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Through the analysis of the spatial correlations of local stress, we detect the propagation of long-ranged
liquid-elasticity-mediated shear stress waves in polymeric and low-molecular weight liquids. The propagation of
shear waves is effectively planar; i.e., σαβ propagates in the αβ plane. The autocorrelation functions of the local
stress of a region are affected by both the relaxation of stress in that region and the propagation of stress from
the region to the rest of the sample. However, due to the planar propagation of shear waves, the transfer of σαβ

from those slices of the simulation box that are periodic in the αβ plane is negligible. This allows direct probing
of the position-dependent local stress relaxation modulus of liquid in the vicinity of a confining surface.
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I. INTRODUCTION

Calculating the local viscoelastic properties of liquids in
the vicinity of interfaces is the key to understanding the rhe-
ological behavior of a range of emerging materials such as
polymer nanocomposites, thin polymer films, and nanocon-
fined liquids. Experimentally, efforts have been made to
measure some local rheological properties in inhomogeneous
systems employing techniques such as x-ray photon correla-
tion spectroscopy [1] and atomic force microscopy [2–4].

Concerning the calculation of viscoelastic properties in
simulations, the fluctuation-dissipation theorem connects the
autocorrelation function of the total stress of a liquid to its
shear stress relaxation modulus, G(t ), the basic quantity of
linear rheology:

G(t ) = V

kBT
〈σαβ (t )σαβ (0)〉, α �= β. (1)

Here V , kB, T , and σαβ (t ) are the volume, Boltz-
mann constant, temperature, and an off-diagonal component
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(α, β ∈ {x, y, z}) of the instantaneous stress tensor. This rela-
tion has been widely used for calculating G(t ) in simulations
[5–7]. However, its generalization for the calculation of lo-
cal G(t ) [i.e., the G(t ) of a specific region of the sample]
is not clear, even for single-component liquids, because of
possible spatial correlations between the stresses of different
parts of the material. Spatially long-ranged stress correlations
have been previously observed in different model liquids, and
they are usually discussed in terms of the elasticity-induced
coupling of local stresses [8–13]. The analysis of spatial cor-
relations of local stress can also be useful for understating
the mechanism of the structural relaxation of the supercooled
liquids [8,14,15].

Few works have discussed the generalization of Eq. (1) for
the calculation of local G(t ). Levashov et al. [16] analyzed
the correlation between the stress of an atom of a liquid
and the stress of a group of atoms located in a spherical shell
around that atom. Through this analysis, they detected the
propagation of stress waves in the liquid and concluded that
viscosity [which is the integral of Eq. (1)] is highly nonlo-
cal, and its relevant lengthscale is the range of shear-wave
propagation. According to their conclusion, Eq. (1) cannot
be used to calculate the local viscosity of a region if the
region is smaller than the lengthscale of wave propagation,
which can be very large. More recently [17], it was suggested,
although without an analysis of the spatial correlations of
local stress, to calculate the correlation between the local
stress of a region and the total stress for the calculation of
local G(t ).
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In this work, we focus on the study of the spatiotemporal
correlations of local stresses of subregions of bulk and con-
fined polymeric and low-molecular weight liquids with the
main goals of (i) investigating the applicability of Eq. (1) for
the calculation of the G(t ) of a given region of material, and
(ii) probing spatially resolved (at the nanoscale) signals about
stress relaxation in a nanoconfined system. Because of their
pronounced viscoelastic behavior and their practical impor-
tance, we focus on polymeric liquids. Specifically, we report
results of equilibrium atomistic molecular-dynamics simu-
lations of melt of unentangled cis-1,4-polybutadiene (cPB)
chains. We start by examining the homogeneous bulk cPB
melt and then extend the investigation to the melt confined be-
tween periodic amorphous silica (SiO2) surfaces. Moreover, to
investigate the generality of our findings, we analyze generic
coarse-grained liquids of different molecular weights, namely
1, 30, or 100 beads per chain, using a standard bead-spring
model [18].

II. MODEL AND METHOD

Simulations were carried out using the LAMMPS package
[19]. In all cases, periodic boundary conditions were applied
in all directions.

A. Atomistic simulations

A validated united atom model [20–22] was used for the
simulation of cis-1,4-polybutadiene (cPB) chains, each con-
taining 30 monomers, corresponding to 120 united atoms.
Simulations were carried out in the NV T ensemble, using the
Nosé-Hoover thermostat. The initial well-equilibrated config-
urations were taken from long-time NPT simulations. For the
simulation of the bulk melt, the nonbonded interactions were
cut off at 1 nm, and van der Waals tail corrections were applied
to energy and pressure. A time step of 1 fs was used for the
integration of the equations of motion. To investigate system
size effects, we simulated three different systems containing
100, 400, and 1600 chains in the box. At T = 413 K, which is
the temperature at which most simulations were performed,
the above numbers of chains resulted to the following box
sizes, respectively: 6.74×6.76×6.94 nm, 6.74×6.76×27.77
nm, and 6.74×6.76×111.09 nm along the xyz directions.

