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Cooperative effects in dense cold atomic gases including magnetic dipole interactions
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We theoretically investigate cooperative effects in cold atomic gases exhibiting both electric and magnetic
dipole-dipole interactions, such as occurs, for example, in clouds of dysprosium atoms. After introducing a
general framework capturing both the quantum degenerate and nondenegerate cases, we focus on the emergence
of tailorable spin models in the quantum nondegenerate regime. In the low-excitation limit, we provide analytical
and numerical results detailing the effect of magnetic interactions on the directionality of scattered light and
characterize sub and superradiant effects.
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I. INTRODUCTION

Scattering of light off atomic gases necessarily involves
aspects of quantum cooperativity, arising from the common,
hybrid reaction of closely positioned and mutually coupled
quantum emitters to the external stimulation [1]. The optical
response can be very complex, as it strongly depends on the
gas density and temperature, the type of atoms comprising
the gas, as well as on the strength of the driving field. For
low density and high temperature, an independent scattering
regime can be obtained where the gas response can be deduced
from the single atom response [2,3]. For higher density, weak
excitation, and still high temperature, cooperative aspects
such as super [4,5] and subradiance [6] (spontaneous emis-
sion rates larger or smaller than that of an isolated particle)
emerge. Many features of such ensembles have already been
investigated theoretically and experimentally [7]. A dense
ensemble exhibits a cooperative lineshift [8–10] that cannot
be predicted from standard electrodynamics of a dielectric
[11]. Superradiant emission is directional [12] and robust to
many perturbations of the system [13]. The superradiant level
structure is, however, completely quantum mechanical [14]
and not simply due to synchronization of dipoles as proven
by single-photon superradiance experiments [15,16]. There
exist promising applications of superradiant ensembles such
as the generation of pulse trains using the burst [17]. There are
also investigations into the consequences of additional effects
such as more complex level structures and atomic motion in
different regimes [18,19]. The results for some dense cloud
experiments are, however, still not in complete agreement
with theory [20]. High driving powers lead then to nonlinear
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optical effects [21], as the atomic transitions can saturate and
atoms become fundamentally nonlinear elements.

In all cases discussed so far, a simple quantum optics
approach suffices, based on the open quantum system for-
malism, where most of the relevant features and behaviors
are obtained in a two-level system approach where atoms are
treated as pseudospins 1/2 (with transitions between ground
and excited electronic orbitals) responding to an external
stimulation.

In the low-temperature limit, the motional wavepackets
of the atoms comprising the gas can overlap, leading to a
change in the theoretical framework, which must necessarily
include a many-body formulation to the problem [22–25].
This is illustrated in Fig. 1 where the nonoverlapping motional
wavepackets case corresponding to a thermal, classical gas is
shown in Fig. 1(b) while the quantum degenerate limit involv-
ing overlapping wave functions is depicted in Fig. 1(c). The
quantum degenerate gas has been shown theoretically [26] and
experimentally [8–10] to lead to fermionic subradiance via
Pauli blocking [27–29] and to superradiance in Bose-Einstein
condensates [30,31].

We introduce here analytical tools to describe both the
quantum nondegenerate and quantum degenerate cases, how-
ever, with a focus on the first of these. To this end we extend
the formulation of the cooperative response to include mag-
netic interactions on top of the standard electric dipole-dipole
exchanges, as, for example, strongly present in experiments
with dysprosium atoms [32,33]. In the arbitrarily strong drive
limit, for classical gases, we show the emergence of a spin
Hamiltonian with tunable parameters. In the weak driving
limit, a simpler coupled dipoles approach suffices. This can
be seen also as a reduction of the dynamics onto the bottom
of the Bloch sphere involving only single excitation collective
states. The results show slight modifications in the superradi-
ant response.

The paper is organized as follows. In Sec. II we intro-
duce the light-matter interaction model at the Hamiltonian
level for both degenerate (Sec. II B) and nondegenerate gases
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FIG. 1. (a) Schematics of the system. (b) In the first case, the de
Broglie wavelength of each atom is much smaller than the average
interparticle separation, allowing one to treat the system as a clas-
sical thermal gas far from quantum degeneracy. (c) In the opposite
limit, quantum degeneracy is achieved by lowering the temperature
and consequently producing particles with overlapping de Broglie
wavepackets. To compute the optical response, a quantum many-
body approach to the problem is necessary.

(Sec. II A) including both electric and magnetic dipole-dipole
interactions. In Sec. III we reduce our treatment to the nonde-
generate case, where we first analyze the strong driving limit
and show the emergence of a many-particle spin Hamiltonian
with interactions of tunable strength. We then exemplify the
magnetic dipole interactions effect on the light scattered in the
weak driving regime and find small deviations from a purely
electrically interacting gas.

II. MODEL

We consider N atoms (positioned at Ri with index i run-
ning from 1 to N ) trapped in an external potential (see Table I
for a list of notation used in this article). Optical addressing of
each atom (both by classical fields and the quantum electro-
magnetic vacuum modes) is achieved by coupling to its single
valence electron, which we denote by its position ri measured
with respect to the position of the nucleus. The atomic cloud
is illuminated by a laser with Rabi frequency �, wave vector
k�, and frequency ω� = ck� propagating in the x direction as
depicted in Fig. 1(a). Two distinct regimes emerge: (i) a quan-
tum nondegenerate limit where atomic motion is described by
a thermal distribution of velocities and (ii) a quantum degener-
ate limit where atomic motion is quantized and atoms become
indistinguishable, thus the quantum degenerate case. The dis-
tinction between the two cases is illustrated in Figs. 1(b)
and 1(c) where the overlap of individual atomic de Broglie
wavepackets indicates the criterion for the transition between
the two limits. In both cases, we will be interested in the
spectroscopic quantities obtained from a detector positioned
in the far-field regime with angles θ and φ with respect to the
incoming laser.

TABLE I. Table of definitions.

