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Unveiling the interplay of Mollow physics and perturbed free induction decay
by nonlinear optical signals of a dynamically driven two-level system
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Nonlinear optical signals in optically driven quantum systems can reveal coherences and thereby open up
the possibility for manipulation of quantum states. While the limiting cases of ultrafast and continuous-wave
excitation have been extensively studied, the time dynamics of finite pulses bear interesting phenomena. In
this paper, we explore the nonlinear optical probe signals of a two-level system excited with a laser pulse of
finite duration. In addition to the prominent Mollow peaks, the probe spectra feature several smaller peaks for
certain time delays. Similar features have been recently observed for resonance fluorescence signals [K. Boos
et al., Phys. Rev. Lett. 132, 053602 (2024)]. We discuss that the emergent phenomena can be explained by
a combination of Mollow triplet physics and perturbed free induction decay effects, providing an insightful
understanding of the underlying physics.
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I. INTRODUCTION

Linear and nonlinear optical signals are powerful tools to
investigate quantum emitters in order to achieve new ways of
manipulation for quantum technologies. In such signals, the
quantum emitter is excited by a single or a set of laser pulses
and the system’s response is monitored with different outputs
depending on the signal of interest.

One class of optical signals is resonance fluorescence, i.e.,
the emission of a resonantly, coherently driven system [1,2].
A prominent example of coherent physics in resonance flu-
orescence is the Mollow triplet occurring for driving with a
continuous-wave (cw) excitation [3]. The Mollow triplet has
been measured for quantum emitters such as semiconductor
quantum dots [4–6] or other artificial two-level systems such
as superconducting circuits [7]. Moving from cw excitation
to finite pulses, a more complex spectrum emerges in the
resonance fluorescence [8–12]. For finite Gaussian pulses,
additional peaks appear between the central and outer Mollow
lines. Measuring time-dependent dressed states poses a high
demand on the experimental setup and measurement fidelity,
especially for quantum emitters working in the optical regime.
Therefore, the full emission spectrum of a quantum dot, show-
ing multiple side peaks, was only experimentally detected
recently [13,14], coined as dynamical Mollow triplet.

Another class of optical signals is the spectra gained in co-
herent control experiments [15]. In such experiments, a pump
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pulse creates a coherence in the system, which is probed by
following pulses. In most cases, the exciting laser pulses are
much shorter than the timescales of the system. In the simplest
case, two pulses are employed in pump-probe spectroscopy
[16–19], but also four- or six-wave-mixing spectroscopy tech-
niques are commonly used [20–23]. Interestingly, if the order
of pulses is inverted, i.e., the probe pulse comes before the
pump pulse, a perturbed free induction decay occurs [24–33].
In the spectra, this manifests as fringes in addition to the main
peak.

Motivated by recent experimental findings on the dynam-
ical Mollow spectrum [13,14], in this paper, we study the
emergence of the observed features by simulating the opti-
cal signals of a finite excitation pulse within a pump-probe
setup. Choosing a pump-probe configuration over resonance
fluorescence has the advantage of access to the dynamics
of the system. For this, we extend the methods presented
in Refs. [34,35], where the case of a cw pump pulse was
studied, to finite pulses. Due to the knowledge of the time-
resolved dynamics, we can unveil the interplay of Mollow
triplet physics and perturbed free induced decay in the probe
spectra. Comparing our findings in the probe spectra to the
spectra measured in resonance fluorescence [13], we find a
good agreement between the main features as the physics
behind both signals is the same.

