
PHYSICAL REVIEW RESEARCH 6, 023150 (2024)

Finding regulatory modules of chemical reaction systems

Yuhei Yamauchi ,1,* Atsuki Hishida,2 Takashi Okada ,1 and Atsushi Mochizuki1
1Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

2Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

(Received 23 October 2023; accepted 9 April 2024; published 10 May 2024)

Within a cell, numerous chemical reactions form chemical reaction networks (CRNs), which are the origins
of cellular functions. We previously developed a theoretical method called structural sensitivity analysis (SSA),
which enables us to determine, solely from the network structure, the qualitative changes in the steady-state
concentrations of chemicals resulting from the perturbations to a parameter. Notably, if a subnetwork satisfies
specific topological conditions, it is referred to as a buffering structure, and the effects of perturbations to the
parameter within the subnetwork are localized to the subnetwork (the law of localization). A buffering structure
can be the origin of modularity in the regulation of cellular functions generated from CRNs. However, an efficient
method to search for buffering structures in a large CRN has not yet been established. In this study, we prove
the “inverse theorem” of the law of localization, which states that a certain subnetwork exhibiting a confined
response range is always a buffering structure. In other words, we are able to identify buffering structures in
terms of confined responses rather than the topological conditions. By leveraging this property, we develop an
algorithm to enumerate all buffering structures for a given network by calculating responses. Additionally, we
show that the hierarchy of perturbed response patterns corresponds to that of buffering structures, and present a
method to illustrate the hierarchy. Our method will be a powerful tool for understanding the regulation of cellular
functions generated from CRNs.
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I. INTRODUCTION

In living cells, chemical reactions are connected by shar-
ing their products and substrates, forming chemical reaction
networks (CRNs), such as metabolic networks and signal
transduction networks. The dynamical behavior of chemicals
derived from these CRNs underlies physiological functions,
such as metabolism, cell cycle control, and signal trans-
duction. Each reaction is regulated by enzyme activity, and
changes in enzyme activity cause dynamical changes in the
concentration of each chemical in the system. It is widely be-
lieved that cells regulate physiological functions through the
modulation of enzyme activity [1–7]. Various physiological
functions can arise even from a single CRN. For instance,
a metabolic network is composed of many subcircuits, such
as carbon metabolism and the amino acid synthesis pathway
[8]. Since different subcircuits can share the same chemicals,
these subcircuits are interconnected with each other, forming
a single connected metabolic network [9–11]. It is unclear
how different subcircuits are regulated separately because the
modulation of one subcircuit can affect other subcircuits.
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We previously developed a theoretical framework that may
provide an answer to this question [12,13]. This is based on
structural sensitivity analysis (SSA) [14], which allows us to
determine, solely from the structure of a CRN, the qualitative
changes (no change, increase, or decrease) in steady-state
concentrations of each chemical in response to the modulation
of enzyme activity (sensitivities). In SSA, the parameters are
either the activities of the enzymes catalyzing the reactions
(reaction rate parameters) or the conserved quantities. The
concept of “buffering structures” derived from SSA is im-
portant for understanding the range within which the effects
of changes in parameters propagate within a CRN in terms
of network topology [12,13]. A subnetwork in a CRN, con-
sisting of a subset of chemicals and a subset of reactions, is
called a buffering structure when it satisfies the following two
conditions: (i) The subnetwork contains all reactions whose
reaction rates depend on the concentrations of chemicals
within it (“output-complete”). (ii) The index, defined by the
−(the number of chemicals)+(the number of reactions)−(the
number of cycles) is equal to zero. It has been mathematically
demonstrated that the steady-state responses to the perturba-
tion of a parameter within a buffering structure are confined
within the buffering structure. When distinct nonoverlapping
buffering structures (denoted by �1 and �2) coexist within
a network, the perturbations to parameters within �1 do not
affect the steady-state concentration of chemicals within �2,
and vice versa. In this sense, independent regulation between
distinct buffering structures is achieved. Taking biological net-
works for example, the tricarboxylic acid (TCA) cycle and the
pentose phosphate pathway (PPP) in metabolic networks are
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contained in separate buffering structures [12], indicating that
it is possible to modulate the TCA cycle without affecting the
PPP pathway, and vice versa. A buffering structure represents
a novel concept in CRNs: a “regulatory module” can natu-
rally arise from network topology. Finding all the buffering
structures in a given CRN will be important for clarifying how
different functions arising from a CRN are regulated.

In Ref. [12], it is pointed out that the existence of buffering
structures can provide the system with a property called “per-
fect adaptation”. A system is said to exhibit adaptation if it
shows a transient response to a stimulus and goes back to the
original state [15–18]. A well-known example is the response
of bacteria to changes in the nutrient concentration during
chemotaxis [19–21]. In particular, if, after a perturbation to
a parameter, the system eventually returns to its original state
exactly, it is called perfect adaptation, which has been studied
theoretically [22].

While exploring the buffering structures in a CRN is im-
portant, an efficient method to search for all of them has
not been established. One approach to search for buffering
structures is to check, for all subnetworks of CRNs, if the
aforementioned two conditions are satisfied (the “brute-force
method”). However, as the size of the CRN increases, the
number of candidate subnetworks grows significantly, leading
to a substantial increase in the computational cost. In previous
studies [12,13,23], an ad hoc method was employed where
buffering structures are identified by searching for candidate
subnetworks that show confined responses, using the calcula-
tion of sensitivities. However, it remained unclear whether all
subnetworks calculated from the method satisfy the topologi-
cal conditions of buffering structures.

In this study, we prove the “inverse theorem” of the law
of localization, which states that an output-complete sub-
network exhibiting a confined response range (”regulatory
module”) is always a buffering structure. This ensures that
buffering structures can be exhaustively identified by all of
the regulatory modules, which are obtained via the sensitivity
calculation. The proposed method is much more efficient than
the brute-force method. We implemented the algorithm as
Python pipelines, called ibuffpy [48].

The terms “network modules” or “regulatory modules”
have been used in the study of biological networks [24–27],
yet their definitions are vague and unclear. For instance,
Ref. [24] studied the statistical properties of graph structures,
defined network modules based on the clustering coefficients
of CRNs in databases. Nonetheless, the biological functions
of such network modules remain unclear. Here, we define a
subnetwork with a confined response property as a regulatory
module. We show that such a subnetwork always satisfies
certain topological conditions. In other words, we determine
the necessary and sufficient conditions for a subnetwork to be
a regulatory module. This enables us to discuss the emergence
of the biological function of a regulatory module directly from
network topology.

We previously found that the nonzero response patterns un-
der perturbations of different parameters can exhibit inclusion
relations among them, i.e., they exhibit hierarchical structures
[12]. In addition, buffering structures have been suggested to
exhibit inclusion relations [12]. Based on the inverse theorem,
we show that a buffering structure and a confined response

have a one-to-one correspondence. We thus understand that
nonzero response patterns always show hierarchical patterns.
Furthermore, we propose an algorithm to depict this hierarchy
graphically through the computation of buffering structures,
which is also implemented in ibuffpy.

The paper is organized as follows. In Sec. II, we briefly
review SSA and the concept of a buffering structure presented
in Refs. [12,14]. In Sec. III, we prove our main theorem: the
inverse theorem of the law of localization. In Sec. IV, we
present an efficient algorithm to exhaustively find buffering
structures. In Sec. V, we show the equivalence between the hi-
erarchy of nonzero responses and that of buffering structures.
We also propose an algorithm to depict the hierarchy graph.
In the main text, we assume that CRNs do not have conserved
quantities, but our results can be generalized to CRNs with
conserved quantities, as discussed in Appendix A.

II. THE SETTING AND REVIEW OF STRUCTURAL
SENSITIVITY ANALYSIS

A. Setting

We label chemicals by m (m = 1, . . . , M) and reactions by
n (n = 1, . . . , N), and consider a spatially homogeneous CRN
[12,14,28–32] consisting of the following reactions:

y1,nX1 + · · · + yM,nXM → y′
1,nX1 + · · · + y′

M,nXM,

n = 1, . . . , N.
(1)

A state of the reaction system, specified by concentrations
xm(t ), obeys the differential equations

dxm(t )

dt
=

N∑
n=1

(y′
m,n − ym,n)rn(t ) =

N∑
n=1

νm,nrn(t ). (2)

Here, the M × N matrix ν is called the stoichio-
metric matrix, defined as νm,n := y′

m,n − ym,n. rn(t ) is
the reaction rate (flux) of the reaction n. With x(t ) :=
(x1(t ), . . . , xM (t ))�, r(t ) := (r1(t ), . . . , rN (t ))�, Eq. (2) can
be written as

dx(t )

dt
= νr(t ). (3)

We assume that the flux function rn depends on its reaction
rate parameter kn, i.e.,

∂rn

∂kn
�= 0. (4)

In metabolic networks, kn can be the activity or the amount
of the enzyme catalyzing the reaction n. In addition, we as-
sume that each flux function rn is strictly increasing with
respect to the concentrations of its substrates. We also account
for regulations such as allosteric effects,

∂rn

∂xm
> 0, if ym,n > 0 or m ∈ M+

n ,

∂rn

∂xm
< 0, if m ∈ M−

n ,

∂rn

∂xm
= 0, otherwise, (5)
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where M+
n and M−

n are the set of chemicals that are not a
substrate of the reaction n but regulate the reaction positively
and negatively, respectively. Popular kinetics, such as the mass
action (rn = kn

∏M
m=1 xym,n

m ) and the Michaelis-Menten kinet-
ics, satisfy this condition. In the following, we do not assume
specific forms of rn except for the assumptions in Eqs. (4) and
(5).