Quantity Definition

�(�μ) Electric (magnetic) radiative loss rate
f d
i j Dissipative electric dipole interaction

gd
i j Coherent electric dipole interaction

�
α,β

i, j Static magnetic dipolar interaction
ηn,m Franck-Condon factors
k� Laser wave vector
k� Laser wave vector magnitude
ω� Laser frequency
ω0 Transition frequency
� Laser detuning
gk Photon coupling strength
εk Photon polarization vector
d̂ i Electric transition dipole operator
μ̂i Magnetic transition dipole operator
μ̂s,i Magnetic static dipole operator
d i Electric transition dipole moment
μi Magnetic transition dipole moment
μi,e Static magnetic dipole moment of excited state
μi,g Static magnetic dipole moment of ground state
σi Transition operator
σ z

i Inversion operator
âk,ε Photon annihilation operator
r̂i Relative electron position of transition
L̂i Angular momentum operator

Ê(R), (B̂(R)) Electric (magnetic) field operator at position R
�g(R) Annihilation operator for ground state atom at R
�e(R) Annihilation operator for excited state atom at R
vdrive Drive vector for small drive
M Interaction matrix for small drive
δω j Frequency shift due to static magnetic field
μe Excited state magnetic moment
μg Ground state magnetic moment
�μ Magnetic interaction frequency
rs Detector position
ks Detector wave vector
Nc Number of runs over configurations
N Number of total atoms
τ Optical depth
θ Detection angle
�̂(R) Transition operator acting at position R
êm Annihilation operator for excited state m
ĝm Annihilation operator for ground state m
�n,m Transition operator between n and m
Ng Number of atoms in the ground state
Ne Number of atoms in the excited state
I (ks ) Intensity at detection vector ks

ωn Frequency of state n
Ri Center of mass position of atom i

For simplicity of presentation, we proceed with a set
of approximations which are usually performed in treating
light-matter interactions. We perform the dipole approxima-
tion which assumes that the size of the electronic orbital
is negligible with respect to any relevant optical transition
wavelength λ. In addition, we assume nonoverlapping elec-
tronic orbitals between neighboring atoms. The electric and

023147-2



COOPERATIVE EFFECTS IN DENSE COLD ATOMIC … PHYSICAL REVIEW RESEARCH 6, 023147 (2024)

magnetic fields are quantized in a fictitious box of volume
V and expressed in terms of photon creation and annihila-
tion bosonic operators âk,ε with frequencies ωk = c|k| and
commutators [âk,εk , â†

k′,ε′
k
] = δk,k′δεk,ε

′
k

(where εk is the polar-

ization for the mode k). The free-space quantization yields the
electric and magnetic field operators

Ê = i
∑
k,ε

gkωkεk(âk,εe
ikR − â†

k,ε
e−ikR), (1)

B̂ = i
∑
k,ε

(k × εk)gk (âk,εe
ikR − â†

k,ε
e−ikR), (2)

with gk = 1/
√

2ωkVε0 being the photon coupling strength.
From here on the treatment is distinct for the two assumed
limits of either a gas with a classical distribution of velocities
or a quantum degenerate gas of indistinguishable atoms.

A. Quantum nondegenerate gas approach

We follow the standard quantum optics approach where
the internal electronic dynamics of each atom is treated in
terms of Pauli matrices. To this end, we restrict the dynamics
of the electron to a ground state |g〉i and a single excited
state |e〉i, separated by frequency ω. Notice that, in practice,
this assumption is a very good approximation for optically
pumped atoms. An example based on dysprosium atoms is
shown in Appendix A where the ground state is represented by
a magnetic sublevel with J = 8 and mJ = −8 and the excited
state with J ′ = 9 and m′

J = −9.
The Pauli matrices represent transitions in the electronic

degrees of freedom and are defined as σi = |g〉i〈e|i. The
coupling to electromagnetic waves occurs via either the tran-

sition electric d̂ i = d iσi + d∗
i σ

†
i and magnetic μ̂i = μiσi +

μ∗
i σ

†
i dipole operators or via the static magnetic dipole

operator μ̂s,i = μi,eσ
†
i σi + μi,gσiσ

†
i . The static components

of the magnetic dipole μi,e and μi,g are computed within
their respective electronic states, as μi,e = −gμB〈ei|L̂i|ei〉 and
μi,g = −gμB〈gi|L̂i|gi〉. The operator L̂i is the angular momen-
tum of atom i, μB is the Bohr magneton, and g is the Landé
factor. The transition dipole matrix elements are computed
between orbitals d i = −e〈ei|r̂i|gi〉 and μi = −gμB〈gi|L̂i|ei〉.
Due to the fixed parity of hydrogen-like orbitals, the static
electric dipole moment must vanish, which is not the case for
the static magnetic dipole moment. The resulting Hamiltonian

H = Hat + Hem + Hel+mag + Hdrive, (3)

is a sum over the free Hamiltonians of the atoms Hat, the
electromagnetic vacuum Hamiltonian Hem, the electric and
magnetic dipole coupling to the radiation field Hel+mag, and
the semiclassical drive Hdrive.

The first two terms are explicitly written as

Hat + Hem = ω
∑

i

σ
†
i σi +

∑
k,ε

ωkâ†
k,εk

âk,εk
, (4)

where we set the zero of the energy at the ground electronic
state level and ignored the zero-point energy of the vacuum
modes. The coupling of the atomic system to the electric and

magnetic quantum fields is

Hel+mag =
∑

i

d̂ i · Ê(Ri ) + (μ̂t,i + μ̂s,i ) · B̂(Ri ). (5)

The semiclassical drive is characterized by the Rabi frequency
� and is written as

Hdrive = �
∑

i

(e−ik�Riσi + eik�Riσ
†
i ), (6)

where k� = k�êx and êx is the unit vector in the x-direction.
The Hamiltonian above is the starting point for the models
analyzed in Sec. III.

B. Quantum degenerate gas approach

In the opposite limit of a quantum degenerate gas, it is
more convenient to introduce a two-species model where field
operators �†

e,g(R) create atoms at some position R with their
electron either in the ground or in the excited state. The
dipole moments can be written in terms of field operators as
the action of the Pauli matrices is now expressed by com-
binations of the field operators. For example, the operator
�̂(R) = �†

g (R)�e (R) is the field-theoretical equivalent of the
matrix operator σi where the particle location, which was
previously denoted by an index, is now denoted by a contin-
uous variable due to the replacement of localized scatterers
by fields. The meaning is that an atom in the excited state is
destroyed while another atom in the ground state is created
in exactly the same position. The commutation relations are
the standard ones [�α (R), �†

β (R′)]ζ = δ(R − R′)δα,β , where
α, β ∈ {e, g} are species indices while ζ specifies commuta-
tion or anticommutation relations depending on the bosonic
or fermionic nature of the gas. The single-particle motional
Hamiltonian is written as

H0 = −∇2/2M + Vext(R), (7)

where Vext(R) is an externally applied potential (assumed
quadratic in the following) that allows for the use of a simpler
notation using the trap basis states. Notice that, with a state-
independent choice for Vext(R), the motional wave functions
are the same for the excited-type and ground-state-type atoms.

