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Reconstructing effective Hamiltonians from nonequilibrium thermal and prethermal steady states
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Reconstructing Hamiltonians from local measurements is key to enabling reliable quantum simulations: both
validating the implemented model and identifying any leftover terms with sufficient precision is a problem
of increasing importance. Here we propose a deep-learning-assisted variational algorithm for Hamiltonian
reconstruction by preprocessing a dataset that is diagnosed to contain thermal measurements of local operators.
We demonstrate the efficient and precise reconstruction of local Hamiltonians, while long-range interacting
Hamiltonians are reconstructed approximately. Away from equilibrium, for periodically and random multipolar
driven systems, we reconstruct the effective Hamiltonian widely used for Floquet engineering of metastable
steady states. Moreover, our approach allows us to reconstruct an effective quasilocal Hamiltonian even in the
heating regime beyond the validity of the prethermal plateau, where perturbative expansions fail.
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I. INTRODUCTION

A central idea at the core of modern quantum simula-
tion is the utilization of highly controllable quantum degrees
of freedom to emulate the behavior of complex quantum
systems [1–13]. Besides developing the corresponding state
preparation and stabilization techniques, this requires the im-
plementation of the Hamiltonian that governs the physics
of the system to be simulated in the first place. To do
this different approaches have been developed that leverage
specific properties of the underlying quantum system. For
instance, analog simulators, such as ultracold atoms [9,11,14–
16] and trapped ions [3–5], are natural platforms of short-
and long-range interacting Hubbard and Ising Hamiltoni-
ans. By contrast, the digital approach to quantum simulation
[17,18] implemented in superconducting qubits, Rydberg
atoms [19–23], or trapped ion [23–25] platforms relies on
constructing a time-evolution operator using consecutively
applied discrete unitary gates.

Whenever the desired Hamiltonian cannot be implemented
using the available building blocks in a straightforward
way, nonequilibrium techniques, such as Floquet engineering
[26–28] or dynamical decoupling [29–32], become handy.
Recently, periodic drives have enabled the realization of
nonequilibrium phase transitions [33,34], topologically non-
trivial systems [35–39], artificial gauge fields [40–42], and
discrete time crystals [43–50]. Note that having an effective
Hamiltonian is not guaranteed for generic nonequilibrium
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drives due to the lack of energy conservation; the necessary
ingredients for the existence of effective Hamiltonians are
currently the subject of intensive ongoing research.

Whichever the implementation method may be, engineered
effective Hamiltonians often come with additional, unwanted
terms. These can be residual (longer-range) interactions, or
leftover single-particle field terms; they can also arise due to
coupling to existing higher energy levels or additional cav-
ity modes [51]. Moreover, nonequilibrium protocols used for
Hamiltonian engineering rely on the existence of prethermal
(meta-)stable steady states in which heating (i.e., energy ab-
sorption and entanglement production) is suppressed up to
controllably long times [52–56]. Nevertheless, residual terms
in the effective Hamiltonian (e.g., higher-order corrections)
eventually lead to accumulating detrimental heating. In par-
allel, verifying that a desired Hamiltonian is implemented
to a given precision is a crucial requirement for a reliable
quantum simulation; moreover, certification of the realized
Hamiltonians becomes indispensable for benchmarking the
performance of present-day noisy intermediate scale quantum
(NISQ) devices [14,57–60]. For all these reasons, developing
a procedure, based on measurements of local observables,
capable of identifying and quantifying the Hamiltonian imple-
mented in quantum simulators to a high precision is a problem
of ever-increasing importance.

During the last few years, several methods for Hamiltonian
reconstruction have been put forward: from measurements on
a single eigenstate [61–64] using a trusted quantum simulator
[65–67], or from eigenstate dynamics [68–74] via compressed
sensing [75], using restricted Boltzmann machine tomogra-
phy [76] and neural networks [77]. One common feature of
these techniques is that they explicitly assume the underlying
Hamiltonian to be both local and a translationally invari-
ant sum of few-body terms. Furthermore, only a few of the
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above-mentioned methods are applicable to Floquet systems.
Although reasonable progress has been achieved recently in
this direction [78,79], the methods employed in these works
demand an a priori intuition from the Floquet-Magnus expan-
sion for the selection of candidate terms. However, a typical
challenge in any Hamiltonian reconstruction algorithm often
lies in developing a systematic method to select candidate
terms. It is, therefore, highly desirable to propose an algorithm
that relies on an unbiased approach to select the candidate
terms of the target Hamiltonian.

In this work we propose a machine-learning-assisted al-
gorithm for the reconstruction of Hamiltonians that uses as
the input the expectation values of local observables that are
diagnosed to be thermal. We show that our algorithm can
precisely reconstruct local Hamiltonians, while long-ranged
Hamiltonians are approximately reproduced with certain lim-
itations. It is worth mentioning that the presence of only
few-body terms in the underlying Hamiltonian is advanta-
geous for our method, but it is not a necessary requirement.
We apply our algorithm to Floquet and random multipolar
driven systems with the purpose of reconstructing the effec-
tive Hamiltonian, responsible for the stroboscopic expectation
values in the prethermal plateau and/or in the followup heat-
ing regime. For constructing the effective Hamiltonian in the
prethermal plateau, our algorithm does not require any a priori
intuition from the Floquet-Magnus expansion or any other
similar perturbative technique when the selection of candidate
terms is concerned. Furthermore, we go beyond prethermal
steady states and analyze the heating regime, where pertur-
bative expansions are known to fail. We extract an effective,
quasistatic Hamiltonian that reproduces the thermal mea-
surements of local operators as the system approaches the
infinite-temperature state. We directly observe that this effec-
tive Hamiltonian becomes less and less local as the system
heats up, verifying a hypothesis laid out in previous work
[52,80].