II. THEORETICAL BACKGROUND

To model the optical signals, we consider a two-level sys-
tem, which is a common model for quantum emitters such
as quantum dots. The two levels are the ground state |g〉 and
the exciton state |x〉 separated by the energy difference Ex.
The coupling to an external driving light field is described
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FIG. 1. Scheme of a pump-probe setup as described in detail in
the text.

semiclassically in the dipole and rotating wave approximation.
The light field energy h̄ωL with the laser frequency ωL is
assumed to be resonant to the transition between the two
states. Under these conditions, the Hamiltonian

H = − h̄

2
[�̃∗(t ) |g〉 〈x| + �̃(t ) |x〉 〈g|] (1)

describes the carrier light interaction via the light field �̃(t ) =
�(t ) exp(−iωLt ), where �(t ) denotes the complex, temporal
envelope of the field. By transforming into the rotating frame,
this Hamiltonian can be rewritten as

H = − h̄

2
[�∗(t ) |g〉 〈x| + �(t ) |x〉 〈g|]. (2)

Considering a pump-probe setup, we are interested in the
probe signals under different pulse shapes of the pump laser.
A schematic drawing of such a setup is shown in Fig. 1. In
these kinds of experiments, a pump pulse is used to excite the
system, i.e., inducing a dynamic change. After a time delay
τ , with respect to the pump pulse, a second pulse is used to
probe the response of the system. While the pump pulse can
be strong, e.g., it can cause a complete population inversion,
the ultrashort probe pulse is so weak that it hardly influences
the dynamics of the system.

The envelope of the complete light field is composed of the
pump pulse �pump and the probe pulse �probe,

�(t ) = �pump(t ) + �probe(t − τ )ei�. (3)

We assume a phase factor ei� between the pump and probe
pulse. Using the Hamiltonian with the two light fields, we
set up the equations of motion and solve these by numerical
integration.

To calculate the probe polarization, following Ref. [32], we
expand the optical polarization P(t, τ,�) in a Fourier series
with respect to the phase factor,

P(t, τ,�) =
∑

n

Pn(t, τ )e−in�, (4)

and perform a phase selection. The desired probe polarization
is calculated by the Fourier coefficient,

Pn(t, τ ) = 1

2π

∫ 2π

0
d�P(t, τ,�)ein�, (5)

for n = 1. The absorption spectrum is described based on
the absorption coefficient, which can be determined by

calculating the imaginary part of the Fourier transformation
of the probe polarization [34],

α(ω) = Im{F[P1(t, τ ) · e−�t ]}. (6)

When we refer to absorption in the spectrum, this correlates to
positive absorption coefficients, while negative values indicate
a gain or emission. Furthermore, we introduce a damping to
the polarization with the damping coefficient � = 0.139 ps−1.
While this damping can be used to describe a loss of optical
polarization in the system due to the interaction with the
environment, in this work it is purposely chosen in such a way
that it highlights the underlying physical effects. As such, the
value of � is enhanced compared to what is found for typical
decoherence effects to help visualize the physics behind the
findings.

III. RESULTS

The results are structured as follows: We begin by briefly
summarizing the known limiting cases of the pump pulse
being either a cw pulse switched on instantaneously or an
ultrashort pulse in the δ-pulse limit. Understanding these cases
will set the stage to discuss the probe spectra for finite pulses.
For this, we start by examining rectangular pulses and then
gradually transition to Gaussian pulses by softening the pulse
edges. To connect our calculations with real-world numbers,
we consider typical timescales of quantum dot dynamics [13],
which gives a typical timescale of picoseconds. We conclude
by comparing our findings for the probe spectra with measure-
ments in resonance fluorescence from Ref. [13].

In all cases, we consider an ultrafast probe pulse, which, in
the numerical calculations, is given by a Gaussian pulse with
the envelope

�probe(t ) = αprobe√
2πσ 2

probe

exp

(
−(t − τ )2

2σ 2
probe

)
. (7)

The pulse area of the probe pulse is set to be very weak with
αprobe = 0.02π and, to have an ultrashort pulse, we set the
pulse width to σprobe = 10 fs. The delay τ of the probe pulse
defines the time difference between the pump and probe pulse,
as discussed below for the different pump pulses.

A. Limiting cases

The first limiting case is the one of cw excitation. Thus,
for the pump pulse, we consider a constant pulse with pulse
strength �cw switched on instantaneously,

�pump(t ) = �cw �(t − NTR),

where � is the Heaviside function. We set the starting point
of the pulse to −N oscillation periods, such that the reference
point for the probe pulse is the N th maximum of oscillation.
This leads to Rabi oscillations with the period TR = 2π/�cw.

