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Enhancement of vibrationally assisted energy transfer by proximity to exceptional points,
probed by fluorescence-detected vibrational spectroscopy

Zeng-Zhao Li * and K. Birgitta Whaley †

Department of Chemistry, University of California, Berkeley, California 94720, USA;
Berkeley Center for Quantum Information and Computation, Berkeley, California 94720, USA;

and Center for Quantum Coherent Science, University of California, Berkeley, California 94720, USA

(Received 1 October 2023; accepted 14 April 2024; published 10 May 2024)

Emulation of energy transfer processes in natural systems on quantum platforms can further our understanding
of complex dynamics in nature. One notable example is the demonstration of vibrationally assisted energy
transfer (VAET) on a trapped-ion quantum emulator, which offers insights for the energetics of light harvesting.
In this work, we expand the study of VAET simulation with trapped ions to a non-Hermitian quantum system
comprising a PT -symmetric chromophore dimer weakly coupled to a vibrational mode. We first characterize
exceptional points (EPs) and non-Hermitian features of the excitation energy transfer processes in the absence
of the vibration, finding a degenerate pair of second-order EPs. Exploring the non-Hermitian dynamics of the
whole system including vibrations, we find that energy transfer accompanied by absorption of phonons from
a vibrational mode can be significantly enhanced near such a degenerate EP. Our calculations reveal a unique
spectral feature accompanying the coalescing of eigenstates and eigenenergies that provides a unique approach to
probe the degenerate EP by fluorescence-detected vibrational spectroscopy. Enhancement of the VAET process
near the EP is found to be due to maximal favorability of phonon absorption at the degenerate EP, enabling
multiple simultaneous excitations. Our work on improving VAET processes in non-Hermitian quantum systems
paves the way for leveraging non-Hermiticity in quantum dynamics related to excitation energy transfer.
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I. INTRODUCTION

Non-Hermitian Hamiltonians respecting parity-time (PT )
symmetry have been intensively studied over the past two
decades [1–5]. A characteristic feature of non-Hermitian PT -
symmetric systems is a spectral degeneracy known as the
exceptional point (EP) at which there is both a degener-
acy in eigenenergies and coalescence of eigenvectors. The
non-Hermitian physics due to this unique feature has been
explored in many classical systems [6–8], with a wide range of
applications such as enhanced sensing [9–11], laser emission
management [12–14], and wave transport control [15–17].
As interest grows also in exploring non-Hermitian physics
in the quantum realm, various approaches such as Hamilto-
nian dilation [18] and dissipation engineering [19] have been
exploited to investigate non-Hermitian quantum physics. EPs
have been observed in simple systems realized experimentally
on platforms such as NV centers [18], superconducting cir-
cuits [19,20], trapped ions [21–23], and ultracold atoms [24],
and extension to larger systems appears feasible with NMR
systems [25]. Recent developments include an investigation
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of the effects of quantum jumps on non-Hermitian dynamics
[26], emergence of PT symmetry in open quantum systems
[27], exceptional points in Floquet systems [24,28], opti-
mal control of non-Hermitian qubits [29], and entanglement
speedup in proximity to high-order exceptional points [30]. In
addition, investigation of non-Hermitian physics of topologi-
cal systems [31–33] has shown that topological phases can be
enriched by non-Hermiticity [34–37].

While considerable effort has been dedicated to exploring
nontrivial properties of non-Hermitian quantum systems, little
attention has been given to applications in the area of ex-
citation energy transfer. One important issue in this field is
understanding the observed long coherence in photosynthetic
light-harvesting systems, which is generally agreed to rely
on an interplay between excitonic and vibrational degrees
of freedom [38–40]. With the development of controllable
quantum platforms for simulating quantum phenomena in na-
ture [41,42], it has become possible to engineer vibrationally
assisted energy transfer (VAET) in a trapped-ion quantum
simulator, allowing analysis of uphill energy transfer pro-
cesses [42]. This enabled characterization of the interplay
between vibration-assisted and environment-assisted energy
transfer [43] as well as identification of collective behaviors
of vibrations that can give rise to novel mechanisms such as
heteroexcitation [44]. However, all demonstrations of VAET
so far have focused on Hermitian systems. This raises the
question of whether the VAET processes are achievable in
non-Hermitian quantum systems. If so, it is important to
identify what new aspects non-Hermiticity can bring to ex-
citation energy transfer, as well as to determine whether the
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non-Hermitian VAET might offer advantages over its Hermi-
tian counterpart.

To shed light on these questions and explore new research
directions in non-Hermitian excitation energy transfer, we
study here effects of the non-Hermiticity on the transfer pro-
cesses assisted by vibrations in a PT -symmetric chromophore
dimer, representing a simple VAET system relevant to light-
harvesting dynamics of photosynthetic systems. We first
characterize the EPs of the chromophore dimer in the absence
of vibrations, identifying the non-Hermitian features of oscil-
lations induced by gain and loss and nonequilibrium steady
states of excitation energy transfer in the PT -symmetric
unbroken and broken phase, respectively. The crucial charac-
teristic of these EPs lies in their classification as second-order
EPs that are twofold degenerate, i.e., each parameter set yield-
ing two distinct second-order EPs. This has significant impli-
cations for both the non-Hermitian dynamics and the dimer
spectroscopy. By then considering the non-Hermitian dynam-
ics of the entire system, including both the PT -symmetric
dimer and a weakly coupled vibration, we show that the
energy transfer processes involving absorption of phonons
from the vibration can be significantly enhanced near such a
degenerate EP of the PT -symmetric dimer. This enhancement
stands in sharp contrast to the relatively low transfer efficiency
observed in the corresponding Hermitian case.

In addition to this significant enhancement of energy trans-
fer near a degenerate EP, we also observe a unique feature in
fluorescence-detected vibrational spectroscopy of the dimer
that accompanies the coalescence of eigenstates or eigenen-
ergies of the non-Hermitian dimer at the EP. Observation of
this feature constitutes a witness of the EP and of the PT -
symmetry phase transition, suggesting a unique spectroscopic
approach that can further be used to probe the distance of the
system from an EP.

We show here that the significant enhancement of VAET
can be attributed to the increasingly favorable absorption of
phonons as the degenerate EP is approached. This EP de-
generacy enables multiple simultaneous excitations between
eigenstates associated with distinct EPs to be supported. We
analyze the robustness of our results by examining the re-
sponse of the enhanced VAET processes to varying strength
of vibrational coupling, temperature, and decoherence effects.

The remainder of the paper is structured as follows. In
Sec. II we present the model of a PT -symmetric chro-
mophore dimer weakly coupled to a vibrational mode. In
Sec. III we demonstrate the existence of EPs in the dimeric
system without coupling to the vibration and analyze the non-
Hermitian features observed in the excitation energy transfer
processes. In Sec. IV we investigate the dynamical and spec-
tral features of the enhanced VAET processes and analyze the
phonon-absorption mechanism. The robustness of the results
is discussed in Sec. V. Finally, in Sec. VI we summarize our
results and discuss experimental feasibility of realizing this
model with a trapped ion simulator.

II. VAET DIMER MODEL

A typical system for demonstrating the VAET phenomenon
is a chromophore dimer weakly coupled to a vibrational mode,

FIG. 1. (a) Left panel: Schematic of a non-Hermitian chro-
mophore donor-acceptor dimer coupled to a vibration. The dimer
consists of a donor (in green) with a tunneling coupling strength J
and gain-loss rate γ for its two equal energy states, and an acceptor
(in blue) with an energy difference of 2�. The vibration (in purple)
with a frequency ν is coupled to the donor with a coupling strength
κ . Right panel: Eigenstates of the non-Hermitian dimer and its Her-
mitian limit. Solid black lines represent the eigenstates |ψi〉 of the
non-Hermitian dimer [eigenstates of Eq. (1) with κ = 0] and gray
dashed lines represent eigenstates of the corresponding uncoupled
Hermitian dimer [eigenstates of Eq. (5) with γ = α = 0]. For the
non-Hermitian dimer, at the EP where the frequency differences
λ13(42) approach zero, a degeneracy occurs in each of two subspaces
spanned by states |ψ1〉 and |ψ3〉, and |ψ2〉 and |ψ4〉, respectively,
which is in both cases accompanied by coalescence of the corre-
sponding eigenvector pair, i.e., |ψ1〉 and |ψ3〉 in the former, as well
as |ψ2〉 and |ψ4〉 in the latter. This EP is thus a twofold degenerate
second-order EP. Also at this point, all other transition frequencies
become identical. Up-down arrows between pairs of eigenstates
{|ψi〉, |ψ j〉} indicate associated transitions with frequency difference
λi j (≡ λi − λ j ). These transitions are enhanced by resonant coupling
to the vibrational mode ν, enabling VAET [42]. The schematic di-
agram presented in the right panel is constructed for the parameter
values �/J = 8, α/J = 1, and κ/J = 0. (b) Schematic of the ion trap
and laser beams envisaged in an experimental realization. Two ions
are confined within the trap. A global laser beam along the axis of
the trap facilitates the interaction responsible for creating the donor-
acceptor coupling. Another tightly focused laser beam is localized
on the donor ion, enabling single-ion quantum state manipulation
and generating the site-vibration coupling. Additional laser drives
are utilized for laser heating and cooling, to manipulate the gain and
loss parameters on the donor ion.

illustrated in the left panel of Fig. 1(a). Adding gain and
loss, the system can be described by the Hamiltonian (setting
h̄ = 1)

H = Jσ (d )
x − iγ σ (d )

z + ασ (d )
x σ (a)

x + �σ (a)
z

+ κσ (d )
z (a + a†) + νa†a. (1)

Here the Pauli operators σ
( j)
r (r = x, y, z) are defined with

respect to the two lowest levels (|g〉 j and |e〉 j) of the donor
( j = d) or acceptor ( j = a) chromophore site, i.e., σ

( j)
x =

|g〉 j〈e| + |e〉 j〈g| and σ
( j)
z = |e〉 j〈e| − |g〉 j〈g| where j = d, a.

