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Exceptional points are spectral degeneracies of non-Hermitian systems where both eigenfrequencies and
eigenmodes coalesce. The eigenfrequency sensitivities near an exceptional point are significantly enhanced,
whereby they diverge directly at the exceptional point. Capturing this enhanced sensitivity is crucial for the
investigation and optimization of exceptional-point-based applications, such as optical sensors. We present a
numerical framework based on contour integration and algorithmic differentiation to accurately and efficiently
compute eigenfrequency sensitivities near exceptional points. We demonstrate the framework for an optical
microdisk cavity and derive a semianalytical solution to validate the numerical results. The computed eigenfre-
quency sensitivities are used to track the exceptional point along an exceptional surface in the parameter space.
The presented framework can be applied to any kind of resonance problem, e.g., with arbitrary geometry or with
exceptional points of arbitrary order.
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I. INTRODUCTION

Resonance phenomena play a crucial role in the field of
photonics. The interaction of light with photonic nanores-
onators leads to a strong increase of the electromagnetic fields.
This effect can be used for, e.g., probing single molecules with
ultrahigh sensitivity [1], designing nanoantennas with a tai-
lored directivity and large spontaneous emission rate [2], and
realizing efficient single-photon sources [3]. Resonances are
characterized by loss mechanisms, such as damping and open
boundaries, yielding non-Hermitian systems with complex-
valued eigenfrequencies [4,5]. In general, the resonances are
numerically computed by solving the source-free Maxwell’s
equations [6–8]. For the investigation of photonic systems,
not only are the resonances of interest, but so are their partial
derivatives, the so-called sensitivities, with respect to certain
system parameters. These enable a better understanding of the
underlying physical effects [9] and efficient optimization of
corresponding photonic devices [10,11].

An impressive signature of the non-Hermitian physics of
resonant photonic systems is degeneracies where the complex
eigenfrequencies and the involved eigenmodes simultane-
ously coalesce; for a review see [12]. Commonly, parametric
fine tuning is needed to achieve such non-Hermitian degen-
eracies, which is why they are also called exceptional points
(EPs) in parameter space [13]. In the past few years, EPs have
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been connected to a plethora of interesting effects and sug-
gested applications, including ultrasensitive sensors [14–24],
loss-induced revival of lasing [25], orbital-angular momentum
microlasers [26], chiral perfect absorbers [27], the control
of light transport [28], single-mode lasing [29], electromag-
netically induced transparency [30], optical amplifiers [31],
and optical filters with sharp transmission peaks [32,33]. The
research on EPs is still a vital field with open problems,
such as sensor-performance limitations and Petermann factor
divergence at EPs [34–38].

The eigenfrequencies near an EP show a characteristic
complex-root topology [13]. Consequently, near an EP, small
parametric changes in the system are amplified to a strong
response of the eigenfrequencies. This EP-enhanced eigen-
frequency sensitivity is challenging in experiments and may
also spoil the accuracy of numerical simulations. On the other
hand, calculation of the eigenfrequency sensitivities near an
EP is crucial for applications such as sensors and optimization
schemes. Hence, accurate and efficient numerical methods for
photonic systems operating near an EP are of fundamental
interest in research and engineering.

In this work, we address this challenge by combining
contour integration with algorithmic differentiation (AD).
Contour integration gives access to eigenfrequencies in non-
Hermitian systems by solving Maxwell’s equations with
source terms at frequencies on a contour in the complex
frequency plane. For the corresponding scattering problems,
AD is exploited so that the calculation of eigenfrequency
sensitivities is numerically accurate and efficient. Although
the eigenfrequency sensitivities diverge near an EP, which is
sketched in Fig. 1, the presented framework allows to cap-
ture the EP-enhanced eigenfrequency sensitivity. We apply
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FIG. 1. Eigenfrequencies ωl and their sensitivities ∂ωl/∂ p in the
complex frequency plane with respect to a parameter p of an optical
microdisk cavity. A specific change in the parameter causes the
eigenfrequencies and the associated eigenmodes to coalesce at the
EP. The sensitivities of the eigenfrequencies diverge near the EP.

