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High mobility two-dimensional systems with superposed 1D lateral periodic potentials exhibit characteristic
commensurability (Weiss) oscillations that reflect the interplay of the cyclotron radius at the Fermi level and
the superlattice period. Here, we impose a one-dimensional periodic potential on strained HgTe, which is a
strong 3D topological insulator. By tuning the Fermi level with top gates, the effects of the artificial potential
can be studied in the bulk gap, where only Dirac surface states exist, in the conduction band, and in the
valence band, where Dirac electrons and holes coexist. On the electron side, we observe clear commensurability
oscillations whose period is governed by the carrier density of the top-surface Dirac electrons. Unexpectedly,
weak commensurability oscillations are also observed in the valence band with a period that depends on both
electron and hole density.
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I. INTRODUCTION

Three-dimensional (3D) topological insulators (TIs) pos-
sess topologically protected, gapless metallic surface states
that form a two-dimensional electron system (see [1] and
references therein). The unusual properties of these interface
states make TIs an interesting system, e.g., for spintronics and
for the realization of topological superconductivity (see some
examples in [2–6]). Although thousands of topological insu-
lators have been identified to date [7–9], experimental studies
have focused primarily on materials based on Bi, Hg, and
Te. Strained HgTe, in particular, which is a strong topological
insulator [10] is characterized by its high carrier mobility that
allows the study of quantum effects like the quantum Hall
effect in moderate magnetic fields [11–14]. TIs such as HgTe
accommodate different types of carrier species, depending
on the gate voltage applied. When the Fermi level is in the
bulk gap [see Fig. 1(d)], only non-spin-degenerate topological
surface states exist. These states are located on the top and
bottom surfaces as well as on the side surfaces [14]. If the
Fermi level is tuned to the conduction or valence band, bulk
states also contribute to transport.

Here we study the magnetotransport of strained 3D-HgTe
[15] subjected to a unidirectional periodic potential and a
perpendicular magnetic field B. In topologically trivial, two-
dimensional electron systems with high mobility, e.g., in
semiconductor or oxide heterostructures and graphene, one
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observes in such 1D lateral superlattices commensurability or
Weiss oscillations (WOs) [17–23]. These oscillations reflect
the interplay of the two characteristic lengths of the system,
the cyclotron orbit radius RC , and the period of the 1D periodic
potential a. The resistance oscillates with 1/B periodicity and
displays minima whenever the condition

2Rc = 2
h̄kF

eB
=

(
λ − 1

4

)
a, λ = 1, 2, 3... (1)

is met. Here, kF is the Fermi wave vector, h̄ is the reduced
Planck constant, and e is the elementary charge. The commen-
surability condition can be understood both semiclassically
[24] and quantum mechanically [25]. When the commen-
surability condition Eq. (1) holds, electrons (holes) do not
feel an electric field associated with the periodic potential
on average along a cyclotron orbit so that the drift motion
( �E × �B drift) along the y direction vanishes [Fig. 1(c)]. In the
quantum mechanical picture, the weak periodic potential lifts
the Landau level degeneracy and leads to Landau bands En (n
is the Landau band index) with a dispersion in the ky direction.
The commensurability condition Eq. (1) gives the energy and
magnetic field values at which the dispersion vanishes and
the bands become flat (flat band condition). At flat bands,
the group velocity ∝ ∂En/∂ky—the quantum mechanical pen-
dant to the above drift velocity—vanishes [25]. A recently
proposed alternative description attributes the 1/B periodicity
of WOs to the difference in the k-space areas S0 − S1. Here,
S0 = πk2

F and S1 is the area of the first lens orbit in the k space
created by Bragg reflection [26].