We set h̄�cw = 2 meV, i.e., �cw = 3.039 ps−1 and TR =
2.066 ps. Initially, the system is in its ground state and we
choose N = 250. As we work in a rotating frame, the energy
h̄ω = 0 refers to the transition energy of the system.

The resulting probe spectra for different delays τ are shown
in Fig. 2. They are all normalized to the middle peak for
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FIG. 2. Color plot of the normalized probe spectrum (a) under cw
excitation switched on instantaneously as a function of delay τ for
two periods from −TR (−2.06 ps) to TR (2.06 ps) and (b) for δ-pulse
excitation at τ = 0 as a function of τ . Cuts showing probe spectra
for the cw pump at (c) τ = TR/4 and (d) τ = 0 and for ultrafast
excitation at (e) τ = 1 ps and (f) τ = −5 ps.

τ = 0. Due to the periodicity of the Rabi oscillations for a
cw laser, the spectra are the same for τ → τ + nTR, with
n ∈ N . Theses spectra exhibit three distinct peaks at h̄ω = 0
and h̄ω = ±h̄�R, as known from the Mollow triplet. The
amplitude variations in these peaks reflect the dynamics of the
two-level system. When the peaks have a positive amplitude,
the system is in the ground state, while negative amplitudes
correspond to the system being in the excited state. For the
time delays τ = TR/4 and τ = 3TR/4, both states are half
occupied, resulting in the disappearance of the middle peak,
with gain and absorption balancing each other out. Exemplary
cuts of the spectra are shown in Fig. 2(c) for TR/4 and in
Fig. 2(d) for τ = 0. This system dynamics, also including
phonons and detuning, is discussed in detail in Refs. [34,35].

In the second limiting case, we consider an ultrafast pump
pulse, such that there is no overlap between the pump and
probe pulse. The resulting spectra are shown in Fig. 2(b). In
the simulations, we approximate the δ pulses with ultrashort
Gaussian pulses,

�pump(t ) = αuf√
2πσ 2

uf

e− t2

2σuf
σ 2

uf→0−→ �ufδ(t ). (8)

Here, αuf is the pulse area of the pulse, while in the numerics,
we assume the pulse with σuf = σprobe. The time delay refers
to the difference between the two pulses.

In most cases, the order of pump and probe pulses is such
that the pump pulse excites the system and the probe pulse
arrives after the pump pulse. In our model, this corresponds
to τ > 0. Using a pulse area of π , the pump pulse inverts the

system and the excited state is fully occupied. Accordingly,
for τ > 0, we see a single negative peak at h̄ω = 0, corre-
sponding to gain.

A distinctly different spectrum emerges for a negative time
delay τ < 0, where the probe pulse precedes the pump pulse.
Instead of a single peak, we find a strong peak at h̄ω = 0, but
with an amplitude smaller than one, next to a series of side
peaks. An example is shown in Fig. 2(f). This is known as
perturbed free induction decay [24–33]. With the probe pulse,
the probe polarization starts to oscillate, but is then perturbed
by the pump pulse. This results in a rectangular window for
the probe polarization, which in the spectrum corresponds to
a sinc function. The sinc function is now convoluted with the
single peak, which describes the ripple structure observed in
Figs. 2(b) and 2(f). We note that the occurrence of the ripple
structure is strongly connected to the damping coefficient �

used to calculate the polarization [cf. Eq. (5)]. If the probe
polarization has decayed before the pump pulse sets in, the
perturbed free induction decay is not observed.

B. Rectangular pump pulse

Now we want to expand the model to finite pulses. Coming
from the limiting cases, the most simple case is a rectangular
pulse of the form

�pump(t ) = �rect rect

(
t

NTR

)

= �rect �

(
t + 1

2
NTR

)
�

(
1

2
NTR − t

)
.

We set h̄�rect = 2 meV, i.e., �rect = 3.039 ps−1 and TR =
2.066 ps. The total pump pulse duration is chosen such that
N = 20 oscillation periods are included in the pulse, which
results in a duration of Ttotal = NTR = 41.32 ps. As a refer-
ence point for the time delay, we choose the center of the
rectangular pulse.