We also simulated cPB melt confined between silica slabs.
The amorphous silica slab contains silicon, oxygen, and hy-
drogen atoms and was modeled using an all-atom force field
[23–25]. A periodic slab was placed in the box parallel to
the xy plane. The periodic boundary condition along the z
direction confines the cPB melt between the slab and its
periodic image. In the case of the confined melt, nonbonded
interactions were truncated at 2 nm and van der Waals tail
corrections were not applied. Also, a 1 fs time step was used
for the integration of the equations of motion. The confined
film contains 261 chains. The dimensions of the slab and the
box are shown in Fig. 5.

B. Generic coarse-grained simulations

Coarse-grained simulations were performed using the
Kremer-Grest bead-spring model [18]. In this model, the
repulsive part of a Lennard-Jones potential describes the non-

bonded interactions between the beads, and a FENE potential
describes the bond-stretching interaction in the chains. Sim-
ulations were carried out with reduced units (σ = 1, ε = 1,
m = 1). The bead-spring models contain 1, 30, or 100 beads
per chain. The single-bead system does not have FENE bonds.
In all cases, the bead density is equal to 0.85σ−3. The number
of molecules in the box is equal to 3000, 100, and 100 for
1-bead, 30-bead, and 100-bead liquids, respectively. Simula-
tions were performed at T = 1 using the Langevin thermostat
(with a bead friction of 0.5τ−1), and dt = 0.01τ was used for
solving the equations of motion.

C. Calculation of local stress

The instantaneous stress of a region at time t is calcu-
lated from the per-atom stresses of the atoms present in that
region at time t . In the absence of long-range interactions,
the different components of the stress tensor of atom i, σiαβ

(α, β ∈ {x, y, z}), are calculated through [26]

−σiαβ
Vi = mviαviβ + 1

2
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where V , �v, �r, and �F label the volume of the atom, the
velocity, the position, and the force, respectively. Indices j,
k, and l represent different atoms. Atomic volume Vi is on
the left-hand side of the above equation, as it is generally
difficult to assign to a particular atom. The first term on the
right-hand side of Eq. (2) is the kinetic energy contribution to
the atomic stress, the second term is the pairwise nonbonded
energy contribution, and the sum is taken over all neighbors
of the atom i that have nonbonded interactions with it. The
third, fourth, and fifth terms account for the contribution of
bond, angle, and dihedral interactions; here, the sums are
taken over all bonds, angles, and dihedral angles that the atom
i participates in. A virial contribution that is produced by
bonded and nonbonded interactions using the aforementioned
terms between two, three, and four atoms is shared in equal
portions between these atoms [consider factors 1/2, 1/3, and
1/4 in Eq. (2)].

To calculate the stress of a region, σreg(t ) =
[
∑

i σi(t )Vi]/Vreg is used; here, the sum runs over all atoms
i that are present in the region at the time t , and Vreg is
the volume of this region. In the case of partitioning the
simulation box into some regions, σ (t ) = ∑

φiσi(t ), where
σ (t ) is the instantaneous total stress of the systems, and σi

and φi are the stress and the volume fraction of the region i.
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FIG. 1. (a) The cross-correlations between the local stresses of
two 3-nm-thick slices of the simulation box. The minimum distance
between the slices is 11 nm. (b) The autocorrelation of the local
stress of one of the slices. The vertical dashed line corresponds to
the estimated timescale of shear stress transfer between the regions.
To improve visibility, the long-time noisy data are semi-transparent
(T = 413 K).

III. RESULTS AND DISCUSSION

To investigate the spatiotemporal correlations of the
stresses of different parts of the material, we analyze the
autocorrelation of the local stress of a given region, g(t ), or
the cross-correlation between the stresses of two different
regions, gi j (t ), defined as

g(t ) = Vi

kBT
〈σi(t )σi(0)〉, gi j (t ) = Vj

kBT
〈σ j (t )σi(0)〉. (3)

Here i and j are the indices of the regions. The correlation
functions were calculated using the multiple-tau correlator
algorithm [27].

