25) by replacing U (t f ) with e−iλV and U †(t f )
with eiλV †

.
It is easy to see that W impulse

ext vanishes exactly if [V, H0] =
0. Otherwise, by assuming H0|0〉 = 0 and taking a small |λ|
expansion up to O(λ4), we have

W impulse
ext = − λ2 〈V †H0V 〉 + i

2
λ3[〈V †H0V

2 − V †2H0V 〉
+ 2〈V † − V 〉〈V †H0V 〉]

− 1

6
λ4

[〈
3

2
V †2H0V

2 − V †3H0V − V †H0V
3

〉

− 3〈V † − V 〉〈V †H0V
2 − V †2H0V 〉

+ 3〈V †H0V 〉〈V †2 + V 2 − 2V †V 〉
]
, (29)

where we abbreviated 〈0| · · · |0〉 as 〈· · · 〉. We see that the
O(λ) term is absent, so that at O(λ2), W impulse

ext is independent
of the sign of λ. Note also that the last terms in each order
shown above all vanish for V † = V . Although this expression
contains terms with an imaginary i factor, they are always
associated with the expectation values of anti-Hermitian op-
erators, so the overall expression is a real quantity.

In addition, due to the peculiarity of the impulse process,
there are some interesting features of W impulse

ext . First, if V =∑
k σ a

i for the spin-1/2 chain, with σ a
k for a = 1, 2, 3, are the
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Pauli matrices for the spin operator at site k, then e−iλV =∏
k e−iλσ a

k = ∏
k (cos λ − iσ a

k sin λ), which is periodic in λ.
The resultant W impulse

ext is then also periodic in λ. Secondly,
if V = i

∑
k σ a

i for the spin-1/2 chain, similar to but not
the same as the Hermitian case, e−iλV = eiλV † = ∏

k eλσ a
k =∏

k (cosh λ + σ a
k sinh λ). Using this to evaluate W impulse

ext and
using the fact that H0|0〉 = 0, we can obtain

lim
λ→∞

W impulse
ext = −

〈 ∏
k

(
1 + σ a

k

)
H0

∏
j

(
1 + σ a

j

) 〉
2
〈 ∏

k

(
1 + σ a

k

) 〉 , (30)

which saturates to a negative finite constant as λ → ∞. Note
that the negativity is ensured by the variational principle and
|〈σ a

k 〉| � 1. The peculiar features for both types of V of spin-
1/2 chains are due to the highly nonadiabatic nature of the
impulse process. Similar conclusions can be drawn for the
spin-1 chain with some specific V composed of the sum of
site-spin operators.

From the above discussion, we see that the passivity (or the
negativity of W impulse

ext ) is guaranteed by the variational princi-
ple in the small-λ regime regardless of whether V is Hermitian
or not. Therefore, when exploring the possibility of violating
the passivity of the ground states for the non-Hermitian V , we
will investigate the large-λ regime, to which the variational
principle cannot be directly applied.

Finally, we comment on the possible physical realization of
a non-Hermitian operation, although our consideration in this
work is somewhat academic. There are ways to realize non-
Hermitian actions. One way is to drop the quantum jump term
in the Lindblad master equation for the open quantum system
by choosing the proper Lindblad operator, and the resultant
equation describes the Heisenberg evolution of the density
matrix operator by a non-Hermitian Hamiltonian; see, e.g.,
[59]. This can be alternatively realized on quantum circuits by
probability quantum computing with suitably dilated Hilbert
space; see [60]. Or, one can introduce the non-Hermitian inter-
action in the context of PT -symmetry. For the Ising chain, it
is equivalent to introducing an imaginary magnetic field; see,
e.g., [61].

III. NUMERICAL METHODS FOR IMAGINARY-
AND REAL-TIME EVOLUTION

To calculate the work statistics, we must evaluate the as-
sociated generating function, i.e., the real-time correlator of
the characteristic function, Eq. (10). Even for a quenching
process, it still involves a nontrivial vacuum expectation value
(VEV) as given by Eq. (15) or the average work done given
by Eq. (16). This is usually a challenging task for many-body
systems. To study the work statistics for various many-body
quantum systems, a recent work [28] has adopted the numer-
ical method based on a matrix-product state (MPS) [29,30]
for quantum spin chains. This method is called time-evolving
block decimation (TEBD) [62,63] to use for the real-time
evolution or evaluation of the VEV by its imaginary-time evo-
lution. Below, we will review the basic ideas of this method
and mention its application for our purposes.

Moreover, Jarzynski’s equality (9) relates a real-time cor-
relator to the ratio of the partition functions of thermal states,
which is far easier to evaluate than the former. Therefore,

FIG. 1. (a) Symbol for matrix product state (MPS) structure.
(b) Symbol for matrix product operator (MPO) structure. (c) MPO
representation of the operator e−βH for a quantum system with
nearest-neighbor interaction via the TEBD algorithm. (d) MPO rep-
resentation of approximated e−βH .

we can use Jarzynski’s equality to gauge the accuracy of the
numerical real-time evolution and serve as the benchmark
for a given numerical method for real-time evolution. In the
next section, we will benchmark the TEBD and the exact
diagonalization (ED).

A. Matrix product states

For the one-dimensional quantum many-body systems, the
ground states could be expressed in terms of a matrix product
state (MPS), which can be expressed as

|ψ〉 =
∑

s1,s2,...,sn

tTr[As1 As2 · · · Asn ]|s1s2 · · · sn〉, (31)

where sk = 1, 2, . . . , ds for k = 1, 2, . . . , n, with n the num-
ber of sites of the spin chain, and Asi is the on-site tensor.
For example, Ask

l,r is a rank-3 tensor for 1D MPS as shown in
Fig. 1(a). Moreover, we can also generalize this idea to rep-
resent quantum many-body operators, called matrix product
operators (MPOs), as shown in Fig. 1(b). We call ds the phys-
ical dimension and χcut the bond dimension. tTr is to sum over
all indices of tensors. Depending on the situation, we should
tune χcut to capture the ground state’s essential feature fully.
Despite that, the χcut generally required for a good approxima-
tion of ground states still yields a more efficient representation
of the quantum ground states than the typical dimensions of
dN

s . The validity of the MPS ansatz is due to the area-law
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nature of quantum entanglement entropy of ground states and
shall not hold for highly excited or high-temperature states.

