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Stacking model of a three-dimensional second-order topological insulator
manifesting quantum anomalous Hall effect
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We investigate the transport and energy spectrum properties of a three-dimensional high-order topological
structure formed by stacking two-dimensional square diatomic Chern insulator lattices. Electron-hole symmetry
and the energy spectrum degeneracy at individual points in the semimetallic phase are proven to be due to
chiral and antiunitary symmetries in the periodic system. Additionally, we explore the influence of boundary
conditions in a slab system with varying surface atom connectivity, and we demonstrate analytically the presence
of zero-energy surface states in specific configurations. Moreover, we describe the emergence of two chiral hinge
states driven by a perpendicular phase in the nanowire geometry. Next, the quantum Hall resistance is computed
in the cross-configuration of a four-lead device. In this paper, we demonstrate that the trajectories of hinge states,
determined by the number of layers in parallelepiped finite structure, give rise to fractional Hall plateaus.
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I. INTRODUCTION

The investigation of topological properties in condensed
matter began with studies of the quantum Hall effect (QHE),
graphene, and other two-dimensional (2D) materials. In the
next stage, the study of the three-dimensional (3D) systems
revealed additional aspects, including higher-order topolog-
ical phases characterized by specific topological modes. In
general terms, the higher-order topological insulator (HOTI)
of index N , defined in a D-dimensional space, would
present topological states of the dimensionality D − N , where
N � 2. For N = 2, the second-order topological insulator
(SOTI) exhibits states along the hinges, and the third-order
topological insulator (TI; N = 3) exhibits corner-type modes
in 3D structures. The basic interest in these systems comes
from the fact that the topological states are now the re-
sult of specific crystalline symmetries which, combined with
the time-reversal (TR) symmetry, ensure their existence and
robustness [1–3].

The different possible 3D trajectories of the chiral one-
dimensional (1D) hinge states in the 3D structure may give
rise to a quantum 3D Hall effect with different properties.
Although the field is very recent, there are already several
theoretical models and experiments that prove the existence of
the higher-order topological states. Materials identified with
such properties are, for instance, the chalcogenide crystals as
Bi2Se3, a strong topological 3D insulator with a band gap
of 0.3 eV [4]; Bi1Te1 and Bi2TeI, dual 3D TIs exhibiting
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concurrent phases of both a weak TI and a topological crys-
talline insulator [5,6]; and Bi4Br4 in which the presence of
topological hinge states was observed [7,8].

In addition to the real materials presented above, the
HOTI phase can be experimentally proven in metamateri-
als like acoustic [9,10], phononic [11], or electrical circuit
models [12,13].

The theoretical models for HOTIs have been developed by
proposing Hamiltonians with chosen symmetries and check-
ing for topological properties such as Dirac cones on some
surfaces or hinge states at the joint of two surfaces. The TIs
with an odd/even number of surface Dirac cones are clas-
sified as strong/weak TIs, respectively [14]. For crystalline
insulators, Fu [15] introduced a TR tight-binding model with
C4 and C6 symmetry, revealing the presence of gapless surface
states on specific crystal facets. Schindler et al. [16] suggested
a four-band Hamiltonian, again with C4 symmetry, but with
broken TR symmetry, which evidentiate chiral hinge states.
The mirror symmetry is also sufficient for generating a SOTI,
as shown by Ref. [1]. In the case of finite systems, the spe-
cific surface configurations (connectivity of the atoms at the
surface) can affect the topological properties [17–19].

The aim of this paper is to advance a 3D SOTI model, with
broken TR symmetry, which associates with the 3D quantum
anomalous Hall effect (QAHE). The traditional QHE was
observed in a 2D electron gas subject to a strong perpendicular
magnetic field, resulting from the Landau levels structure. The
discovery of the 3D QHE represented a significant break-
through, and it was observed in 3D materials like Cd3As2

Weyl semimetal [20] and ZrTe5 crystals [21]. The 3D QHE
occurs in the presence of an external magnetic field, which
affects Weyl orbits on opposite surfaces or creates one-sided
hinge states in tilted magnetic field [22]. In contrast, in our
approach, the breaking of TR symmetry is realized in the
absence of an external magnetic field by the intrinsic Haldane-
type phase.
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The transverse (Hall) current carried by chiral hinge states
in a 3D structure is not a trivial problem [23,24]. Our analysis
is done in steps, starting with the spectral properties of the
fully periodical 3D structure, and going on with the slab and
wire geometries, in the attempt to identify sufficient condi-
tions for the emergence of the 3D QAHE. The Hall resistance
is calculated in the Landauer-Büttiker formalism by attaching
properly four leads in cross configuration.

The 3D model is obtained by stacking layers with Chern
properties in a sequence with opposite chirality. The stacking
method is widely used in theoretical models [25–27] because
it allows for separate manipulation of intralayer and interlayer
couplings. In our model, the main difference compared with
other approaches consists of the phase attached to the inter-
layer hopping, which we called the vertical phase. This phase,
together with a sufficiently strong interlayer coupling, gives
rise to chiral hinge states that support QAHE. It turns out that
this effect depends significantly on the number of layers (odd
or even), as the hinge currents close differently in the two
cases. Regarding the layers, the model consists of a 2D square
lattice with two atoms per unit cell. The important parameters
are the next-nearest-neighbor hopping and the internal phase
of the Haldane type, which ensure the Chern insulator proper-
ties in each layer [28–30].

In Sec. II, we introduce the Hamiltonian model, analyze the
energy spectrum of the periodic system, and explain the chiral
and antiunitary symmetries, along with the behavior of the

locus in the momentum space of the gap closing points in the
semimetallic phase. Section III presents the slab and nanowire
systems, wherein we analytically describe the properties of
zero-energy surface states and the appearance of chiral hinge
states in the wire geometry. Section IV covers the QHE and
the spectrum properties of finite systems. The conclusions are
summarized in the last section. In Appendix A, we explicitly
show the Chern number as a function of the Haldane phase for
one independent layer, and Appendix B provides detailed ana-
lytical calculations of the zero-energy localization properties.