this framework to an optical microdisk cavity with an EP of
second order. The two coalescing eigenfrequencies and the
corresponding sensitivities are computed near the EP. The sen-
sitivities are further used for an optimization scheme to track
the EP along a surface in the underlying parameter space.
Such exceptional surfaces are used to combine the sensitivity
of EPs with robustness against fabrication tolerances [39–41].

II. THEORETICAL BACKGROUND

In photonics, in the steady-state regime, light scattering
by an open system can be described by the time-harmonic
Maxwell’s equation equipped with open boundary conditions,

∇ × μ−1
0 ∇ × E(r, ω) − ω2ε(r, ω)E(r, ω) = iωJ(r), (1)

where E(r, ω) ∈ C3 is the electric field, J(r) ∈ C3 is a
source term corresponding to an optical source, ω ∈ C is
the angular frequency, and r ∈ R3 is the spatial position. For
optical frequencies, the permeability μ(r, ω) = μr (r, ω)μ0

typically equals the vacuum permeability μ0. The permittivity
ε(r, ω) = εr (r, ω)ε0, where εr (r, ω) is the relative permittiv-
ity and ε0 is the vacuum permittivity, describes the material
dispersion and the spatial distribution of material. Problems
given by Eq. (1) are called scattering problems. Resonance
problems are given by Eq. (1), but without a source term. Note
that, in the following, we consider non-Hermitian systems
based on open boundaries. However, the inclusion of damping
as a loss channel is also possible.

A. Contour integration for computing eigenfrequency
sensitivities near exceptional points

Electromagnetic quantities q(E(r, ω)) ∈ C, such as re-
flection and transmission coefficients, are measured for real
excitation frequencies ω ∈ R. To compute complex-valued
eigenfrequencies and their sensitivities in non-Hermitian sys-
tems, we consider the analytical continuation of q(E(r, ω ∈
R)) into the complex frequency plane ω ∈ C, which we de-
note by q(ω) as shorthand notation for q(E(r, ω ∈ C)) [42].
The L eigenfrequencies inside a chosen contour C are given by

the eigenvalues ωl of the generalized eigenproblem [43–45],

H<X = HX�, (2)

where � = diag(ω1, . . . , ωL ) is a diagonal matrix containing
the eigenvalues, the columns of the matrix X ∈ CL×L are the
eigenvectors, and

H =

⎡
⎢⎣

s0 . . . sL−1
...

...

sL−1 . . . s2L−2

⎤
⎥⎦, H< =

⎡
⎢⎣

s1 . . . sL
...

...

sL . . . s2L−1

⎤
⎥⎦

are Hankel matrices with the contour-integral-based elements

sk = 1

2π i

∮
C

ωkq(ω)dω =
L∑

l=1

ωk
l al . (3)

The second equality results from applying Cauchy’s residue
theorem, where al are the residues of q(ω) corresponding to
the eigenfrequencies ωl , and it holds for simple eigenfrequen-
cies.

Once the elements sk are computed, we have access not
only to the eigenfrequencies from solving the eigenproblem
given in Eq. (2) but also to the eigenfrequency sensitivities
∂ωl/∂ p, where p is some parameter. Computing the deriva-
tives in Eq. (3) yields the linear system of equations for the
unknowns ∂ωl/∂ p and ∂al/∂ p,

∂sk

∂ p
= 1

2π i

∮
C

ωk ∂q(ω)

∂ p
dω =

L∑
l=1

(
kωk−1

l

∂ωl

∂ p
al + ωk

l

∂al

∂ p

)
,

(4)

where ωl and al are known as a result of solving Eq. (2)
and using diag(a1, . . . , aL ) = X T HX (V T X )−2 with the Van-
dermonde matrix [42]

V =

⎡
⎢⎢⎢⎣

1 . . . 1
ω1 . . . ωL
...

