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Quantum counterpart of equipartition theorem in quadratic systems
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The equipartition theorem is a fundamental law of classical statistical physics, which states that every degree
of freedom contributes kBT/2 to the energy, where T is the temperature and kB is the Boltzmann constant.
Recent studies have revealed the existence of a quantum version of the equipartition theorem. In the present
work, we focus on how to obtain the quantum counterpart of the generalized equipartition theorem for arbitrary
quadratic systems in which the multimode Brownian oscillators interact with multiple reservoirs at the same
temperature. An alternative method of deriving the energy of the system is also discussed and compared with
the result of the quantum version of the equipartition theorem, after which we conclude that the latter is more
reasonable. Our results can be viewed as an indispensable generalization of recent works on a quantum version
of the equipartition theorem.
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I. INTRODUCTION

One of the elegant principles of classical statistical physics
is the equipartition theorem, which has numerous applications
in various topics, such as thermodynamics [1–3], astrophysics
[4–6], and applied physics [7–9]. It is natural to consider the
quantum version of the equipartition theorem, since quantum
mechanics has been founded over a hundred years and so has
quantum statistical mechanics.

Recent years have seen much progress on this topic. A
novel work [10] investigated the simplest quantum Brownian
oscillator model to formulate the energy of the system in terms
of the average energy of a quantum oscillator in a harmonic
well. Based on this work, more researchers [11–18] tried to
study quantum counterparts of the equipartition theorem in
different versions of quadratic open quantum systems from
various perspectives, including electrical circuits [11], dissi-
pative diamagnetism [18], and focusing on kinetic energy for
a more general setup [19].

In this work, we aim to deduce a quantum counterpart of
the generalized equipartition theorem [20] for arbitrary open
quantum quadratic systems. Many quadratic systems share the
same algebra [Â, B̂] = ih̄, where the binary operator pair can
be the coordinate x̂ and the momentum p̂ for oscillators, the
magnetic flux �̂ and the charge Q̂ for quantum circuits, and
so on. We here turn to Brownian oscillators as an example to
grasp the physical nature of all these systems.

To construct such systems, we adopt a generalized
Caldeira-Leggett model [21] and manage to transform it into a
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multimode Brownian-oscillator system that is well-discussed
in Ref. [22]. For generality, we do not choose a concrete form
of dissipation. We also generalize a formula in Ref. [23] for
the internal energy so that it can be applied to the multimode
Brownian oscillator system. It has been debated [24] which of
the formulas in Ref. [23] or the quantum counterpart of the
equipartition theorem given in Ref. [10] truly describes the
energy of the system. Our analysis shows that the generalized
version of the former formula cannot be used to find the
energy, which implies that the latter one is more reasonable.

The remainder of this paper is organized as follows. In
Sec. II, we construct a quadratic system from the Caldeira-
Leggett model. In Sec. III we deduce the generalized
equipartition theorem for this system and show its link to the
conventional equipartition theorem. In Sec. IV we try to give
a multimode version of the remarkable formula in Ref. [23].
More theoretical details are given in the Appendices. Numer-
ical results are demonstrated in Sec. V. We summarize this
paper in Sec. VI. Throughout this paper, we set h̄ = 1 and
β = 1/(kBT ), with kB being the Boltzmann constant and T
being the temperature of the reservoirs if there is no special
reminder.

II. ARBITRARY QUADRATIC SYSTEM

To construct our arbitrary quadratic system, let us start with
the multimode Caldeira-Leggett model [21]:

HCL =
∑

u

P̂2
u

2Mu
+
∑
uv

1

2
kuvQ̂uQ̂v +

∑
α j

[
p̂2

α j

2mα j

+ 1

2
mα jω

2
α j

(
x̂α j + 1

mα jω
2
α j

∑
u

cαu jQ̂u

)2
]
, (1)

where u, v ∈ {1, 2, . . . , nS} and j ∈ {1, 2, . . . , nα} are indices
for the oscillators in the system and in the αth bath, respec-
tively. The coefficient cαu j represents the coupling strength
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between the coordinate of the uth oscillator in the system and
the jth oscillator in the αth bath. The convention would put
−cαu j in the last term of Eq. (1), but we replace it by cαu j . We
also have the commutation relations for all the momentum and
position operators as follows:

[Q̂u, P̂v] = iδuv,
[
x̂α1 j1 , p̂α2 j2

] = iδα1α2δ j1 j2 , (2)

with δ representing the Kronecker delta. Equation (1) can be
reorganized in the following forms:

HCL = HS + HSB + hB, (3a)

HS =
∑

u

P̂2
u

2Mu
+ 1

2

∑
uv

(
kuv + cαu jcαv j

mα jω
2
α j

)
Q̂uQ̂v, (3b)

HSB =
∑
αu

Q̂uF̂αu, F̂αu =
∑

j

cαu j x̂α j, (3c)

hB =
∑

α

hαB =
∑
α j

(
p̂2

α j

2mα j
+ 1

2
mα jω

2
α j x̂

2
α j

)
. (3d)