II. HAMILTONIAN MODEL, SYMMETRIES,
AND SPECTRAL PROPERTIES

We build up a tight-binding model for a 3D structure by
stacking 2D diatomic lattices with opposing Chern numbers
(see Fig. 1 ). In this case, the number of atoms in the unit cell
is four: A (red), B (blue), C (green), and D (orange), and the
primitive vectors are �a1, �a2, �a3. In what follows, to introduce
the Hamiltonian of our model, we define the creation a†

n,m,t ,
b†

n,m,t , c†
n,m,t , d†

n,m,t and, respectively, annihilation an,m,t , bn,m,t ,
cn,m,t , dn,m,t operators corresponding to the atoms in the unit
cell described by the lattice vector �Rn,m,t = n �a1 + m �a2 + t �a3.
The Hamiltonian can be divided into three terms. The first two
terms H1 and H2 describe the layers which accommodate the
atoms (A, B) and (C, D), while the third term H⊥ represents
the interlayer coupling:

H = H1 + H2 + H⊥;

H1 =
∑
n,m,t

EAa†
n,m,t an,m,t + EBb†

n,m,t bn,m,t

+ t1
∑
n,m,t

exp(−iγ )b†
n,m,t (an,m+1,t + an+1,m,t ) + exp(iγ )b†

n,m,t (an,m,t + an+1,m+1,t ) + H.c.

− t2
∑
n,m,t

a†
n,m,t (an,m+1,t − an+1,m,t ) − b†

n,m,t (bn,m+1,t − bn+1,m,t ) + H.c.,

H2 =
∑
n,m,t

ECc†
n,m,t cn,m,t + EDd†

n,m,t dn,m,t

+ t1
∑
n,m,t

exp(iγ )d†
n,m,t (cn,m+1,t + cn+1,m,t ) + exp(−iγ )d†

n,m,t (cn,m,t + cn+1,m+1,t ) + H.c.

− t2
∑
n,m,t

c†
n,m,t (cn,m+1,t − cn+1,m,t ) − d†

n,m,t (dn,m+1,t − dn+1,m,t ) + H.c.,

H⊥ = t⊥
∑
n,m,t

exp(iγ⊥)a†
n,m,t cn,m,t + exp(iγ⊥)c†

n,m,t an,m,t+1

+ t⊥
∑
n,m,t

exp(−iγ⊥)b†
n,m,t dn,m,t + exp(−iγ⊥)d†

n,m,t bn,m,t+1 + H.c. (1)

In the above equation, EA, EB, EC, and ED are atomic site
energies and will be taken as zero, t1 and t2 are the nearest-
neighbor and next-nearest-neighbor hopping parameters in the
Oxy plane, and t⊥ is the hopping parameter that connects the
consecutive 2D lattices in the Oz direction. The γ parameter
in every 2D plane represents a periodic local magnetic flux

which is chosen as in the Haldane model, the net total flux
through any layer being zero (each layer is a Chern insulator,
as we show in Appendix A). The γ⊥ is a magnetic phase
associated with the hopping parameter t⊥. In this paper, we
fixed the hopping parameter t1 = 1 and the in-plane phase
γ = π/4.
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We start looking for the spectral properties of the
Hamiltonian in Eq. (1) under periodic boundary condi-
tions. To this aim, we need to use the Fourier transform
of the creation and annihilation operators, as, for instance,

anmt = ∑
�k a�k exp(i�k �Rnmt ), where �k = (kx, ky, kz ), and sim-

ilarly for all the other operators. Then the Hamiltonian
in Eq. (1) turns into a 4 × 4 matrix in the momentum
space:

H =
∑

�k
(a†

�k b†
�k c†

�k d†
�k )H(�k)(a�k b�k c�k d�k )T,

H(kx, ky, kz ) =

⎡
⎢⎢⎢⎢⎣

−2t2 f (kx, ky) t1g(kx, ky, γ ) t⊥h(kz, γ⊥) 0

t1g∗(kx, ky, γ ) 2t2 f (kx, ky) 0 t⊥h(kz,−γ⊥)

t⊥h∗(kz, γ⊥) 0 −2t2 f (kx, ky) t1g(kx, ky,−γ )

0 t⊥h∗(kz,−γ⊥) t1g∗(kx, ky,−γ ) 2t2 f (kx, ky)

⎤
⎥⎥⎥⎥⎦, (2)

where the notations f (kx, ky), g(kx, ky, γ ), and h(kz, γ⊥) are

f (kx, ky) = cos(kx ) − cos(ky),

g(kx, ky, γ ) = exp(−iγ ){1 + exp[−i(kx + ky)]}
+ exp(iγ )[exp(−ikx ) + exp(−iky)],

h(kz, γ⊥) = exp(iγ⊥) + exp(−iγ⊥) exp(−ikz ). (3)

The energy spectrum is derived through direct diagonaliza-
tion of the Hamiltonian in the momentum representation.
Analyzing the energy dispersion, in Fig. 2, we identify
two distinct phases: semimetallic (for t2 = 0 and any γ⊥)
and insulating (for t2 �= 0, also independently of γ⊥). In

a1

a2

a3

FIG. 1. Schematic representation of a cubic lattice obtained by
stacking three layers. Note that the red and blue layers show opposite
Haldane-type phases represented by in-plane arrows, and because of
this, the unit cell contains four atoms, which are colored in red (atom
A), blue (atom B), green (atom C), and orange (atom D). The in-plane
arrows are associated with the hopping element t1 and the vertical
ones with t⊥. The dashed and solid lines connecting atoms of the
same kind describe the next-nearest hopping t2. The primitive vectors
�a1, �a2, and �a3 are chosen along the Ox , Oy, and Oz directions.

Eq. (2), the Hamiltonian matrix contains the parameter
t2 placed on the diagonal, which controls the mass term.
When t2 is nonzero, the electrons acquire mass, resulting
in the opening of a gap in the energy spectrum. This phe-
nomenon is essential for understanding the transition between
the semimetallic and insulating phases in the system. The
expectation is that, under proper hard-wall boundary con-
ditions, the insulating gap will be filled with hinge states,
which will prove the topological character of this model
Hamiltonian.