B. Structural sensitivity analysis

We briefly review the structural sensitivity analysis
[12–14]. This analysis allows us to determine qualitative
changes in the steady-state concentration of each chemical
xm in response to changes in a reaction rate parameter kn

(sensitivities).
We assume that the system has a steady state x. At the

steady state, the steady-state flux vector r satisfies νr =
0, i.e., r ∈ ker ν. We choose a basis for ker ν as {ci}K

i=1 (K :=
dim ker ν). r can be written as a linear combination of {ci}K

i=1,

r = μ1c1 + · · · + μK cK , (6)

where μ1, . . . , μK ∈ R. Under the perturbation of kn → kn +
δkn, each flux changes from r j to r j + δr j . δr j can be written
as

δr j = δkn

K∑
p=1

∂μp

∂kn
cp, j, (7)

where cp, j is the jth component of cp.
At the same time, the total derivative of r j is given by

δr j = δkn

{
δn, j

∂r j

∂kn
+

M∑
m=1

r j,m
∂xm

∂kn

}
, (8)

where δn, j is a Kronecker delta and r j,m := ∂r j

∂xm
.

From Eqs. (7) and (8),

M∑
m=1

r j,m
∂xm

∂kn
−

K∑
p=1

∂μp

∂kn
cp, j = −δn, j

∂r j

∂kn
. (9)

Let us define the matrices A ∈ RN×(M+K ) and S̃ ∈
R(M+K )×N at the steady state as follows:

A :=

⎛
⎜⎝ r1,1 . . . r1,M

...
... −c1 . . . −cK

rN,1 . . . rN,M

⎞
⎟⎠, (10)

S̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1
∂k1

. . . ∂x1
∂kN

...
...

∂xM
∂k1

. . . ∂xM
∂kN

∂μ1

∂k1
. . .

∂μ1

∂kN
...

...
∂μK

∂k1
. . .

∂μK

∂kN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

All entries of these matrices are partial derivatives evalu-
ated at the steady state. The upper part of S̃ represents the rate
of change in the steady-state concentration of each chemical
with respect to each reaction rate parameter. The lower part of
S̃ reflects the rate of change in the steady-state flux, which is
given by Eq. (7).

From Eq. (9), we obtain

AS̃ = −

⎛
⎜⎝

∂r1
∂k1

. . . 0
...

. . .
...

0 . . . ∂rN
∂kN

⎞
⎟⎠. (12)

To present the key idea, we assume that A and S̃ are square
matrices, i.e., M + K = N . In this case, dim ker ν� = 0 holds,
implying that there are no conserved quantities in the system
(see Appendix A for the general case). With Eq. (4) in mind,
we obtain the following result.

Theorem 1. [14] If A is invertible,

S̃ ∝ −A−1 := S. (13)

Here, X ∝ Y means the algebraic distribution of zero en-
tries of matrices X and Y are the same. Using Eq. (5), the
distribution of zero entries of A is algebraically determined
from the network structure, so is that of S̃. If Sm,n = 0 holds
algebraically, the perturbation of kn never affects the steady-
state concentration of the chemical m, regardless of the values
of r j,m ( �= 0), in which case we say “the reaction n does not
influence the chemical m”. If Sm,n �= 0 algebraically, there can
exist some parameters or kinetics such that the perturbation of
kn affects the steady-state concentration of the chemical m, in
which case we say ”the reaction n influences the chemical m”.
Overall, qualitative changes in the steady-state concentrations
of chemicals in response to perturbation to each reaction rate
parameter can be determined solely from the topology of a
CRN. Note that if ∂rn

∂kn
> 0 holds for n = 1, . . . , N , the signs

of each entry in S̃ and those in S coincide, indicating that the
signs of changes in the steady-state concentrations of each
chemical can also be determined from network topology.

Remark 1. A and S depend on the choice of the basis for
ker ν. However, the sensitivity of the concentration of each
chemical and flux at the steady state with respect to each
reaction rate parameter kn is independent of the choice of the
basis, which we will prove in Lemma 1 (Sec. III).

Definition 1. (Regularity of a CRN). A CRN is called regu-
lar if it admits a steady state and the associated A is invertible.

We assume the regularity so that A is invertible throughout
the paper.

C. Buffering structure

The concept of buffering structures derived from SSA is
important for understanding, in terms of network topology,
the extent to which the effects of changes in parameters prop-
agate within a CRN [12,13]. When a subnetwork of a regular
CRN satisfies certain topological conditions, the subnetwork
is called a buffering structure (as defined in Definition 2).
It was mathematically demonstrated that the steady-state re-
sponses to the perturbation of a parameter within a buffering
structure are confined within the buffering structure (as shown
in Theorem 2, the law of localization). We briefly review
the law of localization and buffering structure [12]. Here,
we consider CRNs that lack conserved quantities, that is,
CRNs where M + K = N holds. For the general case, see
Appendix A.
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Definition 2. (Buffering structure). [12] A subnetwork � =
(m�, r� ) (m�, r� are subsets of chemicals and reactions, re-
spectively) of a regular CRN is a buffering structure if it
satisfies:

(1) None of the reaction rates of the reactions in rc
�

are dependent on the concentrations of chemicals within
m� , i.e., ∂rn

∂xm
|x = 0 at all x, ∀n ∈ rc

�,∀m ∈ m� , where rc
�

means the complement of r� in all reactions in the CRN
(output-complete),

(2) λ(�) = 0 with λ(�) = −|m�| + |r�| − N (r� ).
Here, |m�| and |r�| are the size of m� and r� , respec-

tively, N (r� ) is the number of stoichiometric cycles in r� .
To be precise, N (r� ) := dim {x ∈ ker ν | supp x ⊂ r�}, where
supp r := {i | ri �= 0} for r ∈ RN . In the graphical representa-
tion of a CRN, if � is output-complete, no reaction arrows
outside of � leave from the nodes (chemicals) inside �. It is
important to note that the definition of a buffering structure
does not depend on the choice of a basis for ker ν.

Using Theorem 1 we can deduce Theorem 2, the proof of
which was described in Ref. [12].

Theorem 2. (Law of localization). [12] The steady-state
chemical concentrations and reaction fluxes outside of a
buffering structure � = (m�, r� ) do not change under any
perturbation of the reaction rate parameters in r� .

Theorem 2 implies that when a subnetwork within a CRN
satisfies certain topological conditions, the impact of a pa-
rameter perturbation within a buffering structure is restricted
to that subnetwork. A buffering structure introduces a novel
concept in CRNs: a “regulatory module” can naturally arise
from the topology of a network.

We illustrate SSA and buffering structures in an example
network.

Example 1. We consider a straight pathway, shown in
Fig. 1(a). The stoichiometric matrix is given by

ν =
⎛
⎝1 −1 0 0

0 1 −1 0
0 0 1 −1

⎞
⎠. (14)

ν has a kernel vector c = (1, 1, 1, 1)�. Since M = 3, N = 4,
and K = 1, M + K = N holds, implying that the CRN does
not have the conserved quantities. The matrix A is

A =

⎛
⎜⎜⎝

0 0 0 −1
r2,P 0 0 −1
0 r3,Q 0 −1
0 0 r4,R −1

⎞
⎟⎟⎠, (15)

and the sensitivity is determined as

S = −A−1 =

⎛
⎜⎜⎜⎝

1
r2,P

− 1
r2,P

0 0
1

r3,Q
0 − 1

r3,Q
0

1
r4,R

0 0 − 1
r4,R

1 0 0 0

⎞
⎟⎟⎟⎠. (16)

Since r2,P, r3,Q, r4,R > 0 from Eq. (5), the distribution of
nonzero entries in S can be determined. If ∂rn

∂kn
> 0, ∀n, the

FIG. 1. Analysis for a hypothetical network (Example 1).
(a) Graphical representation of a CRN comprising three chemicals
(P, Q, R) and four reactions (1, 2, 3, 4). Solid lines indicate chemical
reactions. The subnetwork � = {{P}, {2}} is a buffering structure.
(b) The result of a numerical simulation in the network A. We assume
r = (k1, k2xP, k3xQ, k4xR ) with (k1, k2, k3, k4) = (1.0, 1.0, 1.0, 1.0).
The dynamics are in the steady state at t = 30. At t = 30, k2 was
increased by a factor of 2.

signs of changes in each chemical are given by

S = −A−1 =

⎛
⎜⎜⎝

+ − 0 0
+ 0 − 0
+ 0 0 −
+ 0 0 0

⎞
⎟⎟⎠, (17)

where + and − represent qualitative responses under pertur-
bations associated with column indices. For example, from
the second column, we can see that the increase in the
reaction rate parameter of the reaction 2 results in a de-
crease in the steady-state concentration of the chemical P,
but the steady-state concentrations of either Q or R are not
affected [Figs. 1(a) and 1(b)]. The subnetwork � = {{P}, {2}}
is a buffering structure, because � is output-complete and
λ(�) = −|m�| + |r�| − N (r� ) = −1 + 1 − 0 = 0 [Fig. 1(a),
red box]. This explains why the steady-state concentrations of
Q and R are insensitive to the perturbation to the reaction 2.

It was proved that the intersection or union of buffering
structures is also a buffering structure [33].