The rest of the paper is organized as follows. In Sec. II we
discuss in detail the algorithm of Hamiltonian reconstruction.
Section III deals with illustrative examples where our method
is used to reconstruct both short- and long-range interacting
static Hamiltonians. This is followed by the central Sec. IV,
which addresses Hamiltonian reconstruction in dynamical
Floquet setups, starting with reconstruction in the prether-
mal regime. Thereafter, we discuss the insight our algorithm
provides into the physics of unconstrained heating for both
Floquet systems and non-Floquet systems that exhibit even-
tual thermal death. Finally, we conclude and present future
perspectives in Sec. V.

II. ALGORITHM FOR HAMILTONIAN
RECONSTRUCTION USING AUTOENCODERS

In our Hamiltonian reconstruction algorithm we rely on a
deep autoencoder neural network [81,82], Fig. 1(b), which
is used for the dimensional reduction of the data; in our
algorithm this amounts to a preselection of the Hamiltonian
candidate terms. In our case, each element of the dataset
contains measurements of different local operators in a given
quantum state, see Fig. 1(a). Our approach is applicable if
these states are (effectively) thermal. The autoencoder is used

FIG. 1. Schematic presentation of the Hamiltonian reconstruc-
tion algorithm proposed in this work. (a) The inputs for the
Hamiltonian reconstruction are measurements of local operators
performed in (locally) (pre-)thermal (steady) states at different tem-
peratures, for example, obtained from a quantum simulator. (b) These
serve as input data for the autoencoder, where (c) confirms that the
data is indeed parametrized with a single parameter (temperature) by
checking that the decoding “test error” drops at a single neuron in
the latent space, and (c, inset) to generate the latent representation
of the dataset, which is one-dimensional for thermal data. (d) In the
next step, the potential candidate terms Oj (�α) in the Hamiltonian
H = ∑

j,�α a�αOj (�α) are preselected as the operators with the largest

average gradient of expectation values ∂〈Oj (�α)〉 along the latent
representation. (e) In the last step, the Hamiltonian coefficients a�α
are fixed. Here, we show actual data from effective Hamiltonian
reconstruction in the prethermal plateau for our Floquet protocol,
Eq. (9), presented in Fig. 3.

to generate a latent representation of the dataset and to verify
that the dataset indeed contains measurements on thermal
states; whenever this is the case, the latent representation is
a one-dimensional manifold, Fig. 1(c). Such compressed rep-
resentation of measurement helps us single out the candidate’s
terms of the Hamiltonian, Fig. 1(d), significantly reducing
the complexity of the Hamiltonian reconstruction, Fig. 1(e),
performed in the subsequent step. Previously, some of us pro-
posed part of the algorithm as a way to reconstruct spatially
local Hamiltonians [83]. Here we extend the procedure to deal
with long-range Hamiltonians as well. In the following, we
explain the algorithm in more detail.

The autoencoder is a deep neural network where the input
and output layers have the same dimension, while at least one
of the middle layers has a considerably smaller number of
neurons NL and represents a bottleneck, Fig. 1(b). The part
prior to the bottleneck is called the encoder, which maps the
input data to a lower-dimensional latent representation. The
decoder then maps the latent representation to the output. The
network is set by minimizing the difference between the input
�x and the output f�θ (�x) with respect to the network parameters
�θ , averaged over a minibatch of data elements from the dataset
DT ,

LDT (�θ ) = 1

|DT |
∑
�x∈DT

( f�θ (�x) − �x)2. (1)

The latent representation’s dimension, i.e., the intrinsic di-
mension of the data, is extracted from the same function
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(called “test error”), evaluated for the optimized neural net-
work parameters �θ on the rest of the unseen data elements.
The intrinsic dimension of data is identified as the number
of neurons in the bottleneck at which the test error drops
significantly and is flat upon further increasing NL, Fig. 1(c).
Values at neurons in the bottleneck give the latent represen-
tation of data. In the inset of Fig. 1(c), an example of latent
representation is shown for a network with NL = 2 neurons
in the bottleneck. Further technical details on our network are
given in Appendix A.

Our Hamiltonian reconstruction algorithm relies on pre-
condition (0) and consists of Steps (1–5):

(0) Work under the assumption that we are given thermal
expectation values of all local operators with support � that
is smaller than or equal to some preset number S . These
operators are measured in states of different temperatures: the
set of all measurements for a given state represents one data
element, while different states yield the dataset.

(1) Use an autoencoder to check that the data elements
indeed contain measurements with respect to (effectively)
thermal states. In that case, the latent representation of the
dataset is one-dimensional, with data elements within it or-
dered with respect to the temperature, or equivalently, the
energy of the corresponding states.

(2) Since data elements in the latent representation are
ordered with respect to the Hamiltonian expectation value,
other operators that correspond to the individual terms in
the Hamiltonian also show a pronounced variation along that
one-dimensional manifold; see Ref. [84] for more informa-
tion. Therefore, one can isolate candidate Hamiltonian terms
Oj (�α), H = ∑

j,�α a�αOj (�α), via singling out those operators
Oj (�α) = σ

α j

j ...σ
α j−1+|�|
j−1+|�| that have the largest average gradient

∂〈Oj (�α)〉 in the expectation value along the latent represen-
tation. We will assume periodic boundary conditions and a
translationally invariant system with O(�α) ≡ Oj=1(�α), but the
procedure can in principle be performed in the absence of that
as well.

