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Elementary processes in dilatational plasticity of glasses

Avraham Moriel ,1 David Richard,2 Edan Lerner ,3 and Eran Bouchbinder 1

1Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
2Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

3Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands

(Received 5 February 2024; accepted 30 April 2024; published 13 May 2024)

Materials typically fail under complex stress states, essentially involving dilatational (volumetric) components
that eventually lead to material decohesion/separation. It is therefore important to understand dilatational
irreversible deformation—i.e., dilatational plasticity—en route to failure. In the context of glasses, much focus
has been given to shear (volume-preserving) plasticity, both in terms of the stress states considered and
the corresponding material response. Here, using a recently developed methodology and extensive computer
simulations, we shed basic light on the elementary processes mediating dilatational plasticity in glasses. We show
that plastic instabilities, corresponding to singularities of the glass Hessian, generically feature both dilatational
and shear irreversible strain components. The relative magnitude and statistics of the strain components depend
both on the symmetry of the driving stress (e.g., shear versus hydrostatic tension) and on the cohesive (attractive)
part of the interatomic interaction. We further show that the tensorial shear component of the plastic strain is
generally nonplanar and also extract the characteristic volume of plastic instabilities. Elucidating the fundamental
properties of the elementary micromechanical building blocks of plasticity in glasses sets the stage for addressing
larger-scale, collective phenomena in dilatational plasticity such as topological changes in the form of cavitation
and ductile-to-brittle transitions. As a first step in this direction, we show that the elastic moduli markedly soften
during dilatational plastic deformation approaching cavitation.
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I. INTRODUCTION

Glassy materials are ubiquitous in the natural and techno-
logical world around us, and include various noncrystalline
solids such as oxide glasses, glassy polymers, organic glasses
and metallic glasses. These intrinsically disordered materials
possess notable properties and hence find an enormous range
of engineering applications [1–5]. Processing glassy materials
[6] and more so their performance, durability and structural
integrity in various applications require deep and fundamental
understanding of their mechanical deformation and failure
modes. Failure typically involves complex stress states, es-
sentially involving dilatational (volumetric) components that
eventually lead to material decohesion/separation. This is
evident from extensive experimental observations regarding
cavitation in glasses under a wide variety of failure conditions
(e.g., Refs. [7–16]).

Despite its crucial importance, our current understanding
of irreversible (plastic) dilatational deformation of glasses
lags far behind the corresponding understanding of shear
(deviatoric, volume-preserving) plasticity. Indeed, a lot of
attention and research effort have been devoted to studying
the fundamental micromechanics and statistical-mechanical
properties of shear plasticity—especially in the statistical
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physics community (e.g., Refs. [17–36]), with a few notable
recent counterexamples (e.g., Refs. [37–45]). The mean-
ing of “shear plasticity” here is two-fold; first, it refers to
shear-driven plasticity, i.e., to studying plasticity under driv-
ing conditions (stress states) in which the shear/deviatoric
component strongly dominates the dilatational/volumetric
one. Second, it refers to the irreversible material response,
which in previous works heavily focused on plastic shear
strains mediated by the so-called shear transformation zones
(STZs) [46–49].

The pressing need to understand dilatational plasticity
processes has already been recognized in several materi-
als research communities, mainly in the context of metallic
glasses [7–16,50,51], leading to various experimental (e.g.,
Refs. [8,9]), simulational (e.g., Refs. [50,51]) and model-
ing (e.g., Refs. [51,52]) efforts. It has also given rise to
the conjecture that at the fundamental level there exist in
addition to STZs (the carriers of shear plasticity) also tension-
transformation zones (TTZs) [8,9,53], whose activation leads
to atomic-scale quasicleavage [54]. Yet, these important ef-
forts have not been focused on the basic micromechanics,
geometry, and statistical mechanics of dilatational plasticity.

Our goal in this work is to study the fundamental microme-
chanics, geometric, and statistical-mechanical properties of
the elementary processes that mediate dilatational plasticity in
glasses. In terms of driving forces, we invoke the hydrostatic
tension test and compare it to its well-studied simple shear
counterpart, both shown in Fig. 1. The hydrostatic tension
test applied to computer glass samples physically represents
a mesoscopic portion of a macroscopic glass, on which the
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FIG. 1. (a) A shear stress-strain σ (γ ) of a 3D computer glass (of
N =10K particles, averaged over 108 realizations) deformed under
simple shear. σ is normalized by the initial shear modulus, μ(γ =
0). The left inset shows the binary-mixture glass (blue and yellow
particles correspond to the two species [55]) prior to deformation
and the arrows illustrate the subsequent application of simple shear.
The right inset shows a side view of the same glass realization in
the steady-state flow regime (here γ �0.25). (b) The corresponding
dilatational stress-strain −p(ε) for the same glass ensemble (p is the
pressure) deformed under hydrostatic tension. −p is normalized by
the initial bulk modulus, K (ε=0). The left inset shows the very same
undeformed glass realization as in panel (a), but the arrows highlight
the subsequent application of hydrostatic tension (pure dilation).
The right inset shows a large-scale cavity (light blue region) inside
the glass right after the observed abrupt stress drop. See text for a
discussion of the results.

surrounding material exerts predominantly hydrostatic forces.
In Fig. 1(a), an ensemble-averaged shear stress-strain curve
under simple shear is presented, obtained through 3D
computer simulations using athermal quasistatic (AQS) de-
formation [17–20]. The resulting curve features a small-strain
linear regime and a smooth, monotonic transition to a steady-
state flow plateau upon shear plastic yielding. The curve does
not feature a stress overshoot (and the accompanying stress
drop), a situation that is typical for poorly annealed (i.e.,
rapidly quenched) glasses, which indeed corresponds to the
employed glass ensemble [55].