Here, the system-bath interaction results from the linear cou-
pling of the system coordinate Q̂u and the random force F̂αu.
We also emphasize that all the mutually independent baths
{hαB} in Eq. (3d) are at the same inverse temperature β. By
defining the pure bath response function as

φα (t ) ≡ {φαuv (t ) ≡ i
〈[

F̂ B
αu(t ), F̂ B

αv (0)
]〉

B

}
, (4)

we recognize that ∑
j

cαu jcαv j

mα jω
2
α j

= φ̃αuv (0), (5)

where F̂ B
αu(t ) ≡ eihBt F̂αue−ihBt and the average is defined over

the canonical ensembles of baths as in 〈· · · 〉B := trB[· · · ⊗α

e−βhαB ]/
∏

α trB(e−βhαB ). In Eq. (5) we use a tilde to denote the
Laplace transform f̃ (ω) = ∫∞

0 dω eiωt f (t ) for any function
f (t ). By denoting Vuv ≡ kuv +∑α φ̃αuv (0) and �u ≡ M−1

u for
convenience, we rewrite Eq. (3b) in the form

HS = HBO + Hren

≡
[

1

2

∑
u

�uP̂2
u + 1

2

∑
uv

(
Vuv −

∑
α

φ̃αuv (0)
)

Q̂uQ̂v

]

+
[

1

2

∑
αuv

φ̃αuv (0)Q̂uQ̂v

]
, (6)

which is the starting point of our quantum counterpart of the
equipartition theorem. Here, Hren denotes the renormalization
energy. The system Hamiltonian, referred to as Eq. (6), now
is identical to the one presented in Ref. [22]. Physically, we
need V = {Vuv}, k = {kuv}, and � = {�uδuv} to be positive
definite. Without loss of generality, we can always set V and
k to be symmetric. The detailed derivation of Eq. (5) can be
found in Appendix A.

III. QUANTUM COUNTERPART OF GENERALIZAD
EQUIPARTITION THEOREM

The conventional quantum counterpart of the equipartition
theorem for the single-mode Caldeira-Leggett model deals

with the kinetic energy Ek(β ) in the Gibbs state of the to-
tal system with the inverse temperature being β [10] in the
form of

Ek(β ) = Ek

[
h̄ω

4
coth

β h̄ω

2

]

:=
∫ ∞

0
dωPk (ω)

h̄ω

4
coth

β h̄ω

2
. (7)

Here, we temporarily add h̄ for later convenience and
Ek[ f (ω)] denotes the expectation of a function f (ω) over
the normalized distribution function Pk(ω), which satisi-
fies Pk(ω) � 0 and

∫∞
0 dωPk(ω) = 1. Equation (7) can

be reduced to the classical case since limh̄→0 Ek(β ) =
Ek[limh̄→0(h̄ω/4) coth(h̄βω/2)] = Ek[1/2β] = 1/2β. How-
ever, when some degrees of freedom are intertwined with each
other, such as in our model [cf. Eq. (3)], it is better if we use
the generalized equipartition theorem [20].

In the rest of this work, we study the quantity
〈X̂i∂HBO/∂X̂ j〉 for any system degrees of freedom X̂i, X̂ j ∈
{P̂u} ∪ {Q̂u}, with the average defined in the total Gibbs state
〈· · · 〉 := trT[. . . e−βHCL ]/ trT e−βHCL , which is well-defined
since we assume that all the baths are at the same inverse
temperature β. The derivative of the operator here is merely a
notation, indicating that we initially treat all distinct operators
as mutually independent variables like real numbers. After ob-
taining the result, We restore these variables back to operators.
In the main text we focus on the cases X̂i = X̂ j , while other
cases are discussed in Appendix C.

We have 〈Q̂u∂HBO/∂Q̂u〉 =∑v[Vuv −∑α φ̃αuv (0)]
〈Q̂uQ̂v〉 when we choose X̂i = X̂ j = Q̂u. With the help of
the fluctuation-dissipation theorem [25] for the symmetrized
correlation function [24], we obtain

1

2

〈{
Q̂u,

∂HBO

∂Q̂u

}〉

=
∑

v

1

π

∫ ∞

0
dω

[
Vuv −

∑
α

φ̃αuv (0)

]
Re JQQ

uv (ω) coth
βω

2
,

(8)

with JQQ(ω) = {JQQ
uv (ω)} being the anti-Hermitian part of the

matrix χ̃QQ(ω) = {χ̃QQ
uv (ω)} and {•, ◦} representing the anti-

commutator. Here, we denote the system response function
of any two operators Âu and B̂v as χAB

uv (t ) ≡ i〈[Âu(t ), B̂v (0)]〉.
According to Ref. [22], we also have some useful relations
for the quantities like χ̃AB(ω). We list them below for later
convenience:

χ̃QQ(ω) =
[
�V − ω2I − �

∑
α

φ̃α (ω)
]−1

�, (9a)

χ̃PP(ω) = �−1 + ω2�−1χ̃QQ(ω)�−1, (9b)

χ̃QP(ω) = iωχ̃QQ(ω)�−1, (9c)

χ̃PQ(ω) = −iω�−1χ̃QQ(ω), (9d)

where V and � are given below Eq. (6). Equation (8) can be
recast as〈

Q̂u
∂HBO

∂Q̂u

〉
=
∫ ∞

0
dω PQuQu (ω)

ω

2
coth

βω

2
, (10)
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with

PQuQu (ω) = 2

πω

∑
v

[
Vuv −

∑
α

φ̃αuv (0)

]
JQQ

uv (ω), (11)

where we use the fact that JQQ(ω) is symmetric since χ̃QQ(ω)
is symmetric and therefore JQQ(ω) is real.