The MPS effectively expresses the ground states of
quantum spin-chain models so that numerical methods can
construct them more efficiently. We will use the time-evolving
block decimation TEBD method [63] as described below to
implement the imaginary-time evolution operator to obtain
the ground states of the two considered spin-chain models
and then use them to evaluate the generating (characteristic)
function for the work statistics. Furthermore, when checking
the fluctuation theorem, one must prepare the initial states as
Gibbs states, which are beyond primitive MPS.

B. Time-evolving block decimation

Time-evolving block decimation (TEBD) provides an ef-
ficient way to simulate time evolution. We use the TEBD
method to solve for the above MPS numerically, namely by
acting the imaginary-time evolution operator e−τH on an ini-
tial state |ψ0〉 to determine the ground state and by acting the
real-time evolution operator e−iHt to study the dynamics of the
quantum lattice systems.

Denote the time-evolving state as |ψt 〉 = e−itH |ψ〉 for
an initial state |ψ〉 with a given Hamiltonian H . For
simplicity, we consider only the Hamiltonians made
of arbitrary single-site and two-site terms, i.e., with
nearest-neighbor interactions, so that they can be decom-
posed as H = ∑L

k=1 hk,k+1 = Heven + Hodd, where Heven ≡∑L
even k hk,k+1, Hodd ≡ ∑L

odd k hk,k+1, and hence the com-
mutator [Heven, Hodd] �= 0. We then break the evolution
operations e−itH into a sequence of local gates using a
Suzuki-Trotter expansion. For small enough δ, the Suzuki-
Trotter expansion of order for e−itH can be written as

e−itH = [e−iδH ]t/δ = [e−iδ(Heven+Hodd )]t/δ

≈ [ fp(e−iδHeven , e−δHodd )]t/δ, (32)

where f1 = (x, y) = xy, f2 = (x, y) = x1/2yx1/2 for first- and
second-order expansions, respectively. If we expand to higher-
order terms, the Trotter error will decrease. The evolution
operators can be expressed as a product of two-body gates us-
ing the Suzuki-Trotter expansion. The simulation of evolution
is achieved by updating the MPS by a sequential of alternating
gate operations, i.e., alternating between e−iδHeven and e−iδHodd ,
as specified by Eq. (32). In this paper, we will implement this
MPS-based TEBD method to evaluate the work characteristic
function G(u) for extracting average work done W , and we
will also evaluate the partition functions for extracting the free
energies that appear on the right-hand side of the fluctuation
theorem.

C. Thermal density matrix as MPO

As mentioned, the MPS is suitable for representing the
ground states but not the highly excited states, such as
high-temperature thermal states. This paper will mainly deal
with the work statistics for ground states. On some occasions,
we will also deal with thermal states, e.g., by checking the
fluctuation theorem or the passivity of thermal states. A way
to construct the thermal states based on MPS is the so-called

algorithm of minimally entangled typical thermal states
(METTS) [64], which adopts a Markov chain of product
states to construct the thermal ensemble constrained by a
detailed balancing relation.

Instead of adopting METTS, a more direct way of con-
structing a thermal state based on MPS is to represent the
density operator e−βH by an MPO. The partition function for
evaluating free energy is to take a trace of this MPO. To con-
struct such an MPO, one first prepares an initial identity MPO
of bond dimension χcut = 1. The MPO for the thermal state
is then obtained by acting with the operator e−βH , which can
be decomposed by TEBD and the Suzuki-Trotter expansion
into a sequence of a product of two-body gates, as shown in
Fig. 1(c). The partition function can be obtained by tracing
out the two physical indices of the MPO e−βH as shown in
Fig. 1(d). In Appendix B 1, we show the agreement on the
work statistics obtained from METTS and MPO representa-
tion of thermal states. In the rest of the paper, we will adopt
MPO to represent thermal states to proceed with the numerical
calculations.

IV. NUMERICAL RESULTS FOR CHARACTERIZING
THE QUANTUM PHASE TRANSITIONS

In this section, we will present our numerical results to
demonstrate that the average work done by the sudden quench
can be the order parameter for the quantum phase transitions.
The quantum systems we consider include quantum spin-1/2
and spin-1 chains. The quantum phase transition considered
for the spin-1/2 chain is the Landau-Ginzburg type due to
spontaneous symmetry breaking. On the other hand, the ones
for the spin-1 chain model are the topological phase tran-
sitions, which can only be characterized by nonlocal order
parameters.

The average work done by sudden quench is given suc-
cinctly by Eq. (16) or extracted from the characteristic
function provided by Eq. (15). In either case, we can imple-
ment the TEBD method based on MPS to evaluate it. Below,
we will show the numerical results case by case.