In Fig. 1(b), an ensemble-averaged dilatational stress-strain
curve under hydrostatic tension (pure dilation) is presented,
obtained using the very same ensemble of computer glasses

as in panel (a). The resulting curve features a small-strain
linear regime, followed by an abrupt stress drop and contin-
uous strain softening. It qualitatively differs from its simple
shear counterpart in Fig. 1(a), despite performing the de-
formation simulations on the very same ensemble of glass
realizations. One manifestation of this qualitative difference
is the emergence of a cavitation instability in the hydrostatic
tension test, as illustrated in the inset (see figure caption for
additional details). A major goal of this work is to study the el-
ementary irreversible processes that contribute to the observed
differences.

Our methodology, involving computer glasses of N par-
ticles and initial volume V0, is discussed in Appendix A,
where additional technical details are provided in [55]. As
material cohesion is essential for understanding dilatational
plasticity and failure, our computer simulations employ a
class of recently introduced potentials, which feature both
repulsion and cohesion/attraction, where the strength of the
attractive part is continuously adjustable through a dimension-
less parameter rc [55–58]. The smaller rc is, the stronger the
cohesive/attractive part of the interaction, as demonstrated in
the inset of Fig. 2(a). It was recently shown that reducing rc

can lead to a ductile-to-brittle transition [34].
Simple shear AQS deformation in a given direction is con-

trolled by a shear strain γ , where a representative simple shear
stress-strain curve σ (γ ) is presented in Fig. 1(a). Hydrostatic
tension (pure dilation) is controlled by a dilatational (volumet-
ric) strain ε, representative hydrostatic tension stress-strain
curve −p(ε) is presented in Fig. 1(b) (p is the hydrostatic
pressure). Unstable plastic eigenmodes u(r) (where r is a
position vector relative to the center of the eigenmode [55]),
corresponding to a zero crossing of an eigenvalue of the Hes-
sian M, are identified during AQS deformation, controlled
either by γ or ε (see Appendix A and [55]). u(r) features
a highly nonlinear, disordered core of linear size a (i.e., of
volume V∝a3) and a power-law decay |r|−2 in the far field
(e.g., [20]), |r|�a, associated with a linear elastic continuum
behavior.

The irreversible deformation inside the nonlinear core is
quantified through an eigenstrain tensor E∗ in the framework
of Eshelby’s inclusions formalism [59,60]. A recently de-
veloped method [61], based on a class of contour integrals
evaluated in the far field |r|�a, allows to extract V E∗. Our
primary goal is to study the properties of E∗ and V (or alter-
natively a) as a function of the symmetry and magnitude of
the driving force, quantified by γ and ε, and as a function of
the strength of the cohesive/attractive part of the interatomic
interaction, quantified by rc.

II. PLASTIC EIGENSTRAIN TRIAXILITY

The eigenstrain tensor can be additively decomposed into
its dilatational (volumetric) part E∗

dil and deviatoric (shear,
volume-preserving) part E∗

dev, E∗ = E∗
dil + E∗

dev. In 3D, E∗ is
characterized by three independent amplitudes, one charac-
terizing the dilatational (isotropic) part, E∗

dil = ε∗
dil I and two

characterizing the deviatoric part, which features tr(E∗
dev) =

0. We denote by ε∗
dev,1 the largest (in absolute value) of the

three eigenvalues of E∗
dev and by ε∗

dev,2 the second largest,
which has a different sign compared to ε∗

dev,1 (the third
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FIG. 2. (a) The probability distribution p(Rt ) of the plastic eigen-
strain triaxiliaty Rt defined in Eq. (1) for rc =1.5 glasses, under both
simple shear and hydrostatic tension (see legend). The inset presents
the interatomic pair interaction φ(r) vs r̃, where r is the scaled
distance between interacting particles and r̃ is further normalized
such that the minimum of each curve occurs at r̃ =1 [55,57]. Curves
for the two values of rc employed in this work (see legend) are
shown. (b) The same as (a), but for rc =1.2. See text for an extensive
discussion of the results. The visual insets present isosurfaces of the
magnitude of plastic modes with two values of Rt . The left one (red),
corresponds to Rt =0 (i.e., ε∗

dil =0) and a planar deviatoric eigenstrain
tensor with J∗

2 =1. The effective dimensionality of the deviatoric
eigenstrain tensor (quantifying its degree of planarity) is discussed
in relation to Fig. 3. The arrows (white) indicate the direction of the
displacement (with length that is consistent with its magnitude). The
right visual inset (green) corresponds to ε∗

dil =0.5 and again a planar
deviatoric eigenstrain tensor with J∗

2 =1, resulting in Rt �0.29. The
arrows (black) indicate the direction of the displacement (with length
that is consistent with its magnitude).