Proposition 1. Let �1 and �2 be buffering structures of a
regular CRN (�1 �= �2). Then �1 ∪ �2 and �1 ∩ �2 are also
buffering structures [33].

III. THE MAIN THEOREM

In this section, we present our main theorem: the inverse
theorem of the law of localization. This theorem forms the
basis for an efficient algorithm to identify buffering structures
(Sec. IV). We first define a “regulatory module”, which is an
output-complete subnetwork with a confined response. As in
the previous section, we consider CRNs that lack conserved
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quantities, that is, CRNs where M + K = N holds. For the
general case, see Appendix A.

Definition 3. (Regulatory module). A subnetwork � =
(m�, r� ) (m�, r� are subsets of chemicals and reactions,
respectively) of a regular CRN is a regulatory module if it
satisfies

(1) � is output-complete.
(2) The steady-state concentrations of mc

� (chemicals out-
side of �) do not change under the perturbation of either
parameter in r� .

Remark 2. The condition 2 of Definition 3 does not require
that the steady-state reaction fluxes outside of � remain un-
changed under perturbations of reaction rate parameters in �.
However, this can be easily derived from the requirements
of Definition 3. Indeed, if a subnetwork � = (m�, r� ) is a
regulatory module, it is output-complete, which implies that
reaction rates of rc

� depend only on chemicals in mc
� . The

steady-state concentrations of mc
� do not change under ei-

ther perturbations of reaction rate parameters in �, therefore,
steady-state reaction rates of rc

� are not influenced by the
perturbations.

From the law of localization (Theorem 2), a buffering
structure is a regulatory module. We will prove the main
theorem of this paper: The inverse theorem of the law of lo-
calization (Theorem 3), which states that a regulatory module
is a buffering structure.

Theorem 3. (Inverse theorem of law of localization). Let
� be a regulatory module of a regular CRN. Then, � is a
buffering structure.

From Theorem 2 and Theorem 3, we obtain the following
theorem.

Theorem 4. (The equivalence between a buffering structure
and a regulatory module). Let � be the subnetwork of a
regular CRN. Then, the following are equivalent:

(i) � is a buffering structure,
(ii) � is a regulatory module.
To prove Theorem 3, we will prove two lemmas.
Lemma 1. The sensitivities of the steady-state concen-

tration of each chemical and flux with respect to reaction
parameters kn are indifferent to the choices of a basis for ker ν.

Proof of Lemma 1. Let {ci}i=1,...,K and {c′
i}i=1,...,K be two

distinct bases for ker ν. We define A and A′ as

A :=

⎛
⎜⎝ r1,1 . . . r1,M

...
... −c1 . . . −cK

rN,1 . . . rN,M

⎞
⎟⎠, (18)

A′ :=

⎛
⎜⎝ r1,1 . . . r1,M

...
... −c′

1 . . . −c′
K

rN,1 . . . rN,M

⎞
⎟⎠. (19)

There exists an invertible change-of-basis matrix P ∈
RK×K such that c′

i = p1,ic1 + · · · + pK,icK for i = 1, . . . , K .
Using P, we can rewrite A′ as

A′ = A

⎛
⎜⎜⎜⎜⎝

IM×M 0

0 P

⎞
⎟⎟⎟⎟⎠. (20)

From this equation, the sensitivity matrix S′ := −(A′)−1

can be written in the form

S′ =

⎛
⎜⎜⎜⎜⎝

IM×M 0

0 P−1

⎞
⎟⎟⎟⎟⎠S. (21)

This equation shows that ∂x
∂k , which is located in the first

M rows of the sensitivity matrices, is the same for S and S′.
The sensitivity of each flux is given by Eq. (8) (since we are
focusing on qualitative changes, we can assume ∂r j

∂kn
= ±δn, j),

which is also the same between the two bases. �
Lemma 1 guarantees that the sensitivities of chemical con-

centrations fluxes with respect to reaction rate parameters are
not affected by the choice of a basis for ker ν, which allows us
to choose any basis we prefer. The following lemma provides
one way to choose a basis for ker ν.

Lemma 2. Let r� be a subset of reactions in a CRN. We
let Vr�

:= {x ∈ ker ν | supp x ⊂ r�}. We also define N (r� ) :=
dim Vr�

as previously defined. If dim ker ν � 1, there exists a
basis { f i}i=1,...,K for ker ν such that

(i) f 1, . . . , f N (r� ) ⊂ Vr�
,

(ii) rc
�-projected f N (r� )+1, . . . , f K are linearly

independent.
By rc

�-projected f i, we mean Prc
� f i, where Prc

� ∈ RN×N is
a projection matrix satisfying

Prc
�

j, j′ = δ j, j′ if j, j′ ∈ rc
�. Otherwise Prc

�

j, j′ = 0. (22)

Proof of Lemma 2. If N (r� ) = K , the statement is trivial.
We will focus on the case of N (r� ) < K . If N (r� ) � 1, we
first choose a basis for Vr�

as { f 1, . . . , f N (r� )}, which satisfies
condition (i). Then, we add some vectors to the basis vectors
such that { f 1, . . . , f N (r� ), f N (r� )+1, . . . , f K} forms a basis
for ker ν. The set { f N (r� )+1, . . . , f K} spans the complemen-
tary subspace of Vr�

, denoted by V c
r�

. [If N (r� ) = 0, we can
choose an arbitrary basis for ker ν as { f i}i=1,...,K . In this case,
V c
r�

= {0}.]
Let f̄ i be the rc

�-projected f i. We will prove that
f̄ N (r� )+1, . . . , f̄ K are linearly independent. Suppose on the
contrary that f̄ N (r� )+1, . . . , f̄ K are linearly dependent. Then,
there exists {αi}K

i=N (r� )+1 (at least one of αN (r� )+1, . . . , αK

is nonzero) such that αN (r� )+1 f̄ N (r� )+1 + · · · + αK f̄ K = 0.
We let g := αN (r� )+1 f N (r� )+1 + · · · + αK f K . Because the rc

�-
projected g is 0, we have g ∈ V (r� ). At the same time,
g ∈ V (r� )c because g is written as a linear combination of
f N (r� )+1, . . . , f K ∈ V (r� )c. Therefore, g ∈ V (r� ) ∩ V (r� )c =
{0}, i.e., g = 0. This implies that αN (r� )+1 f N (r� )+1 + · · · +
αK f K = 0, which contradicts the fact that f N (r� )+1, . . . , f K
are linearly independent. This completes the proof of
Lemma 2. �

Proof of Theorem 3. Suppose a subnetwork � = (m�, r� )
is a regulatory module. Since � is an output-complete subnet-
work, it suffices to show that λ(�) = 0.

We choose { f i}i=1,...,K for ker ν as shown in Lemma 2.
As shown below, by collecting the indices associated with
� = (m�, r� ) into the upper-left corner, A can be represented
as a block matrix with the lower left corner being a zero matrix
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FIG. 2. Schematic depiction of A and S when � = (m�, r� ) is a
regulatory module. (Left) By collecting the indices associated with
� into the upper-left corner, A can be a block matrix in which the
lower right is the zero matrix. (Right) The sensitivity matrix S is
also proved to be a block matrix in which the lower right is the zero
matrix. See proof of Theorem 3.

[Fig. 2 (left)]. The column indices in the upper-left block con-
sist of the chemicals in m� followed by − f 1, . . . ,− f N (r� ),
which are the basis vectors of Vr�

:= {x ∈ ker ν | supp x ⊂
r�}. The row indices consist of the reactions in r� . All en-
tries in the green region in Fig. 2 (left) are 0, because �

is output-complete. All entries in the blue region in Fig. 2
(left) are 0, because supp f i ⊂ r� (i = 1, . . . , N (r� )). Since
we are assuming det A �= 0, the block associated with � =
(m�, r� ) in Fig. 2 (left) is vertically long or square; i.e.,
λ(�) = −|m� | + |r� | − N (r� ) � 0.

It remains to prove that λ(�) � 0. S = −A−1 is also in the
block form in which the lower-left part is the zero matrix, as
we will prove below [Fig. 2 (right)]. First, all ∂xm

∂kn
with m ∈ mc

�

and n ∈ r� , which appear in the red region in Fig. 2 (right),
vanish due to the assumption that the steady-state chemical
concentrations in mc

� do not change under perturbations of
reaction rate parameters in r� . We next show that all ∂μl

∂kn
,

with f l �∈ Vr�
and n ∈ r� , which appear in the orange region

in Fig. 2 (right), do not have nonzero entries. The change
rate in the steady-state reaction flux vector in response to the
perturbation to kn is given by

∂r
∂kn

= ∂μ1

∂kn
f 1 + · · · + ∂μK

∂kn
f K , n = 1, . . . , N. (23)

Recall that the reaction fluxes outside of a regulatory mod-
ule � remain unchanged under either perturbations of reaction
rate parameters in � (Remark 2). This means that

0 = ∂μ1

∂kn
f̄ 1 + · · · + ∂μK

∂kn
f̄ K , ∀n ∈ r�, (24)

where f̄ 1, . . . , f̄ K are rc
�-projected f 1, . . . , f K . From Lemma

2 (i), f 1, . . . , f N (r� ) have nonzero values only in r� , so
f̄ 1, . . . , f̄ N (r� ) are all 0. Thus we obtain

0 = ∂μN (r� )+1

∂kn
f̄ N (r� )+1 + · · · + ∂μK

∂kn
f̄ K , ∀n ∈ r�. (25)

By Lemma 2 (ii), f̄ N (r� )+1, . . . , f̄ K are linearly independent,
which implies that

∂μN (r� )+1

∂kn
= · · · = ∂μK

∂kn
= 0, ∀n ∈ r�. (26)

This completes the proof of the structure of S.
Because A is invertible, S is also invertible. This implies

that the upper-left block in Fig. 2 (right) is vertically long

ALGORITHM 1. Finding all buffering structures (for CRNs
without conserved quantities).