The parameters in the Hamiltonian are as follows: the two
equal energy levels of the donor have gain-loss rates γ and
are coupled with a tunneling of strength J , the acceptor has an
energy gap 2�, α represents the excitonic coupling between

023149-2



ENHANCEMENT OF VIBRATIONALLY ASSISTED ENERGY … PHYSICAL REVIEW RESEARCH 6, 023149 (2024)

the donor and acceptor, and κ denotes the coupling strength
of the donor to a vibrational mode with frequency ν. This
Hamiltonian is specifically tailored for ion trap emulations of
energy transfer, which have proven to be a successful platform
for demonstrating the VAET phenomenon [42]. We note that
this Hamiltonian design differs in some respects from that of
a natural chromophore system [43].

The VAET phenomenon has already been experimentally
engineered on a Hermitian trapped-ion platform for a system
with two excitonic sites and coupled vibrations [42], while
a single non-Hermitian trapped-ion qubit has recently been
demonstrated in experiments [21–23]. The non-Hermitian
VAET setup proposed in this work can be realized by com-
bining elements of these prior experiments. Specifically, the
energy sites of the chromophore donor-acceptor dimeric sys-
tem shown in Figs. 1(a) and 1(b) can be encoded in the internal
electronic state of the ions. The tunneling coupling (J) can
be realized and adjusted by a coherent laser drive, while the
non-Hermitian terms (±iγ ) can be realized and fine-tuned
by manipulating gains and losses of the electronic levels by
exchange with sources or sinks provided by additional laser
drives [see Fig. 1(b)].

With laser heating, ions can absorb energy from additional
laser beams with carefully chosen parameters, gaining kinetic
energy. Such heating processes act as a source, supplying
energy to the ions and increasing their motion. Using laser
cooling, ions can be made to lose energy to the surround-
ing electromagnetic field by carefully tuning the frequency
and intensity of the cooling lasers. Such cooling processes
effectively act as a sink, removing energy from the ions and
providing a damping effect on their motion.

The excitonic interaction between the donor and acceptor,
quantified by α, can be engineered and adjusted by using a
bichromatic laser beam aligned along the axis of the trap,
while the donor-vibration coupling, quantified by κ , can be
achieved and tuned through the design of two tones of a tightly
focused laser beam localized on the donor ion. In trapped-ion
quantum simulator experiments, the vibrational frequency ν

is defined as the difference between the ion-crystal rocking-
mode frequency and the frequency splitting between two tones
of a bichromatic laser beam localized to the donor ion [42].
This definition allows for effective variation of the vibra-
tional frequency in our setup. In addition to this effective
tuning, trapped-ion quantum systems in general allow for the
control of vibrational frequencies through the application of
electromagnetic fields to the trapped ions, inducing specific
oscillation frequencies. The vibrational frequency ν can be
adjusted by modifying the frequency of the dynamic radiofre-
quency (RF) field, which can be accomplished by varying
the amplitude and/or frequency of the RF signal directed into
the trap [45–47]. We note that, in contrast to the vibrational
frequency, the energy gap � is more challenging to adjust
[42].

The non-Hermiticity of the dimer model in Eq. (1) is in-
herited from the donor component, i.e., Hd = Jσ (d )

x − iγ σ (d )
z ,

which respects the PT -symmetry, i.e., PT HdPT = Hd with
parity operator P = σ (d )

x and time-reversal operator T being
a complex conjugation operation. The non-Hermitian donor
system can therefore host an EP, as described in detail in
Appendix A. For the dimer consisting of a non-Hermitian

donor and a coupled Hermitian acceptor, we can introduce an
expanded PT -symmetry operator, namely, P ′T with P ′ de-
fined as P ′ = σ (d )

x ⊗ I (a). In the absence of coupling to
vibration, i.e., κ = 0, it is straightforward to show that
P ′T H (κ = 0)P ′T = H (κ = 0) with P ′ = σ (d )

x ⊗ I (a), im-
plying that the PT -symmetry of the donor transfers to the
dimer without vibration via this expanded operator.

The requirements for VAET can be analyzed by consid-
eration of the energetics of the uncoupled dimer, which are
given in Appendix B. The primary requirement for VAET in
our dimer is that � > 0. We shall focus on the uphill energy
transfer processes, specifically the excitation transfer from the
donor to the acceptor, as illustrated in Fig. 13 in Appendix B,
which occur when � − J > α/2.

We note that realizing such a non-Hermitian PT -
symmetric donor with a balanced distribution of gain and loss
(±γ ) can be challenging to achieve in experiments. However,
an alternative approach can be adopted by constructing a
passive PT -symmetric system (possessing only loss, without
gain terms) and relating this to a PT -symmetric system by a
loss offset. For example, the passive PT -symmetric Hamil-
tonian H̃d = −i2γ σ

(d )
+ σ

(d )
− + Jσ (d )

x is equivalent to H̃d =
−iγ I + Hd where −iγ I represents a loss offset and Hd is the
PT -symmetric donor with balanced gain and loss.

A mapping between the Pauli-operator-based model, e.g.,
Eq. (1) for quantum simulation with trapped ions, and the
widely used Hamiltonian models for excitonic states of light-
harvesting systems has previously been established [43].
The effective Hamiltonian in the single electronic excita-
tion subspace relevant to excitonic energy transfer can be
expressed as H̃ = 
H
 = (−� − iγ )σ̃z + ασ̃x + κσ̃z(a +
a†) + νa†a, where 
 = |eg〉〈eg| + |ge〉〈ge|, σ̃z = |eg〉〈eg| −
|ge〉〈ge| and σ̃x = |eg〉〈ge| + |ge〉〈eg| with |eg〉 = |e〉d ⊗ |g〉a,
|ge〉 = |g〉d ⊗ |e〉a, 〈eg| = (|eg〉)†, and 〈ge| = (|ge〉)†. In the
absence of vibration, the effective two-level non-Hermitian
system within the single excitation subspace exhibits eigen-
values given by ±

√
α2 − (γ − i�)2 and still possesses an

exceptional point at γ = α when � = 0. However, this partic-
ular parameter regime does not favor the uphill energy transfer
(i.e., the excitation transfer from the donor to the acceptor)
assisted by vibrational modes that is the focus of the current
work, and we do not consider the single excitation subspace
effective Hamiltonian further in this work.

To demonstrate the effect of the non-Hermiticity on the
VAET processes, we focus on the population transferred from
the donor to the acceptor, which is quantified by the popu-
lation of the state |ge〉 (= |g〉d ⊗ |e〉a representing the state
in which the donor is in its ground state and the acceptor is
in its excited state). All calculations use the initial condition
|eg〉 (= |e〉d ⊗ |g〉a representing the state where donor is in its
excited state and the acceptor is in its ground state), which
can be reached optically from the ground state of the dimer by
a π/2 pulse. This population is denoted by Pa(t ) and can be
calculated for the dimer as

Pa(t ) = Tr[ρ(t )|ge〉〈ge|], (2)

where ρ(t ) represents the total density matrix. We also de-
fine the transfer efficiency, denoted by P̄a, as the average
population accumulation over a given time period t f ,
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given by

P̄a = 1

t f

∫ t f

0
Pa(t ) dt . (3)

The density matrix ρ(t ) is obtained as

ρ(t ) = U †ρdim(0)ρvU

Tr[U †ρdim(0)ρvU ]
, (4)

where ρdim(0) = |eg〉〈eg| is the initial state of the dimer (i.e.,
an excitation initially on the donor) and U = e−iHt with H
given in Eq. (1) is the nonunitary time evolution operator. For
the vibration, we consider a thermal initial state described by
ρv = e−βνa†a/Tr(e−βνa†a) with β = 1/kBT , where kB denotes
the Boltzmann constant and T represents the temperature.
This state is characterized by kBT and is relatively easy to
prepare in trapped-ion quantum simulator experiments [42].
Throughout this work, we choose the Fock space size of the
vibration as N = 50, which is much larger than the average
phonon number. This choice ensures the accuracy and conver-
gence of the results.

In the subsequent numerical calculations, specific parame-
ter values have been adopted to provide a meaningful context
for our analysis. Unless explicitly specified, we have cho-
sen typical values within the domain of trapped-ion energy
scales, namely, α/J = 1, �/J = 8, ν/J = 16.12, κ/J = 0.3,
kBT/J = 40, and t f = 22.5/J . These values are motivated
by the characteristic kHz frequencies observed in trapped-
ion systems. For example, {J, α, �, ν, κ, kBT } = 2π ×
{2.6, 2.6, 20.8, 41.912, 0.78, 104} kHz, and t f = 1.378 ms
[42]. The value of � (> J + α/2) ensures the uphill transfer
of excitations from the donor to the acceptor, as detailed in
Appendix B. The vibrational frequency ν, nearly resonant
with the dimer transition, is determined by the dimeric energy
structure (J , α, �, and the gain-loss variable γ ). The chosen
value of κ places the system in the weak dimer-vibration cou-
pling regime, and the vibrational temperature kBT is set high
to ensure that the vibrational mode provides the necessary
phonons to facilitate excitation energy transfer in the dimer.
The robustness to different values of κ and kBT is discussed
in Sec. V. It is important to note that alternative choices for
the final evolution time t f do not affect the primary result
of the non-Hermitian VAET spectral features, as discussed in
Sec. IV C.

