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Three-dimensional isotropic droplets in Rydberg-dressed Bose gases
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We predict a scheme for the creation of isotropic three-dimensional quantum droplets in Rydbeg-dressed Bose
gases, which contain both repulsive contact interactions and attractive soft-core interactions. Via manipulating
laser detuning, the droplet size and particle number density could be engineered. Quantum fluctuation induced
Lee-Huang-Yang (LHY) correction should be considered to stabilize droplets when LHY energy is comparable
to the mean-field energy. Self-trapped droplets possess flat-top density distribution for a large particle number,
and the collective excitations are calculated to determine the self-evaporation threshold. We further distinguish
quantum droplets from solitons according to condensate compressibility. Finally, the dynamic stability of
droplets is examined by pairwise-droplet collision. Our system could realize the most dilute quantum droplets,
and establish a promising platform for further simulating topological nontrivial droplets.
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I. INTRODUCTION

Quantum droplets represent the most dilute liquid, in which
the atom number density is 108 times lower than in a liq-
uid helium [1,2]. Recently, three-dimensional (3D) droplets
have attracted much attention in ultracold Bose gases where
the mean-field-driven collapse is prohibited by a repulsive
interaction arising from quantum fluctuation [2–4]. Since
mean-field (MF) theory cannot explain the stability of droplets
against collapse [5], beyond mean-field (BMF) theory with
the quantum fluctuation induced Lee-Huang-Yang (LHY) cor-
rection is employed to explain microscopic droplets [6–8].
Currently, droplets in Bose-Einstein condensates (BECs) can
be roughly divided into two categories: (1) single component
magnetic gases, in which the MF effect is given by dipolar
and contact interactions, rendering droplets to exhibit an elon-
gated filament shape [9–15], and (2) binary mixtures of two
spin components or heteronuclear atoms, with almost com-
plete cancellation of the MF effect, leaving a small residual
attraction compensated by repulsive LHY energy [16–20].
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Through manipulating short-range contact interactions by
Feshbach resonance, droplet sizes can reach nearly 10 µm
[21–24]. Recent work relating to soliton-droplet transitions
[25,26], rotating droplets [27,28], and collective excitations in
droplets [29–32] yields that quantum droplets are outstanding
microscopic platforms for studying topology and superfluid,
whereas searching for macroscopic droplets suggests more
remarkable application potentials.

Resonantly excited Rydberg gases enable researchers to
systematically study strong interactions in large-size systems,
while its short lifetime hinders experimental engineering
[33–35]. This shortcoming can be circumvented by weakly
dressing the atomic ground state with a small fraction of
Rydberg state that improves the overall lifetime of the system
[36]. Especially, the coupling between the ground state and
nS Rydberg exciting state is conceived to introduce repul-
sive soft-core interactions with effective coupling parameter
C̃6 > 0 and red detunings, which can lead to supersolid states
[37–40]. Moreover, with C̃6 < 0 and blue detunings, attractive
soft-core interactions dominate the system [41–44], where
solitons are generated [45]. However, whether quantum fluc-
tuation could play an important role in this system remains an
important question.

In this paper, we utilize beyond mean-field theory to
predict three-dimensional isotropic droplets in 87Rb Rydberg-
dressed gases, in which the droplet size can reach 100 µm.
Via manipulating interaction ratio and particle number, it
is possible to realize stable droplets where MF energy is
negative while LHY energy is positive. We develop the be-
yond Gross-Pitaevskii equation (BGPE) for single-component
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FIG. 1. (a) Rydberg-dressed states can be realized by imposing
BECs into Rydberg laser. Atoms in BECs interact through MF
interactions, including both repulsive short-range and attractive long-
range interactions. Level scheme of the considered Rydberg-dressed
approach contains ground-state |g〉, Rydberg state |r〉, with Rydberg
laser frequency � and blue detuning �. (b) Attractive long-range
interaction between Rydberg-dressed atoms U (r − r′) is referred to
as soft-core interaction. The inset displays the fourier transforma-
tion of the soft-core interaction f (k), where the minimum of the
interaction is located at k = 0 with Rc representing Rydberg radius.
(c) Schematic showing the effect of LHY correction γQFn3/2

0 on the
excitation spectra ω, where n0 represents particle number density.
(d) LHY energy relatives to MF energy, where η equals to the ratio
of soft-core interaction as well as contact interaction and N is the
particle number.