(3) Step (2) will, in addition to the actual terms, filter
out also some spurious ones that are not part of H but are,
for example, products of actual Hamiltonian terms on neigh-
boring sites. To fix the prefactors a�α , and to get rid of the
spurious terms, we compare the “trial” thermal expectation
values (with respect to the trial Hamiltonian) to the actual
measurements for one data element at a given (but unknown)
temperature 1/β and find the solution of the following equa-
tion:

Tr

[
O(�α′)

e−β
∑

j,�α a�αOj (�α)

Z

]
− 〈O(�α′)〉β = 0. (2)

Since one does not know the temperature of the state, β re-
mains undetermined; what is actually extracted is the product
βa�α; β can be determined separately, e.g., from dynamical
measurements.

For strictly local Hamiltonians and measurements that in-
clude all Hamiltonian terms (i.e., the maximal support of
measured operators S is larger or equal to the support of
H), steps (1–3) will reconstruct H (up to a prefactor) with
high precision (see examples below), as already proposed and
tested in Ref. [83]. In the next steps we extend the algo-

rithm from Ref. [83] to be applicable to data from long-range
Hamiltonians as well. For long-range interacting Hamiltoni-
ans, some error in the reconstruction is inevitable, stemming
from the fact that we have measurements of only the most
local terms in the Hamiltonian and that we can at most aim at
reconstructing a local approximation of a long-range Hamil-
tonian. In that case, steps (1)–(3) might still generate finite
prefactors for “ghost” terms within the measured support. To
remove those, we add here additional steps:

(4) Compare the solutions of step (3) at a few different β,
i.e., for different data elements. Ghost term coefficients will
have a large relative variance across solutions for different
states; hence, we drop terms with

Varβ (a�α/a�α0 )

Eβ (a�α/a�α0 )
> O(1), (3)

where a�α0 is the coefficient at the dominant term.
(5) Repeat step (3) for the Hamiltonian ansatz without the

ghost terms. This step just slightly corrects the result of step
(3).

The most expensive step of our reconstruction is step (3);
even after performing step (2), potentially a large number
of trial terms remain for step (3). This can be particularly
problematic for a Hamiltonian H with large support. In order
to ameliorate this issue to a manageable extent, one can use
an iterative scheme:

First, perform steps (2)–(4), selecting contributing opera-
tors O(�α) with maximal support Sk = �k, k = 0:

(k1) When increasing the maximal support to Sk+1 =
�k+1 = �k + 1, previously selected Sk support terms are re-
tained by default, while Step (2) is performed only for
operators with support �k+1.

(k2) Steps (3) and (4) are performed, including previously
selected Sk = �k and new �k+1 support trial terms from (k1).

(k3) Terms surviving in (k2) are the new input for the next
iteration.

In the end, step (5) is performed.
We stress again that for our algorithm to work, it is

necessary that the data is thermal, or generally speak-
ing, parametrized by only one parameter. The presence of
additional conservation can certainly be detected via the au-
toencoder, where it can be shown that different conserved
charges span different directions in the latent space [83].
However, in such a case, the set of equations described by
Eq. (2) do not have a unique solution, so a straightforward
generalization of our approach is not possible [85].

III. RECONSTRUCTING SHORT- AND LONG-RANGE
INTERACTING STATIC HAMILTONIANS

We now benchmark our approach for two classes of H :
local and long-range interacting Hamiltonians. The extent of
applicability to the latter type of Hamiltonians has not been
discussed in Ref. [83]. In any case, each data element consists
of measurements in a thermal state (see Appendix B for details
of how we prepare the initial thermal states) with temperature
1/β for all local operators with support smaller than or equal
to S = 4, 6. We use inverse temperatures from the interval
β ∈ [0.05, 0.5].
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First, we consider strictly local Hamiltonians with maximal
support R, for example,

HL =
∑

i

(
hzσ

z
i +

R−1∑
r=1

(
J1 σ x

i σ x
i+r + J2 σ

y
i σ

y
i+r

))
. (4)

We find that the relative reconstruction error for coefficients
hz, J1, J2 highly depends on the maximal support of the mea-
sured operators S:

S � R : relative error ∼ 10−6, (5)

S < R : relative error ∼ O(1).

Next, we consider long-range interacting Hamiltonians of
the same form but with power-law decaying interactions,

HLR =
∑

i

⎛
⎝hzσ

z
i +

N
2 −1∑
r=1

J

rδ

(
σ x

i σ x
i+r + σ

y
i σ

y
i+r

)⎞⎠, (6)

and periodic boundary conditions. Such Hamiltonians are nat-
urally realized in quantum simulators with trapped ions [86]
and subradiant ordered atom arrays coupled to light [87,88].