Output: {Y1, . . . ,YN }, where Yn = {mYn , rYn } (mYn is the set of
chemicals and rYn is the set of reactions).

1: S ← −A−1

2: for n = 1, . . . , N do
3: mYn ← {}, rYn ← {n}
4: mYn ← M(rYn )
5: rYn ← rYn ∪ R(mYn )
6: Yn ← {mYn , rYn }
7: end for
8: return {Y1, . . . ,YN }

or square; i.e., |m� | + N (r� ) � |r� |, thus λ(�) � 0, which
completes the proof. �

IV. THE ALGORITHM TO FIND
BUFFERING STRUCTURES

In this section, we present the algorithm to enumer-
ate buffering structures. Similar to the previous section,
we will consider CRNs that lack conserved quantities (see
Appendix A for the general case). From Theorem 4, finding
buffering structures is equivalent to finding regulatory mod-
ules. For each reaction n, we find the minimum buffering
structure containing the reaction n through the following pro-
cedures (Algorithm 1).

We first calculate the zero distribution of S := −A−1.
Then, for each reaction n, we calculate M(n), defined as
the set of chemicals that are influenced by the reaction n,
i.e., M(n) := {m | ∂xm

∂kn
�= 0}. For a reaction set N , we let

M(N ) := ⋃
n∈N M(n). For a chemical m, we let R(m) be

the set of reactions whose reaction rates are dependent on
m, i.e., R(m) := {n | ∂rn

∂xm
�= 0}. Intuitively, R(m) is the set of

edges (reaction arrows) that leave the node (chemical) m in
the graph. For a chemical set m, we let R(m) := ⋃

m∈m R(m).
To obtain the minimum buffering structure that contains

the reaction n, we first construct a subnetwork that contains
only reaction n. Then, we add to the subnetwork M(n), whose
steady-state concentrations are affected by the perturbation to
the reaction n. The subnetwork can be made output-complete
by adding R(M(n)) \ {n}. From the transitivity property (Re-
mark 3, below), the perturbations to the newly added reactions
R(M(n)) \ {n} do not affect the steady-state concentration of
any chemical outside the subnetwork. Hence, the resulting
subnetwork Yn is a regulatory module and thus a buffering
structure from Theorem 3. It is clear that Yn is the minimum
buffering structure containing the reaction n. We iterate the
procedure for n = 1, . . . , N and remove duplicates, obtaining
Yp1 , . . . ,Yps (1 � p1 < · · · < ps � N).

Remark 3. If the system does not have the conserved quan-
tities, the transitivity property for influences was proved [34].
If r1 influences m1, the reaction rate of r2 is dependent on m1,
and the r2 influences m2, then r1 influences m2. In symbols,

r1 � m1 → r2 � m2 ⇒ r1 � m2. (27)
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Here, r � m means that the reaction r influences the chemical
m and m → r means that the reaction rate of r is dependent
on the concentration of m.

From Algorithm I, we obtain the following theorem.
Theorem 5. If the system does not have the conserved

quantity, the reaction n influences all chemicals in Yn.
There exist buffering structures other than the aforemen-

tioned Yp1 , . . . ,Yps . However, the set {Yp1 , . . . ,Yps} covers all
buffering structures in a CRN in the sense that {Yp1 , . . . ,Yps} is
the “minimum set of buffering structures” defined as follows.

Definition 4. (Minimum set of buffering structures). A set
of buffering structures {�1, . . . , �s} is the “minimum set of
buffering structures” of a regular CRN if

(1) For any buffering structure � of the CRN, there exists
1 � n1 < · · · < nm � s such that � = �n1 ∪ · · · ∪ �nm .

(2) Each �i cannot be expressed as a union of smaller
buffering structures, i.e., for any i (1 � i � s), there cannot
exist nonempty buffering structures �′ and �′′ (�′ � �i and
�′′ � �i) such that �i = �′ ∪ �′′.

Theorem 6. {Yp1 , . . . ,Yps} is the minimum set of buffering
structures.

Proof of Theorem 6. We first prove that {Yp1 , . . . ,Yps}
satisfies condition (1) of Definition 4. Suppose on the con-
trary that there exists a buffering structure � = (m�, r� ) that
does not satisfy the condition. If � contains no reactions,
|r�| = |m�| + N (r� ) = 0, hence |m�| = 0 and � is empty.
Therefore we only consider the case where � contains at least
one reaction. Let {n1, . . . , nq} be the set of reactions in r� .
For i = 1, . . . , q, � includes the minimum buffering structure
containing the reaction ni, hence we have � ⊃ σ , where σ =
Yn1 ∪ · · · ∪ Ynq . Because σ = (mσ , rσ ) is a buffering structure,
|mσ | − |rσ | + N (rσ ) = 0. Since the reaction set in σ is the
same as that in �, |rσ | = |r�| and N (rσ ) = N (r� ). Because
|m�| − |r�| + N (r� ) = 0, we have |mσ | = |m�|. Since mσ ⊂
m� , we have mσ = m� and thus σ = �, which means that
� = Yn1 ∪ · · · ∪ Ynq , contradicting the assumption.

We finally prove that {Yp1 , . . . ,Yps} satisfies condition (2)
of Definition 4. Suppose for some i ∈ N (1 � i � s), there
exists two nonempty buffering structures �′ and �′′ (�′ �
Ypi and �′′ � Ypi ) such that Ypi = �′ ∪ �′′. Since pi ⊂ Ypi , it
holds that pi ∈ �′ or pi ∈ �′′. We can assume pi ∈ �′ with-
out loss of generality. Then, we have Ypi ⊂ �′. At the same
time, since �′ and �′′ are nonempty, we have Ypi � �′, a
contradiction. �

Computational complexity. A naive algorithm to check
whether a given subnetwork in a CRN conforms to the
definition of BS (Definition 2) for all subnetworks has an
exponential time complexity of O(2M+N ). In contrast, the
most time-consuming step of our proposed approach is the
calculation of S = −A−1. Although symbolic calculation of
the inverse matrix is infeasible for a large-sized matrix, the
distribution of zero entries in the inverse of a sparse matrix can
be estimated numerically [34]. We assign random values to
r j,m ( �= 0) appearing in A and numerically calculate A−1. We
repeat this process multiple times to determine the distribution
of zero entries in S. The time complexity of this procedure is
O(N3), which is much lower than the brute-force method.

We illustrate our algorithm with some example networks.

FIG. 3. Analysis for a hypothetical network (Example 2).
(a) Graphical representation of a CRN with three chemicals (P, Q, R)
and four reactions (1, 2, 3, 4). Solid lines indicate chemical reactions.
Each subnetwork enclosed by a red box (Yi) represents a minimum
buffering structure containing the reaction i. (b) The hierarchy graph.
Initially, we construct a graph where each Yi is assigned to a node vi.
Modulating the enzyme activity of reactions within a box can lead to
nonzero responses in the chemicals within that box and those in the
lower boxes, while leaving the other chemicals unaffected. The set
of nodes in the hierarchy graph provides the disjoint decomposition
of the CRN.

Example 2. We consider a straight pathway, shown in
Fig. 3(a), which is the same as the pathway in Fig. 1(a). As
shown in Eq. (16), the sensitivity is given by

S = −A−1 =

⎛
⎜⎜⎝

∗ ∗ 0 0
∗ 0 ∗ 0
∗ 0 0 ∗
∗ 0 0 0

⎞
⎟⎟⎠, (28)

where ∗ represents a nonzero response. We will exhaustively
search for buffering structures in the CRN. Using the sensi-
tivity matrix, we obtain M(r): M(1) = {P, Q, R}, M(2) = {P},
M(3) = {Q}, M(4) = {R}.

We also obtain R(m), which is the set of edges (reaction
arrows) that leave the node (chemical) m in the graph: R(P) =
{2}, R(Q) = {3}, R(R) = {4}.

Since this system does not have conserved quantities, the
minimum set of buffering structures is given by Algorithm I
[Fig. 3(a)]: Y1 = {{P, Q, R}, {1, 2, 3, 4}}, Y2 = {{P}, {2}}, Y3 =
{{Q}, {3}}, Y4 = {{R}, {4}}.

Example 3. We consider a hypothetical pathway, shown in
Fig. 4(a). The stoichiometric matrix is given by

ν =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 1 0 0 0 0
0 1 −1 0 1 0 0 0
0 0 1 0 0 −1 0 0
0 0 0 −1 0 0 −1 0
0 0 0 0 −1 −1 1 0
0 0 0 0 0 1 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)
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FIG. 4. Analysis for a hypothetical network (Example 3).
(a) Graphical representation of a CRN with 6 chemicals (A, . . . , F)
and 8 reactions (1, . . . , 8). Solid lines indicate chemical reactions.
Y1 is shown in red, and Y4 = Y7 is shown in blue. The intersection
of these two is colored in green, which is also a buffering structure.
(b) The hierarchy graph. Modulating the enzyme activity of reactions
within a box leads to nonzero responses in the chemicals within
that box and those in the lower boxes, leaving the other chemicals
unaffected.