III. EPs AND DYNAMICS IN THE ABSENCE
OF VIBRATIONAL MODES

A. Exceptional points

When the non-Hermitian chromophore dimer is decoupled
from the vibrational mode (κ = 0), its Hamiltonian is given
simply by

Hdim = −iγ σ (d )
z + Jσ (d )

x + �σ (a)
z + ασ (d )

x σ (a)
x (5)

with eigenenergies λ j ( j = 1, 2, 3, 4) given by

λ1 = −λ2 = −
√

ξ − 2
√

α2J2 + (J − γ )(J + γ )�2, (6)

λ3 = −λ4 = −
√

ξ + 2
√

α2J2 + (J − γ )(J + γ )�2, (7)

FIG. 2. (a), (b) Real (a) and imaginary (b) parts of eigenenergies
λi for the non-Hermitian chromophore dimer Hdim with �/J = 8
and variable donor-acceptor coupling α. Note the occurrence of
two pairs of doubly degenerate energies along the line starting at
γ /J = 1 for α = 0. (c) Exceptional line composed of two pairs of
degenerate eigenvalues for the non-Hermitian chromophore dimer
Hdim with �/J = 8. The limit α = 0 represents the uncoupled dimer
which contains the non-Hermitian donor monomer. (d) Projections
at α/J = 1 of eigenstates |ψ j〉 [i.e., |ψ1〉 (blue), |ψ2〉 (orange), |ψ3〉
(green), and |ψ4〉 (red)] onto the four basis states |ee〉 (dashed lines),
|eg〉 (circles), |ge〉 (diamonds), and |gg〉 (down-pointing triangles). It
is evident that there is a simultaneous coalescence of eigenvectors
|ψ1〉 and |ψ3〉, and of eigenvectors |ψ2〉 and |ψ4〉, with each pair cor-
responding to a different degenerate eigenvalue [panel (a)], resulting
in a twofold degenerate second-order EP. Unless otherwise specified,
all plots are made with parameters α/J = 1, �/J = 8, and κ/J = 0.

where ξ = α2 + J2 − γ 2 + �2. The eigenenergies are shown
in Fig. 1(a). The corresponding eigenstates are denoted as
|ψi〉. This chromophore dimer can exhibit twofold degener-
ate second-order EPs, as we discuss in detail below. In this
work we shall focus on the second-order EPs found for the
parameter ratio �/J = 8, analyzing the dynamics in particular
for the case where the ratio of excitonic coupling to donor
chromophore tunneling is unity, i.e., α/J = 1.

Despite the fact that Hdim in Eq. (5) is not Hermitian (i.e.,
Hdim �= H†

dim), its eigenenergies can still be real, since it is
PT -symmetric as noted above. This is evidenced in Figs. 2(a)
and 2(b), which display respectively the real and imaginary
parts of the eigenenergies λ j , as functions of the gain-loss
rate γ and the donor-acceptor coupling α, for �/J = 8. It
is evident that there are two lines of second-order excep-
tional points, one representing the simultaneous degeneracy
of eigenenergies λ1 and λ3, and the other representing the
degeneracy of eigenenergies λ2 and λ4. Remarkably, while the
real component of the eigenenergies differ on the two lines,
in the (γ /J, α/J ) plane the lines are identical, resulting in a
single, twofold degenerate, line of second-order exceptional
points in the parameter space {γ /J, α/J}. This line is shown
explicitly in Fig. 2(c) to more clearly reveal how the second-
order EP of the non-Hermitian monomer donor chromophore,
which is located at (γ /J, α/J ) = (1, 0) (see Appendix A), is
smoothly transformed to the degenerate pair of second-order
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FIG. 3. (a), (b) Non-Hermitian dynamics of Pa(t ) in PT -
symmetry unbroken (a) and broken (b) phases. (c) Dependence of
the period of slow oscillations in panel (a), T ∗ = 2π/λ42(13), on
the gain-loss rate γ when approaching the EP in the unbroken
phase. The green dashed curve is an eye guide calculated from y =
2.23(1.00778 − x)−1/2. (d) Dependence of Pa(t f ) (blue solid curve)
and P̄a (orange dashed curve) on γ /J , showing the PT -symmetry
phase transition at γ /J = 1. Unless otherwise specified, all plots
are made with parameters α/J = 1, �/J = 8, κ/J = 0, and t f =
22.5/J . The initial state is |eg〉 in all calculations.

EPs of the dimer as the donor-acceptor (excitonic) coupling
to the acceptor chromophore, α, is turned on. These EPs of
the coupled dimer are only slightly shifted, to larger values of
the gain-loss parameter, as α/J is increased. Thus the dimer
EP is very close to the donor monomer EP. Physically, this
indicates that for the dimer EP, the excitonic coupling α plays
a role similar to the internal donor tunneling J in balancing
the gain-loss rate γ .

We note that the second-order exceptional line in Fig. 2(c)
aligns closely with the vertical line γ /J = 1. This is due to the
parameter choice �/J = 8, which describes the uphill energy
transfer of excitations from donor to acceptor, as discussed
in the previous section and in Appendix B. Corresponding
exceptional lines for other values of �/J , specifically for
�/J = 0 and �/J = 2, are shown in Appendix C.

Figure 2(d) shows the absolute value of the projection
of the eigenstates |ψ j〉 onto the four basis states |k〉 (k =
ee, eg, ge, gg), for the parameter choice α/J = 1 and �/J =
8. For each basis state, i.e., |ee〉 (dashed lines), |eg〉 (cir-
cles), |ge〉 (diamonds), or |gg〉 (down-pointing triangles), it
is evident that the eigenstates of both pairs |ψ1〉 (blue) and
|ψ3〉 (green), and |ψ2〉 (orange) and |ψ4〉 (red) coalesce at a
common second-order EP, indicating the twofold degeneracy
of this second-order EP.

B. Non-Hermitian features of excitation energy
transfer processes

The time evolution of the acceptor population, denoted as
Pa(t ) [see Eq. (2)], is presented in Figs. 3(a) and 3(b). These
correspond respectively to the dynamics in PT -symmetry

unbroken phase [Fig. 3(a), with real eigenenergies shown in
Figs. 2(a) and 2(b)], and to the dynamics in the broken phase
[Fig. 3(b), with complex eigenenergies]. The two phases are
separated by an EP, which for the case of α/J = 1 and �/J =
8 is located at γ /J = 1.00778 ∼ 1.

1. γ = 0

We first analyze the Hermitian case γ = 0 [blue curve in
Fig. 3(a)]. In this case, Pa(t ) exhibits perfect Rabi oscillations
with a period close to 0.39/J (25 oscillations in Jt � 10),
corresponding to transitions between eigenstates |ψ1(3)〉 and
|ψ4(2)〉 with a frequency λ41(23) ≡ λ4(2) − λ1(3) ≈ 16.12J (see
the cyan up-down arrows in Fig. 1(a) and eigenenergies λ j at
γ = 0 in Appendix C). This fast oscillation of the population
Pa(t ) at the acceptor (in state |ge〉) results from the donor-
acceptor coupling, represented by Hα ≡ ασ (d )

x σ (a)
x in Eq. (5),

which transfers the initial excitation from the donor state
(|eg〉) to the acceptor state. The eigenstates of the decoupled
Hamiltonian H̃0 ≡ Hα,γ→0

dim = Jσ (d )
x + �σ (a)

z are

|ψ̃1(3)〉 ≡ |ψ1(3)〉α,γ→0 = |e〉d ± |g〉d√
2

⊗ |g〉a, (8)

|ψ̃4(2)〉 ≡ |ψ4(2)〉α,γ→0 = |e〉d ± |g〉d√
2

⊗ |e〉a, (9)

with corresponding eigenenergies λ1(3) = ±J − � and
λ4(2) = ±J + �, respectively, illustrated by gray dashed lines
in Fig. 1(a). In the interaction picture with respect to H̃0, the
donor-acceptor coupling becomes

eiH̃0t Hαe−iH̃0 =
∑

j,k

ei(λ j−λk )t 〈ψ̃ j |Hα|ψ̃k〉|ψ̃ j〉〈ψ̃k|

= α(eiλ41t |ψ̃4〉〈ψ̃1| + eiλ23t |ψ̃2〉〈ψ̃3|), (10)

indicating that Hα is responsible for the fast oscillations
with the oscillating period 2π/λ41(23) observed in the blue
cure of Fig. 3(a). Alternatively, we can express the initial
and target states as superpositions of the eigenstates [i.e.,
|eg〉 = (|ψ1〉α,γ→0 + |ψ3〉α,γ→0)/

√
2 or |ge〉 = (|ψ4〉α,γ→0 −

|ψ2〉α,γ→0)/
√

2], and calculate the transition matrix element
of the interaction 〈ge|ασ (d )

x σ (a)
x |eg〉. This calculation shows

that nonzero elements exist only between |ψ1(3)〉α,γ→0 and
|ψ4(2)〉α,γ→0, corresponding to the fast oscillations induced by
the donor-acceptor coupling Hα .

2. γ �= 0

Upon entering the PT -symmetry unbroken phase (i.e.,
0 < γ/J � 1), slow oscillations of Pa(t ) emerge that are su-
perimposed on the fast oscillation, with a reduced amplitude
compared to the Hermitian case. These slow oscillations re-
sult in a longer oscillating period as the system approaches
the EP, evidenced by, e.g., the orange (γ /J = 0.8) or green
(γ /J = 0.9) curve in Fig. 3(a). These oscillations in the un-
broken phase are induced by the non-Hermitian term −iγ σ (d )

z
in Eq. (5). They correspond to transitions between eigen-
states |ψ4(1)〉 and |ψ2(3)〉, with a transition frequency λ42(13) ≡
λ4(1) − λ2(3) [see the orange up-down arrows in Fig. 1(a)]. For
example, the transition frequency takes the value of 1.217J for
γ /J = 0.8, resulting in a period of 5.16/J (approximately two
oscillations when Jt � 10) for the orange curve in Fig. 3(a).