In the second quantization, the total system Hamiltonian
is obtained as an integration of the Hamiltonian density. As
a next step, the field operators can be expanded in a con-
veniently chosen basis. In particular, we will consider the
trap basis defined by the eigenvectors H0φn = ωnφn. Particle
creation and annihilation operators can then be defined as

ĝn =
∫

dR[φn(R)]∗�g(R),

ên =
∫

dR[φn(R)]∗�e(R).

(8)

The operators can be interpreted in the following way: when
ĝ†

n is applied to the vacuum, it creates an atom in the trap state
n and in the electronic ground state. Similarly, ê†

n creates an
atom in the trap state n and in the electronic excited state. The
fermionic or bosonic nature of the atoms is consistently taken
into account by the commutation relations of these operators.
The transition from free particles to trapped ones is performed
by the tuning of the single-particle trapping potential, which,
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in turn, affects the shape of the trap basis eigenvectors. With
this, the free Hamiltonian of the atoms can be written as

Hat =
∑

n

ωnĝ†
nĝn +

∑
n

(ω0 + ωn)ê†
nên. (9)

The electromagnetic modes Hamiltonian Hem is the same as
before. The coupling of the atomic system to the electric
and magnetic quantum fields is described by the following
Hamiltonian:

Hel+mag =
∑
n,m

(�̂n,m + �̂†
n,m)〈n|d · E(R)|m〉

+
∑
n,m

(�̂n,m + �̂†
n,m)〈n|μ · B(R)|m〉

+
∑
n,m

(ĝ†
nĝmμg + ê†

nêmμe) · 〈n|B(R)|m〉, (10)

where �̂n,m = ĝ†
nêm are ladder operators destroying an excited

atom in trap state m and creating a ground-state atom in trap
state n. The semiclassical drive is now written as

Hdrive = �
∑
n,m

�̂n,mηn,m + �̂†
n,mηn,m, (11)

where we define the Franck-Condon factors
ηn,m = 〈n|e−ik�R|m〉 = ∫

dR[φn(R)]∗e−ik�Rφm(R). For tight
trapping conditions, where the localization of the atoms
is on a level much smaller than the wavelength 2π/k�,
the exponential can be approximated with unity and the
Franck-Condon factors are equal to δnm. In addition, to take
into account the first-order correction, a Lamb-Dicke limit
approximation can be made and only the matrix elements of
the linear term ik�R would need to be considered.

III. QUANTUM NONDEGENERATE GAS LIMIT

Let us now focus on the semiclassical case, which assumes
classical dynamics for the atomic motion, while the elec-
tronic dynamics is described in a quantum fashion in terms
of Pauli matrices. As a function of the drive intensity, the
emergent physics can be quite distinct. In a first case, where a
high-intensity drive is assumed, high-excitation levels can be
reached, with many atoms being excited at the same time. This
is the standard regime for Dicke superradiance, i.e., the quick
burst of spontaneous emission from an initial fully excited
ensemble of closely spaced atoms. The other limit we consider
is the weak-excitation limit, where there are hardly any exci-
tations present in the system, rendering it possible to perform
a transformation to a fully classical coupled dipole model.
Despite its simplicity, the weak-excitation limit gives insights
into the emergence of cooperative effects and their role in
modifying the directional scattering of light. In particular, we
emphasize the role of magnetic dipole-dipole interactions and
their competition with the widely studied electric counterpart.

A. Effective spin Hamiltonian

From the Hamiltonian listed in Eq. (3), one can derive a
master equation for the evolution of the N electronic systems
under the approximation of a frozen gas. Such an approxi-
mation can hold for low-enough temperatures, where motion

evolution is slow compared to the time taken by any radiative
processes. The derivation is based on the elimination of the
photonic degrees of freedom [22–24,34,35], as outlined in de-
tail in Appendixes B, C, D, and E. The effective Hamiltonian
describing dynamics in the reduced subspace of dimension
2N of the electronic degrees of freedom reads

Heff = �
∑

i

σ
†
i σi +

∑
i �= j

(
g(d )

ji + g(μ)
ji

)
σ

†
i σ j

+ �
∑

i

(e−iRik�σi + eiRik�σ
†
i )

+ 1

8

∑
i �= j

�e,e
i, j

(
1 + σ z

i

)(
1 + σ z

j

)

+ 1

8

∑
i �= j

�
g,g
i, j

(
1 − σ z

i

)(
1 − σ z

j

)

+ 1

4

∑
i �= j

�
g,e
i, j

(
1 − σ z

i

)(
1 + σ z

j

)
. (12)

This describes the unitary part of the interaction correspond-
ing to a full-fledged spin-1/2 XXZ model. Here the detuning
is defined as � = ω − ω�. The second term gives the usual
electric and magnetic dipole-dipole interactions allowing for
the hopping of excitations within the whole ensemble, de-
scribing the XY part. The last three terms represent the
contribution from the static magnetic interactions and lead to
frequency shifts conditioned on the occupancy of the pair of
atoms involved in the interaction, which is typically referred
to as an effective Ising interaction. The coherent photon ex-
change via electric dipole-dipole interactions g(d )

ji has been
widely studied [19]. The magnetic transition dipole-dipole
couplings g(μ)

ji generally can be ignored as they are of very
small magnitude compared to the electric ones. However,
other important couplings occur

�
α,β
i, j = μ0

4πR3
i j

[
3

(μi,α · Ri j )(μ j,β · Ri j )

R2
i j

− μi,α · μ j,β

]
,

(13)

with α, β ∈ {e, g}, which describe magnetic dipole interac-
tions between atoms owing to the static magnetic dipoles,
illustrated in Fig. 2 on the right side. This is an interaction
between the electronic ground and excited state densities as
opposed to a spin-flip interaction for transition dipoles.