eigenvalue is not independent, but is rather determined
through tr(E∗

dev) = 0).
Three independent amplitudes that characterize E∗ pro-

vide basic information about the geometry of plastic
rearrangements/instabilities in glasses. Of particular interest
in the present context is the amplitude of the dilatational
eigenstrain component ε∗

dil, and more specifically its relative
magnitude compared to the deviatoric component. Conse-
quently, we aim at constructing a ratio of the two components
in order to quantify their relative magnitude. This goal nat-
urally fits the contour integrals method [61] that—as noted
above—allows to extract only the product V E∗, but not V
and E∗ individually. In fact, as u(r) is a normalized mode
(by construction), considering absolute eigenstrain values is
not immediate. Yet, as will be shown later, the fully nonlinear
u(r) does contain information that allows to estimate the core
volume V .

In order to construct a ratio that quantifies the rela-
tive magnitude of the dilatational and deviatoric components
of the eigenstrain tensor E∗, we draw analogy with the

well-known and widely used stress triaxiality measure
[62,63]—constructed at the macroscopic scale for a similar
goal, but with respect to the stress tensor—and define

Rt ≡ ε∗
dil√
3J∗

2

, (1)

where J∗
2 ≡ 1

2E
∗
dev : E∗

dev. We term the ratio Rt in Eq. (1) the
plastic eigenstrain triaxiality. Note that Rt is a signed quantity,
as will be further discussed below.

In Fig. 2, the probability distribution p(Rt ) is plotted for
both the simple shear and hydrostatic tension tests, and two
values of rc. p(Rt ) was obtained by calculating Rt of Eq. (1)
for 200 independent glass samples (made of N = 128 K par-
ticles each) per rc value, where for each sample up to the
first 50 plastic instabilities/events were detected [55]. Under
dilation, we focused on strains below the cavitation strain
[corresponding to the peak stress under hydrostatic tension,
cf. Fig. 1(b)], implying that not all of the detected plastic
events were analyzed. Overall, the presented distributions
were generated using between 3000 and 10 000 events each.
Statistical convergence and possible effects of the magnitude
of the applied strain are discussed in Ref. [55], also for other
observables to be considered below.

In Fig. 2(a), we show p(Rt ) for rc = 1.5, which corre-
sponds to the canonical Lennard-Jones interatomic potential
(see inset). It is observed that under simple shear (red circles)
p(Rt ) is symmetric and narrowly peaked around Rt = 0 (i.e., a
vanishing dilatational eigenstrain, ε∗

dil = 0). Note that ε∗
dil >0

corresponds to isotropic core expansion/dilation and ε∗
dil <0

to isotropic core contraction [55]. It is observed that finite
values of ε∗

dil exist, though Rt is small, indicating that the de-
viatoric eigenstrain component is significantly larger than the
dilatational one. Under hydrostatic tension (green circles), for
the very same ensemble of glass realizations, the symmetry
between core expansion and contraction, Rt →−Rt , is broken,
and p(Rt ) is biased toward positive Rt values. p(Rt ) is peaked
at relatively small values, again indicating a dominance of the
deviatoric component over the dilatational one, even when the
global driving force is dilatational (hydrostatic tension).

The results presented in Fig. 2(a) demonstrate that plastic
instabilities in glasses generically feature both dilatational
and shear components. A corollary of this finding is that
at least part of dilatational plasticity is carried by the same
micromechanical objects that carry shear plasticity. More-
over, the relative magnitude of the dilatational and deviatoric
components depends on the stress state, i.e., the microscopic
plastic strain is not an intrinsic/geometric property of plastic
instabilities (for a given glass composition and interatomic
interaction). Finally, hydrostatic tension gives rise to larger
dilatational plastic strains, though for the canonical Lennard-
Jones potential the deviatoric plastic strain is dominant.

We then repeated the calculations leading to Fig. 2(a) for
an ensemble of glasses generated with rc = 1.2. This value of
rc corresponds to an interatomic potential featuring a stronger
cohesive/attractive part, see inset of Fig. 2(a). In the presence
of stronger cohesion, one expects that in order to trigger an
irreversible rearrangement, particles at the core of a plastic
mode (saddle configuration) would feature a larger separation,
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i.e., p(Rt ) is expected to feature larger values. The results in
Fig. 2(b) support this expectation.

It is observed that under simple shear (red squares) p(Rt )
is still symmetric around Rt = 0, but becomes bimodal with
peaks at Rt values significantly larger than the typical Rt

values for rc = 1.5 [cf. the red circles in Fig. 2(a)]. Moreover,
this physical effect significantly intensifies under hydrostatic
tension, as demonstrated by p(Rt ) in Fig. 2(b) (green squares).
It is observed that under these conditions, rc = 1.2 glasses fea-
ture almost only positive Rt values, and p(Rt ) is broad, where
plastic events with a sizable dilatational component exist with
a non-negligible probability. The geometry of plastic cores
with different Rt values is illustrated in the visual insets of
Fig. 2(b), see figure caption for details.

Overall, the results of Fig. 2 show that a dilatational plas-
tic strain generically exists in plastic instabilities in glasses,
along with a deviatoric plastic strain, and that their relative
magnitude depends on both the driving conditions and the
cohesive/attractive part of interatomic interactions. Moreover,
our findings show that at least part of dilatational plasticity in
glasses is carried by the same micromechanical objects that
carry shear plasticity, and consequently that these provide a
coupling mechanism between the two.