Rydberg-dressed gases, and self-evaporation region of
droplets is determined through collective mode calculation.
When compared to solitons, droplets exhibit totally different
compressibility, and the droplet size can be freely tuned by
laser detunings. Finally, the phase diagram of droplets is sum-
marized and the collide dynamic of flat-top droplets indicates
a long lifetime to be engineered in experiments.

II. RYDBERG-DRESSED SYSTEM AND BEYOND
GROSS-PITAEVSKII EQUATION

The Rydberg-dressed approach is based on optical dressing
of ground-state |g〉 atoms onto highly excited Rydberg states
|r〉 with Rydberg lasers, as illustrated by the simplified two-
level model in Fig. 1(a). The blue detuning � ≈ �1 + �2

and Rabi frequency � = �1+�2
2�1

, with �1,2 and �1,2 rep-
resenting Rabi frequencies and detuning in the two-photon
dressing scheme. Hence, it will mix a small fraction ν =
(�/2�)2 of Rydberg-state atoms into ground-state atoms
[37,46,47]. Balanced by repulsive short-range interactions,
attractive long-range interactions are believed to stabilize the
condensate from dissipation. Inspired by the recent research
on droplets induced by the balance between MF and LHY en-
ergy [2,8,48], we will prove the existence of quantum droplets
in Rydberg-dressed system.

We consider N Rydberg-dressed atoms interacting through
both repulsive contact and attractive soft-core interactions.
The time-independent ground-state wave function �0 satis-
fies the equation μ�0 = LGP�0, where μ is the chemical

potential and LGP = − h̄2∇2

2M + 	(r). The effective potential
	(r) = gδ(r − r′) + ∫

d3r′U (r − r′)|�0(r′)|2 describes two-

body interactions, in which the coupling constant g = 4π h̄2as
M

is related to s-wave scattering length as. The attractive long-
range potential U (r − r′) = C̃6

R6
c+|r−r′|6 is depicted in Fig. 1(b),

with soft-core constant C̃6 < 0 and Rc representing the block-
ade radius [41–43]. Fourier transformation of the soft-core
potential reads U (k) = U0 f (k), where U0 = 2π2|C̃6|

3R3
c

identi-
fies the strength and f (k) has an analytical form f (k) =
−e−kRc/2[e−kRc/2 − 2 sin(π/6 − √

3kRc/2)]/kRc, which char-
acterizes the momentum dependence of the interaction [inset
of Fig. 1(b)]. Thereby, the minimum value of the effective
potential 	(k) = g + U (k) locates at k = 0.

Considering the particle number of 60S state 87Rb atoms
N � 104, the number of Rydberg-state atoms is controlled
by Rabi frequency � and laser detuning � via Nr=Nν�1.
The Rydberg blockade radius approximates 3 µm in our
system, which is comparable to the healing length. Conse-
quently, quantum fluctuation in our system stems from the
atoms where both short-range interactions and soft-core in-
teraction are considered. The LHY correction parameter can
then be obtained from the zero-point quantum fluctuation
of all quasiparticle modes [49]. Based on the Bogoliubov-
de Gennes (BdG) equation, the excitation spectrum of a
3D uniform Rydberg-dressed condensate can be given by

ω =
√

h̄2k2

2M ( h̄2k2

2M + 2n0	(k) + 3γQFn3/2
0 ) [50]. As shown in

Fig. 1(c), the imaginary part of the excitation spectrum can
be canceled by higher particle number density with LHY
correction, indicating stability when considering quantum
fluctuation.