With the elimination of the electromagnetic vacuum, the
system is characterized by open system dynamics where the
collective dissipation is included in the master equation

dρ

dt
= −i[Heff, ρ] + Lμ[ρ] + Ld [ρ]. (14)

We assume standard Lindblad form for the loss terms which
we write as follows:

Lα[ρ] =
N∑

i, j=1

f (α)
i j (2σiρσ

†
j − {σ †

j σi, ρ}). (15)

The independent radiative loss rates are � = k3
0d2/(3π h̄ε0)

and �μ = k3
0μ

2/3π h̄ε0 stemming from electric and magnetic
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FIG. 2. Illustration of interactions present in the effective Hamil-
tonian Eq. (12). On the left is the excitation hopping due to the
electronic dipole interaction between sites i and j. Initial occupations
are indicated in filled open circles and the final occupations in dotted
open circles. As indicated by the filled circle, the initially excited
state on site i is changed to the ground state by σi. Similarly, the
ground state on site j, indicated by a filled circle is excited due
to σ †

j . On the right side is the density-density interaction due to
the static magnetic dipole interaction with the same color coding.
Here, either the ground or excited state can be occupied on i and j,
leading to different interactions indicated by arrows between them
and annotated with the appropriate interaction terms.

contributions. Moreover, collective dissipation at rates f (d )
i j

(electric) and f (μ)
i j (magnetic) are also present, with the exact

expressions listed in Appendix E. The magnitude of � de-
pends on the particular transition we consider, but it is around
� ≈ 1 MHz so that f (d )

i j ≈ 1 MHz particles at distance λ. We

usually also choose � to be of the order of �, while f (μ)
i j is

negligible.

B. Weak-excitation limit: Coupled dipoles model

The Hamiltonian in Eq. (12) is of general validity in the
quantum nondegenerate regime. However, by considering the
weak-excitation limit, the evolution of the system is restricted
to a very small subspace where the analytical description
of the dynamics can be greatly simplified. In addition, we
set the magnetic transition dipole moment to zero so that
f (α)
i j = g(α)

i j = 0 since it is negligible. To do this, we linearize
the time evolution of the system by replacing all population
operators with −1 and factorizing all two operator correla-
tions. We gather all expectation values of atomic coherences
in a single vector v = (〈σ1〉, . . . , 〈σN 〉)
 and write an effec-
tive first-order differential equation

v̇(t ) = −iMv(t ) + �vdrive, (16)

which is derived in Appendices E and F where
the drive vector incorporates all the drive phases
vdrive = (eik�R1 , . . . , eik�RN )
. The weak driving approx-
imation � � | f (d )| assumes that the Rabi frequency is
much weaker than the dissipative part of the dipole-dipole
interaction. Notice also that the equation above can be solved
both in the steady state to derive spectroscopic features of the
ensemble as well as in the time domain (by imposing a time
dependence on �). The matrix M incorporates both coherent
and dissipative cooperative behavior

M j j′ = [� + δω j]δ j j′ − [
g(d )

j j′ + i f (d )
j j′

]
. (17)

We use the low-excitation condition in order to approxi-
mate 〈σ z

j σ j′ 〉 ≈ −〈σ j′ 〉. This is always true if j = j′, but only
approximately valid under the condition that very few exci-
tations are present in the system such that, on average, each
site has a much lower than unit population in the excited state.
This leads to the definition of a local frequency shift

δω j =
∑
j′ �= j

(
�

e,g
j j′ − �

g,g
j j′

)

= (μe − μg)μgμ0

4π

∑
j′ �= j

3z2
j j′/R2

j j′ − 1

R3
j j′

, (18)

where δω j denotes the total shift acquired owing to magnetic
interactions. Since the particle positions are drawn from ran-
dom configurations due to the thermal motion, this amounts to
an effect of frequency disorder. We assume that all magnetic
dipole moments in the ground state are μg ‖ êz and all mag-
netic moments in the excited state are μe ‖ êz. We also take
the electric dipole moments to be the same and belonging to a
transition that emits circularly polarized light d i ‖ (1,±i, 0)T

(the sign does not matter due to the symmetry of the cloud)
and a laser with the same polarization. This leads to the
definition of the magnetic interaction rate

�μ = μ0(μe − μg)μg

4π
. (19)

For μg = 10 an estimate of the effect of the magnetic
interactions leads to �μ = 0. 815 MHz × nm3. Additionally,
we neglect contributions from the magnetic transition dipole
moments’ couplings as they are much smaller than the elec-
trically mediated couplings and we neglect the magnetic field
induced by the electric dipole moments. We then consider the
coherent part of the far-field intensity radiated by a system
defined by these dipoles in the xy plane

I (rs) ∝
∣∣∣∣∣
∑

i

e−iksRivi

∣∣∣∣∣
2

, (20)

where rs indicates the detection angle, ks ‖ rs and |ks| = k0 is
the wave vector for the propagation in the detection direction.

In the steady state, assuming time-independent driving,
the linear system obtained from setting the left-hand side of
Eq. (16) to zero has to be solved. In practice, this equa-
tion needs to be solved for many different configurations.
Since we assume the cloud to be thermal, we assume this par-
ticle distribution with respect to the center of the cloud to be
Gaussian. When the atomic motion timescale is much slower
than 1/�, i.e., the Doppler shift ωd is much smaller than �,
averaging over these different configurations corresponds to
a thermal average. The velocities do not contribute since the
Doppler shift is negligible and a detector will average over the
different configurations the cloud assumes.