A similar process for the case X̂i = X̂ j = P̂u leads to
〈P̂u∂HBO/∂P̂u〉 = �u〈P̂2

u 〉. Using the fluctuation-dissipation
theorem [25] again, we find

1

2

〈{
P̂u,

∂HBO

∂P̂u

}〉
= �u

π

∫ ∞

0
dω Re JPP

uu (ω) coth
βω

2
, (12)

where JPP(ω) = {JPP
uv (ω)} is the anti-Hermitian part of matrix

χ̃PP(ω) = {χ̃PP
uv (ω)} [cf. Eq. (9b)].

By substituting Eq. (9b) into Eq. (12), we obtain the final
result 〈

P̂u
∂HBO

∂P̂u

〉
=
∫ ∞

0
dω PPuPu (ω)

ω

2
coth

βω

2
, (13)

with

PPuPu (ω) = 2ω

π�u
JQQ

uu (ω). (14)

The proof of positivity and normalization of Eqs. (11) and (14)
can be found in Appendix B, by which we can recast Eqs. (10)
and (13) as〈

X̂i
∂HBO

∂X̂i

〉
= Eii

[
ω

2
coth

βω

2

]

:=
∫ ∞

0
dω PXiXi (ω)

ω

2
coth

βω

2
, (15)

with

Pii(ω) � 0 and
∫ ∞

0
dω Pii(ω) = 1, (16)

where we use the notation Pii rather than PXiXi for simplicity.
In Appendix C, we extend Eqs. (15) and (16) to the cases
where X̂i �= X̂ j and we summarize all the results as

1

2

〈{
X̂i,

∂HBO

∂X̂ j

}〉
= Ei j

[
h̄ω

2
coth

h̄βω

2

]
(17)

for any system degrees of freedom X̂i, X̂ j ∈ {P̂u} ∪ {Q̂u} with

Pii(ω) � 0 and
∫ ∞

0
dωPi j (ω) = δi j, (18)

and Ei j[. . .] denotes the expectation over Pi j (ω). Here, we
temporarily add h̄ for later convenience and let δ denote the
Kronecker delta. Equations (17) and (18) are partly the main
results of the present work.

Discussions are presented here to conclude this section.
Once we take the classical limit h̄ → 0 and the weak-coupling
limit cαu j → 0, Eq. (17) reduces to 〈Xi∂HS/∂Xj〉 = δi j/β

[cf. Eq. (6)], which is termed as the generalized equipartition
theorem [20]. We also emphasize that though the right-hand
side of Eq. (17) depends on different degrees of freedom
(i and j), the function (ω/2) coth(βω/2) is universal for all the
degrees of freedom, which is the “equipartition” in a quantum
sense. Therefore, Eq. (17) is termed as the quantum coun-
terpart of the generalized equipartition theorem. It is evident

that Eqs. (11) and (14) reduce to the results in Refs. [10,24]
for the single-mode nS = 1 case. Besides, by noticing that
〈P̂u∂HBO/∂P̂u〉 equals twice the kinetic energy of the uth oscil-
lator and JPP(ω) = ω�−1JQQ(ω)�−1 [cf. Eq. (9b)], Eqs. (13)
and (14) reduce to the results presented in Ref. [19].

Equation (17) here offers a new angle on how to calculate
the quantities of open systems, which are generally hard to
obtain. An application is given below. Noting that the total
energy is given by E (β ) = 1/2

∑
i〈X̂i∂HBO/∂X̂i〉, we arrive at

E (β ) = E

[
nSω

2
coth

βω

2

]
, (19)

with E[...] denoting the expectation over

P (ω) :=
∑

i

Pii(ω)/2nS, (20)

which is checked [cf. Eq. (16)] to be nonnegative and nor-
malized over R+. Equation (19) is termed as the quantum
counterpart of conventional equipartition theorem [24]. Mov-
ing further with the help of thermodynamic equations, we can
determine the free energy F (β ) of the system by

F (β ) + β
∂F (β )

∂β
= E (β ), (21)

and hence Eqs. (21) and (19) may yield

F (β ) = E

[
nS

β
ln

(
2 sinh

βω

2

)]
, (22)

from which we further obtain an expression for the partition
function of the system in the form of

ln ZS(β ) = −E

[
nS ln

(
2 sinh

βω

2

)]
. (23)

Note that Eq. (23) is much easier to obtain than the conven-
tional influence-functional approach [26,27].