The time-dependent BGPE can be transformed into dimen-
sionless form as

i
∂�(r, t )

∂t
=

[
−1

2
∇2+	(r, t )+γQF|�(r, t )|3

]
�(r, t ), (1)

where 	(r, t ) = α|�(r, t )|2 − γ
∫

dr′ |�(r′,t )|2
1−|r−r′|6 with contact

interaction α = gMN
h̄2Rc

, soft-core interaction γ = |C̃6|MN
h̄2R4

c
, and

LHY correction γQF = 4M3/2(g−2π2|C̃6/3R3
c |)5/2

3π2 h̄3 . To study proper-
ties of droplets, we solve Eq. (1) in imaginary time [51–53].
The parameter η = γ /α compares the strength of long-
range attractive interaction and repulsive contact interaction.
The corresponding energy functional can be expressed as
E = EMF + ELHY, where MF energy EMF = ∫

[ 1
2 |∇�(r)|2 +

1
2α|�(r)|2]dr − 1

2γ
∫

[ 1
1+|r−r′|6 |�(r)|2|�(r′)|2]drdr′ and LHY

energy ELHY = 2
5

∫
[γQF|�(r)|5]dr. Fig. 1(d) suggests that

LHY energy shares an opposite symbol from MF energy,
where interaction ratio η and particle number N are changed,
guaranteeing ELHY/EMF negative. Meanwhile, LHY energy
and MF energy are in the same order, suggesting LHY cor-
rection should not be neglected [3].

III. MACROSCOPIC DROPLETS WITH TURNABLE SIZES

For a fixed interaction ratio, the droplet solutions are ob-
tained for different particle numbers N from Eq. (1) via
the imaginary-time propagation method. One-dimensional
density distribution of the droplet is exhibited in the
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FIG. 2. Chemical potential μ of droplets as a function of particle
number N , where μ approximates the critical value μc = −0.215
(blue dashed line)for large N . Left inset: One-dimensional density
profile of the droplet with N = 104 along the x direction, where the
peak value approximates the critical value nc = 1.08 (blue dotted
line). Right inset: Particle emission and excitation spectrum with
different angular momentum ωl (l = 0, 2, . . . ) are displayed in the
right panel, where Nc = 95.

left-panel inset of Fig. 2, where the particle number
N = 104. The particle number density maintains constant in
the central area while drops rapidly at the condensate edge,
which represents the flat-top droplet. One can therefore ap-
ply the Thomas-Fermi (TF) approximation to analyze them,
i.e., neglecting the contribution from the kinetic term [54].
Consequently, energy of the system can be written as E =
1
2 [−εn2

0 + αn2
0 + 4

5γQFn5/2
0 ]V , where V = N/n0 denotes the

volume of the droplet, n0 = |�(r, t )|2 is the ground-state par-
ticle number density, N is the total particle number, and ε =
γ

∫
1

1+|r−r′|6 drdr′ is the long-range attraction effect. When

the system is in equilibrium with quantum pressure dE
dn0

= 0,

we have
√

n0 = − 5
6γQF

(α − ε). Substituting ε ≈ 6.6γ into
the aforementioned density, we obtain a critical peak density
nc = 1.08. Moreover, according to Eq. (1), we assume the
solution �(r, t ) = �0(r)e−iμt . With the TF approximation,
we can obtain the chemical potential at equilibrium μc =
(α − ε)n0 + γQFn3/2

0 = −0.215 (blue dashed line). Clearly, as
shown in Fig. 2, the chemical potential μ of droplets decreases
with increasing particle number N towards the critical μc. Fur-
thermore, we note that the μ(N ) curve satisfies the necessary
stability condition in the form of Vakhitov-Kolokolov crite-
rion dμ/dN < 0 [55], and the chemical potential is always
negative, implying the state is self-bound in equilibrium.