In Fig. 3(a), we can see that static magnetic dipolar inter-
action reduces the forward enhancement due to constructive
interference of the emitted light in the laser direction. The
inhomogeneous broadening reduces this constructive inter-
ference so that the forward enhancement is reduced as well.
Alternatively, this can be reinterpreted when we consider that
the frequency disorder generates matrix elements between
different phase configurations in the atomic ensemble so that
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FIG. 3. Numerical results based on solution of Eq. (16) in the
steady state. We consider multiple configurations of a cloud where
the particles are distributed according to a Gaussian probability dis-
tribution with optical depth τ = 3N /(2k2

0 R2), simulating averaging
over atomic motion. The number of configurations is Nc = 1000 and
N = 1000. The optical depth is τ = 15. �μ quantifies the strength
of the magnetic interaction. In (a) we show how the forward en-
hancement is modified by the magnetic interaction by plotting the
intensity variation versus the in-plane angle θ on the single-particle
resonance � = 0. There is a reduction in the forward enhancement
for �μ = 0.03�λ3 compared to no magnetic interaction. In (b) we
investigate the lineshape of the cloud by changing the laser detuning
� and compare �μ = 0.03�λ3 with �μ = 0 at an in-plane detection
angle of θ = π/10. The double peak structure in the nonmagnetic
case becomes asymmetric when the magnetic interaction is turned
on. Changing the sign flips the effect on the two peaks (not shown). In
(c) and (d) we investigate the effect of the magnetic interaction on the
cooperative properties of the sample. To this end we determine the
collective lineshift �̄ and the collective linewidth �̄ in the forward
direction θ = 0 by calculating the lineshapes and then extracting
these parameters from a Lorentzian fit. The lineshift and linewidth
enhancement are shown for different optical densities τ with the
magnetic interaction strength on the x-axis.

more light is scattered into angles other than the laser-driven
direction. Furthermore, we observe a double peak structure of
the lineshape at a shallow detection angle of π/10 in Fig. 3(b),
which was previously attributed to vacuum Rabi splitting in
Ref. [36] and also observed in Ref. [18]. We discuss this in
more detail when interpreting Fig. 4. In Figs. 3(c) and 3(d)
we perform studies of the lineshift and linewidth modification
due to the presence of the magnetic interaction for different
optical densities τ . From the lineshift we can estimate the
total symmetric contribution to the frequency shift of the
ensemble, which causes a lineshift that depends on the sign
of the magnetic dipole-dipole interaction. From the linewidth
enhancement one can see the effect of the asymmetric con-
tribution to the frequency disorder, i.e., the inhomogeneous

FIG. 4. Numerical results based on the solution of Eq. (16) in
the steady state. We show for N = 1000 particles and averaging over
Nc = 1000 runs the normalized lineshapes for different transversal
angles θ in (a) and different magnetic interaction strengths �μ in (b).
The calculations are performed for a spherical Gaussian cloud with
optical density τ = 25.

broadening. From the results for τ = 20 it is fairly clear that
there are two different regimes. For large magnetic interaction
�μ the large frequency disorder simply leads to an inhomo-
geneous linewidth enhancement. For smaller �μ ≈ 0.005λ3�

the linewidth is decreased. One explanation for this is that
frequency disorder facilitates scattering into states that are
naturally more subradiant than the originally driven state with-
out disorder. Furthermore, we make connections between the
quantities plotted here and the scaling of the features observed
with the particle number N , the optical density τ , and the
peak density n0 of the cloud. First, consider Ref. [36] where
it is shown that the optical density is the relevant parameter
when investigating effects due to the electric dipole transi-
tion such as the observed double peak structure. Keeping the
optical density τ constant, the peak density will then scale
with the particle number n0 ∝ √

Nτ so that the density can
be tuned via particle number at constant optical density. We
then identify that the magnitude of the static magnetic dipolar
interaction depends on the density of the cloud so that the
magnetic interaction strength �μ acts as a proxy for both
density and particle number.

IV. CONCLUSION

We described the emission and scattering properties of
a dense atomic cloud for distinguishable, classically mov-
ing particles. We made use of an open quantum system
approach where we showed that tunable spin Hamiltonians
can be designed. In addition, under the assumption of weak
external drive, and in particular, for atoms where magnetic
interactions are strong, we characterized their effects on the
properties of scattered light. For quantum degenerate gases,
we introduced the relevant Hamiltonian including electric and
magnetic dipole interactions and provided a quick outlook of
how one would proceed in analyzing their emission properties
in an externally dictated trap basis. In the future, we will
augment this approach to the full open system formulation to
derive the interplay between quantum statistics and quantum
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electromagnetic vacuum effects such as super and subra-
diance. We expect that our findings are of relevance for
dense atomic dysprosium clouds for which a short description
of a possible experimental implementation is presented in
Appendix A. The setup is, in principle, fairly standard con-
sisting of a cooling setup where Dysprosium atoms are
Zeeman-slowed and then trapped and laser-cooled in a mag-
netooptical trap (MOT). This allows the tuning of the cloud
density and particle number and hence the parameters varied
in our simulations. If the sample is sufficiently cold, the quan-
tum degenerate regime can also be reached in this setup so
that both the quantum nondegenerate and degenerate regimes
can be investigated.
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APPENDIX A: POSSIBLE EXPERIMENTAL REALIZATION

To experimentally observe the effects discussed in the
main body of the article, we developed and built an appa-
ratus to cool and trap neutral dysprosium [37]. Dysprosium
belongs to the group of lanthanide elements whose character-
istic open f-shell electron configuration [Xe]4f106s2 with spin
S = 2, orbital angular momentum L = 6, and total angular
momentum J = 8 gives rise to its high magnetic moment of
10 Bohr magnetons (μg ∼ 10μB). Compared to alkali atoms
whose magnetic moments are on the order of only μg ∼ 1μB,
the magnetic dipole-dipole interactions in ultracold gases of
dysprosium is about 100 times stronger, making it an ideal
candidate for investigating its contribution to cooperative ef-
fects. In addition, there is an almost equal abundance of stable
bosonic and fermionic isotopes allowing for the creation of
both types of quantum degenerate gases [38,39].

The general experimental scheme for producing laser
cooled samples of lanthanide atoms is implemented as follows
[40,41]: A strong optical transition in the blue spectrum range
is used to precool the atoms in a Zeeman slower (ZS) before
capturing them in a narrow line magnetooptical trap (MOT).
Operating a MOT on transitions with natural linewidths on the
order of 100 kHz is required to reach Doppler temperatures
5 µK, which allows one to directly transfer the atoms from
the MOT into an optical dipole trap (ODT). In our setup, we
employ a strong J = 8 → J ′ = 9 transition at 421 nm, with
a natural linewidth of �421 = 2π · 32 MHz for precooling. A
thermal beam of atomic dysprosium, transversally cooled on
this broad transition, reaches the ZS with initial velocities
of several hundred meters per second. The atoms are then
longitudinally decelerated to a velocity of about 24 m/s in
the spin-flip configuration ZS before entering the main cham-
ber, where they are captured in a six beam three-dimensional
(3D) MOT setup. The MOT transition, on the other hand,
is a closed, narrow linewidth J = 8 → J ′ = 9 transition at
626 nm with a natural linewidth of �626 = 2π × 136 kHz
which corresponds to a Doppler temperature of 3.2 µK.