A. Bulk liquids

Figure 1(a) shows g12(t ), the cross-correlations between
the stress of two slices of the simulation box (of cPB melt)
which are 3 nm thick and lie 11 nm far apart from each other
along the z direction (T = 413 K). The slices are periodic in
the x and y directions [see the inset of Fig. 1(a)]. The average
radius of gyration of the cPB chains, Rg, equals 1.44 nm.
Here, the dimensions of the simulation box are about 7×7×28
nm3 along the xyz directions, respectively. In this geometry,
the distance between a slice and the periodic image of the
other slice is also ≈11 nm, and hence g12(t ) contains the
contribution from the stress transfer to the periodic image.
The G(t ) of the bulk cPB is also shown in Fig. 1. The g12(t )
for the xy component fluctuates between positive and nega-
tive values up to the terminal time (final decay) of the bulk
G(t ) (negative values are not shown in the logarithmic scale).

This behavior suggests that the correlation between σxy of the
two regions is insignificant. The situation is different for σxz

and σyz. At intermediate times, the cross-correlations of these
components show a clear peak. This peak is a direct sign of
the transfer of σxz and σyz between the two considered regions.
Note that the peak time of the g12(t ) [≈0.03 ns in Fig. 1(a)] is
around three orders of magnitude smaller than the timescale
of the translation of chains from one region to the other [at the
terminal time of G(t ), around 3 ns in Fig. 1, a chain displaces
on average a distance comparable to its size, Rg].

Stress is transferred between different regions through the
propagation of stress waves. A local rearrangement of the
particles (a local relaxation event) sets up a local deforma-
tion in the liquid. This local deformation leads to an elastic
deformation in the surrounding liquid, which at short times
behaves like an elastic medium [8,15]. Because of the short-
time elasticity of liquid, this elastic deformation propagates in
the liquid, before its dissipation by the relaxation processes.
Following the above picture, stress is transferred between
two regions when the stress waves originating in one region
arrive at the other one. Also, at short times, smaller than
the characteristic time of the wave transfer, stress transfer
is negligible, consistent with the short-time behavior of the
cross-correlations of σxz and σyz in Fig. 1(a) (which at short
times have large positive and negative fluctuations). Based on
the elasticity-mediated wave propagation picture, we can also
estimate a timescale for the transfer of stress between two re-
gions using ts = d/v, where v is the speed of the stress waves
and d is the lengthscale of the wave motion. The speed of
shear-stress waves in an elastic material equals

√
G/ρ, where

G and ρ are the shear modulus and density. For estimating
the speed of shear waves in the liquids, we use v = √

G0/ρ,
where G0 is the short time value of G(t ) before the structural
(segmental) relaxation time (timescales in which the material
behaves elastically). At T = 413 K the value of G(t ) at 1.5
ps is used for the estimation of the velocity of shear waves.
In the case of the atomistic cPB model, this time is right
after the regime of bond and angle oscillations [which are
seen in bulk G(t ) at subpicosecond timescales]. The estimated
velocity is v = 334 m/s. To estimate the average distance that
a wave needs to travel between two regions, we assume a
source of stress wave in the middle of a region and calculate
the distance between the source and the other region. So, for
the lengthscale of wave motion, we estimate d = 12.5 nm
for the geometry of Fig. 1(a). Interestingly, the calculated
timescales of stress transfer, ts, which is shown in Fig. 1(a)
by a vertical dashed line, (almost) corresponds to the peak
time of the cross-correlations of σxz and σyz. The agreement
between the calculated ts value and the peak times of g12(t ) is
a confirmation for the wave-propagation picture that underlies
the calculations. Before their dissipation, shear waves can
have a lifetime of the order of the terminal time of G(t ). The
terminal time and therefore the lengthscale of wave motion
(or the lengthscale of local-stress correlations) increases upon
reducing temperature or, in the case of polymer melts, upon
increasing chain length.

The insignificant transfer of σxy between the different
regions discussed above is a clear indication that the prop-
agation of the shear stress waves is not isotropic. Based
on this observation, the propagation of σxy should mainly
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FIG. 2. (a) The cross-correlation between the local stresses of the
two halves of the simulation box [see the inset of panel (b)]. Panels
(b) and (c) show the autocorrelation of different stress components
of one-half of the box; lz ≈ 7 nm in panels (a) and (b) and lz ≈ 28
nm in panel (c).

occurs on the xy plane, and the propagation along the z di-
rection should be negligible. This is in agreement with the
development of 2D-like shear stress correlations in the in-
herent structures of a 3D liquid, as observed previously [10]
and also with the results presented in Fig. 1(b), as discussed
below.