Besides self-bound behaviors, self-evaporation of droplets
is also investigated in the right inset of Fig. 2. According
to Bogoliubov theory, the excitations of the ground-state
droplet solutions can be obtained by solving the BdG equa-
tions through linearizing Eq. (1) with respect to the fluctuation
part δ�(r, t ) [2]. In the right inset of Fig. 2, we show the
particle emission threshold −μ (black dotted line) and the
frequencies of different angular momentum modes ωl (l =
0, 2, . . . ), as functions of (N − Nc)1/4. In the interval of

FIG. 3. (a) Peak density np and condensate width σr of solitons
vary with particle number N without LHY correction, and the inter-
action ratio is fixed for different N . (b) Peak density np and droplet
width σr vary with particle number N with LHY correction, and the
interaction ratio is the same as the former soliton case. (c) The droplet
size as large as 100 µm can be manipulated by the interaction ratio for
N = 104, and particle number density n0 is changed correspondingly.
(d) Phase diagram of solitons (region I) and quantum droplets (region
II), where the boundary is depicted by the black dashed line. The
color-scale legend denotes the width of the condensate ranging from
15 µm to 105 µm.

105 < N < 1080, there are no modes appearing below −μ,
suggesting the self-evaporation region of the droplet.

As the aforementioned discussion has reflected the
importance of the LHY correction in stabilizing the droplet,
we will further compare the compressibility of droplet
solutions with the soliton results. When ignoring the LHY
correction, solitons self-trapped by attractive soft-core
interactions are believed to exist in the Rydberg-dressed
system [45]. Density maximum of solitons can be identified
by density peak np, as depicted in Fig. 3(a), where np

raises linearly with increasing particle number N . On
the contrary, the soliton width σr shrinks with N , which
indicates the soliton is compressible (the width of the
soliton can be extracted from the BGPE solutions employing
σ 2

r = c
∫

r|�(r)|2dr, where c is a normalization constant).
When considering the LHY correction in Fig. 3(b), the
density peak of the droplet raises with N towards the
critical value nc, then remains constant for larger N . On
the other hand, the relationship between droplet sizes σr

and particle numbers N is nonmonotonic. The condensate
width decreases when N � 500, which implies compressible
solitons. However, σr raises for larger N , and we could
utilize the flat-top droplet model to explain this phenomenon
theoretically. Through substituting the particle number
density n0 into energy functional E and solving the
equation dE/dV = 0, we can obtain the relationship
between droplet volume and particle number V =
36
25γ 2

QF
N

(α−ε)2 . Assuming the droplet is a 3D isotropic
ball, we can easily find the relationship between σr

and N : σr = [ 27γQF
2N

25π (α−ε)2 ]
1
3 (exhibited by blue dotted line,

agreeing well with the numerical results). Considering
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TABLE I. Comparison of size and particle number density.

39K [22] 164Dy [24] Rydberg-dressed 87Rb

aσr (µm) ∼3 ∼1 ∼100
bn0 (cm−3) 1015 1021 1010

aσr denotes the size of the droplet.
bn0 denotes the particle number density of the droplet.

the nearly constant bulk density, flat-top droplets are
incompressible.

We remark that the size of the 3D droplet in the Rydberg-
dressed system exceeds 100 µm for a large particle number,
i.e., N = 104. The cut through the center of the profile re-
veals the characteristic flat-top density distribution, which
agrees well with the density distribution known for liquid
helium droplets. This kind of macroscopic droplet outdis-
tances the size of droplets in binary or dipolar BECs, and the
droplet size is manipulated only by the Rydberg laser detun-
ing [21–24]. With different laser detuning frequency �, the
interaction ration η = |C̃6|/gR3

c will change correspondingly.
This phenomenon results in different-sized droplets ranging
from 15 µm ∼ 105 µm for a fixed particle number N = 104,
as exhibited in Fig. 3(c). Correspondingly, the particle num-
ber density n0 can also be tuned by η, which is far more
dilute than binary or dipolar droplets (in Table I). Within
this protocol, the competition between solitons and droplets is
summarized in Fig. 3(d), where the condensate size is varied
by interaction ratios η and particle numbers N . The phase
diagram can be further divided into solitons (in region I) and
quantum droplets (in region II), the boundary between which
is depicted by black dashed line. From the perspective of one-
dimensional density distribution, the soliton is Gaussian type
while the quantum droplet possesses equal particle number
density except at the boundary. In another vein, considering
the condensate width σr decreases with N in region I while
increasing in region II, we can conclude that the soliton is
compressible whereas the quantum droplet is incompressible.