FIG. 5. CAD render of the vacuum system. Dysprosium atoms
reach the ZS with a velocity of few hundred meters per second. They
are longitudinally slowed in the ZS with resonant laser light at the
421 nm before being captured in a narrow line 3D MOT at 626 nm.
An achromatic lens in conjunction with an air-bearing translation
stage is used to focus down the optical transport beam at the position
of the MOT and create a deep ODT. The focal spot of this beam
is then moved from the MOT chamber to the center of the science
cell by moving the translation stage, thereby transferring the atoms
alongside. To retain a substantial number of atoms in the trap after
this sequence, the process of transport and retrapping of atoms needs
to be done on a timescale that is shorter than the lifetime of the ODT.

Our experimental setup consists of a high numerical aper-
ture (NA) science cell connected to an ultrahigh vacuum
(UHV) chamber (MOT) and a dedicated laser system capable
of generating tunable and frequency stabilized laser radiation.
Consequently, the laser frequency can be readily adapted to
capture either bosons or fermions without any optical or me-
chanical adjustments. Figure 5 shows a CAD render of the
vacuum system. To reduce the influence of undesired external
magnetic fields, the vacuum system is assembled exclusively
from nonmagnetic stainless steel, titanium, and ceramic glass.
Additionally, a commercial, three-axis magnetic-field com-
pensation system (Stefan Mayer Instruments GmbH: MR-3) is
used to drive a 3D coil system and compensate low frequency
magnetic-field disturbances.

The next step for creating dense samples of atomic dys-
prosium is to transfer atoms to the science cell attached to
the MOT chamber. The cell offers a high optical access (with
nine optical view ports), is designed in-house, and made out
of the machinable glass-ceramic MACOR (Corning Inc.). A
deep ODT at the MOT position will be created, using a
diode pumped solid-state (DPSS) laser (Coherent: Mephisto
MOPA 55 W) to transport the atoms. This will be achieved by
using an achromatic lens to focus down the transport beam
to a beam waist of w0 ∼ 66 µm and two mirrors mounted
on an air-bearing translation stage (Aerotech: ABL1500-300),
which enables reproducible and precise movement of the focal
spot of the beam, thereby, transporting the atoms alongside
[42]. The atoms are retrapped inside the science cell using
a custom made multilens micro-objective, designed to offer
diffraction-limited performance at the trapping wavelength of
1064 nm [43,44]. A five-lens configuration consisting solely
of commercial singlets was chosen to achieve a high NA
of 0.53 and a working distance of 22 mm. Simulation and
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optimization of objective parameters like lens curvature, rel-
ative spacing, and thickness was done using a ray-tracing
software (OPTICSTUDIO) to minimize optical aberrations and
achieve diffraction-limited performance. The beam waist at
the focus of the micro-objective was measured using a piezo-
controlled knife edge and found to be w0h = 5.94 ± 1.18 µm
and w0v = 6.99 ± 0.67 µm, in the horizontal and vertical
directions, respectively. We estimate that an ODT created
with this objective should provide a sufficiently tight con-
finement for a few hundred to a few thousand dysprosium
atoms to reach densities on the order of ∼1013 atoms/cm3.
This condition would then allow us to explore dynamics in
the high-density regime where the interparticle/interemitter
spacing is lower than the wavelength of the exciting transition,
giving rise to effects like Dicke sub and superradiance.

APPENDIX B: MAGNETIC INTERACTION TERMS
IN LIGHT MATTER HAMILTONIAN FROM FIRST

PRINCIPLES

We will be using the following definitions for the gauge
field, electric, and magnetic field operators

Â =
∑
k,ε

gkεk(âk,εe
ikR + â†

k,ε
e−ikR), (B1)

Ê = i
∑
k,ε

gkωkεk(âk,εe
ikR − â†

k,ε
e−ikR), (B2)

B̂ = i
∑
k,ε

(k × εk)gk (âk,εe
ikR − â†

k,ε
e−ikR), (B3)

with gk = 1/
√

2ωkVε0 photon coupling strength with pho-
tonic operators as defined in the main text.

If we omit terms where the square of the gauge field
appears and the term where the atom core momentum is
coupled to the gauge field (amounting to a Born-Oppenheimer
and subsequently a rotating wave approximation), the simpli-
fied Hamiltonian is composed of three parts, written in the
Coulomb gauge

H ≈ H0 + Haf + Hdipole, (B4)

H0 =
N∑
i

P̂
2
i

2M
+ p̂2

i

2m
+ Vec(Ri, ri ), (B5)

Ha f = 1

m

N∑
i

Â(ri ) · p̂i, (B6)

Hdipole = 1

2

∑
i �= j

∑ d i · d j − 3(Ri jd i )(Ri j · d j )

R3
i j

. (B7)

where we already performed a dipole approximation for the
Coulomb interaction between different atoms leading to the
explicit form of Hdipole. The Hamiltonian Ha f is the canonical
coupling between the electronic degree of freedom and the
transverse modes of the light-field. We have not completed the
dipolar approximation in the gauge field which still contains
the position of the electron ri, which is a quantum operator
in this description. The Hamiltonian H0 contains the elec-
tron kinetic energy, the center-of-mass kinetic energy, and the
interaction between the electron and the core. The electron
kinetic energy and the core-electron potential give rise to the

level structure of the atom. We consider a Born-Oppenheimer
picture where Ri represents the center of mass position.