023149-5



ZENG-ZHAO LI AND K. BIRGITTA WHALEY PHYSICAL REVIEW RESEARCH 6, 023149 (2024)

The longer oscillating period near the EP is due to the decrease
of λ13(42) as γ increases, as can be seen from Eqs. (6) and (7)
or Fig. 2(a). These slow γ -induced oscillations can be under-
stood by employing the eigenstates of Hα,γ→0

dim in Eq. (8) [or
Eq. (9)] for the acceptor at its ground (or excited) state. Con-
sidering the initial state |eg〉 = (|ψ1〉α,γ→0 + |ψ3〉α,γ→0)/

√
2

and the target state |ge〉 = (|ψ4〉α,γ→0 − |ψ2〉α,γ→0)/
√

2 in
terms of these eigenstates, the nonvanishing transition matrix
elements of the non-Hermitian term 〈ge| − iγ σ (d )

z |eg〉 appear
only between |ψ1(4)〉α,γ→0 and |ψ3(2)〉α,γ→0. This, together
with Eq. (8) [or Eq. (9)], implies oscillations with an oscil-
lating period 2π/λ13(42) between states (|e〉d + |g〉d )/

√
2 and

(|e〉d − |g〉d )/
√

2 in the donor subspace. Moreover, during
each period of the slow oscillation, there is a rapid growth
of Pa(t ) followed by a slow decrease. This behavior can be
understood as the gain-loss rate γ more easily promoting the
transfer of an initial excitation at the donor where it is added,
than decreasing the excitation at the acceptor. The γ -induced
slow oscillations between |ψ1(4)〉 and |ψ3(2)〉 distort the α-
induced fast oscillations between |ψ1(3)〉 and |ψ4(2)〉, giving
rise to the modulated Rabi-like oscillations in the unbroken
phase evident in Fig. 3(a).

In the PT -symmetry broken phase (i.e., γ /J � 1),
Fig. 3(b) shows that the rapid growth of the acceptor pop-
ulation Pa(t ) is followed by approach to a nonequilibrium
steady state which is characterized by small amplitude fast
oscillations. The population in this steady state increases
slightly with γ /J . Similar to the Hermitian case [γ = 0,
blue curve in Fig. 3(a)], these fast oscillations correspond to
transitions between |ψ1(3)〉 and |ψ4(2)〉. The non-equilibrium
steady state arises primarily from the purely imaginary tran-
sition frequency between eigenstates |ψ1(4)〉 and |ψ3(2)〉. For
example, the transition frequency is approximately λ13(42) =
λ1(4) − λ3(2) ∼ {i0.312J, i0.51J, i0.652J, i0.77J} for γ /J =
{1.02, 1.04, 1.06, 1.08}, respectively (see Appendix C). This
steady state can be regarded as the symmetry-broken analog
of the γ -induced slow oscillations observed in Fig. 3(a), but
now with an infinite period resulting from the vanishing real
part of the transition frequency in the symmetry-broken phase.
From this perspective, the larger steady-state population for
the larger γ value evident in Fig. 3(b) can be attributed to
the more rapid growth resulting from transfer of an initial
excitation promoted by the gain-loss rate, as discussed in the
preceding paragraph.

To conclude this section, in Figs. 3(c) and 3(d) we present,
respectively, the period T ∗ of slow oscillations in the unbro-
ken symmetry phase, and the behavior of Pa(t f ) and P̄a over
the full range of γ /J . Figure 3(c) displays the dependence
of T ∗ = 2π/λ42(13), i.e., the slow oscillations for the λ42 and
λ13 transitions of Fig. 1(a), on the gain-loss rate γ close to
the exceptional point. On decreasing γ away from the EP
in the unbroken phase, T ∗ exhibits an inverse square-root
relation, indicated by the green dashed curve as a visual guide.
This dependence arises from the second-order nature of the
EP. Specifically, the eigenenergies λ j as well as the resulting
energy difference λ42(13) are proportional to the square root
of a small deviation in γ from the EP at γ /J = 1.00778 ∼ 1,
leading to an inverse square root dependence of the period T ∗.
The green dashed curve also aligns with the observation that
T ∗ tends to infinity at the EP where λ13 = λ42 → 0.

Figure 3(d) shows that both the acceptor population
Pa(t = t f ) at a given time t f , and the acceptor population
accumulation P̄a up to this time [Eq. (3)], provide qualitative
order parameters for the transition between the unbroken and
broken PT -symmetry phases. Apart from the expected dif-
ference between these two quantities in the regime γ /J � 1
(i.e., with or without oscillating behaviors), it is evident that
both Pa(Jt f = 22.5) (blue solid curve) and P̄a (orange dashed
curve) undergo significant changes at the EP (γ /J ∼ 1), indi-
cating the location of a PT -symmetry phase transition. The
monotonically increasing behavior of Pa(t = t f ) or P̄a for
γ /J � 1 is attributed to the presence of the nonequilibrium
steady state with a higher population for larger γ , that was
observed in Fig. 3(d) and commented on above.

IV. ENHANCED VIBRATIONALLY ASSISTED ENERGY
TRANSFER NEAR AN EP

The relatively low population transported from the donor to
the acceptor that is shown in Figs. 3(a), 3(b), and 3(d) can be
increased by introducing coupling to vibrations (κ �= 0). We
show in this section that the resulting excitation energy trans-
fer process by absorption of phonons from a vibrational mode,
which is the non-Hermitian extension of VAET in the Hermi-
tian case (γ = 0), can be significantly enhanced near an EP.
After briefly summarizing the Hermitian VAET features, we
shall explicitly analyze the efficiency of VAET as a function
of the distance from the EP of the system without vibrations
that was characterized in the previous section. We first present
the non-Hermitian dynamics of the entire system including
the vibration, under the VAET resonance conditions, which
are ν = λ23 = λ41 = 16.12J for one-phonon VAET and 2ν =
λ23 = λ41 = 16.12J for two-phonon VAET [see Fig. 1(a)].
We then probe the spectral features of the VAET processes
by continuously scanning the vibrational frequency ν. Our
calculations are based on analysis in the weak dimer-vibration
coupling κ regime, to avoid population of the vibronic states
that characterize the strong coupling regime [44]. We also
assume an uphill transfer (� − J > α/2), which we realize
with the specific parameter choice �/J = 8 and α/J = 1.

A. Hermitian VAET

Figure 4 summarizes the features of VAET for the Hermi-
tian system. The dynamics in Fig. 4(a) show that, for a specific
dimer-vibration coupling of κ/J = 0.3, the blue and green
curves representing ν/J = 18 and ν/J = 14 respectively in
Pa(t ), display higher population at the acceptor than both
the blue curve (γ = κ = 0) in Fig. 3(a) for the case of no
vibration, and the orange curve depicting ν/J = 16, which is
nearly resonant with the dimer transition but is not allowed
by the phonon absorption mechanism (as explained below).
This pair of VAET processes, representing transitions in the
Hermitian limit between the eigenstates |ψ3〉 and |ψ4〉 or
between |ψ1〉 and |ψ2〉, are depicted as blue and green up-
down arrows in Fig. 1(a). These processes correspond to the
absorption of a phonon from the vibrational modes ν = λ43

or λ21. This observation implies that the VAET processes
(κ �= 0) exhibit sensitivity to the chosen vibration frequency.
This frequency dependence is further exemplified in Fig. 4(b),
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FIG. 4. (a) Dynamics of Pa(t ) for the one-phonon VAET in the
Hermitian limit with ν/J = 14, 16, 18. (b) Hermitian spectra of the
VAET processes as a function of κ/J and ν/J , represented by Pa(t f )
with t f = 22.5/J . Unless otherwise specified, all plots are made
with parameters γ = 0, α/J = 1, �/J = 8, κ/J = 0.3, and with the
initial state |eg〉.

which summarizes the dependence of the population trans-
fer Pa(Jt f = 22.5) on the vibrational frequency ν and the
vibrational coupling strength κ . Figure 4(b) shows that for
a fixed vibration frequency, such as ν/J = 18 or ν/J = 14,
the population transfer initially increases with κ , followed by
a subsequent, albeit very slight, suppression as κ is further
increased to the extent that it causes a departure from the weak
dimer-vibration coupling regime and leads to the formation of
vibronic states with strong mixing of excitonic and vibrational
degrees of freedom [44].

B. Dynamical features of non-Hermitian VAET

The non-Hermitian dynamics of the one-phonon VAET
processes, quantified by the acceptor population Pa(t ), are
shown in Figs. 5(a) and 5(b) (with ν/J = 16.12), while the
dynamics of the two-phonon VAET processes are shown in
Figs. 5(c) and 5(d) (with ν/J = 8.06). Figures 5(b) and 5(d)
show the dynamics for nine specific values of the gain-loss
parameter γ , extracted from Figs. 5(a) and 5(c), respectively.

1. One-phonon VAET dynamics

Figure 5(a) shows that the acceptor population is ini-
tially low in the Hermitian limit (γ = 0) and becomes
more pronounced on approaching the EP (located at γ /J =
1.00778 ∼ 1 when α/J = 1 and �/J = 8) from the unbroken
phase. The gradual increase in population as γ moves toward
the EP indicates that the one-phonon VAET processes (with
ν = λ23 = λ41 = 16.12J) can be enhanced in the presence of
non-Hermiticity. As γ is further increased and the system
enters the broken symmetry phase, Pa(t ) is suppressed again,
in contrast to the nonequilibrium steady state in the absence
of vibrations, where a higher population is observed for larger
γ [see Fig. 3(b)]. Therefore, there is also an enhancement
of the VAET processes as γ approaches the EP from the
broken phase. We also see that for a fixed time, i.e., a fixed
Jt value, the enhancement on approaching the EP from the
unbroken symmetry phase is accompanied by oscillatory be-
havior with respect to γ . This is further illustrated by the
comparison of Pa(t ) over the nine specific values of γ that
is shown in Fig. 5(b). For instance, the first peak of Pa(t )
reaches 0.957 at Jt = 17.37 for γ /J = 0.99 (purple curve) or

FIG. 5. (a), (b) Non-Hermitian dynamics represented by Pa(t ),
shown as a function of time t for several values of gain-loss param-
eter γ for one-phonon VAET processes, using ν/J = 16.12. (c, d)
Pa(t ) vs time t for several values of gain-loss parameter γ for two-
phonon VAET processes, using ν/J = 8.06. The white dotted line
in panels (a) and (c) represents Jt = 22.5. Panels (b) and (d) show
Pa(t ) for nine specific values of γ , starting with γ = 0 (Hermi-
tian case) and eight values for non-Hermitian systems, with γ /J =
0.9, 0.97, 0.98, 0.99, 1, 1.01, 1.02, 1.03. Unless otherwise specified,
all plots were obtained with the parameter values α/J = 1 and
�/J = 8, for which a twofold degenerate second-order EP is located
at γ /J = 1.00778 ∼ 1, and κ/J = 0.3, kBT/J = 40. The initial state
is |eg〉 in all calculations.