IV. ALTERNATIVE APPROACH FOR THE ENERGY

A recent review [24] presented another approach to obtain
the energy of the system of multimode harmonic oscillators.
When introduced in Ref. [23], the result was only limited to
the single-mode case. Here, we generalize their derivation and
find that their derivation is not applicable to the multimode
case.

The starting point of Ref. [23] is quite straightforward.
Since the conventional definition for the internal energy of
the oscillator US(β ) = trT[HBOe−βHCL ]/ tr e−βHCL is generally
challenging to handle, we adopt normal-mode coordinates,
so that the transformed Hamiltonian HT describes N (= 1 +∑

α nα ) uncoupled oscillators. Physically we do not need to
obtain the detailed information for any normal modes, since
the total energy UT(β ) is only associated with the normal
frequencies, namely,

UT(β ) =
N∑

r=1

u(ωr, β ) :=
N∑

r=1

ωr

2
coth

βωr

2
, (24)

with ωr being the normal frequency for the rth oscillator in
the transformed system. Here, we also introduce the notation
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u(ω, β ) ≡ (ω/2) coth(βω/2) for later convenience. Since the
energy for the independent bath is well-defined as

UB(β ) =
∑
α j

ωα j

2
coth

βωα j

2
, (25)

the authors of Ref. [23] interpreted the difference

US(β ) = UT(β ) − UB(β ) (26)

as the internal energy and found it to be

US(β ) =
∫ ∞

0
dω

1

π
Im

d

dω
ln χ̃QQ(ω)

ω

2
coth

βω

2
, (27)

where χ̃QQ(ω) is the one-dimensional version of Eq. (9a).
Following their procedures for the multimode case, we find

(see Appendix D for a detailed derivation)

UT(β ) − nSUB(β ) =
∫ ∞

0
dωB(ω)nS

ω

2
coth

βω

2
, (28)

with

B(ω) = 1

πnS
Im

d

dω
ln det χ̃QQ(ω), (29)

which does not give us US(β ) = UT(β ) − UB(β ). On the
other hand, the result of the system’s internal energy ac-
cording to the quantum counterpart of equipartition theorem
[cf. Eq. (19)] is applicable to any multimode case. Therefore,
we conclude that Eq. (19) is more reasonable than the alter-
native approach discussed in Ref. [23] as an expression for
the internal energy of the system. Equations (28) and (29) are
another part of the main results of this work.

V. NUMERICAL DEMONSTRATIONS

In this section, we use the two-mode (u, v ∈ {1, 2})
Brownian-oscillator system coupled with one reservoir (α =
1) to give a numerical demonstration of our results. The
system Hamiltonian HS of the two-mode system reads HS =
(�1P̂2

1 + �2P̂2
2 )/2 + (V11Q̂2

1 + V22Q̂2
2 + 2V12Q̂1Q̂2)/2, while

the system-bath interaction term becomes HSB = Q̂1F̂1 +
Q̂2F̂2, with the random force F̂u1 =∑ j cu j x̂ j for u ∈
{1, 2}. The bath Hamiltonian reduces to hB =∑ j ( p̂2

j/2mj +
mjω

2
j x̂

2
j /2). To enhance clarity, we choose the spectrum of the

pure bath in the following form:

φ̃(ω, λ) = λη Im
�2

B

�2
B − ω2 − iωγB

, (30)

with η ≡ {ηuv = ηuδuv} specifying the strength of the system-
bath couplings. From an experimental point of view, this setup
can be realized, for example, in molecular junctions [28–30].
We also introduce the parameter λ ∈ {1, 1.25, 1.5} to vary
the strength, which can be realized experimentally by mod-
ifying the intermolecular distance. Through out this section,
we select the parameters in the unit of �B as γB = 1.25 �B,
�1 = �2 = V11 = V22 = �B, and V12 = V21 = 0.5 �B. The
strength of the couplings are chosen to be η1 = 0.2 �B and
η2 = 0.1 �B.

Figures 1(a) and 1(b) depict P (ω) and B(ω) in the three
cases.

FIG. 1. Plots of P (ω) in panel (a) and B(ω) in panel (b) when
λ ∈ {1, 1.25, 1.5}. Here the red dots on the horizontal axes rep-
resent ω = 0.7071 �B and ω = 1.224 �B, respectively, which are
the square root of eigenvalues of the matrix �V according to the
parameters chosen in the main text.

As λ decreases, the curves become sharper around the
square root of the eigenvalues of �V . In other words, the
maximum points of P (ω) and B(ω) become closer to them
as λ decreases. In fact, we can prove the following (see
Appendix E):

lim
{cαu j}→{0}

P (ω) = 1

nS

∑
ω2

i ∈spec(�V )

[δ(ω − ωi ) + δ(ω + ωi )],

(31)

where the summation is over all the square roots of eigenval-
ues of the matrix �V (considering multiplicity). These results
show that, in the weak-coupling limit, only the oscillators with
these typical frequencies contribute to the quantity that we
consider, such as the energy. In this case, the energy reads

Eweak(β ) =
∑

ω2
i ∈spec(�V )

ωi

2
coth

βωi

2
, (32)
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which is how the quantum counterpart of the equipartition the-
orem behaves in the weak-coupling limit. In the single-mode
case, a similar pattern has also been discussed in Ref. [24].