First, let us notice that, in the semimetallic case t2 =
0, there is a chiral operator � = σz ⊗ σz, where σz is the
Pauli matrix. The anticommutation of this operator with the
Hamiltonian [H, �]+ = 0 ensures that the energy spectrum is
symmetric around zero energy. That is, for any momentum �k,
one finds in the spectrum a pair of energies (E�k,−E�k).

Another symmetry present in the semimetallic case is
the inversion defined by UI = σx ⊗ σx. Under this opera-
tion, the Hamiltonian transforms as UI H (�k, γ , γ⊥)U −1

I =
H (−�k, γ , γ⊥), denoting the spectral symmetry E (�k, γ , γ⊥) =
E (−�k, γ , γ⊥).

Concerning the TR symmetry, this would involve
H (�k, γ , γ⊥) = H∗(−�k, γ , γ⊥), but in the presence of the mag-
netic phases γ , γ⊥, our system does not obey this symmetry.

The energy spectrum for different parameters is shown in
Fig. 2, where many degenerate eigenenergies can be observed.
According to Ref. [31], any twofold degeneracy implies the
existence of an antiunitary operator that commutes with the
Hamiltonian at the degeneracy points. In our case, we find
four such antiunitary operators, which are presented in Table I
(where σx and σy are Pauli matrices, and K represents the
complex conjugation).

In Table I, we show the antiunitary operators �i with
(i = 1, . . . , 4) which, under the parameters in the second col-
umn, protect the degenerate points in the k space indicated
in the next column. As an illustration, in the semimetallic
case exhibited in Fig. 2(a), the operator �1 protects the band
touching at kx = 0, ky = ±π (and also kx = ±π, ky = 0), for
any kz in the range [−π, π ). In the insulating case from
Fig. 2(b), the same operator �1 protects the degeneracy of the
two conduction subbands (and valence subbands as well) at
the set of points (kx = ±π, ky = ±π,∀kz ). The operators �2

and �3 protect the degeneracies in the semimetallic systems
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FIG. 2. The energy spectrum is depicted for various parameters (t2, γ⊥) with a fixed momentum kz = π/4. When t2 = 0, the system
exhibits a semimetallic phase regardless of the value of γ⊥ [as illustrated in (a) and (c)]. On the other hand, as shown in (b) and (d), the system
undergoes an insulating phase when t2 is present.

with γ⊥ �= 0 at two different values of kz (namely, kz = 0 and
kz = ±π ). Finally, the antiunitary operator �4 refers to the
degeneracies in the four subbands existing in the insulating
case t2 �= 0 at kz = ±π .

One has to mention that these four operators do not protect
all the degenerate points observed in Fig. 2, meaning that
some other symmetries may be involved.

Remember that the spectra in Fig. 2 are calculated at
fixed kz = π/4. In what follows, kz is a variable, and we
look for the locus of the points in the Brillouin zone for
which E (kx, ky, kz ) = 0. That is, we look for the points
where the band touching occurs in the semimetallic phase.
Obviously, these points occur when det |H (�k)| = 0, where
H (�k) is given by Eq. (2). This constraint can be satisfied
only for t2 = 0, i.e., in the absence of the next nearest
hopping. Then the resulting expression of the constraint
becomes

kz = ± cos−1[2 cos(kx ) + 2 cos(ky) − cos(2γ⊥)

+ 2i sin(kx ) sin(ky)]. (4)

Since kz should be real, the last term in the above equa-
tion must be zero, and there are several possibilities to cancel
that term: either kx = 0,±π or ky = 0,±π . In what follows,
we observe two distinct cases depending on γ⊥. Thus, for
γ⊥ = 0 and kx = 0, Eq. (4) turns into

kz = ± cos−1(1 + 2 cos ky), (5)

which describes the curves in Fig. 3(a), showing the locus of
the touching points in the semimetallic system in the absence
of the perpendicular phase γ⊥. For γ⊥ �= 0, the behavior is

different, as can be seen in Fig. 3(b), where with the choice
γ⊥ = π/4, the constraint equation becomes

kz = ± cos−1(2 + 2 cos ky). (6)

We notice that, in contrast with the previous case γ⊥ = 0, the
value kx = 0 is no longer a solution at kz = ±π , and instead,
one gets kx = ±π/3. Then the value ky = ±π becomes com-
pulsory to cancel the imaginary part of Eq. (4). This situation
creates two branches in the (kx, kz ) plane, which with increas-
ing kz merge into the point (kx = 0, ky = ±π, kz = ±π/2),
as can be observed in Fig. 3(b). The concept is that the in-
troduction of γ⊥ leads to the bifurcation of the locus in the
momentum space.

In what follows, we shall examine how surface and hinge
states emerge in finite systems with different geometries.

III. SURFACE AND HINGE STATES FOR SLAB
AND NANOWIRE SYSTEMS

In this section, we study finite systems with two kinds
of geometry, namely, the slabs and wires. The objective is
to demonstrate under what conditions the presence of the
margins induces topological states of the surface and hinge
types.

The slab consists of two infinite planes parallel to the (Ox,
Oz) axis separated by a finite distance which comprises an
integer number M of unit cells along the Oy axis. The intention
is to make evident surface states for two kinds of slabs with
different interconnection of the atoms at the edges which are
obtained by different tailoring. For the first slab, the front

TABLE I. The antiunitary operators �i that protect the degenerate points in k space for the parameters listed in the second column.

Antiunitary operator Parameters Degenerate points (kx, ky, kz )

�1 = i(σx ⊗ σy )K t2 = 0, γ⊥ = 0 [0,±π, kz ∈ (−π, π )], [±π, 0, kz ∈ (−π, π )]
t2 �= 0, γ⊥ = 0 [±π,±π, kz ∈ (−π, π )]

�2 = i(σ0 ⊗ σy )K t2 = 0, γ⊥ �= 0 (0, ±π, 0), (±π, 0, 0)
�3 = i(σy ⊗ σx )K t2 = 0, γ⊥ �= 0 [kx ∈ (−π, π ), 0, ±π ], [0, ky ∈ (−π, π ),±π ]
�4 = i(σy ⊗ σ0 )K t2 �= 0, γ⊥ = 0 (kx = ky, ky = kx, ±π )
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FIG. 3. The locus of the band-touching points for the semimetallic case t2 = 0 (a) in the absence of γ⊥ = 0 and (b) in the presence of
γ⊥ = π/4.

plane contains only atoms of the types A and C, while the back
plane contains B and D atoms. Such a structure will be called
an AC/BD slab. The second one is rotated by π/4 (i.e., it is
oriented along �a1 + �a2) compared with the first one, in which
case the geometry ensures that both the front and back planes
contain all four atoms A, B, C, and D. This configuration will
be called ABCD/ABCD.