Figure 1(b) shows the g(t ) curves, autocorrelations of
different stress components of one of the 3-nm-thick slices
shown in panel (a). The g(t ) of the xy component is almost
identical to the bulk G(t ), while the g(t ) of the xz and yz
components differ significantly from the bulk behavior. The
propagation of σxy along the z direction is negligible, hence
the decay of the g(t ) of σxy originates from the relaxation of
stress in the region and is similar to the bulk relaxation curve.
On the contrary, σxz and σyz propagate from the considered
region to the rest of the system; hence, the decay of their g(t )
does not merely stem from the relaxation of the stress in the
region, but it is also affected by the stress transfer to the rest of
the box. So, the g(t ) of these components differs from the bulk
G(t ). The timescale of stress transfer from the slice to the rest
of the box, shown in panel (b) and estimated using d = 1.5
nm for the lengthscale of wave motion, almost corresponds to
the time of the large drop in the g(t ) of σxz and σyz.

Next, we investigate the stress transfer between two ad-
jacent regions. For this, we divide the simulation box, along
the z axis, into two slices of the same size which are periodic
along two directions [see the inset of Fig. 2(b)]. Figure 2(a)
shows the cross-correlations between the stresses of the first

and the second regions, and Fig. 2(b) shows the g(t ) for dif-
ferent stress components of one of the regions, i.e., half of the
box. The results presented in panels (a) and (b) have been cal-
culated using a box with dimensions approximately equal to
7×7×7 nm3. Consistent with the results of Fig. 1, σxz and σyz

are transferred between the two halves of the simulation box;
this is reflected in the large values of their cross-correlation
functions [see Fig. 2(a)] and leads to the deviation of their g(t )
from the bulk G(t ). For the xy component, g(t ) is similar to
the bulk relaxation curve [see Fig. 2(b)] because stress transfer
between the regions is negligible [g12(t ) exhibits large positive
and negative fluctuations].

To examine system size effects, in Fig. 2(c) we present the
g(t ) curves for half of the box, however with lz being four
times larger than that in panels (a) and (b). For the g(t ) of σxz

and σyz, the onset of deviation from the bulk G(t ) shifts to
longer times with increasing lz. With increasing the thickness
of the adjacent regions (i.e., increasing lz), the stress waves
originating from a region need to travel a longer distance
before arriving at the other region, hence the time of stress
transfer is higher. The timescales of stress transfer, estimated
using d = lz/4 for the lengthscale of wave motion, are shown
in Fig. 2. They are in line with the time of the large drop in the
g(t ) of σxz and σyz components, and also with the time at which
their cross-correlations reach a local maximum in Fig. 2(b).
Based on the above discussion, if the time of stress transfer
is longer than the terminal time of G(t ), most of the stress
waves are dissipated before traveling between the regions, and
the deviation of the g(t ) of all stress components from the
bulk G(t ) becomes negligible. We have also simulated cPB
melt with an even larger box size (lz ≈ 111 nm) (Fig. 9 of
Appendix A), and cPB melt at a lower temperature of 253 K
at which a plateaulike glassy regime is seen in the G(t ) curve
(Fig. 10). In these cases, the results are consistent with trends
presented in Fig. 2. A brief discussion about the relaxation of
normal stress fluctuations is also provided in Appendix A 3.

Next, we present the results for the coarse-grained bead-
spring liquids. Figure 3 shows the cross-correlations, g12(t ),
and autocorrelations, g(t ), for the case of dividing the sim-
ulation box, along the z axis, into two equally sized regions
(the geometry shown in Fig. 2); the panels of Fig. 3 show
the results for single-bead (Lennard-Jones liquid), 30-bead,
and 100-bead systems. In each case, the total G(t ) of the
liquid is also presented. The Lennard-Jones liquid does not
have any bonds; hence, the short-time bond oscillation regime
is not observed in its G(t ). The behavior of g12(t ) and g(t )
for the coarse-grained models is consistent with the results
for the cPB melt shown in Fig. 2. For all coarse-grained
liquids, the g12(t ) of σxy is significantly smaller than g12(t ) of
σxz and σyz. Furthermore, the g(t ) of σxy is similar to the bulk
G(t ), whereas the g(t ) of the xz and yz stress components is
different from the bulk G(t ). These results are consistent with
the propagation of σxz and σyz along the z axis from one-half
of the simulation box to the other one.

We also estimated the speed of shear stress waves in
these liquids from the short-time value of G(t ) using

√
G0/ρ.

The estimated values of shear wave velocity are 6.63σ/τ ,
8.75σ/τ , and 9.04σ/τ for the liquids containing 1-bead, 30-
bead- and 100-bead molecules, respectively. These velocities
were calculated from the value of G(t ) at 10−2 τ around which
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FIG. 3. The results for the generic coarse-grained model liquids. Panels (a), (c), and (e) show the cross-correlation functions between the
local stresses of the first and the second region of the simulation box, for 1-bead, 30-bead, and 100-bead systems, respectively. Panels (b),
(d), and (f) show the autocorrelation functions of different stress components of half of the box, for 1-bead, 30-bead, and 100-bead systems,
respectively.