...

ωL−1
1 . . . ωL−1

L

⎤
⎥⎥⎥⎦.

The eigenfrequencies at EPs are not simple. However,
experimental and numerical realizations always show an
eigenfrequency splitting due to fabrication inaccuracies [39]
or numerical approximation [46]. For this practical reason, we
can consider Eq. (4) to compute eigenfrequency sensitivities
in EP-based systems.

The elements sk of the Hankel matrices and their sensi-
tivities ∂sk/∂ p are obtained by numerical quadrature [47] of
the contour integrals in Eqs. (3) and (4), respectively, where
q(ω) and ∂q(ω)/∂ p are computed for complex frequencies on
the integration contour C. The quantities q(ω) and ∂q(ω)/∂ p
have to be computed only once for each integration point, and
then all contour integrals can be evaluated. The integrands
differ only in the weight functions ωk . Information about the
numerical realization of the contour integration can be found
in Refs. [48,49].

B. Structure exploiting algorithmic differentiation

To evaluate q(ω) and ∂q(ω)/∂ p on the integration contour,
the electric field E(r, ω) and the corresponding sensitiv-
ity ∂E(r, ω)/∂ p have to be computed. For this, we solve
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Maxwell’s equation given in Eq. (1) with the finite-element
method (FEM) using the implementation provided by the
software package JCMsuite [50]. Spatial discretization of
Eq. (1) yields the linear system of equations AE = f , where
A ∈ Cn×n is the FEM system matrix, E ∈ Cn is the scattered
electric field in a finite-dimensional FEM basis, and f ∈ Cn

realizes the source term.
For the computation of ∂E(r, ω)/∂ p, an approach based on

directly using the FEM system matrix is applied [11,51,52].
With this direct differentiation approach, the sensitivities of
scattering solutions can be computed by

∂E

∂ p
= A−1

(
∂ f

∂ p
− ∂A

∂ p
E

)
.

Instead of directly computing A−1, an LU decomposition of
A is calculated to efficiently solve the linear system AE = f .
The LU decomposition is used to obtain E and also ∂E/∂ p.
In the FEM context, an LU decomposition is usually a com-
putationally expensive step, so reusing it significantly reduces
computational effort [11].

Several approaches could be used to evaluate the sensitiv-
ities of the system matrix, ∂A/∂ p, and of the source term,
∂ f /∂ p. The required derivative information can be provided
analytically by means of corresponding computer algebra
systems if the considered functional dependence is not too
complicated. Alternatively, one may employ finite differences
to approximate the gradient information. However, the result-
ing computational effort scales linearly with the number of
parameters p [11]. Furthermore, finite differences yield only
an approximation of the required derivative information, a fact
that may cause problems if the accuracy of the derivatives
is essential. For this reason, we propose AD to provide the
required sensitivities within working accuracy in an efficient
way [53]. Suppose a function F : Rn �→ Rm, y = F (p), is
given in a computer language like C or C++. Then, the eval-
uation of F (p) can be decomposed into so-called elementary
functions, the derivatives of which are well known and easy
to implement in a software package. The basic differentiation
rules, such as the product rule, the quotient rule, etc., can
be applied to each statement of the given code segment to
calculate the overall derivatives. Hence, exploiting the chain
rule yields the derivatives of the whole sequence of statements
with respect to the input variables. Note that a comparison of
the efficiency when using finite differences with the efficiency
of an AD-based approach for photonic systems can be found
in Ref. [11].