The energy spectra as a function of kx and kz (which remain
good quantum numbers) are obtained by the numerical diago-
nalization of the Hamiltonians corresponding to the two slab
structures. For example, if we choose the Ox axis along the �a1

direction and the Oz axis along the �a3 direction, by imposing
vanishing boundary conditions on the Oy direction, we get the
Hamiltonian of the AC/BD slab:

H (kx, m, kz, γ , γ⊥) = H1(kx, m, kz, γ ) + H2(kx, m, kz, γ ) + H⊥(kx, m, kz, γ⊥);

H1(kx, m, kz, γ ) = t1
∑

m

[exp(−iγ ) + exp(iγ − ikx )]a†
kx,m,kz

bkx,m,kz + [exp(iγ ) + exp(−iγ − ikx )]a†
kx,m,kz

bkx,m−1,kz + H.c.

+ t2
∑

m

2 cos(kx )
[
a†

kx,m,kz
akx,m,kz − b†

kx,m,kz
bkx,m,kz

] − t2
∑

m

[
a†

kx,m,kz
akx,m+1,kz − b†

kx,m,kz
bkx,m+1,kz + H.c.

]
,

H2(kx, m, kz, γ ) = H1(a 	→ c, b 	→ d, γ 	→ −γ );

H⊥(kx, m, kz, γ⊥) = t⊥
∑

m

[exp(iγ⊥) + exp(−iγ⊥ + ikz )]a†
kx,m,kz

ckx,m,kz + [exp(−iγ⊥) + exp(iγ⊥ + ikz )]b†
kx,m,kz

dkx,m,kz + H.c.

(7)

A similar Hamiltonian can also be written for the
ABCD/ABCD slab.

We focus first on the semimetallic cases characterized by
(t2 = 0, γ⊥ = 0) and (t2 = 0, γ⊥ �= 0). The vanishing of t2
ensures the bipartitism of the lattice and automatically guar-
antees the electron-hole symmetry in the spectrum [32]. In
Fig. 4, we show four different semimetallic spectra corre-
sponding to the two slab structures with/without the vertical

phase γ⊥. Notably, it is to observe the presence of a flat band
at E = 0 in the AC/BD structure, independently of the value
of the phase γ⊥ [see Figs. 4(a) and 4(b)]. In what follows, we
provide analytical evidence that the flat band supports surface
states which manifest themselves by localization along the di-
rection perpendicular to the surfaces at fixed momenta kx, kz.

We look for the eigenfunctions of the Hamiltonian in
Eq. (7) as

|ψ (kx, kz, γ , γ⊥)〉 =
∑

m

(
αA

kx,m,kz
a†

kx,m,kz
+ αB

kx,m,kz
b†

kx,m,kz
+ αC

kx,m,kz
c†

kx,m,kz
+ αD

kx,m,kz
d†

kx,m,kz

)|0〉. (8)

From H (kx, m, kz, γ , γ⊥)|ψ (kx, kz, γ , γ⊥)〉 = E (kx, kz )|ψ (kx, kz, γ , γ⊥)〉, in the semimetallic scenario, the coefficients αA
kx,m,kz

,
αB

kx,m,kz
, αC

kx,m,kz
, and αD

kx,m,kz
satisfy the following set of equations:

X (γ , kx )αB
kx,m,kz

+ X (−γ , kx )αB
kx,m−1,kz

+ t⊥h(γ⊥,−kz )αC
kx,m,kz

= E (kx, kz )αA
kx,m,kz

,

X ∗(γ , kx )αA
kx,m,kz

+ X ∗(−γ , kx )αA
kx,m+1,kz

+ t⊥h(−γ⊥,−kz )αD
kx,m,kz

= E (kx, kz )αB
kx,m,kz

,
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FIG. 4. Semimetallic energy spectra (t2 = 0, t⊥ = 1) for two slab geometries: (a) AC/BD with γ⊥ = 0, (b) AC/BD with γ⊥ = π/4,
(c) ABCD/ABCD with γ⊥ = 0, and (d) ABCD/ABCD with γ⊥ = π/4. In the AC/BD case, a prominent flat zero-energy band is observed,
regardless of the γ⊥ phase.

X (−γ , kx )αD
kx,m,kz

+ X (γ , kx )αD
kx,m−1,kz

+ t⊥h(−γ⊥, kz )αA
kx,m,kz

= E (kx, kz )αC
kx,m,kz

,

X ∗(−γ , kx )αC
kx,m,kz

+ X ∗(γ , kx )αC
kx,m+1,kz

+ t⊥h(γ⊥, kz )αB
kx,m,kz

= E (kx, kz )αD
kx,m,kz

, (9)

with the parameter X (γ , kx ) = t1[exp(−iγ ) + exp(iγ − ikx )]
and h(γ⊥, kz ) = exp(iγ⊥) + exp(−iγ⊥ − ikz ).