A particularly interesting aspect is that in HgTe the sur-
face state band partially overlaps with the valence band [see
Fig. 1(d)]. This means that at the corresponding positions of
the Fermi level both electrons and holes move simultaneously
under the influence of the periodic potential.
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FIG. 1. (a) Cross section of the heterostructure with two gate
layers called sample type A below. Numbers indicate the thickness
of each layer. The fingers of the stripe gate of the lower gate are
completely encapsulated in 30 nm/130 nm SiO2/Al2O3 insulator.
The lattice constant a of the stripe gate is 500 nm (b) sample
type B: Resist stripes made of the electron beam resist calixarene
(p-chloromethyl-methoxy-calix[4]arene) create a 1D strain modula-
tion with a largely constant amplitude. The carrier density can be
varied by the planar top gate. The lattice constant is a = 300 nm.
(c) Cyclotron orbit in a one-dimensional periodic potential. The
drift velocity in the y direction vanishes when the condition 2Rc =
(λ − 1

4 )a holds. (d) Schematic band structure of strained HgTe with
valence band (blue), conduction band (red), and non-spin-degenerate
topological surface states. The Dirac point (DP) is buried in the
valence band. Due to hybridization with the valence band, the Dirac
electrons acquire a small mass causing the parabolic dispersion
[11,15,16]. EC and EV stand for the conduction band and valence
band edge, respectively. The bulk gap Eg is of the order 15 meV.

II. MATERIAL AND DEVICES

We use two different sample types named A [Fig. 1(a)]
and B [Fig. 1(b)] integrated into a Hall bar geometry (width:
50 µm, potential probe separation: 100 µm) to impose a 1D
periodic potential on the 80 nm thick layer of HgTe. In the
device type B sketched in Fig. 1(b), a unidirectional periodic
potential is achieved by the strain pattern created by an array
of 20 nm thick calixarene resist stripes [27], while the electron
density can be varied by a single top gate. The device type A,
which additionally allows tuning of the modulation strength,
is sketched in Fig. 1(a) and consists of two gates: a stripe gate
where all the stripes are connected to each other outside the
transport channel and a planar top gate, which is separated
from the stripe gate by 100 nm of oxide. By tuning the top
gate voltage Vtg and the stripe gate voltage Vsg, both modu-
lation strength and carrier density can be varied. The effect
of both voltages on the longitudinal resistivity ρxx is shown

FIG. 2. (a) Gatemap for the sample type A with top and stripe
gate [Fig. 1(a)]. The color scale shows the resistivity ρxx (�) as a
function of top gate voltage Vtg and stripe gate voltage Vsg. Along
the line of white dots the modulation potential is minimal, while
for voltages along the line of black dots, a weak, nearly constant
modulation potential is present, causing commensurability oscilla-
tions. To represent the gate voltage dependencies Vtg and Vsg of ρxx

along the black and white dotted lines, we introduce an effective 1D
voltage scale V ∗

g = (Vtg − V CNP
tg )

√
1 + (dVsg/dVtg)2, with its origin

V ∗
g (V CNP

tg ) at the respective charge neutrality point. The correspond-
ing voltage scales are shown on the color map. (b) ρxx vs V ∗

g for the
modulated (filled circles) and unmodulated (open circles) cases.

in Fig. 2(a). The arrows point in the direction of increasing
electron density, while the modulation strength varies mainly
along the direction perpendicular to the arrows. Along the line
of open circles, the modulation strength is small, as indicated
by the lowest measured resistance and suppression of WOs
(not shown). In contrast, along the line of filled circles, the
modulation potential has a higher, approximately constant
amplitude, and the resistivity shows commensurability effects.
The corresponding transport data are shown and discussed
in the following. Figure 2(b) shows zero-field resistivity line
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FIG. 3. The magnetoresistance ρxx (B), its oscillatory part �ρxx (B), and its negative second derivative −∂2ρxx (B,Vg)/∂B2. (a) Data for
device A at T = 295 mK. The upper and lower panels display line scans of the magnetoresistance ρxx and the oscillatory component �ρxx