IV. DROPLET STABILITY FORM COLLISIONS

Experimentally, coherent Rydberg excitation of cold atoms
has been demonstrated under various conditions [41–44]. To
reveal the dynamic stability of droplets, we monitor the col-
lision dynamic of pairwise droplets in Fig. 4. We adopt two
flat-top droplets as initial states: �(x, y, z, t = 0) = �1(x −
x0, y, z)e−ik0x/2 + �2(x + x0, y, z)e+ik0x/2, where �1,2 are the
ground-state solutions from BGPE with equal particle number
N = 104, ±x0 are the initial positions of the two droplets, and
k0 is the initial relative momentum of the colliding droplets.
Similar to the collision of classical liquids, two outcomes
of the collision of the quantum droplets are observed. For a
relatively small collision velocity k0 = 0.5 in Fig. 4(a), the
droplets merge into a single droplet upon colliding, which
features an inelastic collision. However, for a larger collision
velocity k0 = 1 in Fig. 4(b), the droplets separate again af-
ter merging, which suggests the collision approaches to be
quasielastic. Collision of droplets in the Rydberg-dressed sys-

FIG. 4. Collision of two droplets in two-dimensional projection.
(a) The initial collision velocity k0 = 0.5 µm−1, inelastic collision
emerges at t = 60 ms. (b) The initial collision velocity k0 = 1 µm−1,
elastic collision emerges at t = 60 ms

tem exhibits similar behavior as solitons [56], and the droplets
could maintain the self-trapped property after collision.

V. CONCLUSION

We first propose the Rydberg-dressed system as a platform
for realizing macroscopic droplets with over 100 µm size.
The isotropy of droplets may be broken when considering nP
or nD state Rydberg-dressing [57–59]. Quantum fluctuation
effect, i.e., LHY correction, which transforms solitons into
droplets, plays a vital role in stabilizing droplets when the
LHY energy is comparable to the mean-field energy. The
macroscale droplets can be generated by different Rydberg
laser detuning rather than Feshbach resonance. Compressible
solitons and incompressible droplets are summarized by the
phase diagram. Finally, the collision of two flat-top droplets
indicates long-lifetime stability of the droplets. Considering
the potential applications of droplets to investigate superfluid
or polaron physics [60,61], it is worth further introducing
spin-orbit coupling [62,63] or spin-angular momentum [64]
into the Rydberg-dressed droplets.
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APPENDIX A: EXPERIMENTAL PROPOSALS FOR
REALIZING ATTRACTIVE SOFT-CORE INTERACTIONS

One of the major advantages of Rydberg atoms lies in
its versatile controllability by choosing appropriate states
[33–35]. Besides microwave, off-resonant laser dressing of
Rydberg states provides an opportunity to realize soft-core
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long-range interactions [36]. Off-resonant laser dressing could
admix a small fraction of Rydberg state |r〉 into the ground
state |g〉, resulting in the dressed eigenstate |�〉 ∼ |g〉 + ν|r〉.
The Rydberg state proportion is manipulated by dressing pa-
rameter ν ∝ (�/2�), where � and � stand for the Rabi
frequency and detuning of the laser dressing field, respec-
tively. Satisfying the requirements of a realistic experimental,
Rydberg-dressed state can persist for an ultralong time. As-
suming atoms in Rydberg states |r〉 interact with each other
through van der Waals (vdW) interaction C6/|r − r′|6, sat-
isfying C6� > 0, two dressed ground-state atoms obtain a
modified soft-core potential U (r − r′) = C̃6

R6
c+|r−r′|6 , with C̃6 =

(�/2�)4C6 being the effective interaction coefficient and
Rc = (C6/2h̄�)1/6 standing for a blockade radius. When both
C6 and � are negative, the attractive soft-core potential U (r −
r′) can be understood as follows: when two atoms are sepa-
rated by a distance larger than Rc, the two dressing atoms are
not influenced by atom-atom interaction, resulting in an ad-
mixed attractive vdW-type interaction νC6/|r − r′|6 between
them. When the two atoms are separated at a short distance
less than Rc, the effective potential approaches a constant
value because of Rydberg blockade effect.