The generic existence of a dilatational plastic strain in
plastic events in glasses has also been demonstrated previ-
ously in 2D Lennard-Jones glasses studied under uniaxial
tension/compression [64] and under simple shear [65], and
in 3D computer models of amorphous silicon studied under
simple shear [66]. Amorphous silicon has been modelled in
[66] using either the standard/original Stillinger-Weber (SW)
potential [67] or a modified SW (termed SWM therein) poten-
tial [68,69]. The latter potential, which features a three-body
term twice as large as the original SW potential, has been
developed in relation to the fracture of crystalline silicon,
where it was found that the SW potential leads to a ductile
behavior, while the SWM potential to a brittle one [68,69].
This is reminiscent of the ductile-to-brittle transition induced
by reducing rc, as discussed in Ref. [34]. The ductile-to-brittle
transition in both cases is also accompanied by a reduction in
Poisson’s ratio (see Table I in Ref. [66] for the SW and SWM
values, and Table S2 in Ref. [55] for the different rc values).

Interestingly, it was reported in [66] (cf. Fig. 7 therein)
that the relative magnitude of the dilatational and deviatoric
components of plastic events under simple shear (termed
“shear-tension coupling”) increases from SW to SWM. This is
precisely the trend observed in Fig. 2 (red symbols in the two
panels) with decreasing rc. Consequently, while “ductility”
and “brittleness” are clearly collective phenomena that are af-
fected by both the history dependence of a glass (i.e., its initial
state of disorder emerging from the quench self-organization,
being in itself affected by the interatomic potential) and by
spatiotemporal interactions of an extensive number of plastic
events during deformation [16,34], they might also have some
signature in the geometry of individual plastic events.

III. PLANARITY OF THE DEVIATORIC
EIGENSTRAIN TENSOR

The plastic eigenstrain triaxility Rt , studied above,
constructs out of the three independent amplitudes that

FIG. 3. The probability distribution p(Rp) of the planarity ratio
Rp of the deviatoric eigenstrain tensor, cf. Eq. (2), in glasses under
simple shear, for two values of rc (see legend in panel (b)). The visual
insets present iso-surfaces of the magnitude of the deviatoric part of
plastic modes with two values of Rp. The left one (blue), corresponds
to Rp =0 (i.e., the purely planar limit), and is identical to the left
visual inset in Fig. 2(b). The right visual inset (yellow), corresponds
to Rp =1 (i.e., the least planar). In both cases, the arrows indicate the
direction of the displacement (with length that is consistent with its
magnitude). (b) The same as panel (a), but under hydrostatic tension.
See text for a discussion.

characterize the eigenstrain tensor E∗ a measure of the relative
magnitude of the dilatational and deviatoric eigenstrain com-
ponents. Next, we consider another geometric property of the
core of plastic instabilities. As the dilatational component is
isotropic, i.e., it features 3D spherical geometry, we focus our
attention on the geometry of the deviatoric eigenstrain tensor
E∗

dev, which is characterized by two independent amplitudes
ε∗

dev,1 and ε∗
dev,2, defined above.

A lot of previous insight into glass plasticity has been
gained using computer simulations in 2D, which—as high-
lighted above—focused mostly on shear plasticity. In 2D, the
deviatoric eigenstrain tensor is characterized by a single inde-
pendent amplitude. There were some preliminary indications
in the literature that plastic instabilities in 3D feature such a
planar deviatoric eigenstrain tensor as well (e.g., Ref. [70]).
That is, in terms of the above-defined quantities, it was sug-
gested that ε∗

dev,1 �−ε∗
dev,2 (such that the magnitude of the

third eigenstrain is much smaller than |ε∗
dev,1|) also charac-

terizes plastic instabilities in 3D. Yet, to the best of our
knowledge, this issue has not been systematically investigated
in the past.

To address this basic issue, we define the planarity ratio of
the deviatoric eigenstrain tensor E∗

dev of plastic instabilities as

Rp ≡2

(
1 + ε∗

dev,2

ε∗
dev,1

)
. (2)

As explained above, in the purely planar limit one eigen-
value of E∗

dev vanishes and we have ε∗
dev,1 = −ε∗

dev,2, i.e.,
Rp = 0. The opposite limit, the least planar one, corresponds
to ε∗

dev,2/ε
∗
dev,1 = −1/2, i.e., Rp = 1. These limiting cases are

illustrated in the visual insets in Fig. 3(a) (see figure cap-
tion for additional details). In these terms, the suggestion
that the deviatoric eigenstrain tensor remains planar in 3D
corresponds to p(Rp)→δ(Rp), i.e., to a probability distribu-
tion p(Rp) that is strongly concentrated near the planar limit
Rp �0, approaching a delta-function distribution. Our goal
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is to study p(Rp) as a function of the external driving force
(simple shear vs hydrostatic tension) and rc. The analysis
was performed on the same set of plastic instabilities/events
discussed in relation to Fig. 2, and the results are presented
in Fig. 3. In Fig. 3(a), p(Rp) under simple shear is plotted
for two values of rc [those previously used in Fig. 2, see
legend in Fig. 3(b)]. It is observed that for rc = 1.5, p(Rp)
features a broad peak around Rp �0.3, significantly deviat-
ing from δ(Rp). Moreover, for rc = 1.2 (corresponding to a
stronger attractive part of the interatomic potential), p(Rp) is
also broad, but is peaked at significantly larger values of Rp,
away from the planar limit. The corresponding results under
hydrostatic tension are presented in Fig. 3(b) and are simi-
lar [note that p(Rp) is more sharply peaked around Rp �0.7
compared to the corresponding result under simple shear, cf.
panel (a)]. Overall, the results indicate that the geometry of
the deviatoric eigenstrain tensor E∗

dev is generally nonplanar,
i.e., that the dimensionality of E∗

dev is the same as space
dimensionality.