A. Quantum spin-1/2 chain in magnetic field

We first consider the anisotropic Heisenberg XY spin-1/2
chain in a transverse magnetic field hz and a longitudinal field
hx. Its Hamiltonian is given by

H =
n∑

k=1

[
−

(
1 + γ

2
Sx

k Sx
k+1 + 1 − γ

2
Sy

kSy
k+1

)

+ hxSx
k + hzS

z
k

]
, (33)

where Sx,y,z
k are the site spin-1/2 operators, and k labels the

number of sites. When γ = 1, it reduces to the quantum Ising
chain, and we will focus on the parameter range 0 � γ � 1
and hx = 0. The ground state of this model can be exactly
solved and exhibits three phases of the Landau-Ginzburg-
Wilson paradigm: the oscillatory phase (O), the ferromagnetic
phase (F ), and the paramagnetic phase (P) [65]. The ground
state stays in the O phase for small hz until hz = 1

2

√
1 − γ 2

and then changes to the F phase as a crossover transition.
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FIG. 2. Work characteristic function G(−is) under a sudden
quench process implemented by Hamiltonian H = H0 + �λ V with
�λ = 0.01 with H0 of an n = 1024 quantum Ising chain, i.e., (33)
of γ = 1, hx = 0, hz ∈ [0, 2], and V = ∑

k Sz
k . The results are ob-

tained by the MPS-based TEBD method via the first-order Trotter
expansions for δ = 0.01 with bond dimension χcut = 16. We show
the results only for five values of s but can connect them into a line by
Lagrange interpolation. Each color represents one particular choice
of hz, with their values indicated by the color sidebar. The Lagrange
interpolating lines at critical points are shown explicitly for hz = 0.5.
The slope of an interpolating line corresponds to the average work
done W , which is mostly negative.

Further increasing hz up to hz = 0.5, the ground state will
change to P phase, which is a second-order quantum phase
transition in the thermodynamic limit with 〈Sx〉 as the or-
der parameter, i.e., 〈Sx〉 is nonzero in F (or O if γ = 0)
phase but zero in P phase. Below, we will consider the

phase transition between the ferromagnetic and paramagnetic
phases.

Here, we apply the MPS-based TEBD method to calcu-
late the characteristic function G(u) of Eq. (10) for this spin
chain model with γ = 1 and hx = 0 at zero temperature but
varying the transverse field hz. We aim to check if the work
done W can be used as an order parameter for the quan-
tum phase transition, i.e., from F (or O if γ = 0) phase to
P phase. For simplicity, we consider the sudden quench pro-
cess implemented by the Hamiltonian of Eqs. (11) and (12)
with a chosen jump of the coupling constant, i.e., �λ = 0.01.
The results are shown in Figs. 2 and 3.

Figure 2 shows the characteristic function G(−is) of an
n = 1024 Ising chain for s ∈ [−0.2, 0.2] with γ = 1 and
hx = 0 at various values of hz in the initial Hamiltonian H0.
For simplicity, we pick five values of s but vary hz continu-
ously, with its value indicated by the color bar attached aside.
In particular, the five points belonging to hz = 0.5 are denoted
by the crosses and joined into a line by Lagrange interpolation.
We see that the slope of this line is negative, which implies
that the average work done, W = lims→0

∂G(−is)
∂s , is negative.

For other values of hz in the initial Hamiltonian H0, we can
see that the slope of the line connected by the five points
of the same hz starts with a positive value for hz = 0, then
gradually turns negative as hz increases, and finally converges
to a constant negative value.

The above results and further related calculations can be
translated into phase diagrams as shown in Fig. 3 for the quan-
tum phase transition from the F (or O) phase to the P phase.
These phase diagrams are characterized by the entanglement
entropy S, the average work done, W , and its associated higher
moments and cumulants, under a sudden quench process with
V = ∑

k Sz
k and �λ = 0.01. We see that S has a sharp peak

near hz = 0.5, which implies a stronger correlation near the

FIG. 3. Moments and cumulants of work done by sudden quench with V = ∑
k Sz

k and �λ = 0.01 on the quantum Heisenberg XY Ising
chain of size n = 1024 as a function of the transverse field hz at zero temperature for γ = 0.5 (red crosses), 0.8 (blue circles), and 1.0 (green
squares). For comparison, the entanglement entropy S is also shown. They are listed as follows: (a) W , (b) W 2, (c) W 3, (d) W 4, (e) S, (f) σ 2

W , (g)
κ3, and (h) κ4. The plots are obtained by the TEBD method with the parameters χcut = 16 and δ = 0.01, and W n are obtained using Eq. (16)
by the MPO method. As expected, the higher moments or cumulants yield a sharper change near the critical point so that the work statistics
can indicate the quantum phase transitions in the Ising-like spin chains. To go beyond sudden quench and for comparison, we also extract W
and W 2 (black dashed lines) from the characteristic function Eq. (10) for the nonsudden quench process with t f = 0.1.
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FIG. 4. Moments and cumulants of work done by sudden quench with V = ∑
k (Sz

k )2 and �λ = 0.01 on a quantum Heisenberg XXZ
Haldane chain of size n = 1024 as a function of the coupling parameter D at zero temperature for JZ = 1.0 (red crosses) and 1.5 (blue circles).
For comparison, the entanglement entropy S is also shown. The listing order for W m=1,...,4, σ 2

W , κ�=3,4, and S, the subfigure captions, and the
numerical implementing methods are the same as in Fig. 3. The quantum critical points are indicated by the sharper behavior of S, and they are
at (i) (Jz, D) = (1.5, 0.48), (ii) (Jz, D) = (1.5, 1.34), and (iii) (Jz, D) = (1.0, 1.0). Note that (i) is the transition point from the ordered phase to
the topological phase, but (ii) and (iii) are the purely topological ones without any order parameter, and they should be more difficult to detect.
For (i), W m=1,...,4 show very mild behavior, but cumulants show sharper changes as the order of cumulants goes higher. However, for (ii) and
(iii), only σ 2

W and κ4 show mild crossover [see the enlargement insets in the subfigures (f) and (h)], and all the other moments/cumulants in this
figure show no obvious changes. Overall, we can conclude that the work statistics can barely capture the purely topological phase transitions.
The plots are obtained by the TEBD method with the parameters χcut = 64 and δ = 0.01.

critical point at hz = 0.5. Similarly, the work statistics denoted
by W and the higher moments and cumulants also show shaper
changes near hz = 0.5. As expected, the higher moments and
cumulants show sharper changes at the critical point. This im-
plies that the work statistics can indicate the phase transitions.
Interestingly, the cumulants of even orders show a level-off
for the F (or O) phase with hz � 0.5, and similar behavior for
σ 2

W has been observed earlier, obtained by the exact solution
of Ising chains [66]. This constancy could be associated with
some underlying symmetry. However, the quantities 〈V n〉 with
V = ∑

k Sz
k , related to the cumulants of work, are different

from the order parameter 〈∑k Sx
k 〉 for the transition from the

F (or O) phase to the P phase.
In addition, in Appendix B 2, we give a consistency check

to show in Fig. 13 that the above numerical results of W and
W 2 obtained from either Eq. (7) or Eq. (16) agree.