0.895 at Jt = 22.52 for γ /J = 1 (brown curve). These values
are at least 40 times greater than the peak value observed
in the Hermitian case; see Fig. 5(b), which shows a peak
value of ∼0.02 (represented by the blue curve with γ = 0).
We refer the reader also to Fig. 4(a), which exhibits similar
peak values in the orange curve but with a slightly different
vibrational frequency ν/J = 16. Interestingly, we note that
the peak population for γ /J = 0.99 is slightly higher than that
for γ /J = 1. This difference is attributed to a slight shift away
from the EP position γ /J = 1.00778 ∼ 1 for the coupling
value κ/J = 0.3. To support this interpretation, an additional
calculation was made with κ/J = 0.1, which is closer to the
EP at γ /J = 1.00778 ∼ 1. This calculation now explicitly
shows that the peak population becomes higher, the closer
the gain-loss parameter γ is to its value at the EP. We show
below that this enhancement of the VAET processes is a result
of phonon absorption, resulting from the donor-vibration in-
teraction in Eq. (1) being maximally favorable at the twofold
degenerate second-order EP, allowing four simultaneous tran-
sitions between eigenstates associated with distinct EPs to be
excited by a single phonon.

2. Two-phonon VAET dynamics

Figure 5(c) presents the two-phonon VAET processes.
These also exhibit an enhancement relative to the γ = 0 Her-
mitian case, but this is now weaker than the enhancement seen
in the single-photon VAET of Fig. 5(a). In particular, for a
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given value of time t , i.e., fixed Jt value, the oscillations with
respect to γ are now relatively far from the EP and also sat-
urate at values of γ /J within the unbroken symmetry phase,
i.e., they do not continue to increase on further approach to
the EP. This early saturation of the enhancement before the EP
is also evident on comparison of the curves in Fig. 5(d). We
attribute this saturated enhancement to the coupling strength
κ that is relatively strong for the two-phonon process with
ν/J = 8.06 and thereby enables the dimer-vibration system to
arrive quickly to a steady state, compared to the one-phonon
VAET case (ν/J = 16.12). To support this interpretation, we
have conducted additional calculations with smaller values of
κ than used in Figs. 5(c) and 5(d). We observed two-phonon
VAET dynamics similar to those in Fig. 5(a) or 5(b), but
with reduced populations. Our conclusion that the coupling
strength becomes relatively strong for the two-phonon VAET
process, with at the same time a smaller frequency than that
of the one-phonon case, is further supported by a more pro-
nounced modulation of Rabi-like oscillations in the Hermitian
limit [blue curve in Fig. 5(d) with γ = 0] than in the one-
phonon case [blue curve in Fig. 5(b)] or the no-phonon case
κ = γ = 0 [blue curve with Rabi oscillations in Fig. 3(a)].

C. Spectral features

In addition to the two specific values, ν/J = 16.12 and
8.06, that we have used above for analysis of the one- and
two-phonon VAET processes, respectively, it is possible to
investigate the dynamics of energy transfer processes across
the entire range of the non-Hermitian parameter space by
continuously scanning the frequency of the vibrational mode,
i.e., ν. Figures 6(a) and 6(b) illustrate the resulting spectra of
VAET processes, represented by Pa(t f ) and P̄a, respectively, as
a function of γ /J and ν/J for a weak phonon coupling value
κ/J = 0.3.

1. Hermitian VAET spectrum

In the Hermitian limit (γ = 0), Fig. 6(a) shows one-phonon
VAET processes occurring at ν/J ∼ 14 and 18, corresponding
to transitions between eigenstates |ψ1〉 and |ψ2〉, or |ψ3〉 and
|ψ4〉, respectively, that are accompanied by an absorption of
a phonon from the vibrational mode ν = λ21 or λ43. These
one-phonon VAET processes, together with their correspond-
ing dynamics displayed in Fig. 4(a), are indicated by green
or blue up-down arrows in Fig. 1(a), and the eigenenergies
λi are given in Appendix C. This VAET excitation energy
transfer process is distinct from the fast oscillations between
|ψ1(3)〉 and |ψ4(2)〉 with λ41(23) ∼ 16.12J [see the blue curve
in Fig. 3(a) and cyan up-down arrows in Fig. 1(a)] that are
observed in the absence of the vibrational mode.

2. Non-Hermitian VAET spectrum

Interestingly, as γ increases from zero going into the
non-Hermitian regime, the two one-phonon VAET processes
originating from their respective Hermitian point at ν/J ∼ 18
or 14 move closer to each other and eventually converge
at ν/J = 16.12 at the EP (where γ /J = 1.00778 ∼ 1) [see
Fig. 6(a)]. Moreover, at the EP, the population of the VAET
process becomes more pronounced compared to both the

FIG. 6. (a), (b) Non-Hermitian spectra of the VAET processes as
a function of γ /J and ν/J , represented by Pa(t f ) in panel (a) and by
P̄a in panel (b). For these plots we take t f = 22.5/J , corresponding
to the time at which Pa is maximal for γ /J = 1 according to the
brown curve in Fig. 5(b). (c), (d) One-dimensional spectra of VAET
processes at t f = 22.5/J , with ν/J = 16.12 (c) and ν/J = 8.06 (d),
taken as cuts through the two-dimensional spectra in panels (a) and
(b). Unless otherwise specified, all plots were obtained with the
parameter values α/J = 1 and �/J = 8, for which two second-order
EPs are located at γ /J = 1.00778 ∼ 1, and κ/J = 0.3, kBT/J = 40.
The initial state is |eg〉 in all calculations.

population in the unbroken phase (γ /J � 1) and in the bro-
ken phase (γ /J � 1) [see the white dotted line Jt = 22.5 in
Fig. 5(a)]. This intriguing behavior of the two one-phonon
VAET processes in response to changes in γ /J arises from the
coalescing of eigenstates and/or eigenenergies, as depicted in
Figs. 2(a), 2(b), and 2(d), and is reflected in the shape of the
maximal probabilities in the upper left quadrants of Figs. 6(a)
and 6(b).

This phenomenon suggests a unique fluorescence-detected
vibrational spectroscopy approach for probing both EPs
and PT -symmetry phase transitions in non-Hermitian quan-
tum systems, namely, by analysis of the spectrum of a
weakly coupled vibrational mode. We note that the tradi-
tional approach to analysis of vibrational spectra considers
the spectral amplitude at a given frequency/wavelength, which
measures the intensity of phonons emitted at that specific
frequency/wavelength. Higher spectral amplitudes indicate
more intense emission, while lower spectral amplitudes cor-
respond to weaker emission. We can take advantage of this
in trapped-ion experiments when measuring the acceptor
population by fluorescence detection [45], at a given vibra-
tional frequency/wavelength. This population constitutes a
measure of the energy transfer that is assisted by phonons
emitted from the enabling vibrational mode. Higher acceptor
population indicates a more intense emission of phonons,
just as in the conventional vibrational spectrum analysis,
thereby providing a measure of the vibrationally assisted en-
ergy transfer. Notably, the maximum acceptor population at
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the EP (γ /J = 1.00778 ∼ 1) that corresponds to the one-
phonon VAET process with ν/J = 16.12 is attributed to the
twofold second-order non-Hermitian degeneracy at this point.
This degeneracy results in four simultaneous transitions (with
λ41 = λ23 = λ21 = λ43 given that λ1 = λ3 and λ2 = λ4 at the
twofold degenerate second-order EP) that are excited by a
single phonon. The phonon-absorption mechanism described
in the next subsection below provides further support for this
interpretation.

Other than single phonons, energy transfer processes in-
volving the absorption of two or even three phonons from
the coupled vibrational mode are also observed. These pro-
cesses occur at ν/J = 8.06 and ν/J = 5.37, respectively, as
shown in Fig. 6(a). Notably, the maximum of Pa(t f ) for the
two- or three-phonon VAET process appears at a position
noticeably shifted away from the EP (γ /J = 1.00778 ∼ 1).
This shift is ascribed to the change in EP position induced by
the vibrational coupling strength κ , which becomes relatively
stronger (as indicated by the ratio κ/ν = κ/J

ν/J ) for multiphonon
processes with, e.g., 2ν ∼ λ41 = λ23 or 3ν ∼ λ41 = λ23, for
a given dimeric energy structure. To further investigate this
effect, we have recalculated Fig. 6(a) with a weaker cou-
pling, specifically with κ/J = 0.1, and observed that there
is now no noticeable shift, while the acceptor population is
also reduced because of the weaker vibrational coupling. An-
other consequence of this stronger relative coupling strength
for the two-phonon VAET process can be observed from
the unmarked but clearly visible horizontal line ν/J = 8.06
in Fig. 6(a). This line corresponds to the white dotted line
Jt = 22.5 in Fig. 5(c) and clearly exhibits more pronounced
acceptor population in regions away from the EP than the
corresponding population seen for the one-phonon VAET pro-
cess with ν/J = 16.12 [or, equivalently, the line Jt = 22.5 in
Fig. 5(a)].

Although we have selected Jt f = 22.5 as the time point
at which Pa(t ) reaches its maximum value for γ /J = 1 [see
Fig. 5(b)], we emphasize that the main spectral features of the
VAET processes in the presence of the non-Hermiticity that
are shown in Fig. 6(a) are quite universal and independent of
the specific values of t f . This universality is demonstrated in
Fig. 6(b), which presents the average population accumulation
P̄a over a time period t f = 22.5/J [see Eq. (3)]. Like Pa(t f ) in
Fig. 6(a), P̄a in Fig. 6(b) also shows two one-phonon VAET
processes with almost identical populations in the unbroken
symmetry phase to the left of the EP (γ /J � 1). This similar-
ity is due to the dimer-vibration interaction, which results in
optical transitions that are less dependent on γ , as explained
in Sec. IV D below.