(in blue), respectively, as well as the negative second derivative (in black). The central panel shows the color map of the negative second
derivative. The yellow color represents the minima and the blue color the maxima of ρxx . The parabolic features at small magnetic fields are
due to commensurability and reflect the flat band condition, Eq. (1). Commensurability oscillations occur not only on the electron side but
also, though weaker, in the valence band. Corresponding fits of the oscillation minima for the electron side (red triangles) and the valence band
(white dots) are shown in the graph and discussed in the text. (b) The negative second derivative of the magnetoresistance of an unpatterened
(only top gate) reference area of the same device at T = 1.4 K. The color code is the same as in (a). While the SdH oscillations for holes and
electrons are clearly visible, commensurability effects are absent. (c) The negative second derivative of the magnetoresistance for the sample
type B with a fixed 1D modulation potential [Fig. 1(b)] was taken at T = 1.55 K. The lattice period was a = 300 nm, i.e., 40% smaller than
in (a). Again, for this density-modulated system, the parabolic features at small fields are commensurability oscillations present on both the
electron and valence band sides, but with 40% higher magnetic fields compared to the panel (a). For the highest positive gate voltage, WOs
with λ up to six are resolved.

scans along full and open circles on the V ∗
g effective voltage

scale, defined in the figure caption. The increased resistivity
for the modulated case indicates the presence of a 1D periodic
potential. The gate voltage dependence of both ρxx traces is
similar to that of planar-gate-only devices [12,14].

III. TRANSPORT DATA

The color map Fig. 3(a) shows the negative second deriva-
tive of ρxx (which shows minima and maxima at the same
position as ρxx, but enhanced) as a function of V ∗

g and the
magnetic field B at T = 295 mK. Line plots of ρxx and
−∂2ρxx/∂B2 at V ∗

g = 2.5 V on the electron side and �ρxx

and −∂2ρxx/∂B2 at V ∗
g = −1.5 V in the valence band are

shown above and below the figure. The magnetoresistance

ρxx in the top panel clearly shows Weiss oscillations at low
B, which are enhanced in the negative second derivative of
the data. The Shubnikov-de Haas (SdH) oscillations begin
to appear at about 0.5 T. In the valence band (lower panel)
the WOs are barely resolved in ρxx but visible in their os-
cillatory part �ρxx when subtracting a linear background. In
the two-dimensional −∂2ρxx/∂B2 color map [central panel
of Fig. 3(a)] in weak magnetic fields, the contributions
from the WOs dominate. The resulting color pattern con-
sists of upward- and downward-facing parabolas. The upward
parabolas mirror Eq. (1). Since kF ∝ √

n and the electron
density n is proportional to Vg − V ′ (V ′ is an offset voltage
that determines the carrier density at Vg = 0), Eq. (1) reflects
the relationship Vg − V ′ ∝ B2. Similar relations apply to holes
for the downward parabolas. In the case of the double-gate
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design A, the effective gate voltage V ∗
g replaces Vg. Note that

the electron (hole) density, represented by n (p) in Eq. (1)
refers only the carrier species that contribute to the forma-
tion of WOs. This partial density is also linearly dependent
on the gate voltage. The parameters needed to describe the
parabolic structures according to Eq. (1) are the respective
partial filling rates �n/�Vg = αn. For holes, �p/�Vg = αp

applies. Here, αi is defined as the filling rate of the respective
carrier species. The filling rate depends on the position of the
Fermi level and is different for EF in the conduction band,
the bulk gap, or the valence band [13,14]. This issue will be
discussed in more detail below in the context of Fig. 4. At
larger magnetic field values, linear Landau fans for electrons
and holes dominate the color map. Figure 3(b), where the
data have been taken from an unpatterned region with only
one top gate, shows that the parabolic features, and thus the
commensurability effects, are absent. Figure 3(c) illustrates
that WOs can be observed not only in the stripe gate system A,
but also in device type B where periodic density modulation
has been achieved by using resist stripes that act as stressors
and induce a periodic potential by the piezoelectric effect [27].
The parabolic fan in this device looks very similar to the one
in Fig. 3(a).