IV. THE CORE SIZE OF PLASTIC INSTABILITIES

As pointed out above, the contour integrals method, which
employs the far field linear elastic properties of unstable plas-
tic modes u(r) to infer the core properties, does not allow
to separately extract the core volume V and plastic eigen-
strain tensor E∗. Yet, the core volume V—or equivalently
the linear core size a (with V∝a3)—is an important glassy
length scale. For example, it has been argued that V influ-
ences various physical properties of glasses [71–73]. Con-
sequently, it is important to extract V∝a3 itself. In fact, the
particle-level (atomistic), fully nonlinear u(r) can be used to
estimate a.

The unstable plastic mode displacement field u(r) is evalu-
ated at each spatial position ri occupied by a particle, hence
it can be denoted as ui ≡u(ri ) (which is the quantity we
actually calculate to begin with). ui follows a continuum
linear elastic behavior for |ri|�a, yet it features significant
nonlinearity and larger displacements over shorter distances.
A widely used measure of spatial localization is the partici-
pation number (i.e., the participation ratio multiplied by N)
(
∑

i|ui|2)2/
∑

i|ui|4 [74,75], which is O(1) in the extreme
localization limit and O(N ) in the spatially extended limit.
Consequently, the participation number provides an estimate
for the number of particles inside the core of ui, and we
estimate the dimensionless core size as

a

a0
≡

(
1∑

i|ui|4
)1/3

. (3)

Here, a0 ≡ (V0/N )1/3 is a characteristic interparticle distance,
i = 1−N runs over all particles and we used the fact that
unstable plastic modes are normalized by construction, i.e.,∑

i|ui|2 = 1.
The probability distribution p(a/a0) is presented in Fig. 4

for two values of rc, and under both simple shear and hydro-
static tension, for the plastic events previously analyzed in
Figs. 2–3. In Fig. 4(a), we plot p(a/a0) under simple shear
for both rc = 1.5 (light blue circles) and rc = 1.2 (yellow
squares). It is observed that p(a/a0) is peaked at a few in-
terparticle distances. Moreover, it shifts to larger values and

FIG. 4. (a) The probability distribution p(a/a0 ) of the dimen-
sionless linear size a/a0 of the core of unstable plastic modes, as
defined in Eq. (3), for two values of rc [see legend in (b)] under
simple shear. (inset) The amplitude of an unstable plastic mode 〈|u|〉

�

[the solid angle � average of the norm of u(r)] vs |r|/a0 in an rc =1.5
glass. The estimated core size a/a0 is marked by the horizontal green
double arrow and the linear elastic far-field power law ∼1/r2 is
highlighted (red dashed-dotted line). (b) The same as (a), but under
hydrostatic tension. See text for a discussion.

becomes wider with increasing rc. Note that in the definition
in Eq. (3), we do not account for the increase in the volume
per particle in dilation (but rather use the fixed linear size a0)
because over the range of dilatational strains we consider, the
implied changes are small.

In Fig. 4(b), we present the corresponding results under
hydrostatic tension, which are quantitatively similar to the
simple shear results presented in panel (a). The inset in panel
(a) shows an example of the amplitude of an unstable plastic
mode 〈|u|〉

�
[the solid angle � average of the norm of u(r)] as

a function of |r|/a0. The estimated core size a/a0 is marked
by the horizontal green double arrow and the linear elastic
far-field power-law ∼r−2 is highlighted (red dashed-dotted
line). The results of Fig. 4 show that the core size of plastic
instabilities is nearly independent of the symmetry of the
loading, but does depend on the interatomic interaction po-
tential. Specifically, it becomes more compact with increasing
attractive forces, i.e., decreasing rc. This trend is also consis-
tent with observed correlations between decreasing Poisson’s
ratio ν and the plastic core size (sometimes termed the STZ
size/volume) [57,66,76], see the variation of ν with rc in Table
II of [55].