VI. SUMMARY

To summarize, we derived a quantum counterpart of
the generalized equipartition for arbitrary quadratic systems,
which we can also reduce to the results presented in previous
works for the single-mode case. We also extended another
formula for the internal energy of the multimode Brownian-
oscillator system. The generalized formula and our analysis
shed light on the controversies of the method. We noticed that
our quantum counterpart of the equipartition theorem can be
used to obtain the partition function of the system in a much
easier way than the classical approach [27]. Our results can be
viewed as an indispensable development of recent works on
the quantum counterpart of the equipartition theorem.

As a future prospect, expressing thermodynamic quantities
as an infinite series also offers potential advantages for this
objective [24]. Work in this direction is in progress. Further-
more, it seems difficult to discuss the quantum version of
the equipartition theorem without the help of the fluctuation-
dissipation theorem and to consider it over steady states or
even in general nonequilibrium. Discussing the present topic
under other more difficult setups, such as quartic systems, is
also challenging. All of them constitute directions of further
development.
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APPENDIX A: DERIVATION OF Eq. (5)

Here we show the detailed derivation of Eq. (5). Let us
start from the Heisenberg equation of motion for any operator,
˙̂X (t ) = i[HT, X̂ (t )]. Focusing on the bath quantities x̂α j and
p̂α j , we obtain

˙̂xα j (t ) = p̂α j (t )/mα j, (A1a)

˙̂pα j (t ) = −mα jω
2
α j x̂α j (t ) −

∑
u

cαu jQ̂u(t ). (A1b)

Taking the time derivative of Eq. (A1a) and putting
Eq. (A1b) into it, we obtain the following equation:

¨̂xα j (t ) = −ω2
α j x̂α j (t ) −

∑
u

cαu j

mα j
Q̂u(t ). (A2)

One can verify the formal solution to Eq. (A2) is

x̂α j (t ) = x̂α j (0) cos ωα jt + p̂α j (0)

mα jωα j
sin ωα jt

+
∑

u

cαu j

mα jωα j

∫ t

0
dτ sin ωα j (t − τ )Q̂u(τ ). (A3)

Meanwhile, we know from the definition of F̂ B
αu that

F̂ B
αu(t ) =

∑
j

cαu j

[
x̂α j (0) cos ωα jt + p̂α j (0)

mα jωα j
sin ωα jt

]
.

(A4)

Putting Eq. (A4) into Eq. (4), we directly obtain

φαuv (t ) =
∑

j

cαu jcαv j

mα jωα j
sin ωα jt

⇒ φ̃αuv (ω) =
∑

j

cαu jcαv j

mα jωα j

ωα j

−ω2 + ω2
α j

. (A5)

Thus, obviously we find Eq. (5). We can also see that φ̃α (ω)
is a symmetric matrix.

APPENDIX B: PROOF OF POSITIVITY
AND NORMALIZATION

From the positivity of JQQ(ω) [31], we directly know
PPuPu (ω) � 0. Once we rewrite Eq. (11) as PQuQu (ω) =
2{[V −∑α φ̃α (0)]JQQ(ω)}uu/πω (note that JQQ(ω) is sym-
metric), its positivity becomes evident, since k ≡ V −∑

α φ̃α (0) and JQQ(ω) is also positive definite [31]. For the
normalization of PQuQv

(ω), we notice the following relation
(cf. Eq. (2.17) in Ref. [31]):

χ̃QQ
uv (0) = 1

π

∫ ∞

−∞
dω

JQQ
uv (ω)

ω
. (B1)

One can notice that JQQ
uv (ω) is an odd function, since

JQQ
uv (−ω) = −JQQ

vu (ω) [31] and JQQ(ω) is symmetric. We fur-
ther obtain from Eq. (B1) that⎧⎨
⎩
[

V −
∑

α

φ̃α (0)

]−1
⎫⎬
⎭

uv

= χ̃QQ
uv (0) = 2

π

∫ ∞

0
ds

JQQ
uv (ω)

ω
,

(B2)

where the first equality comes from Eq. (9a). Equation (B2) is
equivalent to

δuw =
∑

v

2

π

∫ ∞

0
dω

JQQ
uv (ω)

ω

[
V −

∑
α

φ̃α (0)

]
vw

. (B3)

In the special case of u = w and considering the sym-
metry of V , φ̃α (0), and χ̃QQ(ω), we can deduce that∫∞

0 dωPQuQu (ω) = 1.