To identify and fit the carriers involved in the formation of
the parabolic fans in Fig. 3(a), one needs to know the partial
densities and the corresponding filling rates of the different
groups of carriers. Figure 4 shows the electron (n) and hole
densities (p) for device A [Fig. 4(a)] and device B [Fig. 4(b)]
at different gate voltages V ∗

g and Vg, respectively. The system
under study contains several types of electrons and bulk holes.
We used different techniques, described in [12], to extract the
carrier densities of the different charge carrier species, and
the results are shown in Fig. 3: The linear Hall slope on the
electron side gives the total electron density nHall

tot . The period
of SdH oscillations at small magnetic fields on the n side
gives the electron density nSdH,low

top of the top surface. In the
valence band, where surface electrons and bulk holes coexist,
the electron density (sum of the top and bottom surface) nDrude

and hole density pDrude can be extracted using the two-carrier
Drude model. The hole density pSdH (V (∗)

g ) extracted from the
SdH oscillations in the valence band is about the same as
pDrude(V (∗)

g ). The dependence of charge carrier densities on
the gate voltage, shown in Fig. 4, are typical for 3D-HgTe
[12,14].

The periodicity of the WOs on the electron side is perfectly
described by using the carrier density nSdH,low

top in Eq. (1). The
corresponding calculated data are shown by the fan of red tri-
angles in Fig. 3(a). Here, we have used the linearized electron
density nSdH,low

top [straight lines in Fig. 4(a)] and have taken into
account that these surface states are not spin degenerate, that

is, the relevant kF vector is given by kF =
√

4πnSdH,low
top . We

have also taken into account the change in the partial filling
rate from αn = 0.9 · 1015 m−2V−1 to αn = 0.6 · 1015 m−2V−1

at V ∗
g ≈ 1.3 V, when the Fermi level enters the conduction

band [12,13]. The change in the filling rate is accompanied
by faint but distinguishable kinks on the experimental fans and
fits in Fig. 3(a). Using these experimental parameters perfectly
describes the data without any fit parameter. The key result
here is that the WOs on the electron side are determined solely

FIG. 4. (a) Partial and total electron n(V ∗
g ) and hole densities

p(V ∗
g ) determined by four methods in sample A [Fig. 1(a)]. On the

electron side, the Hall slope gives the total electron density (light red
upward triangles) and the SdH oscillations at small magnetic fields
yield the electron density of the top surface (dark red downward
triangles). The black dashed and solid lines are the linear fit of the
top surface electron density in the bulk energy gap and conduction
band, respectively. Note the different slopes of these lines and hence
the different partial filling rates. The lines cross at the bottom of
the conduction band marked by the arrow Ec. On the hole side, the
two-carrier Drude model gives the total electron and hole densities
(light red and blue squares) and the SdH oscillations give the hole
density (black downward triangles). In addition, we obtained the
hole concentration by fitting the WOs (see text). The resulting hole
concentration is shown by the open blue circles. (b) Same as (a) but
for sample B with resist stripes [Fig. 1(b)].

by the carrier density of the top surface Dirac electrons. This
is similar to the situation found in antidot superlattices [28].

IV. MODELLING OF WEISS OSCILLATIONS

The situation in the valence band is more subtle. This
is also due to the fact that the commensurability features

023153-4



EXPLORING THE EFFECTS OF A ONE-DIMENSIONAL … PHYSICAL REVIEW RESEARCH 6, 023153 (2024)

are weak, though clearly visible as a parabolic fan chart in
Fig. 3(a). Fitting the downward-facing parabolas with Eq. (1),
assuming a constant filling rate as a fitting parameter and
a twofold (spin) degeneracy, yields a hole density denoted
as pW O. The fit is shown as white dots in Fig. 3(a) and the
resulting density is shown as open blue circles in Fig. 4.
The density does not agree with the one extracted from the
two-carrier Drude and the period of the SdH oscillations.