Since ν has kernel vectors c1 = (0,−1, 0,−1,

1, 0, 1, 0)�, c2 = (2, 2, 1, 0,−1, 1, 0, 1)� (note that
M = 6, K = 2, and N = 8, and hence M + K = N ,
implying that the CRN does not have the conserved
quantities), the matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −2
r2,A 0 0 0 0 0 1 −2

0 r3,B 0 0 0 0 0 −1
0 0 0 r4,D 0 0 1 0
0 0 0 0 r5,E 0 −1 1
0 0 r6,C 0 r6,E 0 0 −1
0 0 0 r7,D 0 0 −1 0
0 0 0 0 0 r8,F 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(30)

and the sensitivity is determined as

S = −A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 ∗ 0 0 ∗ 0
∗ 0 ∗ 0 0 0 0 0
∗ 0 0 ∗ ∗ ∗ ∗ 0
0 0 0 ∗ 0 0 ∗ 0
∗ 0 0 ∗ ∗ 0 ∗ 0
∗ 0 0 0 0 0 0 ∗
0 0 0 ∗ 0 0 ∗ 0
∗ 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

where ∗ represents a nonzero response.
Using the sensitivity matrix, we obtain M(r):

M(1) = {A, B, C, E, F}, M(2) = {A}, M(3) = {B},
M(4) = {A, C, D, E}, M(5) = {C, E}, M(6) = {C},
M(7) = {A, C, D, E}, M(8) = {F}.

We also obtain R(m), which is the set of edges (reaction
arrows) that leave the node (chemical) m in the graph: R(A) =
{2}, R(B) = {3}, R(C) = {6}, R(D) = {4, 7}, R(E) = {5, 6},
R(F) = {8}.

Since this system does not have conserved quantities,
the minimum set of buffering structures is given
by Algorithm 1 [Fig. 4(a)]: Y1 = {{A, B, C, E, F},
{1, 2, 3, 5, 6, 8}}, Y2 = {{A}, {2}}, Y3 = {{B}, {3}}, Y4 =
Y7 = {{A, C, D, E}, {2, 4, 5, 6, 7}}, Y5 = {{C, E}, {5, 6}},
Y6 = {{C}, {6}}, Y8 = {{F}, {8}}.

Parameters that influence D and those that affect B (or F)
are disjoint, hence D and B (or F) are independently regulated.
This is explained by the presence of two buffering structures.
B and F are part of Y1 [Fig. 4(a) red], hence the reactions in Y1

influences only chemicals within Y1, including B and F. D is
part of Y4 = Y7 [Fig. 4(a) blue], hence the reactions in Y4 = Y7

influences only chemicals within Y4 = Y7, including D. These
two buffering structures have an intersection [Fig. 4(a) green],
including the reactions 2, 5, and 6. From Proposition 1, the
intersection is also a buffering structure, indicating that the
reactions in the intersection do not influence B, D, or F. Thus,
the reactions influencing D and those affecting B (or F) are
disjoint. This is an example where multiple chemicals in a
single connected CRN are independently regulated through
buffering structures.

V. HIERARCHY GRAPH

We previously found that the nonzero response pat-
terns under perturbations of different parameters can exhibit
inclusion relations among them, i.e., exhibit hierarchical
structures [12,14]. This hierarchy encompasses every possible
perturbation-response pattern. In addition, it was previously
shown that buffering structures exhibit a hierarchy [12]. In
what follows, we show that the hierarchy of perturbation-
response patterns corresponds to that of buffering structures.
We also present a method to graphically illustrate the
hierarchy.

We are able to construct a hierarchy graph of nonzero
response patterns in the following way. We obtain Yp1 , . . . ,Yps

in the same way as Sec. IV. Each Ypi = (mYpi
, rYpi

) repre-
sents a perturbation-response relationship, i.e., perturbations
to parameters in rYpi

are confined to mYpi
. In the following

way, we construct the graph G = ({vi}s
i=1, E ) representing the

inclusion relationship of Yp1 , . . . ,Yps .
(1) We initially prepare a set of nodes {vi}s

i=1. Ypi is as-
signed to vi. The edge set E is empty at this time.

(2) For any pair of i and j (1 � i, j � s), we add an edge
v j → vi if Ypi � Ypj . (3) For any pair of i and j (1 � i, j � s),
we remove an edge v j → vi if there exists the path from v j

to vi of length greater than or equal to 2. The graph G is
a directed acyclic graph (if v1 → . . . → vq forms a cycle,
Yp1 = · · · = Ypq , which contradicts the fact that duplicates in
{Yp1 , . . . ,Yps} are removed).
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FIG. 5. Analysis for a metabolic network of E. coli, including glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic
acid (TCA) cycle (Example 4). (a) Graphical representation of a CRN. (b) The hierarchy graph of the CRN in (a). The red part highlights a
portion of the PPP, which is a buffering structure. The blue part encompasses the TCA cycle, which is also a buffering structure. The green
part corresponds to the glycolysis pathway, positioned at the apex of the hierarchy.

(4) We let Zi := Ypi − ⋃
j∈Di

Ypj , where Di is the union of
nodes that are downstream of vi. We change the assignment
of vi from Ypi to Zi.

The resulting hierarchy graph G represents the inclusion
relationship between buffering structures. The union of each
node vi with its downstream nodes Di forms a distinct buffer-
ing structure. Furthermore, Theorem 6 demonstrates that all
buffering structures are represented by a union of a node and
its downstream nodes. This implies that any node cannot be
further decomposed into smaller nodes.

The hierarchy graph G also summarizes the nonzero re-
sponse patterns. According to Theorem 5, perturbations to any
parameter within a node influence not only chemicals within
that node but also those in its downstream nodes.

Remark 4. The influential relationships between Zi and Zj

are all or none. There are only two possibilities: (i) The pertur-
bation to any parameter in Zi affects all chemicals in Zj , or (ii)
no parameter in Zi has any effect on the chemicals in Zj . This
allows us to define the relation �, with Zi � Zj meaning that
the perturbation to parameters in Zi affects all chemicals in Zj .
Then, ({Zi}s

i=1,�) is a partially ordered set, and G illustrates
its hierarchical order.

The set of nodes in G is a disjoint set, as shown in the
following theorem.

Theorem 7. In the hierarchy graph G, every chemical and
reaction appears exactly once.

Proof of Theorem 7. Because Yi contains reaction i, every
reaction appears at least once. From the regularity of the
matrix A, S is invertible, thus, every chemical is influenced by
at least one reaction. Hence, all chemicals appear in G more
than once.

Suppose G has two distinct nodes vi and v j such that
Zi ∩ Zj �= ∅. We pick e ∈ Zi ∩ Zj (e is either a chemical or
a reaction). Since Zi ⊂ Ypi and Zj ⊂ Ypj , we have e ∈ Ypi ∩
Ypj . Because both Ypi and Ypj are buffering structures, their

intersection Ypi ∩ Ypj is also a buffering structure by Proposi-
tion 1. Thus, according to Theorem 6, there exist buffering
structures Yq1 , . . . ,Yql such that Ypi ∩ Ypj = Yq1 ∪ · · · ∪ Yql .
There exists k (1 � k � l ) such that e ∈ Yqk . Since Yqk � Ypi ,
the node vk is located downstream of vi, implying that Zi ∩
Yqk = ∅. However, this contradicts the assumption that e ∈ Zi

and e ∈ Yqk . This completes the proof of Theorem 7. �
The proof of Theorem 7 is based on the fact that the inter-

section of two distinct buffering structures is also a buffering
structure (Proposition 1). Theorem 7 indicates that if two
distinct parameters both affect a common set of chemicals,
then there exists a buffering structure that encompasses the
common set of chemicals, with no additional chemicals in-
cluded. Theorem 7 also suggests that the hierarchy graph G
provides the disjoint decomposition

⋃s
i=1 Zi for any CRN. The

number of pieces in the decomposition is less than or equal to
the number of parameters, because each node includes at least
one parameter.

We illustrate our results in the toy networks [Example 2 in
Fig. 3(b) and Example 3 in Fig. 4(b)] and a biological network
[Example 4 in Fig. 5(b)].

Example 4. We present a metabolic network of Es-
cherichia coli, including multiple biologically identified
subcircuits: the glycolysis pathway, the pentose phosphate
pathway (PPP), and the tricarboxylic acid (TCA) cycle
[Fig. 5(a), see Appendix B for the detail] [4,12,14]. The
hierarchy graph of this CRN is shown in Fig. 5(b). Some
of the nodes in the hierarchy graph, derived from the
network topology, coincide remarkably with biologically
identified subcircuits. A subset of PPP (red), which includes
the nucleotide precursor Ribose-5-phosphate (R5P), forms a
buffering structure, and the TCA cycle constitutes another
buffering structure (blue). The glycolysis pathway (green) is
positioned at the top of the hierarchy. This hierarchy suggests
that while the activation of the glycolysis pathway influences
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all subcircuits, the activation of the nucleotide synthesis path-
way in PPP or the TCA cycle does not impact the other
subcircuits.

One important implication of a hierarchy graph is that clear
upstream and downstream relationships can always be identi-
fied through the hierarchical graph, regardless of the CRN’s
configuration. Even if a CRN has feedback loops and lacks a
tree structure, its hierarchical graph never includes feedback
loops. For instance, the central metabolic network (Exam-
ple 4) has feedback mechanisms. Here, glycolysis products
serve as precursors for the TCA cycle. At the same time, a
TCA-derived chemical (PEP) reenters the glycolysis pathway.
Nevertheless, its hierarchical graph does not have feedback
loops. The glycolysis pathway is positioned upstream of the
TCA cycle, with no path from the TCA cycle to the glycolysis
pathway, indicating that, in terms of perturbation-response
relationships, the glycolysis pathway is completely upstream
to the TCA cycle.