We choose 87Rb atoms dressed with the Rydberg levels
60S1/2 to realize the soft-core attractive interactions. The
dressing of the atoms can be realized by a two-photon tran-
sition for the 5S1/2 → 6P3/2 and 6P3/2 → 60S1/2 transitions,
respectively. The corresponding Rabi frequencies are given by
the overlap with the laser-coupled Rydberg states.

APPENDIX B: LEE-HUANG-YANG CORRECTION
IN THE BEYOND MEAN-FIELD THEORY

According to the realization of Rydberg dressing, we only
need to consider quantum fluctuation induced by the ground-
state atoms with contact interaction. We consider ground-state
87Rb atoms coupled to excited Rydberg nS state 87Rb atoms
with n = 60 via a Rabi frequency �/2π = 1 MHz and a blue
laser detuning �/2π = −100 MHz. It will then admix a small
fraction ν = (�/2�)2 = 10−4 of Rydberg character into the
ground-state atoms. In this Appendix, we will present in detail
the corresponding BdG theory and apply it to homogeneous
Rydberg-dressed Bose gases, thereby emphasizing the impor-
tance of quantum fluctuations in Rydberg-dressed Bose gases.

To study the Rydberg-dressed system within the BdG the-
ory, we consider the mean-field Hamiltonian HMF = Hkin +
Hint, which consists of a noninteraction and an interaction
contribution. In general, the noninteracting part contains the
kinetic energy Hkin = ∫

d3r�†(r)[− h̄2∇2

2M ]�(r), where �†(r)
and �(r) denote the usual bosonic creation and annihilation
operators, respectively. Moreover, the interaction is included
through Hint = 1

2

∫
d3rd3r′[�†(r)�†(r′)	(r − r′)�(r′)�(r)],

where 	(r − r′) = gδ(r − r′).
With Thomas-Fermi approximation, the BdG equation in

Fourier space can be written as

ωquq(k) = h̄2k2

2M
uq(k) + n0	(k)[uq(k) + vq(k)],

−ωqvq(k) = h̄2k2

2M
vq(k) + n0	(k)[uq(k) + vq(k)], (B1)

where n0 is the particle density. The Bogoliubov spec-

trum ωq =
√

h̄2k2

2M + 2n0	(k). The presence of quantum
fluctuations also leads to a correction of the ground-state
energy of a Rydberg-dressed Bose gas. The total energy can
be expressed as

E = 1

2
n2

0	(|k = 0|) + 1

2
V

∫
d3k

(2π )3

[
ωq − h̄2k2

2M
− n0	(k)

]
.

(B2)

The correction to the ground-state energy �E =
2
5γQFn0

5/2 and the corresponding LHY correction reads

γQF = 4M3/2(g−2π2|C̃6/3R3
c |)5/2

3π2 h̄3 [53].

APPENDIX C: DIMENSIONLESS BEYOND
GROSS-PITAEVSKII EQUATION

AND CALCULATION DETAIL

By introducing the Lee-Huang-Yang correction, one can
write a corresponding time-dependent three-dimensional
BGPE,

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2M
∇2 + 	(r, t ) + γQF |�(r, t )|3

]
�(r, t ),

(C1)

where 	(r) = gδ(r − r′) + ∫
d3r′U (r − r′)|�(r′)|2 describes

the two-body interactions where the coupling constant g is re-
lated to the s − wave scattering length as through g = 4π h̄2as