In this case, the reconstruction error highly depends on
the maximal support of the measured operators S and the
interaction strength decay exponent δ. Figure 2(a) shows the
relative error, |δa�|/ā�, for compact representation averaged
over a few temperatures and all reconstructed Hamiltonian
terms with support �, i.e.,

|δa�|
ā�

= |hz − az|
hz

, � = 1 (7)

|δa�|
ā�

= |2J/rδ − axI...Ix − ayI...Iy|
2J/rδ

, � > 1. (8)

We note that the statistical error in |δa�|/ā� turns out to be
roughly two orders of magnitude smaller than the quantity
itself. We see that terms with larger support have larger rel-
ative reconstruction error. In general, the latter increases for
less local interactions (smaller δ). To access the quality of our
Hamiltonian reconstruction in terms of dynamics, we show
in Fig. 2(b) time evolution from a domain-wall initial state
for the original and the reconstructed Hamiltonian for a few
local observables. Up to time t ≈ 10/J , the two curves are
on top of each other. Deviations at later times are due to
approximate reconstruction of a long-range interacting Hamil-
tonian with a short-range one. However, we should stress that
the mismatch is also seemingly enhanced due to finite-size
fluctuations [89] in the regime where a thermodynamic system
would have already thermalized and show a true plateau in the
observables. For the sake of comparison, we use the value of
β that the data was measured at to divide the reconstructed
coefficients βa�α so as to obtain the actual Hamiltonian. In a
temperature-agnostic protocol, β would be determined as the
one at which the comparison is best, as we demonstrate in the
next section.

IV. RECONSTRUCTION OF EFFECTIVE HAMILTONIANS
ENGINEERED BY NONEQUILIBRIUM DRIVES

Having benchmarked our approach, we now turn to our
central example: effective Hamiltonian reconstruction in dy-
namical systems, which is of interest for verification of

FIG. 2. Evaluation of Hamiltonian reconstruction
H = ∑

j,�α a�αOj (�α) for the long-range interacting Hamiltonian
from Eq. (6). (a) The relative error |δa�|/ā� of all reconstructed
coefficients at a given support �. It is seen clearly that for a fixed
δ (measure of long-rangedness of the Hamiltonian), terms with
larger support have larger relative error. Also, for a given support
�, relative error decreases with increasing δ, i.e., considering a
more short-ranged underlying Hamiltonian. (b) Time evolution
of two different observables with respect to (i) the original
long-range HLR with δ = 3 from Eq (6), and (ii) its reconstruction
HML using our method and S = 4. This figure suggests that even
though Hamiltonian reconstruction is not perfect for long-ranged
systems, the reconstructed Hamiltonian nonetheless captures
local dynamics, particularly at short to intermediate times when
finite-size effects are not yet prominent, see inset. Parameters:
N = 16, J = 1.0, hz = 0.2, δ = 3.0.

quantum simulators, where desired Hamiltonians are often en-
gineered using periodic protocols. In these Floquet setups, the
stroboscopic evolution is generated by the so-called Floquet
Hamiltonian; while such closed systems are (in the absence
of symmetries [90]) bound to eventually heat up to a fea-
tureless infinite-temperature state [90–92], the heating process
is delayed exponentially with increasing the frequency of
the drive [52,54]. When observed stroboscopically, at inter-
mediate times, in the so-called prethermal plateau [93], the
system is locally effectively described by a thermal state with
respect to an effective Hamiltonian that can feature nontrivial
transient states [52–55]. Floquet protocols have thus been
one of the central approaches in engineering nonequilibrium
phenomena using quantum simulators and materials.

In the inverse frequency expansion or iterative rotating
frame transformation, the effective Hamiltonian can be recon-
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structed up to some order [27]. However, this is generally a
daunting task [27,53], and the former cannot be computed
in closed form for generic systems and protocols. Here we
propose an unbiased reconstruction which does not rely on
any expansion technique; instead, we reconstruct the effective
Hamiltonian up to support S , effectively resumming contri-
butions from higher orders in the inverse frequency expansion
within this support. As the inverse frequency series is formally
divergent, the system eventually heats up; it is still not fully
settled how this divergence is related to heating dynamics
featured in the exact stroboscopic dynamics. However, it was
recently suggested that, in the heating regime, the system is
described well by a thermal state with regard to the effective
Hamiltonian at a slowly changing temperature that takes into
account the increasing energy density [94,95]. Our approach
reveals independently that stroboscopically, throughout the
whole heating regime, the system locally appears as if in a
thermal state with respect to an effective quasistatic Hamil-
tonian; moreover, we demonstrate directly how its support
grows in time.

A. Floquet driving

Prethermal regime. In the following we reconstruct the ef-
fective Hamiltonian, characterizing the stroboscopic prether-
mal state in the prethermal plateau, for the square pulse
Floquet protocol:

U = exp (−iH1T/2) exp (−iH2T/2) (9)

H1 =
N∑

j=1

Jσ z
j σ

z
j+1 + hxσ

x
j + hzσ

z
j (10)

H2 = γ

N∑
j=1

σ x
j , (11)

where U is the unitary matrix for one drive cycle that
acts repeatedly on the system during the dynamics, and T
denotes the time period of the drive. Figure 3(a) shows
time-dependent expectation values 〈σ x〉 for J = 1.0, hx =
0.9045, hz = 0.809, γ = 0.4, ω = 2π/T = 10.0, for a time
evolution from an initial thermal state with respect to H1 and
inverse temperature β0 = 0.1.

For drive cycle numbers n � 5, we observe an extended
prethermal plateau. Visible oscillations are a consequence of
finite-size (N = 12) exact diagonalization propagation [89].
In the large frequency regime ω 
 1 considered, the Floquet
Hamiltonian can be perturbatively approximated using Baker-
Campbell-Hausdorff (BCH) series expansion, as detailed in
Appendix C.