In what follows, we prove that the hopping amplitude t⊥,
which defines the vertical interconnection in the 3D structure,
plays an important role concerning the localization of the
topological states at E = 0. However, it is helpful to first
look at the localization properties when the interlayer hop-
ping amplitude is deliberately set to zero (t⊥ = 0), in which
case h(γ⊥, kz ) in Eq. (9) is canceled, and the kz dependence
is removed. Consequently, the Hamiltonian becomes block
diagonal and describes two distinct 2D layers, which only
differ by the sign of the in-plane phase parameter γ . Each
layer is in fact an infinite ribbon along the Ox direction and
of finite width along the Oy direction. Remember that the
lower layer is occupied by A and B atoms, while the upper
one is occupied by the C and D atoms. The pair of rib-
bons presents a zero-energy flat band. All four equations in
Eq. (9) decouple, and by applying the boundary conditions
αB

kx,0,kz
= αA

kx,M+1,kz
= 0 and αD

kx,0,kz
= αC

kx,M+1,kz
= 0, one can

determine the coefficients of the wave function associated
with the zero eigenvalues:

αA
kx,m =

[
− X ∗(γ , kx )

X ∗(−γ , kx )

]m−1

αA
kx,1,

αB
kx,m =

[
− X (γ , kx )

X (−γ , kx )

]M−m

αB
kx,M,

αC
kx,m =

[
−X ∗(−γ , kx )

X ∗(γ , kx )

]m−1

αC
kx,1,

αD
kx,m =

[
−X (−γ , kx )

X (γ , kx )

]M−m

αD
kx,M . (10)

It results immediately that the wave function |	A(kx )〉 =

mαA

kx,m
|a†

kx,m
|0〉 is a topological eigenfunction localized

at the edge m = 1 if |X (γ , kx )/X (−γ , kx )| < 1. Instead,
the function |	B(kx )〉, defined similarly, is localized at
the other edge m = M. The two functions |	C(kx )〉 and
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FIG. 5. (a) and (b) The energy spectra are shown for two independent ribbons (t2 = 0, t⊥ = 0). Both ribbons are oriented along the �a1

direction, as depicted in Fig. 1. The red ribbon is made of A, B atoms, while the blue ribbon consists of C, D atoms, the only difference being
the sign of γ . In (c) and (d), we illustrate the spatial localization of the wave functions with zero energy for two values of kx corresponding to
the red and blue points. It is evident that the localization remains the same in the two cases.

|	D(kx )〉 present the same localization but with the condi-
tion |X (−γ , kx )/X (γ , kx )| < 1. Obviously, the two conditions
cannot be fulfilled simultaneously at a given kx. However, the
first condition can be satisfied for kx ∈ (π, 2π ) and the second
for kx ∈ (0, π ), as shown in Figs. 5(a) and 5(b). The spatial
confinement of the wave function associated with the E (kx ) =
0 eigenvalue can be examined by evaluating |〈	(kx )|i〉|2, i =
site index, which represents the projection of the wave func-
tion |	(kx )〉 onto the sites across the width. This calculation
validates the edge localization for each 2D layer, as shown in
Figs. 5(c) and 5(d).

In the 3D case, still paying attention to the semimetallic
case t2 = 0, we note that the parameter t⊥ is different from
zero, while the vertical phase γ⊥ can be both zero or nonzero
depending on the context. The dependence on kz is restored,
so that the eigenenergies now depend on both kx and kz. The
energy spectra corresponding to the two previously introduced
slab terminations (AC/BD and ACBD/ACBD) are shown in
Fig. 4. It is noteworthy that the zero-energy flat bands are
also present in the 3D case but only in the AC/BD config-
uration, no matter the value of the perpendicular flux γ⊥.
Comparing with the scenario discussed above where t⊥ = 0,

the localization at the margins of the system has distinct
properties.

In what follows, we look for surface states associated with
the energy E (kx, kz ) = 0. We start again from Eq. (9) and use
the ansatz α

( j)
kx,m,kz

= λm−1
( j) α

( j)
kx,1,kz

and α
( j)
kx,m,kz

= λM−m
( j) α

( j)
kx,M,kz

,
where j stands for A, B, C, or D, and m is the site index
along the Oy direction. Obviously, for the existence of the
surface states, it is imperative that the condition |λ( j)| < 1
be met. This condition guarantees that the states reach their
peak amplitudes at the boundaries and decay within the bulk
of the structure. The coefficients λ( j) satisfy quadratic equa-
tions and the properties λA = λD, λB = λC, as demonstrated
in Appendix B.

The aspect of the spatial distribution of the wave function,
obtained by the numerical calculation of the local density of
states |〈	(kx, kz )|i〉|2, reveals important differences compared
with the case t⊥ = 0 and depends qualitatively by γ⊥. The
result of the analytical calculation for the localization on
the first and last cell of the AC/BD structure is given by
Eq. (B5), whereas the numerical results, which agree with
the analytical ones, are shown in Fig. 6. For γ⊥ = 0, in the
first cell (m = 1), both sites B (in the lower layer) and C
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FIG. 6. The spatial distribution of two zero-energy wave functions is illustrated, considering hopping amplitudes t2 = 0 and t⊥ = 1. Red
signifies localization on the first layer, comprised of A and B sites, while blue indicates localization on the second layer, consisting of C and D
sites. In (a), γ⊥ = 0, whereas in (b), γ⊥ = π/4. The calculations are performed at kx = kz = π/4.

(in the upper layer) are equally occupied. At the opposite
boundary, in the last cell (m = M), sites A and D behave
similarly. The outcome is counterintuitive for this geometry,
defying expectations that suggest an occupancy pattern of the

A, C, and B, D sites due to their direct connection through t⊥.
This one-site shift, occurring at the edges, is analytically con-
firmed by Eq. (B5) and is unaffected by parameters t⊥ and γ⊥.
Another significant effect arises from the inversion symmetry

FIG. 7. The energy spectrum for two systems with slab geometry (t2 = 1, t⊥ = 1): AC/BD with phases (a) γ⊥ = 0 and (b) γ⊥ = π/4,
ABCD/ABCD with phases (c) γ⊥ = 0 and (d) γ⊥ = π/4. In all cases, the bulk gap is populated with dispersive surface states.
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FIG. 8. Left: Energy spectrum of the nanowire system in the
second-order topological insulator (SOTI) phase. Red and blue
points represent intersections of the gapless hinge states with the
Fermi level. Right: The eigenfunctions corresponding to the red and
blue intersections demonstrate the one-dimensional nature of the
hinge states. The system consists of a 10 × 10 unit cells lattice in
both the Ox and Oy directions, with t2 = 1, t⊥ = 1, and γ⊥ = π/4.

breaking induced by γ⊥ in the AC/BD structure. The absence
of the inversion results in an asymmetry of the wave func-
tion at the two ends, as depicted in Fig. 6(b), and confirmed
by Eq. (B5).