As for PPuPu (ω), from Eq. (2.17) in Ref. [31] we obtain

χ̇QQ
uv (0) = 1

π

∫ ∞

−∞
dω ωJQQ

uv (ω). (B4)

We can also know from Ref. [22] that χ̇QQ(t ) = −�χQP(t ).
Letting t = 0, we obtain χ̇QQ(0) = � since χQP

uv (0) =
i〈[Q̂u, P̂v]〉 = δuv . Using this result and Eq. (B4), we arrive at
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∫∞
−∞ dω ωJQQ

uv (ω) = π�uδuv . By observing that JQQ
uv (ω) is an

odd function, we can further deduce the following:

2
∫ ∞

0
dω ωJQQ

uv (ω) = π�uδuv, (B5)

which in the case of u = v is equivalent to
∫∞

0 dωPPuPu (ω)=1,
and thus we finish the proof for the normalization of PPuPu (ω).

APPENDIX C: ANALYSIS OF THE CASES X̂i �= X̂j

In this section we complete the derivation of our quantum
counterpart of the generalized equipartition theorem by con-
sidering the cases of X̂i �= X̂ j . We start from

1

2

〈{
P̂u,

∂HBO

∂P̂v

}〉
= 1

2
�v

〈{
P̂u, P̂v

}〉

= 1

2
�v

2

π

∫ ∞

0
dω ReJPP

uv (ω) coth
βω

2

= 1

π�u

∫ ∞

0
dω ω2JQQ

uv (ω) coth
βω

2

=
∫ ∞

0
dωPPuPv

(ω)
ω

2
coth

βω

2
, (C1)

with

PPuPv
(ω) = 2ω

π�u
JQQ

uv (ω), (C2)

where in the third line we use the fact that JPP(ω) = {JPP
uv (ω)}

and JQQ(ω) = {JQQ
uv (ω)} are the anti-Hermitian parts of

Eqs. (9b) and (9a), respectively. Using Eq. (B5) we obtain∫ ∞

0
dωPPuPv

(ω) = δuv. (C3)

Similarily, we evaluate

1

2

〈{
Q̂u,

∂HBO

∂Q̂v

}〉

= 1

2

∑
w

[
Vvw −

∑
α

φ̃αvw(ω)

]〈{
Q̂u, Q̂w

}〉

= 1

2

∑
w

2

π

∫ ∞

0
dω

[
Vvw −

∑
α

φ̃αvw(ω)

]

× Re JQQ
uw (ω) coth

βω

2

=
∫ ∞

0
dωPQuQv

(ω)
ω

2
coth

βω

2
, (C4)

with

PQuQv
(ω) = 2

πω

∑
w

[
Vvw −

∑
α

φ̃αvw(ω)

]
JQQ

uw (ω). (C5)

By utilizing Eq. (B3), we can derive the following result:∫ ∞

0
dω PQuQv

(ω) = δuv. (C6)

As an additional outcome, we can also express
Eqs. (C2) and (C6) in the following alternative forms:

PPuPv
(ω) = 2ω[JQQ(ω)χ̇−1(0)]uv/π and PQuQv

(ω) =
2[JQQ(ω)χ−1(0)]uv/ωπ , respectively.

Then we consider

1

2

〈{
Q̂u,

∂HBO

∂P̂v

}〉
= 1

2
�v〈{Q̂u, P̂v}〉

= �v

π

∫ ∞

0
dω Re JQP

uv (ω) coth
βω

2

=
∫ ∞

0
dω PQuPv

(ω)
ω

2
coth

βω

2
, (C7)

with

PQuPv
(ω) = 2�v

πω
Re JQP

uv (ω), (C8)

where JQP(ω) = {JQP
uv (ω)} is the anti-Hermitian part

of the matrix χ̃QP(ω) = {χ̃QP
uv (ω) = ∫∞

0 dω eiωtχQP
uv (t )}.

By Eq. (9c), we derive JQP(ω) = ω[χ̃QQ(ω)�−1 +
�−1χ̃QQ†(ω)]/2, which helps us to deduce∫ ∞

0
dω PQuPv

(ω) = 0. (C9)

Here, we utilized the property that χ̃QQ(ω) is an even
function in order to establish the following useful equality:∫∞

0 dω χ̃QQ(ω) = ∫∞
−∞ dω χ̃QQ(ω)/2 = χQQ(0) = 0, which

together with the expression for JQP(ω) helps us to obtain
Eq. (C9). Following a similar process, we deduce

1

2

〈{
P̂u,

∂HBO

∂Q̂v

}〉

= 1

2

∑
w

[
Vvw −

∑
α

φ̃αvw(ω)

]〈{
P̂u, Q̂w

}〉

=
∑
w

1

π

[
Vvw −

∑
α

φ̃αvw(ω)

]

×
∫ ∞

0
dω Re JQP

uw (ω) coth
βω

2

=
∫ ∞

0
dωPPuQv

(ω)
ω

2
coth

βω

2
, (C10)

with

PPQ
uv (ω) = 2

πω

∑
w

[
Vvw −

∑
α

φ̃αvw(ω)

]
Re JPQ

uw (ω),

(C11)

where JPQ(ω) = {JPQ
uv (ω)} is the anti-Hermitian part

of the matrix χ̃PQ(ω) = {χ̃PQ
uv (ω) = ∫∞

0 dω eiωtχPQ
uv (t )}.