G(t ) shows its glassy regime. Note that, for 30-bead and 100-
bead chains, this timescale is smaller than the timescale of
bond oscillations. In this coarse-grained model, the bonds are
rather soft, and the timescale of their oscillation is long. We
have observed such behavior for other coarse-grained models
[6].

The estimated timescale of stress transfer (using lz/4 for
the timescale of wave motion, as discussed above) is shown
with vertical dashed lines in Fig. 3. For a 1-bead system, the
time of the stress transfer almost corresponds to the time of the
large drop in the g(t ) of σxz and σyz. For 30-bead and 100-bead
systems, stress transfer coincided with the bond-oscillation
regime; hence, the deviation of local g(t ) from the bulk G(t )
happens after the bond-oscillation regime.

To elaborate further on the behavior of g(t ), we investigate
the domain size effect. We calculate the autocorrelations of
σxy coming from the slices of different thicknesses. The slices
extend periodically in the xy plane. As Fig. 4(a) shows, for
the cPB melt, the g(t ) curves (of σxy) for the slices with
thicknesses of 3.5 and 2 nm closely follow the bulk G(t ).
However, for thin 1 and 0.5 nm slices, the g(t ) curves are
systematically below it. Panels (b), (c), and (d) of Fig. 4
show the effect of the layer thickness for single-bead, 30-bead,
and 100-bead liquids, respectively. The van der Waals radius
of the coarse-grained beads equals 1.26σ , and the radii of

gyration of the 30-bead and 100-bead chains equal 2.8σ and
5.27σ , respectively. For all model liquids, the g(t ) for the
layers with a thickness of 1σ is significantly below the bulk
G(t ). However, by increasing the layer thickness, g(t ) tends to
the bulk G(t ). The results suggest that Rg is not the relevant
lengthscale for the layer-thickness dependence of the g(t ) of
σxy. Rather, it seems that at lengthscales larger than a few par-
ticle (bead) sizes (possibly corresponding to the lengthscale
of local particle rearrangements in the liquid), the local g(t ) of
σxy converges to the bulk G(t ). This is also in agreement with
the result of the atomistic simulations as the van der Waals
radius of the united atoms of the model cPB chains is around
0.42 nm.

B. Confined polymer melt

After examining the homogeneous melt, we consider the
cPB melt embedded between periodic amorphous silica slabs.
In this section, our main goal is the calculation of the position-
dependent local stress relaxation modulus of the melt in the
vicinity of the solid surface. Figure 5(a) shows a snapshot
of the model interfacial system together with the interfacial
density profile of the confined melt. In the vicinity of the
surface, the density profile shows oscillations that indicate the
interfacial layered structure of the melt. The layered structure
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FIG. 4. The effect of the layer thickness on the autocorrelation of σxy. Panels (a), (b), (c), and (d) show the results for the cPB melt,
single-bead, 30-bead, and 100-bead liquids, respectively.

originates from the preferential alignment of the polymer with
the surface. Local density oscillations extend up to 2–3 nm
from the surface [28]. In systems with effective attractive
polymer-surface interactions, polymers physically adsorb on
the surface. The adsorbed chains extend up to approximately
Ree = 3.6 nm from the surface, where Ree is the average
end-to-end distance of the chains [see Fig. 5(a)]. However,
the adsorbed chains prevail up to distances of around 1.5 nm
from the surface. This latter lengthscale almost corresponds
to the unperturbed average radius of gyration of the chains
(Rg = 1.44 nm). Figure 5(b) shows the layer-resolved mean-
squared displacements of the monomers, normalized with t0.5,
in the plane parallel to the confining surface [MSDxy(t )/t0.5],
as well as the definitions of the various layers. In this pre-
sentation, detection of the Rouse scaling regime is easier, as
the Rouse model (for long chains) predicts the evolution of

segmental MSD with t0.5 before reaching the diffusive regime.
The thickness of layer 0 is around 1.5 nm, which almost corre-
sponds to the region where the adsorbed chains are prevailing
and also in which local density shows strong oscillations. As
also described in detail elsewhere [28], the surface-induced
heterogeneity in the mobility of the particles, particularly
pronounced in layer 0, originates from the friction imposed
by the amorphous and nano-rough surface of the silica slab on
the movement of the particles in the parallel direction.