Our Hamiltonian reconstruction is performed on a dataset
with elements containing measurement of local operators with
maximal support S = 3 in states that are evolved up to some
fixed time within the prethermal plateau. As initial states
for the time evolution, we consider thermal states with re-
spect to H1, with inverse temperatures within the range β0 ∈
[0.05, 0.40]. In principle, one could start from nonthermal
states as well, since these are expected to relax to thermal
states in the plateau anyway due to the nonintegrability of the
exact Floquet Hamiltonian. While step (3) in the reconstruc-

(a)

(b)

FIG. 3. (a) Stroboscopic measurements of 〈σ x
N/2〉 as a function of

cycle number n, obtained from (i) the exact Floquet protocol, (ii) time
evolution with respect to the BCH Hamiltonian up to second order in
T , and (iii) time evolution with respect to our reconstruction HML.
Initial states are thermal with respect to H1 at β0 = 0.1. The inset
demonstrates how we extract the overall multiplicative factor β of
the coefficients obtained from our Hamiltonian reconstruction algo-
rithm, as discussed in the main text. (b) Comparison of Hamiltonian
coefficients computed from the BCH expansion and our Hamilto-
nian reconstruction algorithm. Clearly, our reconstruction algorithm
predicts the coefficients (particularly the leading ones) quite accu-
rately. Parameters: J = 1.0, hx = 0.9045, hz = 0.809, γ = 0.4, ω =
2π/T = 10.0, N = 12.

tion algorithm [cf. Sec. II] can in principle be performed for a
single data element (a single state), we average the relative co-
efficients a�α/ax (ax being the dominant one) for each �α over a
few β0 and a few measurement times in the prethermal plateau
to ameliorate for finite-size fluctuations [89]. As discussed in
Sec. II, our algorithm gives the coefficients up to an overall
multiplicative factor β. This overall multiplicative constant β

can be extracted from dynamics in the initial time window
before the system reaches the prethermal plateau, as illus-
trated in the inset of Fig. 3(a). More precisely, we determine
β by minimizing the difference

∑
n |Tr[OU nρ(0)(U †)n] −

Tr[Oe−inT HML(β )ρ(0)einT HML(β )]| between the exact and the re-
construction HML-based time-dependent measurements of a
dominant operator at early cycles.

In Fig. 3 our Hamiltonian reconstruction HML is compared
to a second-order (in T ) BCH expansion, which contains
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terms with the same maximal support S = 3. Figure 3(a)
compares the dynamics generated from (i) the exact unitary,
Eq. (9), (ii) the Hamiltonian constructed from the BCH ap-
proximation calculated up to second order in T , as discussed
in Appendix C, and (iii) our reconstructed Hamiltonian HML

for an initial state with β0 = 0.1. We emphasize that we have
checked the cases also for other observables for a range of
β0 values (β0 ∈ [0.05, 0.3]), and all such results show similar
features as shown in Fig. 3(a).

Figure 3(b) compares the coefficients of different terms
computed from the BCH expansion to that obtained via our
machine-learning-assisted Hamiltonian reconstruction algo-
rithm. The matching is quite good for most (particularly for
the leading) coefficients. The slightly worse performance of
our reconstruction scheme in Fig. 3(a) compared to second-
order BCH is explained as a consequence of finite-size (N =
12) effects, causing fluctuations on the prethermal plateau and
other deviations from a strictly thermal state, affecting the
reconstruction input data.

Heating regime. We now turn our attention to the post-
prethermal heating regime; we use another Floquet protocol,
where the length of the prethermal plateau and the rate at
which the system heats up are more easily tunable. To this
end, we follow Ref. [94] and consider the following protocol:

U = exp(−iH̃1T/4) exp(−iH̃2) exp(−iH̃1T/4),

H̃1 =
N∑

i=1

Jσ z
i σ z

i+1 + hzσ
z
i + hxσ

x
i , H̃2 = ε

N∑
i=1

σ x
i , (12)

where U is the unitary matrix for one drive cycle, which
acts repeatedly on the system during the dynamics, and T
denotes the time period of the drive. As argued in Ref. [94],
the heating rate is regulated by ε; the larger the ε, the faster the
system heats up. Here we choose ε = 0.08; Fig. 5(a), showing
〈H̃1/2〉 at different cycle numbers n, confirms that heating
towards the infinite-temperature steady state is observed at
easily accessible drive cycle numbers. We note that the period
T is set to T = 2(πk + ε), with k = 2.

It has already been argued in Refs. [94,95] that the system
remains locally describable with a Gibbs ensemble in the
whole heating regime. Here we provide an independent check
using the autoencoder analysis, which reveals that the latent
representation is one dimensional and thus is parametrized
by a single parameter, the temperature, throughout the whole
heating regime. To confirm this, we take as initial states the
thermal states with respect to the zeroth-order (in ε) Flo-
quet Hamiltonian H̃1/2 with β0 ∈ [0.05, 0.45]. In addition,
we perform weak, random, translationally invariant single-site
rotations so that the initial states manifold is no longer one
dimensional. Then we evolve such states with Floquet time
evolution and probe their intrinsic dimension at chosen times.
Namely, if we considered initial states from the thermal man-
ifold and mapped those with a time-evolution deterministic
operator to states at a fixed time, from the perspective of an
autoencoder, the dataset remains on a one-dimensional mani-
fold since mapping due to time propagation can be absorbed
in the encoder/decoder part of the network. Therefore, to test
the real, generic intrinsic dimension of measurement in the
heating regime, we must start from a manifold of initial states