In the presence of the nonzero next nearest hopping (t2 �=
0), the energy spectrum of the slab opens a topological
gap, like the one observed for the 3D infinite system in
Fig. 2. The difference consists, however, of the appearance
of gapless dispersive surface states, which can be noticed
in Fig. 7 for both types of slab geometry (i.e., AC/BD and
ABCD/ABCD). There are nevertheless several peculiarities:
(i) the AC/BD structure exhibits two degeneracy points of
the topological surface states at E = 0 independently of the
flux γ⊥, (ii) on the other hand, in the ABCD/ABCD structure,
γ⊥ is essential as the degeneracy occurs either in one point
or none. The second case shown in Fig. 7(d) is the most
interesting, as it exhibits a surface gap that may accommodate
hinge states in case the slab is transformed into a nanowire
(the surface gap is also predicted in a continuum model in
Ref. [33]). This would prove the possibility to create a SOTI
by stacking diatomic layers with Chern properties. Chiral
hinge states are anticipated to be generated via the interlayer
connection and the related phase γ⊥. One would expect the
3D QAHE to occur in this kind of system. The details of these
expectations will be discussed in what follows.

To verify this, we need to create a nanowire, which re-
quires applying hard-wall boundary conditions also in the
Ox direction, while maintaining the same ABCD geometry
on the surface. Consequently, the energy spectrum becomes
only dependent on the kz momentum. The energy spectrum is
calculated under the conditions where the energy gap reaches
its maximum: t2 = 1, t⊥ = 1, and γ⊥ = π/4. Our anticipation
regarding the presence of chiral hinge states is confirmed in
Fig. 8 (on the left), as the gap in the energy spectrum is
filled with gapless states. To confirm the 1D character of these
states, we numerically calculate the local density of states
|〈	(kz )|n, m〉|2, where n and m index the unit cells in the

Ox and Oy directions, and the result is presented in Fig. 8
(on the right).

By setting the Fermi level in the middle of the gap, one
reveals two intersections at specific kz values, denoted by red
and blue dots. These two degenerate states are running along
opposite edges of the wire, as illustrated in Fig. 8 (on the
right). Obviously, the velocities vk = dE (kz )/dkz at these two
intersections are nonzero. The sign of the derivative provides
an indication of currents flowing along the hinges in opposite
directions.

In what follows, we face the question of how the hinge
channels will be organized to form a closed path in the case of
finite 3D structures.

IV. FINITE GEOMETRY: HINGE STATES
AND QAHE IN 3D STRUCTURES

In the previous section, we demonstrated that, in the
ABCD/ABCD slab geometry, the presence of γ⊥ leads to
the emergence of a surface gap, as shown in Fig. 7(d). We
have also seen that this gap is populated with gapless 1D
hinge states if supplementary hard-wall boundaries, which
transform the slab into an infinite wire, are imposed Fig. 8.

In this section, we proceed by using hard-wall boundary
conditions in all three directions and creating in this way a
finite parallelepiped structure. We highlight how the hinge
states organize themselves to generate closed chiral paths.
These closed chiral paths may support the QAHE in the 3D
SOTI structure.

To calculate the Hall effect, one needs to attach four leads,
which we arrange in the cross configuration. Obviously, to
point out this effect in 3D, two of them (say, the current leads)
should be attached to the lower face of the parallelepiped,
while the other two leads (necessary to measure the Hall
voltage) are attached to the upper face, as in Fig. 9(b). Then
the well-known Landauer-Büttiker formalism will be used to
calculate the transmission coefficients between the four leads
and the Hall resistance.

First, we analyze some structural details which affect the
spectral and transport properties of the finite system. By con-
struction, all the lateral sides of the parallelepiped have an
ABCD atomic configuration. However, the top and bottom
faces present a different arrangement, which contains either
A and B or C and D atoms. The number of layers stacked in
the structure proves to be essential for the problem. In the case
of an odd number of layers, the two faces are identical. On the
other hand, for an even number of layers, the bottom and top
faces are different (let us choose A-B at the bottom and C-D at
the top). In this case, the in-plane γ phase shows the opposite
sign on the two faces, and this gives rise to major changes
in the trajectory of the hinge states and, consequently, affects
the QHE.

Let us examine the energy spectrum and the hinge-type
wave functions in terms of the perpendicular phase γ⊥ and
the number of layers. The result is presented in Fig. 10, where
some properties are evident: (i) the electron-hole symmetry,
(ii) the periodicity with δγ⊥ = π , and (iii) the mirror sym-
metry around γ⊥ = π/2. Additionally, it is easy to realize
that E (γ , γ⊥) = E (−γ ,−γ⊥). However, the striking feature
consists of the completely different aspect of the hinge states
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FIG. 9. (a) The Hall resistance is plotted as a function of the perpendicular phase γ⊥ in the second-order topological insulator (SOTI)
phase (t2 = 1, t⊥ = 1, γ = π/4) at the zero Fermi energy. The red solid line represents the case of dimensions 15 × 15 × 10, while the red
dashed line corresponds to the case of dimensions 15 × 15 × 9. (b) A sketch of the Hall device with four leads is provided to facilitate a better
understanding of the numerical calculations in the cross-lead geometry.

in the two cases which are distinguished by the number of
layers. The odd number of layers allows for the chiral circuit
shown in Fig. 10(d), which connects all four leads of the
Hall device. In the case of an even number of layers, the
mismatch between the direction of the in-plane γ phase on
the lower and upper faces generates two separate circuits, as in

Fig. 10(c). Obviously, in this case, the QHE vanishes, except
in the situation when the leads are wide such that they touch
both circuits. In this situation, the quantum Hall resistance
may become fractional, as we shall see below.