The probe spectrum for a rectangular pulse as a function
of time delay τ is depicted in Fig. 3. The pump pulse is
centered at t = 0, and thus τ < −20.66 ps refers to the probe
pulse coming before the pump pulse and τ > 20.66 ps after
the pump pulse. We can discriminate four different regimes
depending on the delay τ . We will explain the behavior using
four selected spectra shown in Figs. 3(b)–3(e). The simplest
case is shown in Fig. 3(b), where the probe pulse comes after
the pump pulse. After the pump pulse, the system is in its
ground state and, in agreement with the limiting case of a δ

pulse, we see a single absorption line at 0 meV. The other
limiting case of a cw excitation is achieved shortly after the
pump pulse is switched on, e.g., at τ = −16.5 ps, as shown in
Fig. 3(d). Here, we again see three absorption lines as typical
for a Mollow-type spectrum.

A quite different behavior occurs for probe pulses near the
end of the pump pulse, as shown in Fig. 3(c). We observe
an additional ripple structure modifying the Mollow triplet.
In addition, the amplitude of the Mollow peaks is reduced.
This is a consequence of effects similar to the perturbed free
induction decay we already observed in the limiting case of
ultrashort excitation with a pump pulse preceding the probe
pulse. This results in the probe polarization being cut out
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FIG. 3. (a) Color plot of the probe spectra for a rectangular
pulse acting from −20.6 ps (−10TR) to 20.6 ps (10TR). Cuts through
the color plot (highlighted with gray lines) show the probe spectra
at (b) τ = 26.9 ps, (c) τ = 16.5 ps, (d) τ = −16.5 ps, and (e)
τ = −26.9 ps.

with a rectangular window, defined by the probe pulse and
the ending of the pump pulse. To illustrate this in more detail,
we show the dynamics of the probe polarization together with
the laser pulse sequence in Fig. 4. Note that in agreement with
the rotating frame, we only show the modulation of the probe
polarization. The probe pulse starts the probe dynamics at its
onset at t = 14.47 ps and oscillates with the Rabi frequency
during the action of the pump pulse. When the pump pulse
ends, the probe polarization becomes constant again. The
dashed curve in Fig. 4(b) shows the damped probe polariza-
tion used for the Fourier transform. This behavior yields a

FIG. 4. (a) Laser envelopes of a rectangular pump pulse and an
ultrashort probe pulse at τ = 14.47 ps and corresponding (b) probe
polarization (orange), damped probe polarization (gray), and probe
spectrum (inset).

FIG. 5. Probe spectra for a rectangular pulse with a sharp edge
(blue, �T = 0) and softened edge (orange, �T = 12.6 ps). Pulse
sequences are shown above. In both cases, probing is performed
30.9 ps after the pump pulse has started.

spectrum that is a convolution of the Mollow triplet known
from the cw limit with a sinc function.

In the last case [Fig. 3(e)], when the probe pulse acts before
the pump pulse, i.e., τ < −20.66 ps, there is no dynamical
pattern and the central peak remains positive. As in the δ-pulse
case, a ripple pattern occurs as expected for the perturbed free
induction decay. Interestingly, the system already feels the
onset of the cw pulse and a signature of the Mollow triplet
is observed.

C. Smeared out laser pulse

In the next step, we analyze the influence of the pulse
shape on the probe spectra during the pulse. We have seen
that the switch-off is essential for the ripple pattern observed
in addition to the Mollow triplet. Therefore, we soften the
switch-off edge of the rectangular pulse, while maintaining
a constant pulse area for the whole pulse. To achieve this, we
divide our pulse into two separate parts, namely, the constant
rectangular part and a softened edge,

�pump(t ) = �rect(t ) + �off(t ).