From Eq. (9d) we obtain JPQ(ω) = −ω[�−1χ̃QQ(ω) +
χ̃QQ†(ω)�−1]/2, which also gives us∫ ∞

0
dω PPuQv

(ω) = 0, (C12)

since
∫∞

0 dω χ̃QQ(ω) = 0. Summarizing Eqs. (C1), (C3),
(C4), (C6), (C7), (C9), (C10), and (C12) and the results of the
cases of X̂i = X̂ j in the main text, we finally obtain Eqs. (17)
and (18).
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APPENDIX D: ALTERNATIVE APPROACH
FOR THE ENERGY

To obtain Eqs. (28) and (29) for the multimode case, we set
N = nS +∑α nα and follow the procedures in Ref. [23].

(i) From a normal-mode analysis we obtain the following
relation between χ̃QQ(ω) and all the normal frequencies {ωr}:

det χ̃QQ(ω) = (−1)nS det �

∏
α j

(
ω2 − ω2

α j

)
∏N

r=1

(
ω2 − ω2

r

) , (D1)

whose derivation is presented hereafter.
Applying a similar treatment as in Appendix A to Q̂u(t )

and P̂u(t ), we obtain

¨̂Qu(t ) +
∑

v

�vVuvQ̂u(t ) +
∑
α j

�ucαu j x̂α j (t ) = 0. (D2)

Let

Q̂u(t ) = Qu(ω)e−iωt , x̂α j (t ) = xα j (ω)e−iωt , (D3)

where ω is the normal frequency. To perform a normal-mode
analysis, we put Eq. (D3) into Eqs. (A2) and (D2), finding

−ω2Qu(ω) +
∑

v

�vVuvQv (ω) +
∑
α j

�ucαu jxα j (ω) = 0,

(D4a)

−ω2xα j (ω) + ω2
α jxα j (ω) +

∑
v

cαu j

mα j
Qu(ω) = 0.

(D4b)

Solving Eq. (D4b) for xα j (ω) and substituting it into
Eq. (D4a), we obtain

∑
v

⎡
⎣−ω2δuv + �vδuv +

∑
α j

�u
cαu jcαv j

mα j
(
ω2 − ω2

α j

)
⎤
⎦Qv (ω) = 0.

(D5)

To obtain nontrivial normal frequencies, we require
[cf. Eq. (A5)]

det

[
�V − ω2I − �

∑
α

φ̃α (ω)

]
= 0, (D6)

which is also an equation for all the normal frequencies {ω}.
As a function with respect to ω2 [cf. Eqs. (9a) and (A5)],
det χ̃QQ(ω) has singular points at all {ω2

r } and zero points at
all {ω2

α j}. Therefore, we can write det χ̃QQ(ω) in the form
of Eq. (D1). Note that nS is the dimension of the matrix
and the factor (−1)nS comes from the change of sign in the
determinant.

(ii) Once we denote A(z) ≡ det χ̃QQ(z1/2), mathemati-
cally it is easy to know

d

dz
[A(z)]−1

∣∣∣∣
z=ω2

r

= Res
[
A(z), ω2

r

]−1
, (D7)

which helps us to recast Eq. (24) as

UT(β ) =
N∑

r=1

u(ωr, β )
d

dz
[A(z)]−1

∣∣∣∣
z=ω2

r

Res
[
A(z), ω2

r

]
.

(D8)

FIG. 2. Plots of (a) the contour C1 and (b) the contour C. Here
{ω2

1, ω
2
2, . . .} denote elements in {ω2

α j}.

By the residue theorem we further write Eq. (D8) as

UT(β ) = − 1

2π i

∫
C1

dz u(z1/2, β )
d

dz
[A(z)]−1A(z), (D9)

where the contour C1 is shown in Fig. 2(a).
(iii) In order to change the contour C1 into C [see

Fig. 2(b)], we need to consider a set of clockwise circle con-
tours Cα j : |z − ω2

α j | = ε. Since C = C1 +∑α j Cα j and we
have ∑

α j

∫
|z−ω2

α j |=ε

dz u(z1/2, β )
d

dz
[A(z)]−1A(z)

= 2π inS

∑
α j

ωα j

2
coth

βωα j

2
, (D10)

the derivation of Eq. (D10) is straightforward as long as we
remember [cf. Eq. (9a)]

A(z) ≡ det χ̃QQ(z1/2)

= det �/ det

[
�V − zI − �

∑
α

φ̃α (z1/2)

]

:= (−1)nS det �/ det C(z), (D11)

where we define

C(z) ≡ zI − �V − �
∑
α j

cα j
ωα j

z − ω2
α j

(D12)

for simplification. Thus,

d

dz
[A(z)]−1A(z)

= (−1)nS (det �)−1 d

dz
det C(z) × (−1)nS det �/ det C(z)