The transmission coefficients Tαβ (where α, β = 1, 2, 3, 4
are the lead indexes) are computed using the Green’s function

FIG. 10. The eigenenergy spectrum of systems consisting of (a) 15 × 15 × 10 lattice sites in the Ox , Oy, and Oz directions and
(b) 15 × 15 × 9 as a function of phase γ⊥. The hinge states trajectories are presented in (c) and (d), corresponding to the eigenenergies
indicated with blue points in the energy spectra.
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approach, which requires not only the sample Hamiltonian
in Eq. (1) but also the Hamiltonian terms describing the
leads and the lead-sample contacts. Once the transmission
coefficients are known, the transverse (Hall) resistance is
given by

RH = T23T41 − T21T43 − T32T14 + T12T34

2D
, (11)

where D is a 3 × 3 minor of the transmission matrix. The
technicalities are explained in extenso in Ref. [34] and will
not be repeated here.

Even in the absence of an external magnetic field, the Hall
effect is expected to be nonzero due to the TR symmetry
breaking caused by the intralayer phase γ and interlayer phase
γ⊥. The dependence of the quantum Hall resistance on γ⊥, at
fixed γ = π/4, is shown in Fig. 9, where quantum anomalous
Hall plateaus can be observed. It is important to remember that
the accuracy of the numerically obtained plateaus increases
substantially with the size of the system. In our calculation,
we use structures consisting of 15 × 15 × 9 and 15 × 15 × 10
sites for the case of the odd and even numbers of layers,
respectively.

The only integer plateau occurs for an odd number of layers
if γ⊥ ∈ (0, π/2). Having in mind that each independent layer
is a 2D Chern insulator with C = ±1 (depending on the sign
of γ ) [30], the result RH = −1 in Fig. 9(a) comes out as if we
sum the Chern numbers of all the layers. In this case, the trans-
mission matrix is the one specific to the integer QHE, i.e., the
matrix T1 in Eq. (12). This is no longer true if γ⊥ ∈ (π/2, π ),
in which case the hinge path in Fig. 10(d) rotates by C4, so
that the lead connection changes. This situation is described
by the transmission matrix T2, which generates a fractional
Hall resistance RH = 1

5 , as can be noticed in Fig. 9(a).
The same discussion can be resumed for an even number

of layers. The key difference comes from the specific shape
of the hinge states which show now two disjunct channels, as
obvious in Fig. 10(c). This time the involved matrices are T3

for γ⊥ ∈ (0, π/2) and T4 in the range (π/2, π ), resulting in
RH = ± 1

2 , as shown in Fig. 9(a) with the red solid line.

T1 =

⎛
⎜⎜⎝

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

⎞
⎟⎟⎠,

T2 =

⎛
⎜⎜⎝

−2 0 1 1
1 −2 0 1
1 1 −2 0
0 1 1 −2

⎞
⎟⎟⎠, (12)

T3 =

⎛
⎜⎜⎜⎝

−2 1 1 0
0 −1 1 0
1 0 −2 1
1 0 0 −1

⎞
⎟⎟⎟⎠,

T4 =

⎛
⎜⎜⎜⎝

−1 0 0 1
1 −2 0 1
0 1 −1 0
0 1 1 −2

⎞
⎟⎟⎟⎠. (13)

The analysis of the transport properties above provides a
method for identifying the closure of the hinge state channels
in a cross arrangement of the leads. Furthermore, the distinc-
tion between systems with an odd or even number of layers
becomes immediately apparent through the measurement of
the quantum Hall resistance.

V. CONCLUSIONS

We have developed a 3D tight-binding model that presents
the spectral properties of a SOTI and the transport properties
of the QAHE. This model is constructed by stacking square
diatomic layers, each exhibiting Chern properties, resulting in
a 3D structure characterized by four atoms per unit cell. The
critical components of this model include the next-nearest-
hopping integral t2, the phase associated with the intralayer
hopping process γ , and the phase γ⊥ related to the vertical
interlayer connections t⊥.

We analyze the spectral properties across three distinct
geometries: bulk (i.e., a fully periodic 3D lattice), slab, and
wire. Each geometry is distinguished by its specific boundary
conditions. Within the bulk geometry, the presence of the
next nearest hopping plays an essential role in differentiating
between semimetallic and insulating phases. This finding re-
flects a situation like the 2D case. Our examination reveals
the presence of chiral and antiunitary symmetries, leading
to electron-hole symmetry and the emergence of degeneracy
points in the energy spectrum. Furthermore, we provide an-
alytical insight into the evolution in the momentum space of
the touching points locus at zero energy in the semimetallic
phase.

In the case of the slab geometry, we conducted an en-
ergy spectrum analysis for two specific surface configurations:
AC/BD and ABCD/ABCD. For the AC/BD surface geome-
try, in the semimetallic phase, we provide analytical evidence
for the existence of zero-energy surface states and calculate
their localization by projecting the wave function onto the
boundary sites.

In the ABCD/ABCD slab configuration, we observe the
emergence of an energy gap in the surface state spectrum
caused by γ⊥. When moving to the wire geometry, this gap
fills with two pairs of hinge states of opposite chirality.
This observation suggests that a 3D QAHE should manifest
in finite structures. To confirm this, we attach four leads
in a cross configuration [see Fig. 9(b)] and calculate the
transverse (Hall) resistance using the Landauer-Büttiker
formalism.

Interestingly, the number of layers in the structure signifi-
cantly impacts the path of the hinge states and, consequently,
the characteristics of the QAHE. The systems built up from
an odd number of layers exhibit two detached hinge channels,
while in the case of an even number of layers, there is only a
single hinge channel. These different charge conducting paths
influence the observed plateaus of the Hall resistance, leading
to the fractional ones.

Several theoretical platforms have been proposed for the
realization of the 3D Chern insulators, and we mention the
magnetic topological materials (for instance, MnBi2nTe3n+1

[35] and Bi2−xSmxSe3 [36]), the photonic crystals [37], and
the topolectric circuits [38,39]. The experimental evidence of
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the QAHE was obtained in thin films of chromium-doped
(BiSb)2Te3 [40] and moiré heterostructure MoTe2/WSe2

[41]. Our theoretical model, which predicts the QAHE
along chiral hinge states in SOTIs, is based on two
Haldane-type phases in a cubic structure, and we antici-
pate that it might be realized by the use of the topolectrical
method.
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APPENDIX A: CHERN NUMBER CALCULATION
FOR THE 2D DIATOMIC SQUARE LATTICE

WITH HALDANE-TYPE PHASE

Our model is built up by stacking 2D layers, which are
supposed to show Chern topological properties. The Chern
insulating behavior of an individual 2D lattice is provided
by the intralayer Haldane-type phase attached to the nearest-
neighbor-hopping t1 combined with the possibility of hopping
to the next nearest neighbors (described by the parameter t2)
[29,30].