The softened edge is described by a cos2 function with a
period of 2�T and a duration of �T with the equation given
in the Appendix. In the case of a sharp edge, the rectangular
part is switched on at ton and off at toff. For a soft edge, both
the pulse’s position and its duration get adjusted in such a way
that the pulse area over the whole pulse stays constant and the
start of the pulse does not change. The time delay τ is chosen
to coincide with a maximum of occupation shortly before the
end of the pulse, i.e., to be in the same regime as in Fig. 3(c).
Two examples for pump pulses are depicted in Figs. 5(a) and
5(b) for the cases �T = 0 ps and �T = 12.6 ps, respectively.
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FIG. 6. Color plot of the probe spectra during the excitation with
a Gaussian pulse for different time delays τ . The temporal profile of
the pulse is depicted on the left side.

The resulting spectra for these two pulses are shown in
Fig. 5(c). Both cases capture a similar structure: They both
show a three-peak structure with additional minor peaks be-
tween them. Our focus lies on the behavior of these minor
peaks. For the rectangular pulse, there are three peaks between
each side and the central peak, all with similar strength. In
the case of the softened edge, all peaks are slightly shifted to
the main center peak. Additionally, their heights vary strongly
from each other and increase the further away the associated
peak is from the center. Another important difference is found
outside of the outer Mollow peaks, which is highlighted in the
inset of Fig. 5(c). We observe that peaks in this area, although
already weak in the other studied cases, are damped away
almost entirely.

D. Gaussian laser pulse

1. Pulse delay dependence

With these findings in mind, we want to investigate the
spectrum of the probe signal of a Gaussian-shaped laser pulse,
as used in many experiments,

�pump(t ) = α√
2πσ 2

P

exp

(
− t2

2σ 2
P

)
. (9)

The normalized probe spectra as a function of pulse delay are
depicted in Fig. 6. For the Gaussian pulse, it is less obvious
to define delays for which the probe pulse is clearly before or
after the pulse. We speak of the onset of the pulse at roughly
−20 ps, such that a delay of τ < −20 ps corresponds to being
before the pulse. Correspondingly, for delays of τ > 20 ps,
the pump pulse is mostly gone, so we speak of after the pulse.
Before and after the pump pulse, the spectra are as expected.
Of high interest is the behavior during the pulse for delays

−20 < τ < 20 ps. For the Gaussian pulse, the instantaneous
Rabi frequency changes continuously during the pulse. Ac-
cordingly, in the probe spectrum, we can identify two side
peaks following the Gaussian shape of the pump pulse as a
function of energy. The maximum splitting of the outer peaks
is reached for τ = 0 ps. In addition, the oscillation in the time
delay due to the oscillating occupation is visible as well. At
the same time, we notice the manifestation of an additional
checkered pattern and a broadening of the peaks towards
the end of the Gaussian pulse. All of these observations are
consequences of the combined effects from Mollow triplet and
perturbed free induction decay physics.

2. Pulse area dependence

Now that we understand the general concept of the under-
lying physics and especially the dependence of the spectrum
on the pulse delay, we aim to match our findings with the
observations in the resonance fluorescence experiments [13].
These experiments do not have access to the time-resolved
dynamics during the pulse, but still the same ripple structure is
observed in the spectra. Furthermore, increasing the pulse area
results in the emergence of a stripe pattern. In order to match
these findings, we investigate how the spectra depend on the
pulse area. For that, we construct our pump pulse in such
a way that a rectangular-shaped pulse part ensures that the
system is always in the same state, i.e., the ground state, when
the probe pulse hits the system at tprobe. Doing so eliminates
the additional amplitude dynamics resulting from the system’s
state dynamics. Immediately after the probe pulse, the switch-
off process begins, where the laser pulse is simulated by half
a Gaussian pulse. The equations are given in the Appendix.