The characteristic core size a is similar to the core
size ξg of quasilocalized, nonphononic modes in glasses
[77–82]. Quasilocalized glassy modes, defined in the
reference/undeformed glass, have been recently shown to fol-
low a universal density of states ∼ω4 (distinct from Debye’s
density of states of low-frequency phonons, where ω is the vi-
brational frequency), and to feature a spatial structure similar
to that of unstable plastic modes. In particular, quasilocalized
modes are characterized by a nonlinear, disordered core of
linear size ξg and a linear elastic power-law decay |r|−2 in
the far field, |r|�ξg, exactly like unstable plastic modes.
Moreover, the trend of variation of a and ξg with varying rc is
similar (compare our results to Fig. 7(i) in Ref. [57]). Overall,
our findings reinforce the suggestion that plastic instabilities
are predominantly quasilocalized modes that are driven to a
saddle-node bifurcation.
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V. THE SOFTENING OF ELASTIC MODULI UNDER
DILATATIONAL PLASTICITY

We provided above a basic quantitative characterization
of the geometry and statistical-mechanical properties of the
elementary micromechanical carriers of plasticity in glasses,
for two end members of driving force symmetries (simple
shear versus hydrostatic tension) and variable strength of
cohesive/attractive interatomic interactions. In particular, the
distributions of geometric properties (quantified by the ra-
tios Rt and Rp) and a characteristic length (core size a) of
plastic instabilities have been calculated. Our focus was on
dilatational plasticity and its comparison to shear plasticity,
both in terms of the driving forces and the material response
manifested in the localization length a and the eigenstrain
tensor E∗.

The collective spatiotemporal accumulation of these el-
ementary plasticity processes, including their coupling and
emerging spatial organization, gives rise to larger-scale plas-
ticity in glasses. Much of these collective phenomena, in
relation to dilatational plasticity in particular, remain to be
explored and understood. We stress (again) that we focused on
unstable plastic modes and not on the outcome of the instabil-
ities, and also note that we do not claim to have exhaustively
identified all elementary dilatational plasticity processes in
glasses. For example, we have not discussed microcavitation,
i.e., the process by which cavities on the particle scale are
formed [to be distinguished from the larger-scale cavitation
observed in Fig. 1(b)]. These may be related to the microme-
chanical objects we identified (e.g., a subset of the outcomes
of the identified plastic instabilities) or correspond to different
objects. Yet, we would like to conclude this paper by demon-
strating the type of new effects associated with collective
dilatational plasticity.

We already demonstrated a qualitative difference between
collective shear and dilatational elasto-plastic dynamics in
Fig. 1, manifested at the level of stress-strain curves. Here,
we provide another example, focusing on the strain evolution
of elastic moduli, which can serve as global proxies for the
structural changes experienced by a glass during elasto-plastic
deformation. In Fig. 5, we present the strain evolution of the
ensemble-averaged bulk modulus K and shear modulus μ,
under simple shear and hydrostatic tension. We stress that
K and μ, which characterize minima of the potential energy
(see precise definitions in Ref. [55]), should not be confused
with the tangent moduli, which characterize derivatives of
the global, fluctuations averaged stress-strain curves. The two
loading protocols are applied to the very same glass ensem-
ble, composed of 200 samples generated with N = 128K and
rc = 1.2 (e.g., compared to N = 10K and rc = 1.5 in Fig. 1),
resulting in strains approaching the steady-state regime in the
simple shear case and going beyond the stress drop in the
hydrostatic tension case (cf. Fig. 1).

It is observed that under simple shear [Fig. 5(a)], both
elastic moduli are largely unaffected by plastic deformation.
In particular, the bulk modulus K (γ ) is essentially indepen-
dent of γ and μ(γ ) softens by ∼7% from the initial (as cast,
undeformed) glass to the steady shear flow. The corresponding
results under hydrostatic tension are presented in Fig. 5(b).
First, it is observed that both moduli experience a large drop
associated with large-scale cavitation [see Fig. 1(b)], here

FIG. 5. (a) The bulk K (γ ) (dashed-dotted line) and shear μ(γ )
(solid line) moduli under simple shear for an ensemble of rc =1.2
glasses. The moduli, whose precise definition is given in Ref. [55],
are reported in units of the interatomic interaction energy scale
divided by the atomic volume a3

0. (b) The same as (a), but under
hydrostatic tension. (inset) The reduced moduli, μ̃(ε)≡μ(ε)V (ε)/V0

and K̃ (ε)≡K (ε)V (ε)/V0, under hydrostatic tension (green labels and
curve). The corresponding moduli under simple shear (red curves and
x label), whose values are identical to those presented in (a) since
V (γ )=V0, are superimposed for comparison. See text for a discus-
sion of the results.

around a cavitation strain of εc �0.045. Second, both moduli
significantly soften prior to εc, where the softening is more
pronounced for the bulk modulus.

We note that the expressions for the elastic moduli include
an overall factor 1/V [55], where V is the current volume.
Under simple shear, which is volume preserving, we have
V (γ ) = V0. However, under hydrostatic tension, V (ε)�V0 is
an increasing function of the dilatational strain ε. It would
be therefore interesting to disentangle the contribution of
1/V (ε) to the observed softening under hydrostatic tension
from other contributions by defining the reduced moduli,
μ̃(ε)≡μ(ε)V (ε)/V0 and K̃ (ε)≡K (ε)V (ε)/V0. The results are
presented in the inset of Fig. 5(b). Interestingly, by superim-
posing the corresponding moduli under simple shear, which
are identical to those presented in Fig. 5(a), it is observed
that the reduced shear modulus almost coincides under both
loading symmetries, prior to cavitation (in the hydrostatic
tension case). On the other hand, the reduced bulk modulus
under hydrostatic tension still significantly deviates from its
simple shear counterpart, indicating the existence of intrinsic
softening processes on top of the varying volume. This obser-
vation demonstrates qualitative differences between the shear
and bulk moduli.