B. Anisotropic quantum spin-1 chain

To show that our proposal can also work for the quantum
phase transitions of the non-Landau-Ginzburg-Wilson type,
we consider a particular model of such type, namely the
anisotropic quantum XXZ spin-1 chain, described by the fol-
lowing Hamiltonian:

H =
n∑

k=1

[
Sx

k Sx
k+1 + Sy

kSy
k+1 + JzS

z
kSz

k+1 + D
(
Sz

k

)2]
, (34)

where Sx,y,z
k are the site spin-1 operators, and the param-

eter D denotes the uniaxial anisotropy. When Jz = 1, it
reduces to the so-called Haldane chain. The ground-state
phase diagram of this model consists of six different phases

[67,68]. Here, we focus on phase transitions among three
phases: the large-D phase, the Néel phase, and the Haldane
phase characterized by nonzero string-order parameters. At
large D, the model is in a trivial insulator phase. Namely,
the ideal large-D phase is |000 · · · 〉. On the other hand, the
ideal Néel phase is |1,−1, 1,−1 · · · 〉 or | − 1, 1,−1, 1 · · · 〉
with spontaneous nonzero expectation values of the staggered
magnetization.

The Haldane phase is one of the symmetry-protected
topological (SPT) phases. The ground states of such phases
have nontrivial patterns of quantum entanglement. They
cannot continuously connect to trivial product states with-
out closing the gap or breaking the protecting symmetry.
Thus, the SPT phases preserve the global symmetry of the
Hamiltonian so that some spontaneous symmetry-breaking
local order parameters cannot characterize the transition from
the SPT-nontrivial phase to the SPT-trivial one. This is in
contrast to the cases of the Landau-Ginzburg type. Instead, the
topological phases, such as the Haldane phase, are character-
ized by fractionalized edge excitations, which some nonlocal
order parameters, such as the expectation value of some
stringlike operator, can measure.

As before, we can characterize the quantum phase transi-
tions of this model by entanglement entropy S, the average
work done W and its higher moments/cumulants by a sudden
quench with V = ∑

k (Sz
k )2 and �λ = 0.01, and by the associ-

ated higher moments and cumulants. The results are shown in
Fig. 4, which are again obtained numerically using the MPS-
based TEBD method. We see that the entanglement entropy S
shows the peaks around three quantum critical points, which
are at (i) (Jz, D) = (1.5, 0.48), (ii) (Jz, D) = (1.5, 1.34), and
(iii) (Jz, D) = (1.0, 1.0). The critical point (i) is the transition
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point from the ordered Néel phase to the topological Haldane
phase and is partly with local order parameters. On the other
hand, the critical points (ii) and (iii) are from the Haldane
phase to the large D phase, and no local parameter exists to
characterize it. Therefore, these transitions are purely topolog-
ical types and should be more difficult to detect. Indeed, this
is what we see from Fig. 4. For (i), W m=1,...,4 show very mild
behavior, but cumulants show shaper changes as the order of
cumulants goes higher. However, for (ii) and (iii), only σ 2

W
shows a mild crossover, and all the other moments/cumulants
in this figure show no obvious changes. It is strange why the
higher cumulants do not show sharper behavior for critical
points (ii) and (iii). This could be due to the need for a higher
bond dimension to capture the behavior of higher cumulants.
Overall, we can conclude that the work statistics can barely
capture the purely topological phase transitions, because work
statistics involve all multipoint correlations, and they could
be used as some nonlocal order parameter. Thus, we expect
the higher moments and cumulants of the work statistics to
display shaper behavior around the topological phase tran-
sitions, although it is quite computationally costly to obtain
higher moments and cumulants due to the need for large bond
dimensions.

Also, in Appendix B 2, we give a consistency check to
show in Fig. 14 that the above numerical results of W ob-
tained from either Eq. (7) or Eq. (16) agree. However, the W 2

obtained from either Eq. (7) or Eq. (16) cannot match well.
The larger bound dimension χcut might improve the physical
properties near critical points.

V. BENCHMARKING THE REAL-TIME EVOLVING
METHODS BY JARZYNSKI’S EQUALITY

We now adopt the Jarzynski equality of Eq. (9) dictated by
the real-time correlator expression of the work characteristic
function G(iβ; t f )|β=1, i.e., Eq. (10), to benchmark the numer-
ical accuracy of the real-time evolution of two quantum spin
chain models considered above. The numerical error mainly
comes from evaluating G(iβ; t f ) and accumulates as t f grows.
For the small-size cases, we can use either the exact diag-
onalization (ED) method or the MPS-based TEBD method.
For large-size cases, we can only use the TEBD method.
As before, the nonequilibrium process is implemented by the
Hamiltonian of Eq. (11), and here we adopt the linear profile
of coupling constant, i.e., λ(t ) = t . The results for the small-
size cases are shown in Fig. 5 for (a) an n = 10 Ising chain of
fixed hx,z and with V = ∑

i Sz
i , and (b) an n = 6 Haldane chain

of fixed D = 2 and with V = ∑
i(S

z
i )2. Figure 5 shows that

as t f increases, the curve of G(iβ; t f )|β=1 of the Ising chain
increases; on the other hand, the curve in the Haldane chain
decreases.