Here we have the situation that both electrons and holes can
contribute to the commensurability oscillations. Since for both
sample geometries, the periodic potential is also due to the
piezoelectric potential, it is possible that the Dirac electrons
at the bottom surface also feel the potential modulation poten-
tial because the thickness of the HgTe film is much smaller
than the lattice constant a. On the electron side this does
not appear to play a role because the potential amplitude is
attenuated with increasing depth, and the WOs from the top
surface dominate a potentially smaller effect from the back
side. In the valence band, away from the flat band condition,
the cyclotron orbits of electrons and holes are expected to drift
in the same direction in a 1D periodic potential if they have the
same diameter and center coordinate. It is currently unclear
whether this joint drift motion of electrons and holes in the
same direction increases or decreases the conductivity in the y
direction. Therefore, we have performed simulations based on
the two-component Drude picture. Within the semiclassical
approach, the extra conductivity in the y direction due to a
sinusoidal periodic potential in the x direction is given by

�σ e,h
yy ≈ e2

2π h̄

V 2
0

γ h̄ωc

4

akF
cos2

[
2π

Rc

a
− π

4

]
, (2)

with γ = h̄/em∗μ [18,29]. Here, m∗ is the effective mass of
the electrons or holes and V0 is the amplitude of the modula-
tion potential. This extra conductivity exists for electrons and
holes. In addition to the effective masses, the formula for elec-
trons and holes differs in several other parameters, namely the
cyclotron frequency ωc, the cyclotron radius Rc = h̄kF /(eB),
the mobility μ, and the Fermi wave vector kF .

We can now imagine two possible scenarios. In the first
one, the extra conductivities for electrons and holes are added
to the total conductivity. Here we have in mind that electrons
and holes (which form a two-dimensional hole gas at negative
gate voltages) provide two independent transport channels and
the extra conductivities �σ e,h

yy in the y direction of electrons
and holes due to the periodic potential must be added. Let us
start with this approach. The extra band conductivity increases
the total conductivity of electrons and holes,

σyy = enμe

1 + (μeB)2
+ epμh

1 + (μhB)2
(3)

by the following contribution in the y direction

�σyy = �σ e
yy + �σ h

yy. (4)

Here, the indices “e” and “h” label electron and hole quanti-
ties, respectively. Apart from the conductivity σyy, the other
Drude magnetotransport coefficients σxx = σyy and

σxy = −σyx = enμ2
eB

1 + (μeB)2
− epμ2

hB

1 + (μhB)2
(5)

FIG. 5. The simulations of WOs: the calculated negative sec-
ond derivative −∂2ρxx/∂B2 for the stripe gate sample A. The color
code is the same as in Fig. 3, i.e., yellow represents the resistivity
minima and blue represents the maxima. For the simulation, the gate-
linearized carrier densities (nSdH,low

top , pDrude, nDrude) were taken from
the experiment [straight lines in Fig. 4(a)]. For the description of the
situation in the valence band, we assumed two scenarios. In (a) the
extra conductivities in the y direction �σ n

yy for electrons (nDrude) and
�σ h

yy for holes (pDrude) are added to the standard Drude conductivities
in the valence band, i.e., σ tot

yy = σ e
yy + σ h

yy + �σ e
yy + �σ h

yy. The tensor
inversion then yields ρxx . In (b) the charge carrier densities were
subtracted, �p = (pDrude − nDrude ), and only the additional conduc-
tivity term (�σ�p

yy ) was calculated using Eq. (2) and added to the
valence band conductivities (σ tot

yy = σ e
yy + σ h

yy + �σ�p
yy ). To compare

the calculations with the experiment, red triangles and white dots
whose positions coincide with those in Fig. 3(a) and which denote
the experimentally observed minima of the WOs are plotted on the
color maps.

are not affected by the periodic potential in this approxima-
tion. The magnetotransport coefficient ρxx measured in the
experiment is then obtained by tensor inversion and reads

ρxx = σ tot
yy

σxxσ tot
yy − σxyσyx

. (6)