Figures 6(c) and 6(d) display the phase transition charac-
teristics of the one- and two-phonon VAET processes with
ν/J = 16.12 and ν/J = 8.06, respectively. These plots are
constructed from the data in Figs. 6(a) and 6(b) and constitute
an analog of Fig. 3(d) which represents the correspond-
ing one-dimensional spectra for the dimer without vibration.
Importantly, these panels also clearly illustrate the enhance-
ment of VAET near the EP relative to the γ = 0 Hermitian
case. Regarding the one-phonon VAET process, Fig. 6(c)
demonstrates that the transition from PT -symmetry unbro-
ken (γ /J � 1) to broken (γ /J � 1) phases occurs at the EP
(γ /J = 1.00778 ∼ 1), for both observables, i.e., for Pa(t f )

and the time-averaged P̄a. This independence of the specific
observable indicates that the VAET spectrum can serve as a
reliable means of investigating the PT -symmetry phase tran-
sition, with both Pa(t f ) and P̄a providing a spectral signature
as a function of γ /J . Figure 6(d) also shows a much broader
lineshape of the two-phonon VAET peak at the quantum phase
transition than that seen for the one-phonon VAET peak in
Fig. 6(c). This difference is also attributed to the coupling
strength κ being considerably stronger for the two-phonon
VAET process (ν/J = 8.06, compared to 16.12 for the one-
photon VAET process).

D. Phonon-absorption mechanism

Since in the absence of vibrations we see fast oscilla-
tions associated with the excitonic transitions λ41 and λ23

[see Fig. 3(a)], it appears surprising that in the presence of
vibrations neither Fig. 6(a) nor Fig. 6(b) shows any dominant
feature of a corresponding one-phonon VAET process. In
particular, there is no evidence of any spectral feature corre-
sponding to enhancement of Pa(t f ) or P̄a when the vibrational
frequency is equal to the excitonic transition energy, i.e., ν =
λ41 = λ23 = 16.12J [represented by the cyan up-down arrows
in Fig. 1(a)]. This absence is most clearly evident both in the
Hermitian limit (γ = 0) and in the unbroken symmetry phase
away from the EP. Nevertheless, there is a strong spectral
feature for this vibrational frequency at the location of the EP,
which we shall discuss below, and also a very weak feature in
the broken symmetry phase.

The absence of a clear one-phonon feature away from
the EP can be attributed to the donor-vibration interaction
represented by Hint ≡ κσ (d )

z (a + a†) in Eq. (1), which leads
to nearly vanishing transition matrix elements between eigen-
states |ψ4(2)〉 and |ψ1(3)〉. Given that the vibration is initially
in the thermal state (e.g., kBT/J = 40), this behavior can be
understood analytically by examining the transition matrix el-
ements of Hint between the eigenstates of the decoupled donor
and acceptor in the Hermitian limit, namely, |ψ4〉 → |ge〉+|ee〉√

2

and |ψ1〉 → |gg〉+|eg〉√
2

or |ψ2〉 → |ge〉−|ee〉√
2

and |ψ3〉 → |gg〉−|eg〉√
2

[see Eqs. (8) and (9) as well as the gray dashed lines in
Fig. 1(a)].

To gain more physical understanding, we numerically cal-
culate the transition matrix elements of the donor operator
σ (d )

z in Hint between the eigenstates |ψ j〉 and |ψk �= j〉 of Eq. (5).
These are presented in Fig. 7. The green circles with the
dashed-dotted curve show that the transitions between |ψ1〉
and |ψ4〉 and between |ψ2〉 and |ψ3〉, respectively, are forbid-
den in the Hermitian limit, implying that there is no VAET
at γ = 0, while these transitions become maximally favorable
at the EP. This explains why the one-phonon VAET process
with ν/J = 16.12 in Figs. 6(a) and 6(b) is not prominent
in the region away from the EP. At the same time, the or-
ange squares with the dashed-dotted curve indicate that in
the symmetry unbroken phase, the vibration induces instead
transitions between |ψ1〉 and |ψ3〉, and between |ψ2〉 and |ψ4〉
with λ13(42) = λ1(4) − λ3(2). This frequency is approximately
1.217J for γ /J = 0.8, which corresponds to the frequency of
oscillations for the orange curve in Fig. 3(a) that are induced
in the Hermitian system by addition of the non-Hermitian
gain/loss γ . However, this small value of vibrational
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FIG. 7. Transition matrix elements of the donor operator σ (d )
z in

the donor-vibration interaction [i.e., Hint ≡ κσ (d )
z (a + a†) in Eq. (1)]

between eigenstates |ψ j〉 and |ψk( �= j)〉 ( j, k = 1, 2, 3, 4) of the non-
Hermitian dimer given in Eq. (5). The parameters used are α/J =
1 and �/J = 8, and the corresponding twofold degenerate second-
order EP is at γ /J = 1.00778 ∼ 1.

frequency ν implies a relatively large average phonon number
that is well beyond the region of validity of the calculations
in Figs. 6(a) and 6(b) (see Sec. II). Finally, the blue dia-
monds with the dashed-dotted curve show the corresponding
matrix elements for vibrationally induced transitions between
|ψ1〉 and |ψ2〉, and between |ψ3〉 and |ψ4〉. These correspond
to the one-phonon VAET processes starting from ν/J = 14
and ν/J = 18, respectively, that are observed in the top left
quadrants of Figs. 6(a) and 6(b). The lack of any dependence
of |〈ψ2|σ (d )

z |ψ1〉| (blue diamonds) and |〈ψ4|σ (d )
z |ψ3〉| (blue

dashed-dotted curve) on γ accounts for the fact that these two
one-phonon VAET processes have nearly identical intensities
[see, e.g, the top left quadrant of Fig. 6(b)].

Figure 7 shows that at γ /J ∼ 1 the four transition matrix
elements |〈ψ2|σ (d )

z |ψ1〉|, |〈ψ4|σ (d )
z |ψ3〉|, |〈ψ4|σ (d )

z |ψ1〉|, and
|〈ψ3|σ (d )

z |ψ2〉| are identical in magnitude, resulting in four
simultaneous transitions (with λ41 = λ23 = λ21 = λ43 for a
given dimeric energy structure with the parameters α/J = 1
and �/J = 8) that can be resonantly excited by a single
phonon from the vibrational mode with ν/J = 16.12. This
results in the maximal population, i.e., Pa(t f ) = 0.895 and
P̄a = 0.248, seen at the EP for the one-phonon VAET pro-
cesses in Figs. 6(a) and 6(b). To quantify the enhancement
of vibrationally assisted energy transfer relative to the Her-
mitian case, we analyze the population Pa(t f ) or P̄a of the
non-Hermitian one-phonon VAET process relative to its cor-
responding Hermitian case. The enhancement factor can be
defined as Pa(t f , γ )/Pa(t f , γ = 0) or P̄a(γ )/P̄a(γ = 0) and
is plotted in Fig. 8. This shows that as the EP at γ /J =
1.00778 ∼ 1 is approached, the non-Hermitian one-phonon
VAET process is significantly enhanced compared to the
Hermitian case, by a factor up to approximately 57 for
Pa(t f , γ )/Pa(t f , γ = 0) (blue solid curve), and up to 27 for
P̄a(γ )/P̄a(γ = 0) (orange dashed curve).

This analysis of the mechanism for phonon absorption
highlights the simultaneous excitation of multiple one-phonon

FIG. 8. Enhancement factor for VAET of the non-Hermitian sys-
tem, defined as the ratio of the population Pa(t f , γ ) or P̄a(γ ) to
the corresponding Hermitian population Pa(t f , γ = 0) or P̄a(γ = 0),
respectively. The twofold degenerate second-order EP is located
at γ /J = 1.00778 ∼ 1. The parameters used here are α/J = 1,
�/J = 8, t f = 22.5/J , κ/J = 0.3, kBT/J = 40, and the initial state
is |eg〉.

VAET processes at an EP due to the unique non-Hermitian
degeneracy in this case. It is important to note that the
presence of the twofold degenerate second-order EP is
crucial, since it is this that allows for the occurrence of four
simultaneous excitations. The phenomenon arises from the
fact that these simultaneous transitions occur between eigen-
states associated with distinct EPs. In general, if we consider
an s-fold degenerate nth-order EP, we would have a total
of Cs

1C
n
1Cs−1

1 Cn
1 /2 = s(s − 1)n2/2 simultaneous transitions

between two eigenstates associated with distinct EPs, where
N � s, n > 1 with N the total number of eigenstates and
Cp

q = p!
q!(p−q)! are binomial coefficients. For the current work

with s = n = 2 and N = 4, this reduces to 4. When there is no
EP degeneracy at the nth-order EP, for example, if n = N , as
in the case of a fourth-order EP in a two-qubit non-Hermitian
system [30], there would be no simultaneous transitions
between eigenstates associated with distinct EPs, resulting in
no absorption of phonons. However, if there is no degeneracy
and the order of the EP is less than the number of eigenstates,
i.e., 1 < n < N , each of the n coalesced eigenstates can
undergo transitions to the N − n additional eigenstates,
resulting in n simultaneous excitations resonantly induced
by a single phonon, equal to the nth-order nature of the EP.
This implies that for a nondegenerate EP, a larger system
than a dimer would be required in order to achieve the four
simultaneous excitations necessary for the VAET enhance-
ment that is observed in the current work. The significance
of the degeneracy of the EP is also evident when considering
that a nondegenerate second-order EP, which allows only two
simultaneous excitations, is anticipated to result in a weaker
enhancement compared to what we see here in the case of the
twofold degenerate second-order EP with four simultaneous
excitations. The resulting excitation process is fundamentally
different from not only the corresponding excitation processes
in the presence of Hermitian degeneracy, but also from the
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FIG. 9. Dependence of the non-Hermitian VAET features quan-
tified by Pa(t f ) (a), (c) and by P̄a (b), (d) on the exciton-phonon
coupling strength κ . One-phonon processes with ν/J = 16.12 are
presented in panels (a) and (b). Two-phonon processes with ν/J =
8.06 are presented in panels (c) and (d). The horizontal dashed line
κ/J = 0.3 in panels (a) and (c) correspond to the location of the
spectral features at ν/J = 16.12 and ν/J = 8.06 in Fig. 6(a), respec-
tively, while the dashed lines in panels (b) and (d) correspond to the
spectral features in Fig. 6(b). We use the parameters α/J = 1 and
�/J = 8, for which the twofold degenerate second-order EP is lo-
cated at γ /J = 1.00778 ∼ 1. Other parameters used are t f = 22.5/J
and kBT/J = 40. The initial state is |eg〉 in all calculations.

coherent excitation of two atoms of identical frequency by one
photon [48].