Here, we show the result of an explicit calculation of the
Chern number as a function of the phase γ . The calculation is
performed following the method used in Ref. [42]. The result
is presented in Fig. 11, where it can be seen that the Chern
number equals the quantized numbers ±1, depending on the
sign of the phase γ .

APPENDIX B: ANALYTICAL CALCULATION
OF SURFACE STATES LOCALIZATION

In the case of t⊥ �= 0 and E (kx, kz ) = 0, the equations in
Eq. (9) generate the following equations for the coefficients

FIG. 11. Chern number as a function of the intralayer phase
γ for a two-dimensional (2D) diatomic square lattice. The Chern
number takes on quantized values of ±1 depending on the sign of the
phase γ .

α
( j)
kx,m,kz

(where m is the cell index, and j is the index of the
atoms in the unit cell):

Z1α
( j)
m + Z2α

( j)
m+1 + Z3α

( j)
m−1 = 0, j = A and D,

Z1α
( j)
m + Z3α

( j)
m+1 + Z2α

( j)
m−1 = 0, j = B and C, (B1)

[we skip the indexes (kx, kz )] with the real coefficients:

Z1 = 4t2
1 [cos(2γ ) + cos(kx )]

− 2t2
⊥[cos(2γ⊥) + cos(kz )],

Z2 = 2t2
1 [1 + cos(2γ + kx )],

Z3 = 2t2
⊥[cos(2γ⊥) + cos(kz )]. (B2)

To prove the localization of the surface states at the ends of the
slab, we make the ansatz α

( j)
m = λm−1

( j) α
( j)
1 if the wave function

is localized at m = 1 and α
( j)
m = λM−m

( j) α
( j)
M for the other end

m = M. Obviously, for |λ( j)| < 1, the wave function projected
on the sites j = A, B, C, and D is localized near the borders of
the system. The quantity λ( j), which controls the decay of the
wave function near the surface m = 1, satisfies the following
quadratic equations:

Z2λ
2
( j) + Z1λ( j) + Z3 = 0, if j = A and D,

Z3λ
2
( j) + Z1λ( j) + Z2 = 0, if j = B and C, (B3)

and at the opposite end m = M, we just need to interchange
the equation for (A, D) with the equation for (B, C).

Unexpectedly, the above equations indicate different de-
cays as λA = λD differs from λB = λC. The solutions of
Eq. (B3) show that, for a specific range of parameters
(γ⊥, t⊥; kx, kz), where |λ( j)| < 1, the system supports surface
states. Let us pay attention to localization of the wave func-
tion on the first cell m = 1 and last cell m = M. Due to the
boundary conditions α

( j)
0 = α

( j)
M+1 = 0, from the equations in

Eq. (9), we obtain

X (γ , kx )αB
1 + h(γ⊥,−kz )αC

1 = 0,

X ∗(γ , kx )αA
M + h(−γ⊥,−kz )αD

M = 0,

X (−γ , kx )αD
1 + h(−γ⊥, kz )αA

1 = 0,

X ∗(−γ , kx )αC
M + h(γ⊥, kz )αB

M = 0, (B4)

from where ∣∣α(B)
1

∣∣2

∣∣α(C)
1

∣∣2 = t2
⊥
t2
1

1 + cos(2γ⊥ − kz )

1 + cos(2γ − kx )
,

∣∣α(A)
M

∣∣2

∣∣α(D)
M

∣∣2 = t2
⊥
t2
1

1 + cos(2γ⊥ + kz )

1 + cos(2γ − kx )
, (B5)

∣∣α(D)
1

∣∣2

∣∣α(A)
1

∣∣2 = t2
⊥
t2
1

1 + cos(2γ⊥ − kz )

1 + cos(2γ + kx )
,

∣∣α(C)
M

∣∣2

∣∣α(B)
M

∣∣2 = t2
⊥
t2
1

1 + cos(2γ⊥ + kz )

1 + cos(2γ + kx )
. (B6)

Now by utilizing the same momentum parameters in the
slab geometry as in Fig. 6 (kx = kz = π/4), the condition
|λ( j)| < 1 implies that the surface states on sites (B, C) are
localized at m = 1 and on sites (A, D) at m = M. In this
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scenario, the ratios of endsite localization are described by
Eq. (B5). If the momentum parameters are shifted by 3π/2
(i.e., kx = kz = 7π/4), the discussions above remain valid,
and the ratios of endsite localization are presented in Eq. (B6).

For the set of values considered in Fig. 6(a), the
ratios |α(B)

1 |2/|α(C)
1 |2 = 1 and |α(A)

M |2/|α(D)
M |2 = 1, which

match the ratio obtained numerically in the absence
of γ⊥. In the presence of γ⊥ (γ⊥ = π/4), the local-
ization at the boundaries changes, and the projection
onto the end sites satisfy the relations |α(B)

1 |2/|α(C)
1 |2 =

1 and |α(A)
M |2/|α(D)

M |2 = (
√

2 − 1)/(
√

2 + 1), as observed
in Fig. 6(b).

[1] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and
P. W. Brouwer, Reflection-symmetric second-order topological
insulators and superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[2] Z. Song, Z. Fang, and C. Fang, (d − 2)-dimensional edge states
of rotation symmetry protected topological states, Phys. Rev.
Lett. 119, 246402 (2017).

[3] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[4] I. A. Nechaev, R. C. Hatch, M. Bianchi, D. Guan, C. Friedrich,
I. Aguilera, J. L. Mi, B. B. Iversen, S. Blügel, P. Hofmann
et al., Evidence for a direct band gap in the topological in-
sulator Bi2Se3 from theory and experiment, Phys. Rev. B 87,
121111(R) (2013).

[5] M. Eschbach, M. Lanius, C. Niu, E. Młyńczak, P. Gospodarič, J.
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