Having identified the lengthscale linked to the distinct
dynamical behavior and defined the corresponding layers in
the system [see Fig. 5(b)], in what follows we calculate the
correlations of local stress in and between these layers. For
measuring the stress of a layer, we summed over the contribu-
tions of the polymer atoms in that layer. It should be noted that
we measured the correlation functions of the fluctuation of

FIG. 5. (a) A snapshot of the model cPB/silica interfacial system, together with the mass density profile of the polymer. The density profiles
of adsorbed and free chains are also shown, with the same color scheme as their examples in the snapshots. An atom is assumed to be adsorbed
if it is located from the surface at a distance smaller than the first minimum in the density profile. The chains that do not have adsorbed
atoms are called free chains. (b) The layer-resolved lateral monomeric mean-squared displacements, normalized with the Rouse slope, t0.5.
The definitions of the layers are also shown.
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FIG. 6. (a) g(t ) of σxy calculated in different layers of the inter-
facial system. The long-time noisy data are transparent. (b) g(t ) of
layers 0 and 1 [data from (a) are plotted with points] compared to
the same quantities estimated by using their MSDxy(t ) at T = 413 K
(lines).

the local shear stress, σαβ (t ) − 〈σαβ (t )〉, to remove the effects
of any possible residual stresses. The correlation functions
of the actual values and of the fluctuations are almost iden-
tical, therefore we keep the same notation, but as this might
not be the case in some systems, we report the details for
completeness.

Figure 6(a) shows the layer-resolved autocorrelation func-
tions of σxy in the hybrid system. As learned from the analysis
of the bulk melt, σxy propagates in the xy plane, and there-
fore the transfer of this stress component between layers is
negligible. Consistent with negligible stress transfer along the
z direction, the local g(t ) for the layers far from the slab is
similar to the bulk G(t ) within the precision obtained. Re-
laxation of the local stress in layer 0 is slower than in the
remaining layers. The deviation from the bulk behavior starts
right after the bond and angle vibrations at the timescales
corresponding to the segmental dynamics. This is a piece of
direct evidence for the effect of the surface on the local stress
relaxation modulus of the polymer melt.

The trend observed for the local g(t ) is qualitatively
consistent with that for the monomer lateral displacements,
as presented in Fig. 5(b). The results show that the ir-
regular surface of the amorphous silica imposes effective
friction on the translation of segments in the direction paral-
lel to the slab, leading to their slower lateral dynamics, and
hence their slower stress relaxation, compared to the bulk
system.

To make a quantitative comparison between the behavior
of g(t ) of σxy and MSDxy(t ) in the vicinity of the surface,
we calculate time-dependent scaling factors to convert bulk
MSD to MSD of the layers; then the scaling factors ob-
tained are used to estimate g(t ) of the layers from bulk G(t )
and then the estimated g(t ) functions are compared with the
g(t ) data measured directly from the stress correlation. Fol-
lowing Borodin et al. [29], a time scaling factor, a(t ), is
defined via MSDlayer

xy (t ) = MSDbulk
xy [a(t )t]. Then g(t ) is esti-

mated using Gbulk[a(t )t]. The estimated g(t ) curves for layers
0 and 1 are shown in Fig. 6(b). For layer 0, the estimated
g(t ) significantly underestimates the measured g(t ). Alter-
natively, another scaling factor can be defined using z(t ) =
MSDbulk

xy (t )/MSDlayer
xy (t ), and g(t ) can be estimated using

z(t )Gbulk(t ). The results of this procedure are almost similar to
the data shown in Fig. 6(b) [calculated using the a(t ) defined
above]. z(t ) can be seen as the ratio of the effective friction felt
by the bulk monomers to the friction felt by the monomers
in the given interfacial layer, quantified using MSD. At in-
termediate times, z(t ) of layer 0 is around 1.8, however the
effect of the surface on the stress relaxation modulus of layer
0 is stronger and, at intermediate times, it is approximately 3.9
times greater than the bulk G(t ).

The analysis of stress transfer in the hybrid system is
presented in Fig. 7. Figure 7(a) shows the cross-correlations
between the stress of the entire confined PB melt and the stress
of the silica slab. The cross-correlations of σxz and σyz are
significant, which shows that, in addition to the propagation
of stress in the melt, stress is transferred between the melt
and the slab. The cross-correlation of σxy is much smaller
(it fluctuates between positive and negative values), which is
consistent with the planar propagation of σxy in the xy plane.
In Fig. 7(b), we investigate the g(t ) of the xz stress component,
which propagates in the xz plane and hence travels between
the layers of the interfacial system along the z direction (data
for σyz are similar). Similar to the bulk behavior, the g(t )
functions become negative at intermediate timescales. We link
the timescale of this drop with the characteristic time of shear-
wave propagation [vertical dashed line in Fig. 7(b)] calculated
using d = 1 nm (almost half of the thickness of the layers;
see Fig. 5) for the lengthscale of the wave motion. Figure 7(c)
shows the cross-correlations between the stresses of layers 1
and 2, g12(t ). The results are consistent with the trends ob-
served for the bulk melt. The cross-correlation of σxy is much
smaller than the cross-correlations of σxz and σyz, because σxy