V. ROBUSTNESS

The enhancement of VAET processes in a non-Hermitian
quantum system discussed above is based on two consider-
ations: a fixed dimer-vibration coupling strength (κ/J = 0.3)
and a vibrational temperature (kBT/J = 40) that is sufficiently
high for the vibrational mode to provide the required one or
two phonons [1/(eν/kBT − 1) � 2] to facilitate energy transfer
in the chromophore dimer. In order to investigate the ro-
bustness of the observed enhancement with regard to these
assumptions, we analyze the response of the one- and two-
phonon VAET signals to variations in the coupling strength κ

and temperature kBT .
Figure 9 shows that on gradually increasing κ/J from

zero to 0.5 while passing through the value of 0.3 used in
the previous section, both the acceptor population [Pa(t f =
22.5/J ) in Fig. 9(a)] and the corresponding average popula-
tion accumulation during this time period [P̄a in Fig. 9(b)]
exhibit an enhancement of the one-phonon VAET process
(ν/J = 16.12) near the EP (located at γ /J ∼ 1). We note
that the oscillations in γ observed for the one-phonon pro-
cesses in Fig. 9(a) are more pronounced than those for the
two-phonon processes in Fig. 9(b). For a given value of cou-

FIG. 10. Dependence of the non-Hermitian VAET features quan-
tified by Pa(t f ) (a), (c) and P̄a (b), (d) on the temperature kBT of
the vibration. One-phonon processes with ν/J = 16.12 are presented
in panels (a) and (b). Two-phonon processes with ν/J = 8.06 are
presented in panels (c) and (d). The horizontal dashed line kBT/J =
40 in panels (a) and (c) corresponds to the location of the spectral
features at ν/J = 16.12 and ν/J = 8.06 in Fig. 6(a), respectively,
while the dashed line in panels (b) and (d) corresponds to the spectral
features in Fig. 6(b). We use the parameters α/J = 1 and �/J = 8,
for which the twofold degenerate second-order EP is located at
γ /J = 1.00778 ∼ 1. Other parameters used are t f = 22.5/J and
κ/J = 0.3. The initial state is |eg〉 in all calculations.

pling strength κ , such as the green dashed line at κ/J = 0.3,
Pa(t f ) exhibits oscillations with increasing peak amplitude
on approaching the EP, consistent with the observations in
Figs. 6(a) and 6(b). In comparison, the two-phonon VAET
process with ν/J = 8.06 in Fig. 9(c) [Pa(t f )] or Fig. 9(d) [P̄a]
shows a smaller enhancement over a broad range of γ /J near
the EP at γ /J = 1.00778 ∼ 1. This different response of the
two-phonon VAET process to varying κ is consistent with the
behavior seen in Figs. 5 and 6.

Figure 10 summarizes the response of the acceptor popula-
tion Pa(t f ) and the average population accumulation P̄a when
varying the temperature kBT , while keeping the coupling
strength fixed at κ/J = 0.3. It is evident that the enhance-
ment of the one-phonon VAET process (ν/J = 16.12) near
the EP for both Pa(t f ) [Fig. 10(a)] and P̄a [Fig. 10(b)] can
be further amplified by increasing the temperature. In the
case of the two-phonon VAET processes (ν/J = 8.06), both
Fig. 10(c) for Pa(t f ), and Fig. 10(d) for P̄a, also clearly
demonstrate an enhancement over a broad range of γ /J
values around the EP, but with a significantly smaller popu-
lation in the acceptor than that achieved by the one-phonon
VAET. However, while the enhanced VAET processes in
Fig. 10 appear qualitatively similar to those in Fig. 9, the
underlying mechanisms of the enhancement are different. In
Fig. 10 the increased enhancement derives from the avail-
ability of a greater number of phonons available at high
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FIG. 11. The acceptor population for the one- and two-phonon
VAET processes presented in (a) and (b), respectively, calculated via
the master equation in Eq. (11) for several values of dissipation rate:
γa/J = 0, 0.0001, 0.001, 0.01 where γa = 0 (blue circles, same as
γ /J = 1 in Fig. 5) is included for reference. Other parameters used
are α/J = 1, �/J = 8, kBT/J = 40, κ/J = 0.3, and γ /J = 1. The
initial state is |eg〉 in all calculations.

temperatures to facilitate the transfer process, while in Fig. 9
the enhancement derives from the stronger exciton-phonon
coupling.

In addition to the loss included in the non-Hermitian
Hamiltonian, we have also considered the decohering ef-
fect of spontaneous emission at the acceptor. To incorpo-
rate this effect, we numerically solve the Lindblad master
equation

d�

dt
= −i(H� − �H†) + γa

(
σ

(a)
− �σ

(a)
+ − 1

2
{σ (a)

+ σ
(a)
− , �}

)
,

(11)

with H defined in Eq. (1), and the Lindblad operator σ
(a)
− =

|g〉a〈e|. The resulting total density matrix ρ = �/Tr[�] re-
duces to Eq. (4) when γa = 0. Figure 11 shows the time
evolution of acceptor population Pa(t ) [Eq. (2)] obtained
from Eq. (11) for the one- and two-phonon VAET processes
presented in Figs. 11(a) and 11(b), respectively. Comparing
with the corresponding non-Hermitian dynamics for γa =
0 (the circles in Fig. 11), it is evident that Pa(t ) is not
severely suppressed by spontaneous emission from the ac-
ceptor. This implies that these EP-enhanced VAET processes
in the non-Hermitian quantum system should be observ-
able under a reasonable amount of dissipation, as long as
γa  J, �.

VI. SUMMARY AND CONCLUSIONS

We have investigated vibrationally assisted energy transfer
processes in a non-Hermitian quantum system involving a
PT -symmetric chromophore dimer weakly coupled to a vi-
brational mode. We first demonstrated the existence of EPs
and the non-Hermitian features, such as slow oscillations in-
duced by gain and loss in the PT -symmetry unbroken phase
and nonequilibrium steady states in the broken phase, for
the excitation energy transfer processes in the absence of
coupling to vibrational modes. These EPs are twofold de-
generate second-order EPs, which has significant implications
for both the non-Hermitian dynamics and the dimer spectra.
Adding the vibrational mode, we found that both one- and
two-phonon VAET processes are enhanced by the presence

of the non-Hermiticity. The dynamical and spectral features
of these enhanced VAET processes were then analyzed. The
enhancement near the EP could be attributed to the maximally
favorable phonon absorption occurring at the twofold degen-
erate second-order non-Hermitian degeneracy point, where
four simultaneous transitions between eigenstates associated
with distinct EPs are excited by a single phonon. This gen-
erates a unique spectral feature that indicates the coalescing
of multiple eigenstates in addition to the degeneracy of the
eigenenergies, providing a new way to probe exceptional
points and PT -symmetry phase transitions. The results were
found to be robust to variations in the exciton-phonon cou-
pling, to the phonon temperature, and to the presence of
spontaneous emission on the acceptor.

Our proposed approach of probing EPs via fluorescence-
detected vibrational spectroscopy, using the acceptor popula-
tion measured through fluorescence detection in trapped-ion
experiments instead of the traditional spectral amplitude at a
given vibrational frequency, offers several advantages. While
both approaches can indicate the amount of phonon emission
at that specific frequency, the acceptor population method
provides valuable insights into the coalescence of eigenstates
or eigenenergies at the EP. By continuously scanning the
frequency of the vibration, we have shown that one can
effectively map and observe the process of eigenstates or
eigenenergies converging at the EP. Additionally, by compar-
ing the population data with the spectral amplitude observed
in the traditional spectral experiments, one can establish cru-
cial correlations, shedding light on the population transfer
processes occurring at the EP. In particular, rapid increases
or decreases in the acceptor population, as monitored by fluo-
rescence measurements, imply that there is a corresponding
peak or dip in the spectral amplitude data at the precise
vibrational frequency that would be observed by traditional
spectroscopy experiments, which are, however, challenging
to carry out in this setting. In summary, the advantages of
utilizing a fluorescence-detected vibrational spectroscopy to
probe exceptional points include its capability to map the
coalescence of eigenstates or eigenenergies, its sensitivity to
non-Hermitian effects, and its capacity to offer significant
insights into the dynamics and behavior of the system in close
proximity to the EP.

In contrast to Hermitian degeneracy, where degenerate
eigenstates are always linearly independent, it is well known
that at exceptional points in a non-Hermitian system, the
eigenstates coalesce and become degenerate in a nontriv-
ial manner, as is shown for our dimer system in Fig. 2(d).
For a PT -symmetric system, this nontrivial coalescence is
associated with breaking of the PT symmetry at the ex-
ceptional point of the non-Hermitian system. Furthermore,
the eigenstates are also continuously dependent on the non-
Hermitian parameter combination of J and γ . This results in
complex and unique non-Hermitian dynamics within both the
PT -symmetric unbroken (0 < γ/J < 1) and broken (γ /J >

1) phases, as depicted in Figs. 3(a), 3(b), and 3(d) and in
Figs. 5(a)–5(d) in the presence and absence of the vibrational
mode, respectively. A remarkable feature of the dimer sys-
tem studied in this work is that the two pairs of coalesced
eigenstates (i.e., |ψ1〉 with |ψ3〉, and |ψ2〉 with |ψ4〉) result in
four transition matrix elements that are identical in magnitude
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at the EP, as shown explicitly in Fig. 7. The values of these
matrix elements play a crucial role in the acceptor population
for the one-phonon VAET process. This degeneracy of the
matrix elements at the EP accounts for the observation that the
one-phonon VAET process with ν/J = 16.12 is maximized at
the EP, with the acceptor population Pa(t f ) showing a marked
increase over the corresponding values in both the unbroken
and broken PT symmetry phases (see Fig. 6). This behavior
deriving from the coalescence of the eigenvectors is not seen
in the γ = 0 Hermitian limit.