The softening of the elastic moduli emerges from the ac-
cumulation of dilatational plastic deformation and possibly
microcavitation in a way that is not yet understood. Under-
standing these softening processes will also shed light on the
qualitative differences between the shear and bulk moduli.
More generally, understanding the spatiotemporal dynamics
of collective dilatational plasticity upon approaching large-
scale cavitation is a challenge for future work.

VI. BRIEF SUMMARY AND OUTLOOK

In this work, we studied elementary processes in glass plas-
ticity, with a focus on dilatational plasticity and its comparison

023167-6



ELEMENTARY PROCESSES IN DILATATIONAL … PHYSICAL REVIEW RESEARCH 6, 023167 (2024)

to its well-studied shear plasticity counterpart. We have ex-
tracted, using large-scale AQS computer simulations, the
basic micromechanics, geometry and statistical-mechanical
properties of unstable plastic modes (zero crossing of an
eigenvalue of the glass Hessian) as a function of both the
symmetry of the applied driving forces (simple shear versus
hydrostatic tension) and the strength of the cohesive/attractive
part of the interatomic interaction. These modes feature an
effective Eshelby eigenstrain tensor over a spatial scale that
defines their plastic core.

In particular, we computed three probability distribution
functions of the following quantities: (i) the plastic eigenstrain
triaxility Rt (a dimensionless measure of the relative magni-
tude of the dilatational and deviatoric parts of the eigenstrain
tensor), (ii) the planarity ratio Rp (of the deviatoric part of
the eigenstrain tensor), and (iii) the linear core size a. We
found that Rt strongly depends on the symmetry of the applied
driving forces and on the strength of the cohesive/attractive
part of the interatomic interaction (Fig. 2). We also found
that the deviatoric part of the eigenstrain tensor is generally
nonplanar, and that the statistical deviation from planarity is
larger for more cohesive/attractive interatomic interactions
(Fig. 3). Finally, we found that the statistics of a are almost
independent of the symmetry of the applied driving forces,
but dependent on the strength of the cohesive/attractive part of
the interatomic interaction (Fig. 4). The latter results provide
additional support for the intrinsic relations between unstable
plastic modes and nonphononic modes in glasses [33,82,83].

At larger scales, involving the collective, spatially-coupled
dynamics of many elementary plasticity processes, increasing
hydrostatic tension leads to a cavitation instability upon which
internal surfaces are formed. Cavity formation is accompa-
nied by a large tension drop, but not an entire loss of load
bearing capacity, which persists to larger dilatational strains
[Fig. 1(b)]. Interestingly, large-scale cavitation is preceded by
a significant softening of the elastic moduli (Fig. 5).

These results open the way for various research directions
in dilatational plasticity, which can be roughly classified into
two categories. First, additional insight into elementary plas-
ticity processes should be gained. It remains to be understood
whether the initial glassy state of disorder, e.g., as controlled
by the quench rate through the glass transition temperature,
affects the core properties of unstable plastic modes or just
their occurrence probability [34].

In this work, we studied unstable plastic modes, which
are well-defined micromechanical objects that correspond to
saddle points in the glass potential energy landscape. In this
context, it is important to better understand both the origin
of dilatational plastic instabilities and their outcomes, where
the latter constitute the actual contribution to plastic defor-
mation. Preliminary results (not shown here) indicate that the
core properties of unstable plastic modes are correlated with
the plastic strain accumulated as the glass reaches another
potential energy minimum. Future work should systemati-
cally explore these correlations. In the context of the origin
of plastic instabilities, the relations between quasilocalised,
nonphononic modes in glasses (and other structural indicators
[33]) to plastic instabilities under hydrostatic tension should
be explored. In addition, the emergence of microcavitation,
i.e., of particle-scale cavities, should be studied.

Second, at larger scales, future work should address the
collective spatiotemporal organization of plastic deformation
in glasses in the presence of hydrostatic driving forces, also
going beyond the AQS limit (i.e., including finite tempera-
tures and strain rates). These should include the softening
of the elastic moduli on the way to cavitation, demonstrated
above, as well as large-scale cavity formation and subsequent
dynamics. The coupling and competition between shear and
dilatational plasticity should be addressed, including the re-
lations and interplay between shear-banding and cavitation
(e.g., Ref. [16]). The emerging insight about dilatational plas-
ticity should be eventually incorporated into coarse-grained
elasto-plastic models, which will enable to address the frac-
ture toughness of glasses (i.e., irreversible deformation and
damage near the edges of crack defects [84,85]) and phenom-
ena such as ductile-to-brittle transitions [16,34,86].
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APPENDIX: METHODOLOGY

In this Appendix, we describe in more detail the methodol-
ogy used in this work and the motivation behind it. Additional
technical details are offered in Ref. [55]. We employed in
this work computer models to address elementary plasticity
processes in glasses. Large-scale computer simulations played
crucial roles in various recent developments in glass physics
(see, for example, Refs. [27,87]). There are multiple reasons
for this situation; first, computer glasses provide access to
particle-level spatial scales that are essential for understanding
glass plasticity, yet they are inaccessible through cutting-edge,
real-time experimental techniques.