Here, σ tot
yy = σyy + �σyy. To check the validity of the proposed

approach, we calculated the magnetoresistance ρxx and its
negative second derivative −∂2ρxx/∂B2 for the stripe gate
sample. For the simulations, we used the linearized gate
voltage densities [nSdH,low

top , pDrude, nDrude, straight lines in
Fig. 4(a)]. For the electron side we used the spin nondegen-
erate top surface electrons with mobility μe = (34.8 + 30.6 ·
V ∗

g ) m2/V · s, estimated from the maximum number λ of ob-
served WO, and a modulation amplitude of V e

0 = 2 meV. In
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the valence band we used the mobilities μh = (15.4 + 3.25 ·
V ∗

g ) m2/V · s and μe = (25.15 + 5.08 · V ∗
g ) m2/V · s. For the

hole modulation potential we assumed a reduced amplitude of
V h

0 = 0.2 meV due to the screening by the surface states and
the higher value of the hole effective mass. Note that the value
of the amplitude does not affect the position of the minima
and maxima, but rather the amplitude of the WOs. We used
0.35m0 for holes [14,16] and 0.028m0 for electrons [15] where
m0 is the free electron mass. The result of the simulation is
shown in Fig. 5(a). The color code is the same as in Fig. 3, i.e.,
yellow represents the resistivity minima, and blue represents
the maxima. The experimental data, represented by the red
triangles and white dots, correspond to the minima of the WOs
and the flat band condition described by Eq. (1), as depicted
in Fig. 3.

First, we consider the electron side (upper half) of the
graph. The fan of red triangles shows remarkable agreement
with the minima regions predicted by our model calculation.
The white dot parabolas, which describe the minima of the
commensurability oscillations on the hole side in Fig. 3(a)
fit the calculated minima region less well. The maximum
divergence is observed near the top of the valence band, i.e.,
in the range V ∗

g = −0.5, . . . , 0 V. This is partly because in
the voltage range from about −0.5 to 0.5 V, the underlying
carrier densities are not directly accessible but are extrapo-
lated. The lack of clear experimental WOs in this gate voltage
range makes it impossible to draw firm conclusions. However,
deeper in the valence band, there is also a difference in the po-
sitions of the calculated and experimental oscillation minima,
indicating that the approach used is inaccurate.

Since the agreement between the experiment and model
calculation on the hole side is not particularly satisfactory,
we have investigated an alternative scenario. In the guiding
center drift picture [24], both electrons and holes that have the
same cyclotron orbit diameter and center coordinate drift in
the same ±y direction and could compensate for each other.

That is why it could be that we have to subtract the periodic
potential induced electron and hole conductivities in Eq. (4).
Calculations like the ones described above, but taking the
difference of the hole and electron �σyy conductivities, de-
scribe the experimental data even worse (not shown). The best
agreement we obtained is when we assume that the surface
electrons compensate for the holes and that the relevant k
vector of the holes is given by kF = √

2π (p − n). All the
other parameters are the same as before in the calculations.
A comparison of a model calculation using this expression
in Eq. (2) to calculate the modulation-induced conductivity
�σyy in the y direction with the experimental result is shown in
Fig. 5(b). While the agreement is remarkably good we cannot
provide a microscopic picture of the compensation scenario.
One could speculate, though, that the Coulomb interaction in
the immediate vicinity of the surface states leads to bound
electron-hole pairs [30] which do not participate in the guiding
center drift.

In summary, we have studied magnetotransport in the 3D
topological insulator HgTe with a superimposed weak 1D
periodic potential. We found similar results regardless of the
type of potential and its period. The commensurability (Weiss)
oscillations, which reflect the commensurability between the
cyclotron radius and the superlattice period, are dominated on
the electron side by the Dirac electrons on the top surface.
In the valence band, where bulk holes and Dirac electrons
coexist, the period of the oscillations is best described by the
difference in hole and electron densities, but an underlying
model for this finding is lacking.
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