One distinguishes two basic modes of AD, namely, the
forward mode and the reverse mode. The former one eval-
uates derivatives together with the function evaluation. In
mathematical terms, one obtains, for a given direction ṗ,
the Jacobian-vector product ẏ = F ′(p) ṗ. Hence, for a unit
vector ṗ = ei ∈ Rn, one obtains the ith column of the Jaco-
bian ∇F (p). When applying the reverse mode of AD, one
propagates derivative information from the dependents y to
the independents p after the evaluation of the function F (p).
This yields, for a given weight vector ȳ, the vector-Jacobian
product p̄ = ȳ�F ′(p). Like for the forward mode, for a unit
vector ȳ = e j ∈ Rm, one obtains the jth row of the Jacobian
∇F (p).

Over the past few decades, extensive research activities
have led to a thorough understanding and analysis of these two
basic modes of AD, in which the complexity results with re-
spect to the required runtime are based on the operation count
OF , i.e., the number of floating point operations required to
evaluate F (p). The forward mode of AD yields one column
of the Jacobian ∇F for no more than three times OF [54,55].
Using the reverse mode of AD, one row of ∇F is obtained for
no more than four times OF (also see Ref. [54]). It is important
to note that this bound for the reverse mode is completely
independent of the number n of input variables. Hence, if
m = 1, the gradient of the then scalar-valued function F can
be calculated for four function evaluations. This observation
is called the cheap gradient result and is used extensively
for derivative-based optimization approaches. However, the
reverse mode requires knowledge of intermediate results com-
puted during the function evaluation. Therefore, the basic
implementation of the reverse mode leads to a memory re-
quirement that is proportional to the operation count OF . For
a considerable number of applications, this fact does not cause
any problems. For problems of larger scale, checkpointing
strategies have been developed (see, e.g., Ref. [56]). Here,
instead of all intermediates being stored, only a few of them
are recorded. Subsequently, the missing intermediate values
are recomputed using the data stored in the checkpoints.
Hence, these checkpointing strategies seek a compromise be-
tween storing and recomputing data. Besides the theoretical
foundation, numerous AD tools have been developed, e.g.,
CPPAD [57], ADOL-C [58], and TAPENADE [59]. Due to the
language features, the implementation of the AD packages
is based on source transformation for FORTRAN codes and
operator overloading for C or C++ codes.

When applying these AD tools in a black box fashion to
large-scale simulation codes, one usually does not observe
the theoretical runtime factors mentioned above, e.g., due to
memory issues. Therefore, a structure-exploiting approach, in
which AD is applied to only relevant parts of the code, as used
in this work, is very often beneficial for the efficient calcu-
lation of the derivatives. This also includes the appropriate
choice of the mode of AD. For the application considered
here, where, e.g., derivatives of a matrix with respect to a
parameter vector are required, the forward mode is the method
of choice.

III. APPLICATION TO A MICRODISK CAVITY

We apply the presented framework to a two-dimensional
optical microdisk cavity with two concentric layers of differ-
ent refractive indices embedded in an open environment [60].
The system is sketched in Fig. 2(a). The interest lies in the
electric fields which are perpendicular to the cavity plane (TM
polarization). This simplifies the time-harmonic Maxwell’s
equation given in Eq. (1) to the scalar Helmholtz equation

∇2Ez
m,l (x, y) + n2(x, y)

ω2
m,l

c2
Ez

m,l (x, y) = 0, (5)

where Ez
m,l (x, y) is the z component of the lth eigenmode

with the azimuthal mode number m ∈ Z, the refractive index
n(x, y) = √

εrμr describes the material in the region of inter-
est, ωm,l ∈ C is the eigenfrequency, and c is the speed of light.
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A. Semianalytical solution

Semianalytical results for Maxwell’s equations can be ob-
tained in the case of two concentric dielectric disks [61].
As the system is rotationally invariant, the eigenfrequen-
cies are characterized by an azimuthal mode number m ∈ Z.