FIG. 4. (a) Test error as a function of the latent space dimen-
sion NL (number of bottleneck neurons) at different cycle number
n for Floquet-driven systems, Eq. (12). At smaller cycle num-
bers, e.g., n = 2, 60, the influence of initial states, prepared by
applying random single-site rotations to thermal states, is still vis-
ible, as adding more than one neuron in the bottleneck reduces
the test error. For larger cycle numbers this is not the case, the
effectively one-dimensional latent representation signals that the
system is in a thermal state throughout the entire heating regime.
(b) Latent representation of the dataset consisting of measurement
at n = 180 in the heating regime. The x and y axis show values
of the first and second neuron in the bottleneck layer with NL = 2
neurons, giving a one-dimensional representation of data elements
from different states. Parameters: N = 18, ε = 0.08, J = 1.0, hx =
0.9045, hz = 0.809, T = 12.7263, β0 ∈ [0.05, 0.45].

with higher dimension that does not limit what we are probing.
In Fig. 4(a) we show the “test error,” Eq. (1), as a function
of the latent space dimension NL (i.e., number of neurons in
the bottleneck). After a few cycle numbers n, the test error
drops at one latent neuron and flattens upon adding any further
latent neurons, signaling that the latent representation is one
dimensional. This is confirmed also if we look directly at the
latent space representation of the dataset at a fixed time, cf.
Fig. 4(b).

Next, we attempt to reconstruct the effective quasistatic
Hamiltonian Heff(n), responsible for thermal measurements in
the heating regime at different cycle numbers n, 〈O(�α)〉n =
〈ψ (nT )|O(�α)|ψ (nT )〉 ≡ Tr[O(�α)e−Heff (n)/Z]. This is chal-
lenging, yet interesting, because the inverse frequency ex-
pansions do not converge in the heating regime. Note that
for the reconstruction of Heff(n), we resort to the iterative
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FIG. 5. The considered (a) Floquet protocol, Eq. (12), with relevant parameters N = 18, ε = 0.08 and (b) random multipolar driving
with N = 16, T = 1/25, Eq. (13), showing heating to an infinite-temperature steady state at easily accessible times. Reconstruction of the
instantaneous quasistatic effective Hamiltonian Heff(n), responsible for locally thermal, time-dependent measurements in the heating regime,
reveals a growth of averaged normalized weight at less local terms with support � = 3–5 as a function of cycle number n, both for (c) Floquet
and (d) random multipolar driving with m = 2.

scheme described in Sec. II, first selecting the leading 60
contributing terms with maximal support S0 = 4 and then
performing one iteration to increase the maximal support to
S1 = 5, including 160 terms in total. The average weight
of all terms in the reconstructed HML(n) with support �, ā�,
relative to ā1, are shown in Fig. 5(c), plotted as a function
of cycle number n. The relative growth of the weights of
the less local terms with increasing n indicates that Heff(n)
becomes less and less local as the system absorbs energy
from the drive. On the other hand, the Floquet Hamiltonian,
defined from the unitary for one period evolution, is a time-
independent object. Our interpretation is that Heff(n) does not
necessarily capture the stroboscopic dynamics in the system
but captures time-dependent thermal measurements. One way
of motivating the growing support of Heff(n) is in terms of
operator growth [96]. Let us say we initialized the system in
a thermal state with respect to H̃1, Heff(0) = H̃1. Time evolu-
tion of the corresponding thermal ensemble would be given
by U ne−H̃1 (U †)n = e−U nH̃1(U † )n = e−Heff (n), with U defined in
Eq. (12). For parametrically small ε, this should naturally lead
to the parametrically regulated growth of the Heff(n) operator.
Our HML(n) reconstruction, shown in Fig. 5(c), is consistent
with an exponential growth with n.

The growing support of Heff(n) renders the reconstruction
rather difficult, since one needs to take into consideration the
contributions from terms with ever-growing support �.

B. Aperiodic random multipolar drives

Periodically driven systems obey Floquet’s theorem, which
guarantees the existence of a static generator of stroboscopic
dynamics. Away from the strictly periodic limit, this addi-

tional structure of the time-ordered propagator is lost, and
the identification of an effective Hamiltonian becomes far less
obvious.

It was recently found that random-multipolar-driven
(RMD) systems, which are subject to an aperiodic energy-
nonconserving drive, display similar prethermal properties
[97]: such systems exhibit a prethermal regime (albeit with
a weaker than exponential dependence of the duration of the
prethermal plateau on drive frequency), followed by an even-
tual relaxation to an infinite-temperature state. This behavior
was proven mathematically by constructing an effective static
Hamiltonian for the prethermal plateau using a generalization
of the BCH expansion; like in Floquet systems, the expan-
sion was shown to diverge in the heating regime [53,98]. To
the best of our knowledge, it is unclear whether an effec-
tive Hamiltonian exists that describes the heating dynamics
of RMD systems beyond the prethermal plateau, nor what
its locality properties may be. This makes RMD systems an
excellent candidate to test the capabilities of our algorithm in
so far uncharted territory.

To investigate further the phenomenon of heating beyond
Floquet, we consider many-body systems subject to a RMD
drive. The protocol involves applying a random sequence
of unitaries U±, generated from two Hamiltonians H±, each
acting for a duration T . The level of multipolar correlation
incorporated in the drive (via the structure of the random
sequence of U±) is characterized by an integer m. For instance,
m = 0 corresponds to the case where random sequence of U±
is considered, while m = 1 represents the case for a random
sequence of dipoles having form U+U− or U−U+. Follow-
ing the same logic, m = 2 describes a random sequence of
quadrupoles having form U−U+U+U− or U+U−U−U+. It was
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demonstrated in [97] that RMDs, characterized by a finite
value of m, exhibit a prethermal regime with lifetime scaling
as (1/T )2m+1. For m → ∞, the limit itself corresponds to
the Thue-Morse sequence constructed out of U±, leading to a
subexponential (but faster than polynomial) in 1/T long-lived
prethermal regime.