M ,

U (r − r′) = C̃6
R6

c+|r−r′|6 , with C̃6 < 0 and Rc standing for the ef-
fective coupling constant and blockade radius which depends
on the details of the Rydberg dressing. The BGPE (C1) can
be further transformed into the dimensionless form of Eq. (1)

in the main text through �(r, t ) =
√

N
R3

c
�̃(r̃, t̃ ), t = MR2

c
h̄ t̃ and

r = Rcr̃.
We summarize the numerical method we use in the follow-

ing three parts:
(a) The nonlocal BGPE of Eq. (1) in the main text is

used for the description of the beyond-mean-field ground
state of a Rydberg-dressed BEC. The ground state can be
described in terms of a single complex order parameter
�(r, t ), whose squared modulus gives the local density of
the system and whose temporal evolution is described by
Eq. (1). The ground-state solutions of the system are ob-
tained by using the backward Euler pseudospectral schemes
[65] within an imaginary-time propagation approach. For the
initial data, we prepare the three-dimensional Gaussian func-
tions as initial wave functions. Fast Fourier transformation
(FFT) and inverse fast Fourier transformation (IFFT) are em-
ployed to deal with spatial difference and non-local soft-core
potential:

∫ |�(r′ )|2
1+|r−r′|dr′ = F−1[F[ 1

1+r6 ]F[|�(r)|2]], where F
represents FFT and F−1 represents IFFT [38].

(b) To describe the collective modes of a Rydberg-dressed
BEC, we can use a standard Bogoliubov–de Gennes ap-
proach and search for a solution of Eq. (1) in the main text
of the form �(r, t ) = e−iμt/h̄[�0(r, t ) + ∑

q(uq(r)e−iωqt/h̄ −
v∗

q (r)eiωqt/h̄)], with the quasiparticle modes uq, vq and energies
ωq. Substituting �(r, t ) into Eq. (1) and keeping only terms
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FIG. 5. Quantum depletion δN/N as a function of particle num-
ber N [with (without) LHY correction], where the interaction is fixed
as η = 1/2π 2.

linear in the quasiparticle amplitudes uq and vq, we obtain the
BdG equations. The ground state �0(r, t ) and the chemical
potential μ are obtained through the imaginary-time evolu-
tion. The Bogoliubov excitation energy ωq is numerically
obtained by diagonalizing the Bogoliubov Hamiltonian.

(c) To get deeper insight into the physics of the droplet
stability, we numerically simulate the dynamics of the colli-
sion by means of a real-time evolution of the BGPE Eq. (1).
Here we consider the pairwise collision between two droplets
moving along the x direction. The BGPE is usually solved by a

time-splitting method based on the fast Fourier transformation
(FFT). We adopt the initial wave function in the superposition
state of two droplets propagating in opposite directions and
both droplets have the flat-top profile before the collision.

APPENDIX D: QUANTUM DEPLETION

The validity of the beyond mean-field approximation can
be checked by evaluating the quantum depletion [14]. Based
on the Bogoliubov theory, the fluctuation δ�(r, t ) around
the condensate can be subjected to a canonical transfor-
mation leading to the expansion �(r, t ) = e−iμt/h̄[�0(r, t ) +
δ�(r, t )] with δ�(r, t ) = ∑

q[uq(r)e−iωqt/h̄ − v∗
q (r)eiωqt/h̄],

where uq, vq and energies satisfy the BdG equations [66][
LGP − μ + X −X

−X LGP − μ

][
uq

vq

]
= ωq

[
uq

vq

]
, (D1)

where the exchange operator X satisfies X f =
�0(r)

∫
dr′[U (r − r′) f (r′)�∗

0 (r′)] + 3
2γQF|�0(r)|3 f . The

quasiparticles satisfy the normalization relation
∫

dr[|uq|2 −
|vq|2] = 1. At zero temperature, the noncondensate particle
number can be calculated by δN = ∫

dr[
∑

q |vq|2]. Solving
the BdG equations in Fourier space, we could present the
quantum depletion δN/N as a function of the ground-state
particle number N in Fig. 5. We can see that the quantum
depletion is always less than 5%, thereby confirming the
validity of the beyond mean-field approximation.
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