We compare our theoretical results for varying pump pulse
areas in Fig. 7(a) with experimental data of the dynamical
Mollow spectra in Fig. 7(b). Cuts of the spectra for a pulse
area of 6π are displayed in Figs. 7(c) and 7(d). We obtain a
central peak at h̄ω = 0 for all pulse areas. With increasing
pulse area, the effective Rabi frequency increases approxi-
mately linearly, which is seen by the energy of the outermost
side peaks. In between, we find the stripe pattern induced
by the finite pulse length. For every pulse area increment
of roughly 2π , an additional set of peaks inside the Mollow
triplet appears. The same qualitative behavior is observed in
the experimental data. The spectra for a given pulse area of 6π

also match well with our simulations, as shown in Figs. 7(c)
and 7(d). Note that due to our choice of �, we overestimate
the magnitude of the side peaks, while for resonance fluores-
cence, due to the nature of the signal, the effects are smaller
and a logarithmic scale was used. Besides the side peak, for
h̄ω > 0, there are three signatures in both experiment and
theory, the uttermost being the Mollow peak and two fea-
tures from the perturbed free induction decay. On the lower
energy h̄ω < 0 side, the theoretical spectrum again shows
three peaks, while in the experimental data, a more uniform
spectrum appears. Here, the interaction with acoustic phonons
leads to the prominent phonon sidebands [36,37]. While the
phonon relaxation can be described within a rate equation in
the dressed states [34,35], phonon sidebands are a result of
the polaron formation captured by non-Markovian approaches
[38–41]. As the phonon sidebands are not the main focus of
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FIG. 7. Comparison of (a) theoretical and (b) experimental data
for spectra with Gaussian-shaped pulses with a duration (FWHM)
of 12 ps for different pulse areas. Cuts comparing the (c) theoretical
and (d) experimental data for a pulse area of 6π . Here, the values for
pulse areas and pulse duration of the theoretical pulses refer to after
the probe pulse.

the work, we refrained from taking up the numerical effort to
include these and describe well-established phenomena, but
focused on the ripple structure visible in both pump-probe
simulations and resonance fluorescence measurement.

IV. CONCLUSION

We have studied the time-resolved probe spectra of a dy-
namically driven two-level system. For the limiting cases of
ultrashort laser pulses and continuous driving, we observed
the well-established perturbed free induction decay and the
Mollow triplet. We showed that for rectangular laser pulses,
four distinctly different regimes can be identified—one where
the spectral behavior is dominated by the Mollow triplet
physics and one where the perturbed free induction decay
determines the spectrum, and two regimes where the probe
spectrum results from the interplay of both effects. In the latter
regimes, alongside the Mollow triplet, an additional ripple
pattern appears. Softening the switch-off process of these
pulses and therefore changing their shape led not only to shifts
of all peaks towards the center and changes in peak heights,
but also to the disappearance of the spectrum outside of the
outer Mollow peaks. All of the observed spectral features also

occur for Gaussian-shaped pulses and provide an insightful
understanding of the formation and the underlying physics of
the recently measured dynamical Mollow spectrum. In con-
clusion, we found that the probe spectra of nonlinear optical
signals for finite pulses depend on both the pump pulse shape
and duration, as well as the probe timing. They emerge as a
consequence of the interplay between Mollow triplet physics
and perturbed free induction decay.
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APPENDIX: EQUATIONS FOR THE PULSES

For the pulse with softened edges, we use the following
expressions:

�rect(t ) = �rect · rect

(
t + �T /4

toff − �T /2 − ton

)
,

�off(t ) = �rect · cos2

{
π

2�T
· [t − (toff − �T /2)]

}
.

For the pulse area dependence, the equation for the pulse
reads

�pump(t, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�area(α) · rect

(
t− tprobe+ton(α)

2
tprobe−ton(α)

)
, t < tprobe

2α√
2πσ 2

P

e
− (t−tprobe )2

2σ2
P , t � tprobe,

where α refers to the pulse area after the probe pulse. A
smooth transition between the two pulse parts and the desired
selective state preparation at tprobe, removing additional am-
plitude dynamics in the probe spectrum, are both achieved by
varying ton and �area for every value of α, such that they read

ton(α) = tprobe − αprep

�area(α)
,

�area(α) = α√
2πσ 2

P

.

The pulse area αprep is chosen in such a way that the system is
always in its ground state when its probed, i.e., αprep = 2π in
our calculations.
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