Therefore, combining the continuity conditions at the dielec-
tric interfaces with the outgoing wave condition results in
a conditional equation Sm(ωm,l ) = 0 for the eigenfrequency
ωm,l . In the case of TM polarization, the function Sm(ω) is
given by

Sm(ω) = n2Jm(k1R1)H (1)′
m (k3R)

[
H (2)′

m (k2R1)H (1)
m (k2R) − H (1)′

m (k2R1)H (2)
m (k2R)

]
− n2

2Jm(k1R1)H (1)
m (k3R)

[
H (2)′

m (k2R1)H (1)′
m (k2R) − H (1)′

m (k2R1)H (2)′
m (k2R)

]
− n1J ′

m(k1R1)H (1)′
m (k3R)

[
H (2)

m (k2R1)H (1)
m (k2R) − H (1)

m (k2R1)H (2)
m (k2R)

]
+ n1n2J ′

m(k1R1)H (1)
m (k3R)

[
H (2)

m (k2R1)H (1)′
m (k2R) − H (1)

m (k2R1)H (2)′
m (k2R)

]
,

(6)

where k j = n jω/c and J (1)
m , J (2)

m , H (1)
m , and H (2)

m are the Bessel
and Hankel functions of the first and second kind and or-
der m, respectively. The complex roots of Sm(ω) need to be

FIG. 2. Optical microdisk cavity with an EP of second order.
(a) Sketch of the two-dimensional system. Two concentric layers of
different refractive indices form the cavity. (b) Electric field intensity
of the eigenmode Ez

8,1 corresponding to the EP. The associated eigen-
frequency is given by ω8,1 ≈ ω8,2 = (6.96185 − 0.089761i)c/R.
The underlying parameters of the microdisk are n1 = 3.1239791,
n2 = 1.5, and R1 = 0.4970147R.

determined numerically, e.g., by Newton’s method, where an
initial guess can be taken from a single disk with a modified
refractive index [61]. Here, the iterations within Newton’s
method have negligible computational costs; i.e., convergence
can be ensured. With the implicit function theorem, the deriva-
tive of the eigenfrequency ωm,l with respect to a parameter
p ∈ {n1, n2, n3, R1, R} can be calculated as

∂ωm,l

∂ p
= −

[
∂Sm

∂ω
(ωm,l )

]−1
∂Sm

∂ p
(ωm,l ).

The partial derivatives ∂Sm/∂ω and ∂Sm/∂ p are indepen-
dent of the eigenfrequency. Therefore, they can be calculated
analytically with a common computer algebra system from
Eq. (6) (see also Ref. [49]).

B. Numerical solution

To numerically solve Eq. (5), the software RPEXPAND [48]
is used. The eigenfrequencies ωm,l and the corresponding
sensitivities ∂ωm,l/∂ p with respect to a parameter p are com-
puted by using the contour-integral-based framework. Here,
the quantity q(ω) is the z component of the electric field at
the position [x, y] = [0, 0.9R] resulting from a z-polarized
plane wave traveling in the y direction. RPEXPAND contains
an interface to the JCMSUITE software. The approach of AD
is utilized within JCMSUITE. Convergence with respect to the
FEM parameters is ensured by refining the spatial mesh,
where the degree of the polynomial ansatz functions is set to
4. For computational efficiency, the mirror symmetries of the
system are exploited. Further information on the numerical
implementation can be found in Ref. [49].

We study an EP of second order [60]. Two eigenmodes
with an azimuthal mode number m = 8 and the correspond-
ing eigenfrequencies coalesce at the parameter combination
n1 = 3.1239791, n2 = 1.5, and R1 = 0.4970147R. The elec-
tric field intensity of a corresponding eigenmode Ez

8,1 is shown
in Fig. 2(b). The eigenfrequency is given by ω8,1 ≈ ω8,2 =
(6.96185 − 0.089761i)c/R. In the following, for a simpler
notation, we denote this specific eigenfrequency by ωEP.