Another implication of a hierarchy graph is the transitiv-
ity of influence. If a perturbation of parameters in a node 1
influences the chemicals in a node 2, and a perturbation of
parameters in the node 2 influences the chemicals in a node
3, then a perturbation of parameters in the node 1 will also
affect the chemicals in the node 3. In the hierarchy graphs of
biological networks, each node can correspond to a specific
subcircuit (Example 4). Suppose we know that perturbing
a subcircuit 1 influences a subcircuit 2, yet the effect on a
subcircuit 3 remains uncertain. If we know that the subcircuit
2 influences the subcircuit 3, then we can infer that a pertur-
bation to the subcircuit 1 affects the subcircuit 3 as well.

VI. DISCUSSION

We previously demonstrated that the response of a CRN to
the modulations of parameters can be determined solely from
the local structure of the network [12,13]. When a subnetwork
within a CRN satisfies specific topological conditions, it is de-
noted as a “buffering structure”. The influence of a parameter
perturbation within a buffering structure is confined within it
(the “law of localization”). A buffering structure represents a
novel concept in CRNs: a “regulatory module” can naturally
arise from the topology of a network.

In previous studies [12,13], an ad hoc method was em-
ployed where buffering structures are identified by searching
for an output-complete subnetworks that shows confined
responses, based on SSA. However, it remained unclear
whether all subnetworks exhibiting these properties satisfy
the topological conditions of buffering structures. Our present
study proves that an output-complete subnetwork display-
ing a finite-response range is always a buffering structure.
This shows that buffering structures can be computed without
redundancy by searching for output-complete subnetworks
that exhibit confined responses. A naive algorithm to check
whether, for all subnetworks, a given subnetwork in a CRN
conforms to the definition of a buffering structure, i.e., ex-
hibits output-completeness and has an index of zero, has an
exponential time complexity. In contrast, our proposed ap-
proach has polynomial time complexity.

The existence of a hierarchy among the nonzero responses
to parameter perturbations has been hinted at in prior studies

[12,14]. However, the connection between this hierarchy of
nonzero responses and that of buffering structures remained
elusive. Our research elucidates that the hierarchy among
nonzero responses is equivalent to the hierarchy of buffering
structures. Furthermore, we propose an algorithm to depict
this hierarchy graphically through the computation of buffer-
ing structures.

This method can be applied to any CRN as long as the
A matrix is invertible. Our approach equips researchers to
explore buffering structures across various biological CRNs,
including metabolic systems and signal transduction net-
works. This will clarify how different physiological functions
emerging from a single CRN can be separately regulated.

In addition to sensitivities, the qualitative change (i.e., plas-
ticity) of behaviors is another important aspect of biological
systems. From a mathematical perspective, the discontinuous
transition from one state to another in response to parameter
perturbations can be understood within the framework of bi-
furcation theory of dynamical systems. Previously, two of the
authors of this study introduced a method to study bifurcations
of CRNs based solely on network topology, termed “struc-
tural bifurcation analysis” (SBA) [35,36]. SBA was developed
upon an equivalence between the Jacobian matrix J of a reac-
tion system and the augmented matrix A, enabling bifurcation
analysis based on network information. An important step in
SBA involves decomposing a CRN according to the inclusion
relationship among buffering structures. Our algorithm pre-
sented in this study for enumerating buffering structures and
constructing their hierarchy will be useful for executing SBA.

The inverse theorem offers the potential utility for correct-
ing the network information when combined with perturbation
experiments. A vast amount of information about metabolic
networks is available in databases [37–42], but the informa-
tion of networks in these databases might be still incomplete:
there might exist unidentified reactions or regulations. By
perturbing metabolic enzymes and experimentally measuring
the responses, it will be possible to identify the subnetwork
that exhibits a confined response range. The index of such a
subnetwork should be zero according to our inverse theorem.
If the index calculated from the database network is not zero,
modifications should be made to the network to ensure that the
index is zero. By employing this strategy, it may be possible
in the future to refine the metabolic networks in databases.

Our findings will pave the way to design a network that has
certain buffering properties, ensuring consistent functionality
despite various external and internal disturbances, which is
crucial in synthetic biology [43–46]. The inverse theorem
indicates that a subnetwork exhibiting a buffering property
should display a zero index. Thus, we are able to design
a subnetwork exhibiting a buffering property by targeting a
zero index. If a subnetwork of a biological network has a
positive index, it lacks the buffering properties, but network
modifications to reduce the index to zero could endow it with
such properties. The insights provided by Ref. [47], which
reveals the patterns of index changes resulting from the addi-
tion of outflows to chemicals, may offer guidance on potential
network modifications.

From a medical point of view, our algorithm for identify-
ing buffering structures might be useful for elucidating the
mechanisms underlying drug resistance. Drugs designed to
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treat diseases, such as cancer, operate by inhibiting enzyme
activity within CRNs. The extent of the molecular response
induced by drugs could be defined by the buffering structure.
It is plausible that, as cancer progresses, the structure of the
CRN changes, leading to changes in buffering structures. If
buffering structures narrow down, the effects of drug could get
weaker, thereby inducing drug resistance. By comparing the
buffering structures of normal tissues and those of cancerous
CRNs, we may be able to identify the CRN changes that are
key to drug resistance.

Hirono et al. proved the inverse theorem independently of
us [22]. In our study, we not only proved the inverse theorem
but also clarified the relationship between the hierarchy of
nonzero responses and that of buffering structures.

One limitation of this study is that we have only discussed
the case where the system is regular, i.e., the A matrix is
invertible. When the system is not regular, we conjecture
that structurally stable fixed points may not exist. If so, the
A matrix in the actual biological CRNs should be invert-
ible given that structurally stable fixed points are likely to
exist. However, we observed that the A matrix calculated
from the information in CRN databases is sometimes singu-
lar. One possibility is that network information within these
databases may contain missing reactions or regulations. It is
thus promising to develop a method to identify subnetworks
that are predicted to be robust buffering structures even under
possible network modifications.

In summary, we have developed an efficient method for ex-
haustively identifying buffering structures in any given CRN.
This method is expected to lead to a better understanding of
the basis for the independent regulation of different functions
arising from a single connected CRN.

The Python implementation of ibuffpy is available at
GitHub [48].
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APPENDIX A: CRNs WITH CONSERVED QUANTITIES

1. Structural sensitivity analysis with conserved quantities

In the main text, we assumed that the system does not
have the conserved quantities, i.e., dim ker ν� = 0, and thus

M + K = N . In Ref. [13], SSA is generalized to CRNs with
conserved quantities, which allows us to study any CRNs.
We denote a basis of ker ν� (the cokernel basis) as {da}L

a=1,
where L := dim ker ν�. The quantity d�

a x ≡ da remains con-
stant throughout the dynamics (a conserved quantity), since
d

dt
(d�

a x) = d�
a

dx
dt

= d�
a νr = 0. In the presence of conserved

quantities, steady-state concentrations and fluxes are affected
not only by reaction rate parameters but also by the initial
values of conserved quantities. Therefore, in this case, there
are two types of perturbations; the perturbation of the reaction
rate parameter kn and that of the conserved quantity da. To
treat two types of perturbations in a unified way, we introduce
generalized parameters Ji (i = 1, . . . , N + L) as

{J1, . . . , JN , JN+1, . . . , JN+L} := {k1, . . . , kN , d1, . . . , dL}.
(A1)

We generalize the definition of A and S̃ as follows:

A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r1,1 . . . r1,M
...

... −c1 . . . −cK

rN,1 . . . rN,M

−d�
1

... 0
−d�

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

S̃ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x1
∂J1

. . . ∂x1
∂JN

∂x1
∂JN+1

. . . ∂x1
∂JN+L

...
...

...
...

∂xM
∂J1

. . . ∂xM
∂JN

∂xM
∂JN+1

. . . ∂xM
∂JN+L

∂μ1

∂J1
. . .

∂μ1

∂JN

∂μ1

∂JN+1
. . .

∂μ1

∂JN+L
...

...
...

...
∂μK

∂J1
. . .

∂μK

∂JN

∂μK

∂JN+1
. . .

∂μK

∂JN+L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Equation (12) is generalized to

AS̃ = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r1
∂k1

. . . 0
...

. . .
... 0

0 . . . ∂rN
∂kN

1 . . . 0

0
...

. . .
...

0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

where r j,m := ∂r j

∂xm
. All partial derivatives are evaluated at

the steady state.
With Eq. (4) in mind, Theorem 1 is generalized to

Theorem 8.
Theorem 8. If A is invertible,

S̃ ∝ −A−1 := A (A5)

Remark 5. (The selection of the cokernel basis). The values
of ∂xm

∂kn
are independent of the choice of bases for ker ν and

ker νT , which is proved in much the same way as Lemma 1.
Hence, when our focus is solely on the effects of perturbations
to the reaction rate parameters, we have the flexibility to
choose the bases as we prefer. However, if our interest lies
in the effects of perturbations to the conserved quantities, it is
crucial to carefully select the basis for ker ν�. If supp da ⊂
supp db for some a, b (1 � a �= b � L), the perturbation of
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da can affect db, in which case the partial derivative ∂xm
∂da

is
difficult to interpret. To avoid choosing such a basis, it is rec-
ommended to find a basis by transforming ν� into its reduced
row-echelon form (RREF). When finding buffering structures,
choosing the cokernel basis requires additional caution (see
also Appendix A 4 b).