propagates in the xy plane. The estimated timescale of stress
transfer t1,2

s is also shown and almost corresponds to a local
maximum of the cross-correlations of σxz and σyz. Figure 7(d)
shows the cross-correlations between the stresses of layers 1
and 3, g13(t ). Layers 1 and 3 are not connected to each other,
and the stress waves originating from layer 1 need to pass
through layer 2 before reaching layer 3. t1,3

s , the timescale of
stress transfer between regions 1 and 3, calculated using d = 3
nm for the lengthscale of wave motion, almost corresponds
to the position of the pronounced maximum of g13(t ) of σxz

and σyz.
As mentioned in Sec. II, upon partitioning the simula-

tion box into some regions, the total stress of the system is
equal to the linear combination of the stresses of the regions:
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FIG. 7. (a) The cross-correlation between the stress of the confined melt and the stress of the silica slab. (b) g(t ) of the σxz calculated in
different layers in the hybrid PB/silica system. (c) The cross-correlation between layers 1 and 2. (d) The cross-correlation between layers 1
and 3. The vertical dashed lines correspond to the estimated times of stress transfer between the regions.

σ (t ) = ∑
φiσi(t ). Inserting this relation into Eq. (1) leads

to G(t ) = ∑
φigi,total(t ) with gi,total(t ) = V/kBT 〈σ (t )σi(0)〉,

where σ (t ) is the total stress of the system at time t and σi(0)
is the local stress of the region i at t = 0. Because of the
linear form of this relation, one might assume that gi,total(t )
provides a proper description of the stress relaxation in the
region, irrespective of stress transfer from the region to the rest
of the sample. In other words, one might assume that we can
take into account the effect of stress transfer by analyzing the
correlation between the stress of a region and the total stress
of the system. Figure 8 shows the correlation between σxz of
different layers of the interfacial system and the total σxz of the
system. The total stress includes the stress in the given layer
and the stress coming from the remaining polymer and the
slab. σxz propagates in the xz plane and hence is transferred
from a layer to the rest of the sample, along the z direction.
The layer-resolved correlation curves exhibit oscillations, par-
ticularly the curves of layers 0 and 1. This behavior indicates

FIG. 8. The correlation between the local σxz of the layers with
the total σxz of the interfacial system (T = 413 K).

that this correlation function is affected by the stress transfer
between regions. This is also the case for the correlation of
the local stress of a layer and the total stress of polymer film
(without the solid slab); see Fig. 12.

IV. SUMMARY

In summary, we performed an analysis of the spatiotem-
poral correlations of local stress in bulk and nanoconfined
polymers and low-molecular weight liquids. Through this
analysis, we detected the planar propagation of elasticity-
mediated shear stress waves in these systems. Generally,
the propagation of stress waves affects the autocorrelation
functions of the local stress of a given region of the liquid.
However, for the slices of the simulation box that are periodic
in the shear wave plane, the propagation of stress to the rest of
the sample is negligible, and the autocorrelation of the local
stress corresponds to the local stress relaxation modulus. We
were able to directly probe the position-dependent local stress
relaxation modulus of the polymer melt in the vicinity of a
confining surface. The possibility of measuring the spatially
resolved stress relaxation modulus is important for under-
standing the behavior of interfacial systems such as polymer
nanocomposites and thin films.
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FIG. 9. The autocorrelation of different stress components of
one-half of the simulation box; lz ≈ 111 nm.

APPENDIX A: SUPPLEMENTAL ANALYSIS
OF THE BULK POLYMER MELT

1. Box size effect

Figure 9 shows the autocorrelations of the stress compo-
nents of half of the simulation box (geometry shown in Fig. 2)
for the case of lz ≈ 111 nm. Similar to the results presented
in Fig. 2, the g(t ) of σxz and σyz deviate from the bulk G(t )
because of the stress transfer between the regions of the box.
The estimated timescale of the stress transfer is shown with a
dashed vertical line. Because of the large value of lz, the stress
waves originating from one-half of the box stay in that half for
a rather long time, and hence the deviation of the g(t ) of σxz

and σyz from the bulk G(t ) appears at long times.

FIG. 10. (a) The autocorrelations of the local stresses of half of
the simulation box at T = 253 K. (b) The cross-correlations between
the stresses of the first and the second region of the simulation box
at 253 K. The vertical dashed lines correspond to the multiples of the
estimated timescale of the stress transfer between the regions, ts.

FIG. 11. The autocorrelations [multiplied by V/(kBT )] of differ-
ent normal (diagonal) components of the local stress tensor collected
over half of the simulation box, at T = 413 K. The autocorrelations
of the global normal [K (t )] and shear [G(t )] stresses of the polymer
in bulk are also provided.