Realization of the non-Hermitian VAET phenomena re-
ported here is expected to be possible for trapped ions in
the near term, given recent advancements in both Hermitian
VAET experiments with trapped ions [42] and the realization
of non-Hermitian trapped-ion qubits [21–23]. Implementing
the non-Hermitian VAET involves encoding the excitonic
states in individual ions and adjusting the Hamiltonian pa-
rameters of tunneling coupling, excitonic donor-acceptor
interaction, and donor-vibration coupling, by coherent laser
drives, as well as manipulation of the non-Hermitian gain
and loss terms by the heating and cooling techniques
outlined in Sec. II. The vibrational frequencies can be con-
trolled and tuned via electromagnetic fields, as described in
Sec. II.

In addition to the trapped-ion platform, it is of interest to
explore other physical systems for experimental realization
of these findings of enhanced VAET processes near an EP.
For instance, in the case of superconducting circuits, non-
Hermitian systems can be achieved by using systems of qutrits
with postselection [19].
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APPENDIX A: PT -SYMMETRIC
NON-HERMITIAN DONOR

The non-Hermitian donor in the chromophore dimer is
modeled as a two-level system subject to gain and loss, and
its Hamiltonian is described by

Hd = −iγ σ (d )
z + Jσ (d )

x , (A1)

where σ (d )
x = |g〉d〈e| + |e〉d〈g| and σ (d )

z = |e〉d〈e| − |g〉d〈g|.
It is easy to verify that the non-Hermitian Hamiltonian in
Eq. (A1) respects PT symmetry, i.e., PT HdPT = Hd with
P = σ (d )

x and T being a complex conjugation. The cor-
responding eigenenergies and eigenstates are obtained as
λ1,2 = ∓

√
J2 − γ 2 and

|ϕ̃1〉 =
⎛
⎝−

√
J2−γ 2+iγ

J

1

⎞
⎠, |ϕ̃2〉 =

⎛
⎝

√
J2−γ 2−iγ

J

1

⎞
⎠, (A2)

FIG. 12. Left panel: Real and imaginary parts of the eigenen-
ergies λ j presented in (a) and (b), respectively. Right panel: The
first elements ϕ j,0 and second elements ϕ j,1 of the eigenstates |ϕ j〉 =
(ϕ j,0, ϕ j,1)T ( j = 1, 2) are presented in (c) and (d), respectively.

respectively. The normalized eigenstates are then formally
given by |ϕ1〉 = |ϕ̃1〉

||ϕ̃1〉| = (ϕ1,0, ϕ1,1)T and |ϕ2〉 = |ϕ̃2〉
||ϕ̃2〉| =

(ϕ2,0, ϕ2,1)T .
The real and imaginary parts of each eigenenergy are

presented in Figs. 12(a) and 12(b), respectively. It is shown
that eigenenergies λ1,2 in Figs. 12(a) and 12(b) are both real
when γ /J < 1 in the unbroken symmetry phase, indicating
both levels of the donor are coherently populated. These
two eigenenergies further coalesce at γ /J = 1, signifying
a second-order EP. When γ /J > 1, i.e., in the symmetry
broken phase, the eigenenergies become purely imaginary,
and correspondingly the population at |e〉d decreases expo-
nentially while the population at the level |g〉g increases.
Figure 12(c) shows the first elements, i.e., ϕ1,0 and ϕ2,0, of
normalized eigenstates |ϕ1〉 and |ϕ2〉, respectively, with real
and imaginary parts presented separately. Figure 12(d) shows
the second elements, i.e., ϕ1,1 and ϕ2,1, of the normalized
eigenstates. It is evident that the eigenstates of the non-
Hermitian donor coalesce at the EP of the second order, i.e.,
when γ /J = 1.

APPENDIX B: RELATION BETWEEN DONOR-ACCEPTOR
ENERGY LEVELS AND CONDITIONS FOR UPHILL

ENERGY TRANSFER

Figure 13 shows the relative energetics of the uncoupled
donor and acceptor chromophores. Here dashed lines repre-
sent the energy levels of the donor in the Hermitian limit,
while solid lines depict the energy levels of the donor in
the PT -symmetric regime. This figure illustrates the primary
requirement for uphill transfer, which is � − J > α/2, arising
from the fact that the energy barrier of 2(� − J ) between the
states (|e〉 + |g〉)/

√
2 ⊗ |g〉 and (|e〉 − |g〉)/

√
2 ⊗ |e〉 should

surpass the coherent coupling strength α that links them.
We illustrate the effect of a finite � on the energy spec-

trum by analyzing the eigenenergies for the decoupled dimer,
i.e., α = 0, resulting in eigenenergies λ1,α=0 = −λ2,α=0 =
−|

√
J2 − γ 2 − �| and λ3,α=0 = −λ4,α=0 = −|

√
J2 − γ 2 +

�|. These eigenenergies are just a sum of monomer energies:
±

√
J2 − γ 2 (donor) and ±� (acceptor).
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FIG. 13. Left panel: The energy levels of the donor in the Her-
mitian limit (dashed lines) and in PT -symmetric regime J > γ

(solid lines), with the energy gap 2J and 2
√

J2 − γ 2, respectively.
The eigenstates |ϕ1〉 = |ϕ̃1〉/||ϕ̃1〉| and |ϕ2〉 = |ϕ̃2〉/||ϕ̃2〉| with ϕ̃1(2)〉
given in Eq. (A2). Right panel: The energy levels of the acceptor with
energy gap 2�. Note that the energy levels of decoupled donor and
acceptor are also presented in Fig. 1(a), as gray lines. The parameter
values used to generate this figure are �/J = 8 and α = κ = 0.

APPENDIX C: NON-HERMITIAN DIMER ENERGY
LEVELS AND EP CHARACTERIZATION

FOR OTHER VALUES OF �/J

For completeness, we present here the energetics and EP
analysis for two other values of the parameter �/J , to com-
pare with the case of �/J = 8 that favors an uphill transfer for
demonstrating the VAET phenomenon discussed in the main
text.

Figure 14 presents the real and imaginary components of
the eigenenergies λ j as a function of γ and α, for �/J = 2
[Figs. 14(a) and 14(b)] and for �/J = 0 [Figs. 14(c) and
14(d)]. For the weakly uphill �/J = 2 case in Figs. 14(a)
and 14(b), the energy spectrum exhibits a reduced separation
between λ1, λ3 and λ2, λ4, similar to the �/J = 8 case in
Figs. 2(a) and 2(b). The non-Hermitian energetics for both of
these values host second-order exceptional points.

In contrast, for the case of �/J = 0, Figs. 14(c) and
14(d) shows instead the presence of higher-order exceptional
points. Physically, when � = 0, the two levels of the acceptor

FIG. 14. Real and imaginary components of the eigenenergies λ j

for � = 2 in panels (a) and (b) and for �/J = 0 in panels (c) and (d).

become degenerate, resulting in a negative energy gap for a
downhill excitation transfer from the donor to the acceptor.
This implies that the energy transfer in the chromophore dimer
does not necessarily require assistance from vibrations in
this case. The eigenenergies for this case are obtained from
Eqs. (6) and (7) as λ1,�→0 = −λ2,�→0 = −

√
(α − J )2 − γ 2

and λ3,�→0 = −λ4,�→0 = −
√

(α + J )2 − γ 2, from which it
is clear that for the value of � = 0, we have a fourth-order EP
at γ /J = 1 when α = 0, as well as second- and third-order
EPs as shown explicitly in Figs. 14(a) and 14(b). A finite
value of �, which is associated with the energy splitting of the
acceptor chromophore, is thus critical to lift the degeneracy of
the non-Hermitian dimer.

Finally, we provide examples of eigenenergies λ j of the
non-Hermitian dimer to support the understanding of the re-
sults presented in the main text. We consider the Hermitian
case γ = 0 as well as values of γ near the EP, specifically γ =
0.8, 0.9, 1 or 1.02, 1.04, 1.06, 1.08 for the PT -symmetry un-
broken or broken phases, respectively, with J = 1 as the unit.
Other parameters used are α = 1 and � = 8, consistent with
Figs. 2(a) and 2(b). The results are presented in Table I. We
note that the eigenenergy in the unbroken phase regime is
always real, while the transition frequency λ13 or λ42 in the
broken phase becomes purely imaginary, corresponding to the
nonequilibrium steady-state reported in the main text.

TABLE I. Examples of non-Hermiitan dimer eigenenergies λ j for several values of γ with α = 1, � = 8, and J = 1.

γ {λ1, λ2, λ3, λ4}
0 {−7.062, 7.062, −9.062, 9.062}
0.8 {−7.453, 7.453, −8.67, 8.67}
0.9 {−7.611, 7.611, −8.511, 8.511}
1.0 {−7.937, 7.937, −8.185, 8.185}
1.02 {−8.061 + 0.156i, 8.061 − 0.156i, −8.061 − 0.156ii, 8.061 + 0.156i}
1.04 {−8.061 + 0.255i, 8.061 − 0.255i, −8.061 − 0.255i, 8.061 + 0.255i}
1.06 {−8.061 + 0.326i, 8.061 − 0.326i, −8.061 − 0.326i, 8.061 + 0.326i}
1.08 {−8.061 + 0.385i, 8.061 − 0.385i, −8.061 − 0.385i, 8.061 + 0.385i}
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Origin of long-lived coherences in light-harvesting complexes,
J. Phys. Chem. B 116, 7449 (2012).

[40] M. B. Plenio, J. Almeida, and S. F. Huelga, Origin of long-
lived oscillations in 2D-spectra of a quantum vibronic model:
Electronic versus vibrational coherence, J. Chem. Phys. 139,
235102 (2013).
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