= det C(z) tr

[
C−1(z)

d

dz
C(z)

]
/ det C(z)

= tr

[
C−1(z)

d

dz
C(z)

]
. (D13)
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By noting that

d

dz
det C(z) = det C(z) tr

[
C−1(z)

d

dz
C(z)

]
, (D14)

we find

C−1(z)
d

dz
C(z) =

⎡
⎣zI − �V − �

∑
α j

cα j
ωα j

z − ω2
α j

⎤
⎦

−1⎡
⎣I + �

∑
α j

cα j
ωα j(

z − ω2
α j

)2
⎤
⎦

=
⎡
⎣zI − �V − �

∑
α j

cα j
ωα j

z − ω2
α j

⎤
⎦

−1

1(
z − ω2

βk

)2

×
⎡
⎣(z − ω2

βk

)2
I + �cβkωβk + �

∑
α j �=βk

cα jωα j

(
z − ω2

βk

)2
(
z − ω2

α j

)2
⎤
⎦

=
⎡
⎣z
(
z − ω2

βk

)2
I − �V

(
z − ω2

βk

)2 − �cβkωβk
(
z − ω2

βk

)− �
∑

α j �=βk

cα jωα j

(
z − ω2

βk

)2
z − ω2

α j

⎤
⎦

−1

×
⎡
⎣(z − ω2

βk

)2
I + �cβkωβk + �

∑
α j �=βk

cα jωα j

(
z − ω2

βk

)2
(
z − ω2

α j

)2
⎤
⎦

lim
z→ω2

βk= [− �cβkωβk
(
z − ω2

βk

)]−1(
�cβkωβk

)
= − 1

z − ω2
βk

I. (D15)

Evaluating Eq. (D10) using Eqs. (D13) and (D15) gives us
Eq. (D10). By Eq. (25) we deduce the following expression:

UT(β ) − nSUB(β ) = − 1

2π i

∫
C

dz u(z1/2, β )
d

dz
[A(z)]−1A(z).

(D16)

(iv) First we set z = ω2 in Eq. (D16). Then by noticing
that χ̃QQ(ω) = [χ̃QQ(−ω)]∗ [31] and the function u(ω, β ) is
even with respect to ω, we simplify Eq. (D16) to obtain the
final remarkable expression:

UT(β ) − nSUB(β ) = 1

π

∫ ∞

0
dω u(ω, β ) Im

d

dω
ln det χQQ(ω).

(D17)

Equation (D17) can also be recast to the form of the equipar-
tition theorem:

UT(β ) − nSUB(β ) =
∫ ∞

0
dωB(ω)

ω

2
coth

βω

2
, (D18)

where

B(ω) = 1

πnS
Im

d

dω
ln det χ̃QQ(ω). (D19)

Therefore we obtain Eqs. (28) and (29), which reduce to
Eq. (26) when nS = 1.

APPENDIX E: PROOF OF Eq. (31) IN THE MAIN TEXT

In this section we give a proof of Eq. (31). From
Eqs. (11), (14), and (20) we obtain

P (ω) = 1

2nS

∑
u

[
PQuQu (ω) + PPuPu (ω)

]

= 1

2nS

∑
u

{
2

πω

∑
v

[
Vuv −

∑
α

φ̃αuv (0)

]
JQQ

uv (ω)

+ 2ω

π�u
JQQ

uu (ω)

}

= 1

πnSω
tr

{[
V −

∑
α

φ̃α (0) + ω2�−1

]
JQQ(ω)

}

= 1

πnSω
tr

{[
V −

∑
α

φ̃α (0) + ω2�−1

]

× Im

[
�V − ω2I − �

∑
α

φ̃α (ω)

]−1}
. (E1)

In the weak-coupling limit, all cαu j → 0, and therefore
φα (ω) → 0 [cf. Eq. (A5)]. Equation (E1) becomes

P (ω) = 1

πnSω
tr[(V + ω2�−1) Im(�V − ω2I)−1]

=
{

0, if �V − ω2I is invertible,
∞, if �V − ω2I is not invertible,

(E2)
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but we still know from the normalization of PQuQu (ω) and
PPuPu (ω) that ∫ ∞

0
dωP (ω) = 1. (E3)

Equation (E2) is always 0 except for the square root of the
eigenvalues of the matrix �V . Considering Eq. (E3) and the
definition for the Dirac delta function, we obtain

lim
{cαu j}→{0}

P (ω) = 1

nS

∑
ω2

i ∈spec(�V )

δ(ω − ωi ), ω > 0, (E4)

where the summation is over all the square roots of eigen-
values of the matrix �V (considering multiplicity). The
coefficients 1/nS come from the numbers of the positive
eigenvalues of �V , which equals nS due to the fact that
�V and

√
�V

√
� are similar and the latter is a positive

definite matrix of dimension nS. Since JQQ(ω) is odd [31],
it follows that P (ω) is an even function, as indicated by
the penultimate equality in Eq. (E1). With this we obtain
Eq. (31).
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