2. Temperature effect

Figure 10 presents the auto- and cross-correlations of the
local stresses of half of the box at T = 253 K. At T = 253 K,
the segmental dynamics is well separated from the bond and
angle vibrations, and a short-time plateaulike regime repre-
senting the glassy behavior can be seen in bulk G(t ). The
results for g(t ) and g12(t ) are qualitatively similar to those in
bulk at 413 K (Fig. 2). However, the fluctuations observed at
intermediate times at 413 K are visible in the auto- and cross-
correlation curves of the xz and yz stress components at 253 K
as patterns of damped oscillations. To estimate the timescale
of the stress transfer between the regions at T = 253 K, the
value of G(t ) at 4 ps, which is smaller than the timescale of the
segmental relaxation, is used for the estimation of the velocity
of shear waves (v = 591 m/s). At this temperature, the speed
of shear waves is higher than at 413 K, and therefore the
timescale of the stress transfer is lower. The calculated ts value
almost coincides with the maximum of the cross-correlation
curve. Some multiples of ts are also shown in Fig. 10, and
they are comparable to the times of the oscillations of auto-
and cross-correlation functions.

3. Relaxation of normal stress fluctuations

Here we briefly discuss the autocorrelations of the local
normal (diagonal) stress components collected over half of the
simulation box, calculated as

k(t ) = V

kBT
〈[σαα (t ) − 〈σαα〉][σαα (0) − 〈σαα〉]〉. (A1)

σαα (t ) is the instantaneous value of a diagonal component
of the local stress tensor at time t , and 〈σαα〉 is the average
value of the stress component. Figure 11 shows the autocor-
relations of the local normal stresses, the autocorrelation of
the total normal stresses of the system, K (t ), together with
the shear stress relaxation modulus, G(t ). Note that K (t ) is
calculated in an analogous way as k(t ) in Eq. (A1), but the
diagonal components of the local stress (i.e., the stress of
the given region) are replaced by the diagonal components of
the global stress (i.e., the stress of the whole system). The
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autocorrelation of the local σzz significantly deviates from
the autocorrelation of the global stress in bulk, K (t ). For the
σxx and σyy components, the autocorrelations of the local
stresses are close to the autocorrelation of the total stress
(excluding the short-time oscillation regime). These results
show that σzz is significantly transferred along the z direction
between the two halves of the box.

We also provide an estimate for the timescale of the trans-
fer of normal stresses between the two regions of the box,
from the velocity of longitudinal waves. The velocity of lon-
gitudinal waves is estimated through v = √

K/ρ, where K
is the compression (bulk) modulus of the melt and ρ is its
density. K equals the inverse of the compressibility, and it can
be calculated from the fluctuations of the system volume in an
NPT simulation:

1

K
= 〈V 2〉 − 〈V 〉2

kBT 〈V 〉 . (A2)

The timescale of the stress transfer is calculated using
ts = lz/4/v and shown in Fig. 11 via a dashed vertical line.
This estimated timescale coincides with the large (negative)
drop of the autocorrelation function of the σzz stress.

Here, it is worth mentioning that in both cases of shear
and normal stresses, the anisotropy of stress propagation in
equilibrium has a similarity to the anisotropy of stress transfer
under external stresses. Under external stress, the regions that
are connected in parallel do not exchange stress, but stress is
transferred between the regions connected in series (generally,
the regions that are not connected in parallel). In the case
of the geometry shown in Fig. 2, the two regions of the box
are connected in parallel under σxx, σyy, and σxy stresses (as-
suming applying external stresses). These stress components
directly affect the two regions of the box and the interface
between them. Similar to the absence of stress transfer under

FIG. 12. The correlation between the local stress of layer 0 with
the stress of the confined film, without the slab (T = 413 K).

external stresses, σxx, σyy, and σxy do not propagate from one
region to the other at equilibrium condition. On the contrary,
the regions of the box are connected in series under σzz, σxz,
and σyz stresses, and these stress components are also trans-
ferred between the regions in equilibrium.

APPENDIX B: SUPPLEMENTAL ANALYSIS
OF THE INTERFACIAL SYSTEM

Figure 12 shows the correlations between the local stress of
layer 0 and the stress of the confined film (without the silica
slab), although the stress of the confined liquid is transferred
to the solid slab [as shown in Fig. 7(a)]. σxy does not propagate
from the layer to the rest of the sample, and hence the correla-
tion of this component is similar to the autocorrelation of the
σxy of the layer (shown in Fig. 6). The σyz and σxz of the layer
propagate to the rest of the sample, and the correlations of
these stress components are also affected by the stress transfer.
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