Next, we use the Jarzynski equality to characterize the
numerical error of real-time evolution and benchmark the
corresponding numerical methods. This can be quantified by
the ratio R(t f ) = G(iβ;t f )

Z (t f )/Z (0) |β=1 defined in Eq. (14), which is
the ratio between either side of the Jarzynski equality. If there
is no numerical error, the Jarzynski equality is obeyed so
that R = 1. Otherwise, the |1 − R| size can characterize the
numerical error.

FIG. 5. Work characteristic function G(iβ; t f )|β=1 implemented
by Hamiltonian H = H0 + λ(t )V with λ(t ) = t , for (a) an n = 10
Ising chain and (b) an n = 6 Haldane chain, with their H0 and V
shown on the corresponding subfigures. We obtain the results by
using the ED method (circles) and the MPS-based TEBD method
(crosses) with the parameters χcut = 40 and δ = 0.01. In some cases,
the results from both ED and MPS agree. Note that G(iβ; t f )|β=1

increases with time for (a) but decreases for (b).

We can evaluate the partition function ratio Z (t f )
Z (0) |β=1 by

ED and TEBD methods. As expected, both methods can be
accurate for such a nondynamical quantity. Combined with
the previous results for G(iβ; t f )|β=1, we can evaluate R. The
results for small-size quantum chains are shown in Fig. 6
with subfigure (a) for an n = 10 quantum Ising chain and
subfigure (b) for an n = 6 Haldane chain. We see that R
remains 1 for the ED method. However, for the MPS-based
method, the numerical errors escalate around some critical
moment, i.e., (t f )c = 0.7, as shown in Figs. 6(a) and 6(b).
Moreover, we also evaluate and show the ratio of the par-
tition functions obtained by ED and MPS-based methods,
i.e., Z (t f )

Z (0) |MPS/
Z (t f )
Z (0) |ED [black triangles in Figs. 6(a) and 6(b)].

In Fig. 6(c), we show the dependence of the resultant R(t f )
of the n = 6 Haldane chain on MPS’s bond dimension χcut.
The larger χcut yields better results, as expected. In this case,
χcut � 40 is needed to arrive at an accurate R = 1 result
for t f � 1.

When the quantum spin chain size becomes large, the
ED method is unavailable, and we can only use the MPS-
based method to evaluate R. For comparison, we evaluate the
benchmarking factor R for an n = 100 Ising chain with the
same H0, V , χcut, and δ as in the n = 10 case of Fig. 6(a).

The results of G(iβ; t f )|β=1, R(t f ), and Z (t f )
Z (0) |β=1 are shown

in Fig. 7. As we can see, G(iβ; t f )|β=1 grows exponentially
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FIG. 6. Benchmarking the ED and TEBD methods by the ratio

R(t f ) = G(iβ;t f )

Z (t f )/Z (0) |β=1 from the Jarzynski equality for subfigure (a) an

n = 10 Ising chain with hx = hz = 1 and V = ∑
k Sz

k , and subfigure
(b) an n = 6 Haldane chain with D = 2 and V = ∑

k (Sz
k )2. In subfig-

ure (c) we show the dependence of the resultant R(t f ) of an n = 6
Haldane chain on the bond dimension χcut of MPS. As expected,
larger χcut yields better results. The results from ED are indicated by
squares, and from TEBD they are indicated by circles. In addition, we
also show the ratio

Z (t f )

Z (0) |MPS/
Z (t f )

Z (0) |ED [triangles in subfigures (a) and
(b)] to demonstrate the accuracy of TEBD in evaluating the partition
functions. In all the above, the coupling constant has a linear profile,
i.e., λ(t ) = t . If there is no numerical error, R = 1, and the deviation
benchmarks the real-time numerical errors. For ED, we see that R
remains equal to 1. On the other hand, for MPS, we see that the
real-time numerical errors start to escalate around t f = 0.7. However,
the ratio of partition functions remains accurate.

with t f , which should cause large numerical errors. Indeed,
the real-time numerical errors characterized by |1 − R| start
to escalate around the critical moment (t f )c = 0.13. This is
far shorter than (t f )c = 0.7 of the n = 10 case, as we expect
that the numerical errors accumulate more quickly for systems
of larger sizes.

VI. NUMERICAL RESULTS FOR EXAMINING
THE PASSIVITY OF THERMAL/GROUND STATES

We can now consider the passivity of a given initial state
undergoing a (cyclic) impulse process. Two natural candidate
categories are thermal or ground states. The passivity of (rel-
ativistic) thermal states was shown to be ensured [45–47].
For the thermal states of the nonrelativistic systems, such as

FIG. 7. Benchmarking the numerical accuracy with the Jarzynski
equality for an n = 100 Ising chain with the same H0, V , χcut, and δ

as in Fig. 6(a). The results for G(iβ; t f )|β=1, R(t f ), and
Z (t f )

Z (0) |β=1 are
denoted by blue circles, red crosses, and black triangles, respectively.
Due to the large size, ED is unavailable, and the results are obtained
by the TEBD method. We see that the real-time numerical errors start
to escalate around t f = 0.13, which is far shorter than the n = 10
case, as expected. However, the ratio of partition functions remains
accurate as in the n = 10 case.

the quantum spin chains, as argued in Eq. (22), the passivity
should be guaranteed by the fluctuation theorem, i.e., the
second law of thermodynamics. Here, we demonstrate that
this is the case for the n = 10 Ising chain. The result is shown
in Fig. 8, from which we see that the average work done
per site wimpluse = −w

impulse
ext for the thermal state at β = 1 is

always positive for various V and λ.
We now turn to the issue of passivity for the ground states

under the cyclic impulse processes. As shown in Sec. II D, the
passivity of ground states is guaranteed to be passive under
the Hermitian action, i.e., V † = V by the variational principle.
This is because the average work extraction from a cyclic
process can be understood as the energy difference between