The eigenfrequencies ω8,l and their sensitivities ∂ω8,l/∂R1

near the EP are investigated. Figure 3(a) shows the trajecto-
ries of the real parts of the eigenfrequencies ω8,l when the
parameter R1 is varied and n1 and n2 are fixed. For each
radius R1, a contour integral is computed, leading to two
eigenfrequencies. The superscript letters A and B describe
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FIG. 3. Variation of the parameter R1 near the EP with the parameters n1 = 3.1239791, n2 = 1.5, and R1 = 0.4970147R. For each R1, two
eigenfrequencies, ω8,1 and ω8,2, are obtained. The values for R1 result from an equidistant spacing in the interval [0.999R1, 1.001R1] with 50
points, where the first point leads to ωA

8,1 and ωA
8,2 and the 25th point leads to ωB

8,1 and ωB
8,2. The numerical results can be compared with the

semianalytical solution. (a) Real parts of the eigenfrequencies ω8,l . (b) Imaginary parts of ω8,l . (c) Real parts of the eigenfrequency sensitivities
∂ω8,l/∂R1. (d) Imaginary parts of ∂ω8,l/∂R1.

two points in the parameter space that differ in the radius R1.
When R1 is increased, i.e., going from ωA

8,1 to ωB
8,1 or ωA

8,2

to ωB
8,2, then the two eigenfrequencies converge. Figure 3(b)

shows the imaginary parts, and Figs. 3(c) and 3(d) show the
corresponding sensitivities. The results can be compared with
the semianalytical solution ωan. For ωB

8,1, the relative error
|Re(ωB

8,1 − ωan)/Re(ωan)| is smaller than 7 × 10−7, and for the
corresponding imaginary part, the relative error is smaller than
5 × 10−5. The relative error for the underlying sensitivities
is smaller than 2 × 10−3 for the real and imaginary parts. It
can be observed that the sensitivities diverge in the vicinity
of the EP. The divergence can be explained by the square-root
dependence of the eigenfrequencies on perturbations when the
system is near the EP [13].

For all calculations corresponding to Fig. 3, the contour C
shown in Fig. 4(a) with 16 integration points and a maximum
side length of the FEM mesh of 0.05R are used. Figure 4(a)
also sketches the locations of the eigenfrequencies ωA

8,1, ωA
8,2,

ωB
8,1, and ωB

8,2 with the trajectories when R1 is varied in the
direction of the parameter for the EP. To demonstrate the
accuracy of the approach, Fig. 4(b) shows the relative error
of the absolute values of ωA

8,1, ∂ωA
8,1/∂R1, ωB

8,1, and ∂ωB
8,1/∂R1

with respect to the number of integration points on the contour
C. Figure 4(c) shows the relative error with respect to the
maximum side length of the FEM mesh. It can be observed
that the relative error for the sensitivities is smaller for ωA

8,1,
which lies farther away from the EP. The closer the two
calculated eigenfrequencies are to each other, the less accurate
the results are. With only 16 integration points, it is possible
to obtain a maximum relative error smaller than 10−5 for the

eigenfrequency sensitivities ∂ω8,1/∂R1 for both points A and
B in the parameter space. Using a maximum side length of
the FEM mesh of 0.05R is sufficient to achieve a maximum
relative error smaller than 3 × 10−3.

Note that, for simplicity, we show only the sensitivities
∂ω8,l/∂R1. The results for ∂ω8,l/∂n1 and ∂ω8,l/∂n2 exhibit
similar behavior.