2. Buffering structure

We briefly review the law of localization and buffering
structure [13].

Definition 5. (Generalized definition of a buffering struc-
ture). [13] A subnetwork � = (m�, r� ) (m�, r� are subsets of
chemicals and reactions, respectively) of a regular CRN is a
buffering structure if it satisfies

(1) None of the reaction rates of the reactions in rc
� are

dependent on the concentrations of chemicals within m� ,
i.e., ∂rn

∂xm
|x = 0 at all x, ∀n ∈ rc

�,∀m ∈ m� , where rc
� means

the complement of r� in all reactions in the CRN (output-
complete).

(2) λ(�) = 0 with λ(�) = −|m�| + |r�| − N (r� ) +
Nc(m� ).

Here, |m�| and |r�| are the size of m� and r� , respec-
tively, N (r� ) is the number of stoichiometric cycles in r� .
To be precise, N (r� ) := dim {x ∈ ker ν | supp x ⊂ r�}, where
supp r := {i | xi �= 0} for r ∈ RN . Nc(m� ) is the number of
independent conserved quantities containing at least one el-
ement in m� . To be precise, Nc(m� ) := dim {Pm� x | x ∈
ker ν�}, where Pm� ∈ RM×M is a projection matrix onto the
space associated with m� defined as

Pm�

j, j′ = δ j, j′ if j, j′ ∈ m�. Otherwise Pm�

j, j′ = 0. (A6)

Note that the definition of a buffering structure is indiffer-
ent to the choice of bases for ker ν or ker ν�.

From Theorem 8 we can deduce Theorem 9.
Theorem 9. (Law of localization). [13] We consider a reg-

ular CRN with conserved quantities. We choose a basis for
ker ν� as {da}L

a=1 in the following way. First, we start with
the basis vectors for {x ∈ ker ν� | supp x ⊂ mc

�}. Then, we
repeatedly add a vector not in the span of the vectors to the set
until it spans ker ν�. If a subnetwork � = (m�, r� ) (m�, r� are
subsets of chemicals and reactions, respectively) is a buffering
structure, then the following two hold.

(1) For any reaction n ∈ r� and for any chemical m ∈ mc
� ,

∂xm
∂kn

= 0 holds.
(2) For any a satisfying supp da ∩ m� �= ∅ and for any

chemical m ∈ mc
� , ∂xm

∂da
= 0 holds.

Theorem 9 states that the steady-state chemical concen-
trations outside of a buffering structure do not change under
perturbations to reaction rate parameters or conserved quanti-
ties within the buffering structure. Since � is output-complete,
the steady-state reaction fluxes outside of a buffering structure
do not change under these perturbations either, as discussed in
Remark 2.

3. The inverse theorem

We provide a generalized definition of a regulatory module.
Definition 6. (General definition of a regulatory module).

In the case of a regular CRN with dim ker ν� > 0, we choose

FIG. 6. Schematic depiction of A and S when � = (m�, r� ) is a
regulatory module. (Left) By collecting the indices associated with
� into the upper left corner, A can be a block matrix in which the
lower left block is the zero matrix. (Right) S is also proved to a block
matrix in which the lower left block is the zero matrix. See proof of
Theorem 10.

a basis of ker ν� as {da}L
a=1. We define a subnetwork � =

(m�, r� ) (m�, r� represent subsets of chemicals and reac-
tions, respectively) as a regulatory module under the cokernel
basis {da}L

a=1 if it meets the following criteria:
(1) � is output-complete.
(2a) For any reaction n ∈ r� and any chemical m ∈ mc

� ,
∂xm
∂kn

= 0.
(2b) For any a such that supp da ∩ m� �= ∅ and any chem-

ical m ∈ mc
� , ∂xm

∂da
= 0.

Note that the definition of a regulatory module depends on
the choice of a basis of ker ν�, whereas a buffering structure
is defined independently of the choice.

According to the law of localization (Theorem 9), a buffer-
ing structure is a regulatory module for some choice of the
basis for ker ν�. It can be proved that the inverse theorem of
the law of localization holds, which states that if a subnetwork
is a regulatory module under some choice of the basis for
ker ν�, the subnetwork is a buffering structure.

Theorem 10. (Generalized inverse theorem of the law of
localization). We consider a regular CRN. If dim ker ν� > 0,
we choose a basis for ker ν� as {da}L

a=1. Let � be a regula-
tory module under the cokernel basis {da}L

a=1. Then, � is a
buffering structure.

Proof of Theorem 10. The proof is almost the same as
that of Theorem 3. Briefly, by appropriately choosing bases
for ker ν and ker νT and the orderings of the indices of A, A
becomes a block matrix in which the lower left block is the
zero matrix [Fig. 6 (left)]. Since A is invertible, the upper left
block is horizontally long or square, i.e., λ(�) = −|m� | +
|r� | − N (r� ) + Nc(m� ) � 0. In addition, S becomes a block
matrix in which the lower right block is the zero matrix, which
can be proved in much the same way as the proof of Theorem
3 [Fig. 6 (right)]. Since S is invertible, the upper left block
is horizontally long or square, i.e., λ(�) = −|m� | + |r� | −
N (r� ) + Nc(m� ) � 0. Thus, we obtain λ(�) = 0. Since � is
output-complete, � is a buffering structure. �

From Theorem 9 and Theorem 10, we obtain the following
theorem.

Theorem 11. (The equivalence between a buffering struc-
ture and a regulatory module). Let � be the subnetwork of a
regular CRN. The following are equivalent.

(i) � is a buffering structure.
(ii) � is a regulatory module for some choice of the basis

for ker ν�.
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ALGORITHM 2. Finding all buffering structures.

Output: {Y1, . . . ,YL+N }, where Yn = {mYn , pYn } (mYn is the set of
chemicals and pYn is the set of parameters).

1: for n = 1, . . . , L + N
2: mYn ← {}, pYn ← {n}
3: mYn ← mYn ∪ M(pYn )
4: if pYn ⊃ R(mYn ) and pYn ⊃ Rq(mYn ) then
5: Yn ← {mYn , pYn }
6: else
7: pYn ← pYn ∪ R(mYn ) ∪ Rq(mYn )
8: go to3
9: end if
10: end for
11: return {Y1, . . . ,YN+L}

4. The algorithm to find buffering structures

a. Algorithm

We generalize the algorithm to find buffering structures
in CRNs with conserved quantities. Here, we describe the
algorithm to find regulatory modules under the specific choice
of the basis for ker ν�, denoted by {da}L

a=1. How we should
choose the basis is discussed in Appendix A 4 b. We de-
fine {J1, . . . , JN , JN+1, . . . , JN+L} := {k1, . . . , kN , d1, . . . , dL}
as shown in Eq. (A1). For each reaction rate parameter or
conserved quantity n (1 � n � N + L), we find the minimum
buffering structure containing parameter n through the follow-
ing procedures (Algorithm 2).

Similar to the notations in the main text, we introduce
some notations. For each parameter n (n = 1, . . . , N + L),
which corresponds to either the reaction rate parameter or
conserved quantity, we let M(n) be the set of chemicals whose
steady-state concentrations are affected by the perturbation to
n. For a reaction set N , we let M(N ) := ⋃

n∈N M(n). For a
chemical m, we let R(m) be the set of reactions whose reaction
rates are dependent on m, i.e., R(m) := {n | ∂rn

∂xm
�= 0}. We also

let Rq(m) be the set of conserved quantities that contain m,
i.e., Rq(m) := {da | m ∈ supp da}. For a chemical set m, we
let R(m) := ⋃

m∈m R(m) and Rq(m) := ⋃
m∈m Rq(m).

To obtain the minimum buffering structure that contains
the parameter n, we begin by constructing a subnetwork that
contains only parameter n. Then, we add M(n) to the sub-
network. To make the subnetwork output-complete, we add
R(M(n)) to the subnetwork. We also add Rq(M(n)) to the sub-
network. Again, we add chemicals that are influenced by the
newly added parameters. The subnetwork can be made output-
complete by adding some reactions. We also add conserved
quantities that contain at least one of the newly added chem-
icals. We repeat this procedure until there are no reactions or
conserved quantities to be added. The resulting subnetwork
Yn is output-complete and the effects of the perturbations to
the reaction rate parameters or conserved quantities in Yn are
confined inside Yn, indicating that Yn is a regulatory module
under the basis {da}L

a=1. According to Theorem 10, Yn is a
buffering structure. This procedure stops in a finite number of
steps since the number of chemicals plus the number reactions
in a network is finite.

FIG. 7. Schematic depiction of the matrix A related to the proof
of Proposition 2. (Left) By collecting the indices associated with �

into the upper-left corner, the matrix A can be a block matrix in which
the lower right is the zero matrix. (Right) After the change of basis
from {da}L

a=1 to {d ′
a}L

a=1, the matrix A will be a block diagonal matrix.

We iterate the procedure for n = 1, . . . , N + L and re-
move duplicates, obtaining Yp1 , . . . ,Yps (1 � p1 < . . . <

ps � N + L).

b. Choice of the cokernel basis

Notably, to find all buffering structures, we have to find
regulatory modules for all possible choices of the basis for
ker ν�, which is not feasible since there are infinitely many
ways to select a basis. However, in most cases, finding regu-
latory modules under a single basis is sufficient (Proposition
2).