Second, computer simulations allow to control interatomic
interactions in a way that goes well beyond current lab-
oratory techniques. Particularly relevant for understanding
dilatational plasticity is the ability to control the strength of
the cohesive/attractive part of the interatomic interaction, as
noted above. Specifically, we employed potential energy func-
tions U (x), where x are the particle coordinates, composed
of central force interatomic interactions of the Lennard-
Jones type (see detailed formulation in Ref. [55]) in which
the cohesive/attractive strength is continuously adjustable,
through the dimensionless parameter rc [55–58] introduced
above. The effect of varying rc on various mesoscopic [57,58]
and macroscopic [34] quantities has been recently stud-
ied. Among these, we highlighted its effect on the fracture
toughness of glasses, where reducing rc can lead to a ductile-
to-brittle transition [34].

Third, computer glass simulations can be performed under
athermal quasistatic (AQS) conditions [17–20], correspond-
ing to the zero temperature and strain-rate limits. The AQS
protocol is a powerful tool for studying fundamental aspects
of the micromechanics, geometry and statistical-mechanical
properties of glassy deformation. Its main merit is that it
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allows to exhaustively and unambiguously identify discrete
plastic processes along the entire deformation path, as done in
this work. Finally, computer glasses offer great advantages in
implementing the deformation protocols described in Fig. 1.
In the context of simple shear deformation, cf. Fig. 1(a),
employing periodic boundary conditions allows to eliminate
surface effects and hence reach very large strains without
failure. Moreover, the hydrostatic tension test, cf. Fig. 1(b), al-
lows to represent a mesoscopic portion of a macroscopic glass
that experiences predominantly hydrostatic forces exerted by
the surrounding material. We also note in passing that the
application of isotropic dilation, which is readily accessible
on the computer, is not easy to realize experimentally on the
global scale (e.g., compared to the uniaxial tension test [16]),
but is feasible (e.g., Ref. [88]).

Glass samples in 3D, each with a fixed number of particles
N and initial volume V0, were generated by rapidly quench-
ing high-temperature, equilibrium binary-mixture liquids into
zero temperature inherent states, as detailed in Ref. [55].
While the nonequilibrium thermal history (or more generally
thermomechanical history) of a glass has profound implica-
tions for its glassy state of disorder (e.g., Ref. [36]), and
correspondingly for its material properties—plastic deforma-
bility in particular—we did not vary it in this work. It is
important to note that our glasses feature vanishingly small
initial pressure [as evident in Fig. 1(b)], which for the fixed
quenching protocol is achieved by tuning V0 (at a given N).
This is important for revealing the intrinsic dilatational plas-
ticity response of glasses.

Simple shear deformation [cf. Fig. 1(a)] in a given direction
is controlled by a shear strain γ . The latter is obtained through
the accumulation of AQS strain increments dγ [55], for which
the deformation gradient tensor Fs = I + dγ x̂ ⊗ ŷ is applied
(here I is the identity tensor in 3D, x̂ and ŷ are Cartesian unit
vectors, and ⊗ is a dyadic/outer product). The stress tensor,
and in particular the simple shear stress component σ (γ ), as
well as the shear μ(γ ) and bulk K (γ ) moduli, were extracted
[55].

Hydrostatic tension [pure dilation, cf. Fig. 1(b)] is con-
trolled by a dilatational (volumetric) strain ε. The latter is
obtained through the accumulation of AQS strain increments
dε [55], for which the deformation gradient tensor Fd =
(1 + dε)I is applied. The stress tensor, and in particular the
hydrostatic tension (negative pressure) −p(ε), as well as the
shear μ(ε) and bulk K (ε) moduli, are extracted.

The potential energy U (x) of the glass is minimized during
AQS deformation, controlled either by γ or ε. As shown
above, and consistently with [43], at least part of the plastic
deformation in glassy materials—independently of whether
obtained under simple shear or hydrostatic tension (or more
complex stress states)—occurs through the accumulation of
discrete plastic rearrangements (instabilities) that correspond
to a zero crossing of an eigenvalue of the Hessian M ≡ ∂2U

∂x∂x
(saddle-node bifurcation [17,19]).

The corresponding particle-level eigenfunctions/
eigenmodes u(r) (where r is a position vector relative to
the center of the eigenmode [55]), is accurately identified and
extracted under AQS conditions. The plastic rearrangements
(modes) u(r) feature a highly-nonlinear, disordered core of
linear size a (i.e., of volume V∝a3) and a power-law decay
|r|−2 in the far field (e.g., Ref. [20]), |r|�a, associated with
a linear elastic continuum behavior [89]. The irreversible
deformation occurs inside the nonlinear core, whose averaged
effect is quantified through an eigenstrain tensor E∗ in the
framework of Eshelby’s inclusions formalism [59,60].

A recently developed method [61], used in this work, al-
lows to extract V E∗. Earlier approaches, discussed in the
works of [64–66,91] (some of which are discussed above),
also invoked Eshelby’s inclusions in similar contexts. We
note that we analyzed the unstable modes very close to the
saddle-node bifurcation, which are well defined mathematical
objects, and not the outcome of instability obtained once a
new energy minimum is reached. The relation between the
two was briefly discussed above. Note also that we considered
simple shear and hydrostatic tension as end members of a
continuum of stress states, which can be studied as well.
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