Instead of making the usual dipolar approximation for
the gauge field, we consider one order higher in the Taylor
approximation of the electron position around the center-of-
mass position eikri ≈ eikRi [1 + ikxi] with the distance vector
xi = ri − Ri. The atom field Hamiltonian then splits into two
contributions

Ha f = 1

m

N∑
i

p̂i · Â(Ri )

+ i
∑
k,ε

gk ( p̂i · εk)(kxi )(âk,εe
ikRi − â†

k,ε
e−ikRi ). (B8)

The first term is the simple dipole approximation which
leads to the coupled dipole model after some additional ap-
proximations and a gauge transformation. The second term
is of higher order and contains the magnetic and quadrupole
electric moment as we will see. To see that the double dot
product indeed yields the magnetic and quadrupole term, it
needs to be rearranged

( p̂i · εk)(k · xi ) = ( p̂i · k)(xi · εk) + (xi × p̂i )(k × εk)

= 1
2 (( p̂i · εk)(k · xi ) + ( p̂i · k)(xi · εk))

+ 1
2 L̂(k × εk). (B9)

The first term is the electronic quadrupole term whereas
the second term contains the angular momentum implying that
it is indeed the magnetic coupling. Summarizing the calcula-
tions above, the terms that must be added to the Hamiltonian
if the dipole approximation is performed to higher order are

Hm = i
N∑
i

L̂i

2m
·
∑
k,ε

gk (k × εk)(âk,εe
ikRi − â†

k,ε
e−ikRi )

=
N∑
i

μ̂i · B̂(Ri ),

Hq =
∑
i,k,ε

i|k|
2m

(pkrε + pεrk)gk (âk,εe
ikRi − â†

k,ε
e−ikRi ).

(B10)

Here we avoid complications with spin degrees of freedom
by making the association μ̂i = − L̂i

2m and noting that spin
degrees of freedom need to be explicitly inserted into the
Hamiltonian which ultimately change the definition of μ̂i.
Since we go into a two-level picture this is, however, already
taken care of and we need not consider these complications in
detail.

APPENDIX C: REPRESENTATION OF THE
HAMILTONIAN IN THE TWO-LEVEL APPROXIMATION

We perform a two-level approximation in which we assume
there exist two relevant levels per atom, the ground state |gi〉
and the excited state |ei〉 separated by a frequency ω0. Taking
the projection of the momentum and magnetic moment opera-
tor onto this subspace, we can explicitly write the Hamiltonian
using the matrix elements within this subspace. One relevant
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point here is that the momentum operator has no diagonal
components whereas the magnetic moment operator has no
such symmetry restriction.

Omitting the quadrupole term, the atom-field Hamiltonian
then becomes

Haf = i
N∑
i

(d iσi − d∗
i σ

†
i ) · Â(Ri ) + (μiσi + μ∗

i σ
†
i

+ μi,eσ
†σ + μi,gσσ †) · B̂(Ri ), (C1)

with d i = 〈gi|x̂i|ei〉 and μi,e = 〈gi|μ̂i|ei〉 for the transition
dipoles and μi,e = 〈ei|μ̂i|ei〉, μi,g = 〈gi|μ̂i|gi〉 for the static
magnetic dipole moment. The sigma matrices are transition
operators of the type σi = |gi〉〈ei|.

APPENDIX D: UNITARY TRANSFORMATION
INTO DIPOLAR GAUGE

The next step in deriving the light-matter Hamiltonian is
the gauge transformation

U = exp

(
−i

N∑
i

∫ Ri

ri

dr · Â(r)

)
. (D1)

We note here that the gauge-field operator commutes with
the magnetic-field operator [Â(r), B̂(r′)] = 0 so that Hm is
not affected by this transformation. The effect on the dipole
electronic transition and the static dipole Hdipole is as usual so
that, after also performing a rotating wave approximation, the
Hamiltonian is

H = ω
∑

i

σ
†
i σi +

∑
k,ε

ωkâ†
k,ε

âk,ε

+
∑

i

d̂ i · Ê(Ri ) + (μ̂t,i + μ̂s,i ) · B̂(Ri ), (D2)

with definitions d̂ j = dσ j + d∗σ †
j , μ̂t,i = μiσi + μ∗

i σ
†
i and

μ̂s,i = μi,eσ
†σ + μi,gσσ †.

APPENDIX E: ELIMINATION OF PHOTONIC DEGREES
OF FREEDOM FROM HAMILTONIAN

The last step in determining the effective system dynamics
is to perform an adiabatic elimination of the light modes for
this Hamiltonian Eq. (D2). The first step is to determine the
equation of motion for the photonic operators

dâk,ε

dt
= −iωkâk,ε +

∑
i

gkωk (d̂ i · εk)e−ikR̂i

+
∑

i

gk ([μ̂t,i + μ̂s,i] · [k × εk])e−ikR̂i , (E1)

which can then be integrated to yield

âk,ε(t ) = âk,ε(0)e−iωkt +
∫ t

0
dse−iωk (t−s)

×
∑

i

gkωk (d̂ i(s) · εk)e−ikR̂i +
∫ t

0
dse−iωk (t−s)

×
∑

i

gk ([μ̂t,i(s) + μ̂s,i(s)] · [k × εk])e−ikR̂i . (E2)

A simplification for the calculation that follows is to
consider negative and positive frequency components of the
magnetic and electric field, in particular,

B̂
± = ±i

∑
k,ε

(k × εk)gkâk,εe
±ikR,

Ê
± = ±i

∑
k,ε

gkωkεkâk,εe
±ikR, (E3)

so that we only have to consider the equation of motion for
one of the photonic operators. To shorten the notation we also
introduce the total magnetic dipole operator μ̂i(t ) = μ̂t,i(t ) +
μ̂s,i(t ) leading to expressions for the positive field components
of the electric and magnetic fields

Ê
+

(Ri ) = Ê
+
0 (Ri ) + i

∑
k,ε, j

(gkωk )2eikRi j εk

∫ t

0
dse−iωk (t−s)(d̂ j (s) · εk)

+ i
∑
k,ε, j

g2
kωkeikRi j εk

∫ t

0
dse−iωk (t−s)(μ̂i(s) · [k × εk]),

B̂
+

(Ri ) = B̂
+
0 (Ri ) + i

∑
k,ε, j

(k × εk)g2
kωkeikRi j

∫ t

0
dse−iωk (t−s)(d̂ j (s) · εk)

+ i
∑
k,ε, j

(k × εk)g2
keikRi j

∫ t

0
dse−iωk (t−s)(μ̂i(s) · [k × εk]), (E4)

where the zero subscript indicates that the photonic operators in the field expression were taken at time zero. Thus, both fields
have similar terms. First, the vacuum time evolution, then the interaction with the proper dipole moment, and then a cross
term between the magnetic and electric components of the interaction. There will be cross terms corresponding to the magnetic
field produced by an electric dipole and the magnetic field produced by a magnetic dipole. Since we will neglect the magnetic
transition dipole at the end of this treatment, we omit these cross terms and only keep the magnetic transition dipole terms to
elucidate the difference to the magnetic static dipole term.
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After the cross-terms are omitted, the total magnetic and electric field operators can be obtained from the positive frequency
components by adding the hermitian conjugate so that after performing the usual summation over the polarization vectors