We focus on the following Hamiltonian generators:

H± =
∑

i

Jxσ
x
i σ x

i+1 + Jzσ
z
i σ z

i+1 + B±σ x
i + Bzσ

z
i , (13)

where B± = B0 ± Bx. We construct the basic unitary opera-
tors U± from H± as U± = exp(−iH±T ).

In this work, we concentrate on cases with m = 2 i.e., ran-
dom quadrupolar drive. Figure 5(b) shows the behavior of the
mean energy H (0)

RMD = (H+ + H−)/2 for the system initialized
in a thermal state with respect to H (0)

RMD. As we see, 〈H (0)
RMD〉

eventually reaches zero, indicating heating of the system to an
infinite-temperature state at late times. In much the same way
as in the Floquet driving case, we can verify that the system
remains locally thermal throughout the whole heating regime.
To the best of our knowledge, this was not reported before.

In analogy to the Floquet case, we reconstruct the effective
quasistatic Heff(n) that captures the behavior of local stro-
boscopic thermal expectation values in the heating regime.
We use the iterative scheme described in Sec. II, first select-
ing the leading 40 contributing terms with maximal support
S0 = 4 and then performing one further iteration to increase
the maximal support to S1 = 5, including 120 terms in total.
In Fig. 5(d) we show the average weights a� (relative to a1) of
terms with support � for our reconstructed HML(n).

The above analysis shows that our algorithm is capable of
identifying effective Hamiltonians in new setups where no an-
alytical theory is yet available. Moreover, our results suggest
the existence of simplified descriptions for the heating dy-
namics beyond prethermal times, where BCH-like expansions
break down. Thus, the variational character of the Hamil-
tonian reconstruction method we propose can prove useful
both in experimental nonequilibrium setups (e.g., to analyze
dynamical decoupling sequences [29–31], or in the digital
simulation of quantum dynamics [99–101]), and to facilitate
the theoretical analysis of nonequilibrium drives beyond Flo-
quet systems.

V. CONCLUSIONS AND FUTURE OUTLOOK

We propose a new algorithm for the Hamiltonian re-
construction from the measurements of local operators.
Reconstruction is possible under the assumption that we have
access to the local measurements in different thermal states.
We use autoencoder preprocessing of the data to (i) verify that
the measurements are thermal and (ii) single out the Hamil-
tonian candidate terms in order to reduce the reconstruction
complexity. The subsequent reconstruction is accurate for lo-
cal Hamiltonians as long as the dataset contains measurement
of all Hamiltonian terms (of course, without knowing, which
of the measured operators are the Hamiltonian terms), while it
is only approximate for long-range interacting Hamiltonians.

Beyond benchmarking, we apply Hamiltonian reconstruc-
tion to Floquet and random multipolar driven systems. For the
former, we first reconstruct the effective Hamiltonian, respon-

sible for the thermal local measurements in the prethermal
plateau and compare that to its BCH approximation. Using an
autoencoder, we also confirm that the system remains locally
thermal throughout the whole heating regime and reconstruct
the effective quasistatic Hamiltonian corresponding to the
Gibbs ensemble associated with the measurements at different
times. We interpreted this effective quasistatic Hamiltonian’s
increasing support via operator growth that is parametrically
regulated by the heating rate. Similar behavior was observed
also for the heating regime of the random multipolar driving.
Despite the lack of an analytical theory, we confirmed that
for the random multipolar driving, the heating process occurs
via thermal states with growing temperature and increasingly
nonlocal effective quasistatic Hamiltonian.

We envision our Hamiltonian reconstruction technique as
a strong tool for the verification of quantum simulators that
strive for the realization of exotic Hamiltonians. In our anal-
ysis, we focused on Floquet engineering, one of the most
popular nonequilibrium techniques to achieve this goal, for
which, however, Hamiltonians typically come with additional
unwanted terms. Using autoencoder analysis to select the
Hamiltonian candidate terms, we demonstrate how effective
Hamiltonians can be reconstructed directly from the measure-
ments in the prethermal plateau or the heating regime, without
relying on any assumption on the Hamiltonian terms or the
high-frequency expansion.

Here, we needed to produce the input data numerically,
which posed a limitation to system sizes considered. If the in-
put data was coming from a quantum simulator dealing with a
larger system size, one could perform our reconstruction algo-
rithm on larger system sizes using tensor networks with, e.g.,
purification implementation of thermal expectation values.

Our operator-based Hamiltonian reconstruction is directly
suitable for the verification of Hamiltonians in Rydberg
atoms or trapped ion setups. The approach would have to be
extended to work with partial information stored in state snap-
shots in cold atom experiments. Hamiltonian reconstruction
is relevant also for condensed-matter settings and quantum
optics, where extracting the minimal model, responsible for
the observed physics, is notoriously hard. Similarly, due to the
limited types of measurement that are accessible in these sys-
tems, the envisioned desirable generalizations of our approach
call for further studies. In a broader sense, the tomographic
character of our method with the requirement of ∼4S data
points for a single temperature is certainly a limitation that
calls for an improvement.