Proposition 2. We consider a regular CRN. Suppose that a
basis {da}L

a=1 for ker ν� can be chosen such that

supp da ∩ supp db = ∅ for all a, b (1 � a �= b � L), (A7)

i.e., no two conserved quantities share constituent chemicals.
Then, finding regulatory modules under {da}L

a=1 is sufficient
to identify all buffering structures.

Proof of Proposition 2. Suppose on the contrary that there
exists a buffering structure � = (m�, r� ), which is not a reg-
ulatory module under the basis {da}L

a=1. If supp da ∩ m� = ∅
for all a = 1, . . . , L, � is a regulatory module regardless of
the choice of basis. Therefore, we assume, without loss of
generality, that

supp da ∩ m� �= ∅, if a = 1, . . . , q,

supp da ∩ m� = ∅, Otherwise, (A8)

where q is the size of the set {da | supp da ∩ m� �= ∅}. Let d̃a

be the projection of da into m� . Based on Eq. (A7), d̃1, . . . , d̃q

are linearly independent.
We denote the basis of ker ν by

{ f 1, . . . , f N (r� ), f N (r�+1), . . . , f K}, as in Lemma 2. As
demonstrated in the proof of Theorem 3, by arranging the
orders of the column and row indices of A, we can rewrite A
into the block form as shown in Fig. 7 (left). The structure of
block matrices in Fig. 7 (left) can be obtained by collecting
the indices associated with � into the upper-left corner: The
column indices at the upper left block consist of the chemicals
in m� followed by − f 1, . . . ,− f N (r� ), which represent the
basis vectors of Vr�

. The row indices consist of the reactions
in r� and −d1, . . . ,−dq. The left block vanishes, similar to
the proof of Theorem 3. Regularity of the system indicates
|m�| + N (r� ) � |r�| + q. If |m�| + N (r� ) = |r�| + q, the
sensitivity matrix S = −A−1 is a block-diagonal matrix,
which means that � is a regulatory module under the basis
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{da}L
a=1. Because � is not a regulatory module under {da}L

a=1,
we have

|m�| + N (r� ) < |r�| + q. (A9)

There exists another basis for ker ν�, denoted by {d ′
a}L

a=1,
such that |{supp d ′

i | d ′
i ∩ m� �= ∅}| = Nc (m� ), as stated in

Theorem 9. Since � is a buffering structure,

|m�| + N (r� ) = |r�| + Nc(m� ), (A10)

and A becomes a block diagonal matrix [Fig. 7 (right)]. From
Eqs. (A9) and (A10), we have Nc (m� ) < q. This means that a
change of the basis from {da}L

a=1 to {d ′
a}L

a=1 results in a reduc-
tion in the number of vectors that have at least one nonzero

entry in m� . Consequently, there exists i (1 � i � L) such
that d ′

i = w1d1 + . . . + wLdL (at least one of w1, . . . ,wL is
nonzero) and that supp d ′

i ∩ m� = ∅. By projecting d ′
i into m� ,

we obtain 0 = w1d̃1 + . . . + wqd̃q. This contradicts the fact
that d̃1, . . . , d̃q are linearly independent, thereby completing
the proof. �

In most CRNs, it is possible to choose the basis for ker νT

in such a way that Eq. (A7) holds. In this case, finding regu-
latory modules under the single choice of basis is sufficient to
find all buffering structures.

Example 5. We consider a pathway, shown in Fig. 8(a). We
choose the basis for ker νT as d1 = (1, 1, 0, 0, 0, 0)�, d2 =
(0, 0, 1, 1, 0, 0)�, d3 = (0, 0, 0, 0, 1, 1)�, which satisfies
Eq. (A7). The matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1,A 0 0 0 0 0 −1 0 0
0 r2,B 0 0 0 0 −1 0 0
0 r3,B r3,C 0 0 0 0 −1 0
0 0 0 r4,D 0 0 0 −1 0
0 0 0 r5,D r5,E 0 0 0 −1
0 0 0 0 0 r6,F 0 0 −1

−1 −1 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
0 0 0 0 −1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

and the sensitivities are determined as

S = −A−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 ∗ 0 0
∗ ∗ 0 0 0 0 ∗ 0 0
∗ ∗ ∗ ∗ 0 0 ∗ ∗ 0
∗ ∗ ∗ ∗ 0 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0 ∗ 0 0
∗ ∗ ∗ ∗ 0 0 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A12)

where ∗ represents a nonzero response.
We obtain M(1) = M(2) = {A, B, C, D, E, F}, M(3) =

M(4) = {C, D, E, F}, M(5) = M(6) = {E, F},
Mq(d1) = {A, B, C, D, E, F}, Mq(d2) = {C, D, E, F},

Mq(d3) = {E,F}.
We also obtain R(A) = {1}, R(B) = {2, 3}, R(C) = {3},

R(D) = {4, 5}, R(E) = {5}, R(F) = {6},
Rq(A) = Rq(B) = {d1}, Rq(C) = Rq(D) = {d2}, Rq(E) =

Rq(F) = {d3}.
The minimum set of buffering structures

are given by the Algorithm 2: Y1 = Y2 =
{{A, B, C, D, E, F}, {1, 2, 3, 4, 5, 6, d1, d2, d3}}, Y3 =
Y4 = {{C, D, E, F}, {3, 4, 5, 6, d2, d3}}, Y5 = Y6 =
{{E, F}, {5, 6, d3}}.

The construction of the hierarchy graph can be done in
much the same way as the method described in the main text
[Fig. 8(b)].

Remark 6. (Strategy for finding all buffering structures
when there is no basis satisfying Eq. (A7)). In some CRNs,
choosing a basis satisfying Eq. (A7) is impossible. Even in
such cases, we may be able to find all buffering structures
using the following strategy.

First, under the specific choice of basis {da}L
a=1 calculated

from RREF, we find regulatory modules �1, . . . , �s, which
are buffering structures from Theorem 10. However, there
can be another buffering structure �, because there can exist
another choice of cokernel basis such that � is a regulatory
module under the basis. To check this possibility, we examine
whether each �i = (m�i , r�i ) includes a smaller buffering
structure (Because the intersection of two buffering struc-
tures is also a buffering structure, it is sufficient to check
this for each �i). From the law of localization (Theorem 9),
if �i includes a hidden buffering structure �, perturbations
to reaction rate parameters in � do not affect the steady-
state concentration of chemicals in �i \ �. In other words, if
some reaction n ∈ r�i does not affect some chemical m ∈ m�i ,
and the nonzero response is not explained by the identified
buffering structure �1, . . . , �s, there is a possibility that �i is
decomposed into smaller buffering structures. In such cases,
changing the basis among {da | supp da ∩ m�i �= ∅} is recom-
mended as it will lead to find the hidden buffering structures.

APPENDIX B: THE LIST OF REACTIONS
FOR E. COLI CENTRAL METABOLISM

(1) Glucose + PEP → G6P + PYR
(2) G6P → F6P
(3) F6P → G6P
(4) F6P → F1,6P
(5) F1,6P → G3P + DHAP
(6) DHAP → G3P
(7) G3P → 3PG
(8) 3PG → PEP
(9) PEP → 3PG
(10) PEP → PYR
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FIG. 8. Analysis for a hypothetical network with conserved
quantities (Example 5). (a) Graphical representation of a CRN com-
prising six chemicals (A, B, C, D, E, F) and six reactions (1, 2, 3,
4, 5, 6) with three conserved quantities (d1 : xA + xB, d2 : xC + xD,
and d3 : xE + xF). Solid lines indicate chemical reactions, while the
dashed line indicates active regulation. Each subnetwork enclosed
by a red box (Yi) is a buffering structure containing the reaction i.
(b) The construction of the hierarchy graph. First, we construct a
graph such that each Yi is assigned to each node vi. Then, we con-
struct the hierarchy graph such that modulating the enzyme activity
of reactions within a square box leads to nonzero responses in the
chemicals within that box and those in the lower boxes, leaving the
other chemicals unaffected.

(11) PYR → PEP
(12) PYR → AcCoA + CO2
(13) G6P → 6PG
(14) 6PG → Ru5P + CO2
(15) Ru5P → X5P
(16) Ru5P → R5P
(17) X5P + R5P → G3P + S7P
(18) G3P + S7P → X5P + R5P
(19) G3P + S7P → F6P + E4P
(20) F6P + E4P → G3P + S7P
(21) X5P + E4P → F6P + G3P
(22) F6P + G3P → X5P + E4P
(23) AcCoA + → CIT
(24) CIT → ICT
(25) ICT → 2−KG + CO2
(26) 2-KG → SUC + CO2
(27) SUC → FUM
(28) FUM → MAL
(29) MAL → OAA
(30) OAA → MAL
(31) PEP + CO2 → OAA
(32) OAA → PEP + CO2
(33) MAL → PYR + CO2
(34) ICT → SUC + Glyoxylate
(35) Glyoxylate + AcCoA → MAL
(36) 6PG → G3P + PYR
(37) AcCoA → Acetate
(38) PYR → Lactate
(39) AcCoA → Ethanol
(40) R5P → (output)
(41) OAA → (output)
(42) CO2 → (output)
(43) (input) → Glucose
(44) Acetate → (output)
(45) Lactate → (output)
(46) Ethanol → (output).
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