FIG. 8. Demonstration of passivity of thermal states in an n = 10
quantum Ising chain under an impulse process implemented by the
Hamiltonian of Eqs. (11) and (13) with H0 of Eq. (33) with hx =
hz = 0 and with V = ∑

k Sx
k ,

∑
k Sy

k , or
∑

k Sz
k . The resultant average

work done per site wimpulse for β = 1 is obtained by ED and TEBD.
Its positiveness for all considered V ’s and λ ∈ [0, 0.5] demonstrates
the passivity of thermal states as pointed out in Eq. (22).
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FIG. 9. Plot of wimpulse to show the passivity of ground states
of an n = 1024 quantum Ising chain with hx = 0 but varying hz ∈
[0, 1] under an impulse process implemented by the Hamiltonian
of Eqs. (11) and (13) with λ = 0.1 and Hermitian actions V =∑

k Sx
k (red circles),

∑
k Sy

k (black cross),
∑

k Sz
k (green cross), and

non-Hermitian actions V = ∑
k iSx

k (blue diamonds),
∑

k iSy
k (yellow

square),
∑

k iSz
k (pink triangles). Again, we see that W

impulse
can

also indicate a quantum phase transition by mild crossover behaviors
when compared with the phase diagram of the entanglement entropy
of the initial state (gray circle).

the ground state and the excited state driven by V . It is always
negative as the variational principle guarantees. On the other
hand, there is no such simple interpretation for the average
work extraction if the action V is non-Hermitian, i.e., one
cannot apply the variational principle to check the passivity
of ground states. For the latter cases, it is then interesting to

examine the passivity by evaluating average work extraction
numerically.

As a startup, we numerically examine the passivity of
ground states for various Hermitian or non-Hermitian actions
but small λ, i.e., λ = 0.1. In Fig. 9, We plot the average work
done per site wimpluse = −w

impulse
ext as a function of hz, which

labels the ground states of the Ising-like chain under various
Hermitian and non-Hermitian actions. A similar result for
Haldane-like chains is also given in Fig. 16 of Appendix C.
To obtain these results, we first evaluate G(−is) by the
MPS-TEBD method, and from that we extract wimpluse =
−w

impulse
ext from G(−is). The ground states considered are

all passive under the various Hermitian and non-Hermitian
actions described in Fig. 9. This is a consistency check for
our numerical method with the discussion in Sec. II D for
examining the passivity of ground states of Ising-like chains.

By exploiting the numerical method’s power in checking
the ground states’ passivity, we now consider the cases with
quite an extensive range of λ ∈ [−10, 10] for both Hermi-
tian and non-Hermitian actions. The results for the Ising-like
chains are shown in Fig. 10, and similar results for the
Haldane-like chains and the more general non-Hermitian ac-
tions in the Ising-like chains are shown in Figs. 17 and
15 of Appendix C, respectively. Since the ones shown in
Appendix C resemble those in Fig. 10, we will not discuss
them in the main text. The top row of Fig. 10 shows the
average work done per site on the ground states labeled by the
values of hz ∈ [0, 1] for the Hermitian actions V = ∑

k Sx,y,z
k ,

and the bottom row shows the results for the non-Hermitian
actions V = i

∑
k Sx,y,z

k . For the Hermitian cases, we see a

quite interesting feature that W
impulse

is periodic with respect

FIG. 10. Plot of wimpulse to show the passivity of ground states and its pattern as a function of the coupling λ of an n = 1024 quantum
Ising chain. We fix hx = 0 but vary hz ∈ [0, 1] to obtain various ground states, and we also vary λ ∈ [−10, 10] under an impulse process
implemented by the Hamiltonian of Eqs. (11) and (13) with the Hermitian actions (a) V = ∑

k Sx
k , (b) V = ∑

k Sy
k , and (c) V = ∑

k Sz
k in the

top row, and the non-Hermitian actions (d) V = i
∑

k Sx
k , (e) V = i

∑
k Sy

k , and (f) V = i
∑

k Sz
k in the bottom row.
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to the coupling λ with the period equal to 2π or π . This
periodic behavior has been discussed in Sec. II D due to the
peculiar feature of the impulse process. We will not see such
behavior for the cyclic process with a finite time duration. For
the non-Hermitian case, we first see that all the ground states
considered are passive as in the Hermitian cases. However,
W

impulse
is no longer periodic with respect to λ but levels off

as λ becomes large. In both cases, the average work done is
bounded no matter how large the coupling λ is. Again, this
is due to the zero time duration of the impulse process, so
the average work done is limited to such a tiny time dura-
tion. However, it is unclear why the passivity remains intact
for non-Hermitian action, especially without the guarantee
by the variational principle. This issue deserves future study
to explore.

VII. CONCLUSIONS

In this paper, we apply the numerical method for real-time
evolution, such as exact diagonalization (ED) and MPS-based
TEBD, to quantum spin lattice models to study the work
statistics. With the power of MPS formalism, we can evaluate
the chains up to 1024 sites, which can effectively suppress
the finite-size effect. We focus on three aspects: (i) we study
the behaviors of the moments and cumulants of the work
statistics near the quantum phase transitions and examine
their capability to indicate quantum critical points; our results
up to the fourth cumulant show that the work statistics can
detect the quantum phase transitions characterized with local
order parameters, but just barely for the topological phase
transitions; (ii) we propose to adopt the Jarzynski equality
as the benchmark for the accuracy of the numerical real-time
evolution methods; and (iii) we examine the passivity of ther-
mal states and ground states of quantum spin chains under
some cyclic impulse processes. Our numerical results show
that all the ground states are passive under both Hermitian
and non-Hermitian actions considered in this work. Although
the variational principle ensures the passivity of ground states
under Hermitian actions, it is not the case for non-Hermitian
actions. It is interesting to explore the reason for the passivity
of ground states under non-Hermitian action seen in this pa-
per, and also the possibility of active ground states by more
general actions. Once the active ground states exist, we may
adopt them to implement the quantum engine naturally to
extract quantum work in the cyclic processes.