C. Exceptional surface

We track the EP in the parameter space by using New-
ton’s method with the sensitivities ∂ω8,l/∂n1 and ∂ω8,l/∂R1.
We are looking for the zeros of the squared eigenfre-
quency splitting (ω8,1 − ω8,2)2. The reason for choosing the
square of the splitting is the square-root dependence of the
eigenfrequencies near the EP. The starting point is the pa-
rameter combination corresponding to ωB

8,1 and ωB
8,2 shown

in Fig. 3(a), given by n1 = 3.1239791, n2 = 1.5, and R1 =
0.497004557R. With a fixed n2 = 1.5, a certain tolerance, and
a few iterations of Newton’s method, the two eigenfrequencies
ωEP

8,1 = (6.961993 − 0.089638i)c/R and ωEP
8,2 = (6.961996 −

0.089642i)c/R, with the parameters n1 = 3.123979246 and
R1 = 0.497014753R, are obtained. Then, the parameter n2 is
shifted by a constant value of 0.0025, and Newton’s method
is restarted with the shifted n2 together with the previously
calculated values for the parameters n1 and R1 and with a
new integration contour centered at the previously computed
eigenfrequency. The results of this procedure are shown in
Fig. 5, where Fig. 5(a) contains the trajectory of ωEP and
Fig. 5(b) shows the corresponding parameter combinations.
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FIG. 4. Computing eigenfrequencies and their sensitivities near the EP. (a) Complex frequency plane with integration contour C. The center
of the contour is at ωEP, and the radius is given by 0.01Re(ωEP ). Four eigenfrequencies from Fig. 3(a) are shown, where ωA

8,1 and ωA
8,2 or ωB

8,1

and ωB
8,2 are the result of a contour integration with a different R1 in each case. (b) Relative error |ω8,1 − ωqex|/|ωqex| with respect to the number

of integration points on the contour C, where ωqex is the quasiexact solution computed with 64 integration points. The maximum side length
of the FEM mesh is 0.05R. (c) Relative error with respect to maximum side length of the FEM mesh, where ωqex is the quasiexact solution
computed with a maximum side length of 0.0125R. The number of integration points is 16. The legend is the same as in (b).

Although the sensitivities diverge near the EP, the numer-
ical calculations of the sensitivities are still accurate enough
for Newton’s method to work very well. Therefore, the excep-
tional surface is identified as a curve in the parameter space
spanned by R1 and n1. Figure 5 also contains the semianalyti-
cal solution, and it agrees with the numerical results.

FIG. 5. Tracking the EP in the parameter space. (a) Numerical
and semianalytical results for the trajectory of the eigenfrequency
ωEP. The arrow indicates the eigenfrequency ωEP from Ref. [60].
(b) Corresponding parameter combinations. For each point in the
parameter space, the parameter n2 is shifted by 0.0025.

IV. CONCLUSION

Eigenfrequency sensitivities near EPs were investigated.
For this purpose, we developed a framework based on contour
integration with AD. We applied a numerical implementation
of the framework to an optical microdisk cavity with an EP
of second order. It was shown that the eigenfrequency sensi-
tivities near the EP can be captured accurately and efficiently.
The sensitivities were applied to track the EP in the parameter
space. A semianalytical solution for the system was derived
and used to validate the numerical results.

The presented contour-integral-based framework can be
applied to any resonant system, e.g., systems with complex
three-dimensional geometry and with EPs of arbitrary order
and nonlinear resonant systems. The combination of con-
tour integration with AD makes the framework very general
since the approach is essentially based on solving scattering
problems. The treatment of the corresponding linear systems
of equations is a standard task for state-of-the-art software
packages used in the field of computational physics.

Computing eigenfrequency sensitivities near EPs can aid in
optimizing setups for EP-based sensors. For example, excep-
tional surfaces [62] in higher-dimensional parameter spaces
can be identified which can then be used to optimize an EP
along such a surface to maximize sensitivity to a targeted
perturbation while minimizing the response to other perturba-
tions that may arise from fabrication tolerances or noise. For
such an optimization scheme, numerically accurate and effi-
cient computation of eigenfrequency sensitivities with respect
to specific system parameters is crucial.

Supplementary data tables and source code for the nu-
merical experiments for this work can be found in the
open-access data publication [49]. Links to further AD
tools and comprehensive information on AD are available
online [63].
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