Another nontrivial example where our scheme could be
applied includes entanglement Hamiltonian reconstruction, at
least in the intermediate to late-time regime of excited systems
where the entanglement Hamiltonian approaches the actual
Hamiltonian [102,103]. In future studies, it would also be
desirable to develop similar strategies to reconstruct other
conservation laws of integrable models that generically relax
to the states that are locally describable by the generalized
Gibbs ensembles.
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APPENDIX A: DETAILS OF THE AUTOENCODER

Our autoencoder consists of a feed-forward neural network
with the bottleneck structure. A feed-forward neural network
is made up of layers corresponding to a sequence of alternat-
ing affine-linear and nonlinear transformations. The activation
a(l )

j of the lth layer is related to that of the previous layer a(l−1)
j

as

al
j = σ

(∑
k

Wjka(l−1)
k + b j

)
, (A1)

where Wjk and b j are variational parameters and σ denotes the
fixed nonlinear activate function. For all the results produced
in this paper, we fix σ = tanh. Our network consists of two
encoder layers between the input and the latent space, as well
as two decoder layers between the latent space and the output.
Each layer has 400 neurons. We used the Adam optimizer for
training the network and learning rate r = 0.0001. The data
set is comprised of 80% of the data, while rest is used as a test
set.

At this juncture, we add that the input data contains T N
data elements. Here, T denotes the number of temperature
points over which the data is collected and N ∼ 4S the num-
ber of operators measured, with S being their largest possible
support. Notice that N < 4S because we exclude the Pauli
operator strings which have identities at the edges. For in-
stance, N = 192 for S = 4 instead of 44 = 256. T depends
on the case under consideration and is lower bounded by the
autoencoder learning ability. For all the results reported in this
paper, 200 � T � 1000.

APPENDIX B: PREPARING THE INITIAL
THERMAL STATE

To prepare the initial thermal state for N > 12, we follow
the prescription detailed in Ref. [94]. The procedure relies
on the principle of quantum typicality [104–107]. Typicality
states that the expectation value of an operator A, defined on
a Hilbert space H, can be approximated as

1

dimHTr[A] ≈ 1

N

N∑
n=1

〈rn|A|rn〉, (B1)

where |rn〉 are Haar-random states. Note that the approxi-
mation becomes exact as N → ∞. Therefore, the thermal
expectation value of observable A, with respect to some
Hamiltonian H at inverse temperature β, is given as

〈A〉β ≈
dim(H)

N

∑N
n=1〈rn|e−βH/2Ae−βH/2|rn〉

dim(H)
N

∑N
n=1〈rn|e−βH/2e−βH/2|rn〉

. (B2)

If we interpret the right-hand side of the above equation as
an ensemble average, then the thermal density matrix can be
approximated as

ρβ ≈ 1

Zβ

dim(H)

N

N∑
n=1

e−βH/2|rn〉〈rn|e−βH/2, (B3)

Zβ ≈ dim(H)

N

N∑
n

〈rn|e−βH/2e−βH/2|rn〉.

To time evolve the thermal density matrix, we just need to
evolve a set of pure states defined as |ψn〉 = e−βH/2 and then
compute

ρβ (t ) ≈ 1

Zβ

dim(H)

N

N∑
n=1

U (t )|ψn〉〈ψn|[U (t )]†, (B4)

where U (t ) is the evolution operator.

APPENDIX C: BCH EXPANSION

First of all, we note that for that square pulse Floquet
protocol used in the main text, Floquet-Magnus expansion
is identical to the BCH expansion. Mathematically, the BCH
formula is the solution Z to the equation

eX eY = eZ (C1)

for possibly noncommutative X and Y in the Lie algebra of a
Lie group. The BCH formula essentially yields an expression
for Z in terms of a formal series (not necessarily convergent)
in X , Y , and iterated commutators thereof. The first few terms
of the series are

Z = X + Y + 1
2 [X,Y ] + 1

12 ([X, [X,Y ]] − [Y, [X,Y ]])

+ · · · . (C2)

To make a connection with our problem, we notice that the
Floquet Hamiltonian HF is defined via the relation

e−iH1T/2e−iH2T/2 = e−iHF T . (C3)

It is quite clear that Eq. (C3) is the same as Eq. (C2), with X =
−iH1T/2 and Y = −iH2T/2, where H1 and H2 are described
by Eqs. (10) and (11), respectively, in the main text. Now,
resorting to Eq. (C2), one can approximate the Floquet Hamil-
tonian HF in different orders of T such that HF = ∑

n H (n)
F ,

where H (n)
F is proportional to T n. We perform such calculation

up to order 2, and the results are charted below:

H (0)
F = 1

2
(H1 + H2), (C4)

H (1)
F = γ T

4

∑
i

σ
y
i σ z

i+1 + σ z
i σ

y
i+1 + hzσ

y
i , (C5)

H (2)
F = −T 2

24
γ 2hz

∑
i

σ z
i − T 2

24
γ h2

z

∑
i

σ x
i

− T 2

12
γ 2

∑
i

(
σ z

i σ z
i+1 − σ

y
i σ

y
i+1

)
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− T 2

24
γ hz

∑
i

(
σ x

i σ z
i+1 + σ z

i σ x
i+1

)

+ T 2

12
γ hx

∑
i

(
σ z

i σ z
i+1 − σ

y
i σ

y
i+1

)
− T 2

24
γ hz

∑
i

(
σ z

i σ x
i+1 + σ x

i σ z
i+1

)

− T 2

12
γ

∑
i

(
σ z

i σ z
i+1σ

z
i+2 + σ x

i

)
. (C6)
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