The quantum spin lattice with nearest-neighbor interac-
tions can be the natural system for performing quantum
simulation and can serve as accurate tests for work statistics
such as fluctuation theorem. Due to the statistical nature of
quantum work, it has remained quite mysterious since its
proposal decades ago. With our demonstration of numerical
studies for realistic many-body systems, one can explore more
different perspectives of work statistics. For example, when
using pure states as the initial states for the work statistics, it
may require a more subtle treatment than the two-point mea-
surements to preserve the quantum coherence and explore its
role in the fluctuation theorem. We hope to adopt a real-time
evolution method, such as the MPS-based one, to investigate
the role of pure states in some specific quantum tasks.

ACKNOWLEDGMENTS

We thank Masahiro Hotta and Jhh-Jing (Arthur) Hong
for their helpful discussions. F.-L.L. is supported by the
National Science and Technology Council through Grant
No. 112-2112-M-003-006-MY3. C.-Y.H. is supported by the
National Science and Technology Council through Grant
No. 112-2112-M-029 -006.

APPENDIX A: TENTATIVE STUDY OF THE DENSITY
OF STATE IN EQ. (21)

In Sec. II C, we argue why the average work done W can
be used as the local order parameter for a quantum phase
transition. As W can be expressed in (21) as the average
over the eigenenergies of the final Hamiltonian, it will have
a sudden change when crossing the quantum critical point
because the probabilities of states p( f ) in (21) for the gapped
and the gapless phases have rather different behaviors at low
energy of an extensive system.

Therefore, it is interesting to calculate p( f ) and examine
the behaviors of the gapped and gapless phases of an extensive
spin chain. Unfortunately, the MPS-based method used for the
main calculations of the long spin chain cannot be applied to
the excited states. We can only study p( f ) tentatively by using
the ED method for the short spin chains. In this case, we will
miss the ground-state degeneracy for the gapless phases due
to the sizable finite-size effect. Despite that, we still present
the ED results of p( f ) as a function of the eigenenergy E f of
the n = 10 quantum spin chains with hz = 0.4, 0.5, 1.0 under
a sudden quench process with V = ∑

k Sz
k and �λ = 0.1. The

result is shown in Fig. 11. As expected, due to the large finite-
size effect for n = 10, it is hard to see the effect of ground-

FIG. 11. The ED results of weight p( f ) from Eq. (21) are plot-
ted as a function of the eigenenergy Ef of the Hamiltonian H+ =
H0 + �λV for the n = 10 quantum Ising chains with hz = 0.4, 0.5,
1.0 under a sudden quench process with V = ∑

k Sz
k and �λ = 0.1.

We can see that the p( f )’s for hz = 0.5 (black crosses) and hz = 0.4
(red circles) have a more focused energy spectrum than the one for
hz = 1.0 (green pluses). Note that for hz = 0.5 (hz = 0.4), the initial
(final) Hamiltonian is in the critical phase because �λ = 0.1. Thus,
the more focused energy spectrum for these two cases implies a
tendency for the effect of ground-state degeneracy.
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FIG. 12. Numerical agreement of the results for the Jarzynski
equality. We evaluate the work characteristic function G(iβ; t f )|β=1

(crosses) and the ratio of partition functions
Z (t f )

Z (0) |β=1 (circles) for an
n = 20 quantum Ising chain by TEBD and MPO of χcut = 32 and
δ = 0.01 to represent the thermal states. The result shows that the
Jarzynski equality holds and justifies using MPO for constructing
the thermal states. After comparison, we also find that our results
numerically agree with those from the ensemble of 10 000 METTS,
as shown in Fig. 4 in Ref. [28].

state degeneracy on p( f ) for either hz = 0.5 (black crosses)
with the initial Hamiltonian in the critical phase, or hz = 0.4
(red circles) with the final Hamiltonian in the critical phase
as �λ = 0.1. However, we can see that the p( f )’s for these
two cases are more focused than the one with hz = 1.0 (green
pluses). This implies a tendency for the effect of ground-state
degeneracy.

APPENDIX B: TWO NUMERICAL
CONSISTENCY CHECKS

In this Appendix, we demonstrate two consistency checks
relating to work statistics numerically.

1. Equivalence between thermal
representations by MPO and METTS

We present in Fig. 12 our numerical results of the work
characteristic function G(iβ; t f )|β=1 and the ratio of parti-
tion functions Z(t f )

Z (0) |β=1 for checking the fluctuation theorem
of an n = 20 quantum Ising chain by TEBD and the MPO
representation for the thermal states. Our results agree numer-
ically with those from METTS, shown in Fig. 4 of Ref. [28].
This can justify our usage of MPO representation of thermal
states for examining the passivity of thermal states, as shown
in Fig. 8.

2. Equivalence between average works
obtained from Eq. (10) or from Eq. (16)

There are two ways to obtain the average work done by
a sudden quench process. The first one is to extract it from
the work characteristic function G(u) of Eq. (10) by using
Eq. (7). The second one calculates it by evaluating the vacuum

FIG. 13. Agreement of W m of m = 1, 2, 3, 4 obtained from ei-
ther the characteristic function G(−is) of Eq. (10) (red crosses)
or from the VEV of V m (blue circles) for the transverse quantum
Ising chains under sudden quench process with V = ∑

k Sz
k and

�λ = 0.01. In (a) and (b), the result for n = 10 chains is obtained
by the ED method, and (a) also shows the result from the VEV of the
Hamiltonian offset by Eq. (16) (green squares). In (c), (d), (e), and
(f), the results for n = 1024 chains are calculated by the MPS-based
method.

FIG. 14. Examining the agreement of (a) W , (b) W 2, and (c) σ 2
W

for an n = 1024 Haldane (XXZ) chain with various coupling D
in the initial Hamiltonian H0 of size n = 1024 under a sudden
quench process with V = ∑

k (Sz
k )2 and �λ = 0.01. These results

are obtained from the characteristic function G(−is) (black dashed
line for χcut = 32 or solid line for χcut = 64) or from the VEV
of V m (red crosses for χcut = 64 or blue circles for χcut = 64).
We see that the results from both methods match well for (a) and
(c) but not for (b). We thus evaluate entanglement entropy S in
(d) to show the relevance of increasing the bond dimension χcut

in improving the accuracy, which could also be the reason for the
mismatch in (b).
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FIG. 15. Plot of wimpulse to show the passivity of ground states and its pattern as a function of the coupling λ of an n = 1024 quantum
Ising chain. We fix hx = 0 but vary hz ∈ [0, 1] to obtain various ground states, and we also vary λ ∈ [−10, 10] under the impulse process
implemented by the Hamiltonian of Eqs. (11) and (13) with the non-Hermitian actions (a) V = ∑

k (Sx
k + iSy

k ), (b) V = ∑
k (Sy

k + Sy
k ), and

(c) V = ∑
k (Sx

k + Sz
k ).

expectation value (VEV) of the Hamiltonian offset using
Eq. (16). We check the agreement of the results from both
methods for the quantum Ising and Haldane chains of n = 10
by ED or n = 1024 by the MPS-based method, as shown in
Figs. 13 and 14, respectively.

In Fig. 13 for the quantum Ising model with various hz

in the initial Hamiltonian H0 under sudden quench process
with V = ∑

k Sz
k and �λ = 0.01, we show that the numerical

agreement of the numerical results of W m for m = 1, 2, 3, 4 is
obtained from the characteristic function G(−is) (red crosses)
or from the VEV of V m (blue circles). This serves as a consis-
tency check for the TEBD method.

In Fig. 14 for an n = 1024 Haldane (XXZ) chain with
various coupling D in the initial Hamiltonian H0 under sudden
quench process with V = ∑

k (Sz
k )2 and �λ = 0.01, we show

the results for (a) W , (b) W 2, (c) σ 2
W , and (d) entanglement

entropy S, which are obtained from the characteristic func-
tion G(−is) (black dashed line for χcut = 32 or solid line for
χcut = 64) or from the VEV of V m (red crosses for χcut = 64
or blue circles χcut = 64). We can see that the results from
both methods match well for (a) and (c) but not for (b). This
mismatch can be due to the need of large χcut to compensate
for the errors of performing numerical derivatives on G(−is).
This is seen from the improvement of W 2 in (b) and S in (d)
when enlarging χcut twice large.

APPENDIX C: MORE RESULTS FOR EXAMINING THE
PASSIVITY OF GROUND STATES IN ISING-LIKE

AND HALDANE-LIKE CHAINS

In this Appendix, we present more results of examining
the passivity of the ground states. The first one is shown
in Fig. 15 for the plot of W

impulse
of Ising-like chains as a

function of λ ∈ [−10, 10] for the more general non-Hermitian
actions. It can be seen as the non-Hermitian counterpart
of Fig. 10.

Then, we present the Haldane-chain counterparts of Figs. 9
and 10, respectively, in Figs. 16 and 17. Figure 16 shows the

plot of W
impulse

as a function of coupling parameter D labeling
the ground states of the Haldane-like chains under various
Hermitian actions for small values of λ = 0.1. Figure 17
shows the plot of W

impulse
as a function of λ to examine the

passivity of the ground states under either the Hermitian or
non-Hermitian actions of a cyclic impulse process. The key
features are similar to what we have observed in Figs. 9 and 10
of the main text for the Ising chains. In particular, the ground
states are all passive for all the cases considered. Moreover,
the features shown in Fig. 17 are sort of the mixtures of the
top and bottom rows in Fig. 10 as the V ’s considered here are
the mixtures of those twos.

FIG. 16. Plot of wimpulse to show the passivity of the ground
states of an n = 1024 Haldane-like chain with Jz = 1.5 but vary-
ing D ∈ [0, 2] under an impulse process of λ = 0.1 and Hermitian
actions V = ∑

k Sx
k (black triangles),

∑
k Sy

k (yellow right-arrows),∑
k Sz

k (red circles),
∑

k (Sx
k )2 (green diamonds),

∑
k (Sy

k )2 (orange

left-arrows), and
∑

k (Sz
k )2 (blue squares). The W

impluse
plots show

that the ground states are always passive for all considered V ’s. The
degeneracy of W

impluse
under swapping of Sx

i and Sy
i , as shown here,

can be understood as the Z2 symmetry of H0 and SO(3) spin algebra
under the transformation (Sx

k , Sy
k , Sz

k ) → (−Sy
k , Sx

k , Sz
k ). In addition,

W
impluse

always vanishes for V = ∑
k Sz

k because of [H0,
∑

k Sz
k] = 0.
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FIG. 17. Plot of wimpulse to show the passivity of ground states and its pattern as a function of the coupling λ of n = 1024 Haldane-like
chain with Jz = 1.5. We vary the coupling D ∈ [0, 2] to obtain various ground states, and we also vary λ ∈ [−10, 10] under the impulse process
implemented by the Hamiltonian of Eqs. (11) and (13) for the Hermitian actions (a) V = ∑

k Sx
k , (b) V = ∑

k (Sx
k )2, and (c) V = ∑

k (Sz
k )2 in

the top row, and the non-Hermitian actions (d) V = i
∑

k Sx
k , (e) V = ∑

k (Sx
k + iSy

k ), and (f) V = i
∑

k (Sx
k )2 in the bottom row.
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