Ê(Ri ) = Ê0(Ri ) + i
∑
k, j

(gkωk )2eikRi j

∫ t

0
dse−iωk (t−s) ·

[
d̂ j (s) − k(d̂ j (s) · k)

k2

]
+ H.c., (E5)

B̂(Ri ) = B̂0(Ri ) + i
∑
k, j

(gkωk )2eikRi j

∫ t

0
dse−iωk (t−s) ·

[
μ̂i(s) − k(μ̂i(s) · k)

k2

]
+ H.c., (E6)

so that the magnetic and electric fields have the same structure. Now, the continuum limit is taken for the electromagnetic field
modes 1

V

∑
k → 1

(2π )3

∫
dk and the angular integral is performed in spherical coordinates so that, defining the dipolar Green’s

function

Gk (R) =
(
1 + 1

k2
∇ ⊗ ∇

)
eikR

4πR

= eikR

4πk2

[(
k2

R
+ ik

R2
− 1

R3

)
1 +

(
−k2

R
− 3ik

R2
+ 3

R3

)
R ⊗ R

R2

]
, (E7)

with the usual shorthand G(R) = Gk0 (R) and the decomposition Gk (R) = �k (R) − i�k (R). The expressions for the electric and
magnetic field become

Ê(Ri ) = Ê0(Ri ) + i

πε0

∑
j

∫ ∞

0
dk

∫ t

0
dsk2�k(Ri j ) · d̂ j (s)e−iωk (t−s) + H.c., (E8)

B̂(Ri ) = B̂0(Ri ) + i

πε0

∑
j

∫ ∞

0
dk

∫ t

0
dsk2�k(Ri j ) · μ̂ j (s)e−iωk (t−s) + H.c.. (E9)

The key is now that this elimination cannot be performed exactly and one must make a perturbative ansatz by plugging the
time evolution of the dipole operators without light-matter interactions into these integrals. The free-space time evolution of the
dipole operators is explicitly

d̂ j (s) = dσ j (s) + d∗σ †
j = dσ j (t )e−iω(s−t ) + d∗σ j (t )†eiω(s−t ),

μ̂t, j (s) = μ jσ j (s) + μ∗
jσ

†
j (s) = μ jσ j (t )e−iω(s−t ) + μ∗

jσ
†
j (t )eiω(s−t ),

μ̂s, j (s) = μ j,eσ
†
j (s)σ j (s) + μ j,gσ j (s)σ †

j (s) = μ̂s, j (t ).

(E10)

This implies that the fundamental difference between the static and transition dipole moments is given by the frequency they
rotate at. All these time evolutions will lead to integrations of the type

ζ (ω) = i
∫ ∞

0
eiωt dt = P 1

ω
+ iπδ(ω), (E11)

so that splitting the magnetic field into a transition part B̂ = B̂t + B̂s while keeping the vacuum contribution in the transition part

Ê(Ri ) = Ê0(Ri ) + 1

πε0

∑
j

∫ ∞

0
dkk2�k (Ri j ) · d(σ jζ (ωk + ω) + σ

†
j ζ (ωk − ω)) + H.c.,

B̂t (Ri ) = B̂0(Ri ) + 1

πε0

∑
j

∫ ∞

0
dkk2�k (Ri j ) · μt, j (σ jζ (ωk + ω) + σ

†
j ζ (ωk − ω)) + H.c.,

B̂s(Ri ) = 1

πε0

∑
j

∫ ∞

0
dkk2�k (Ri j ) · ζ(ωk )(μ j,eσ

†
j σ j + μ j,gσ jσ

†
j ) + H.c.. (E12)

The previous statement about the rotational frequencies now becomes clear as the transition fields contain zeta functions of
the form ζ (ωk ± ω) where the Green’s function around �k0 (R) matters. The static contributions, however, contain a zeta function
of the form ζ (ωk ) where �k=0(R) matters. Since the zeta function essentially only evaluates the Kramers-Kronig relations for the
complex function G(R), i.e., (k′2)�k′ (R) = ∫

dk k2�k (R)
ω′−ω

. Ultimately, this leads to the explicit representation of the fields, using
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the fact that limk→0 k2Gk (R) = 1
4πR3

i j
(3 Ri j Ri j

Ri j Ri j
− 1) so that only the real part remains

Ê(Ri ) = Ê0(Ri ) + k2
0

ε0

∑
j

[(�(Ri j ) − i�(Ri j ))σ j + (�(Ri j ) + i�(Ri j ))σ
†
j ] · d,

B̂(Ri ) = B̂0(Ri ) + k2
0

ε0

∑
j

[(�(Ri j ) − i�(Ri j ))σ j + (�(Ri j ) + i�(Ri j ))σ
†
j ] · μt ,

B̂s(Ri ) = μ0

4π

∑
j

1

R3
i j

(
3

Ri jRi j

Ri jRi j
− 1

)
· μ̂s, j . (E13)

The next step is to plug these expressions into the equations of motion, to use the rotating wave approximation and
the definitions � = k3

0d2/(3π h̄ε0) and �μ = k3
0μ

2/3π h̄ε0 to define the Green’s function for the matter problem. Indeed, the
definitions

f (μ)
i j + ig(μ)

i j = 3�ν

4

[(
k2

Ri j
+ ik

R2
i j

− 1

R3
i j

)
μ̂i · μ̂ j +

(
− k2

Ri j
− 3ik

R2
i j

+ 3

R3
i j

)
(μ̂ j · Ri j )(μ̂i · Ri j )

R2
i j

]
eikRi j

k2
,

f (g)
i j + ig(g)

i j = 3�

4

[(
k2

Ri j
+ ik

R2
i j

− 1

R3
i j

)
d̂i · d̂ j +

(
− k2

Ri j
− 3ik

R2
i j

+ 3

R3
i j

)
(d̂ j · Ri j )(d̂i · Ri j )

R2
i j

]
eikRi j

k2
, (E14)

and Eq. (13) lead precisely to Eqs. (12), (14), and (15) after using the rotating wave approximation.
After adding a classical drive just as in the main text, the equations of motion for the transition operators become

dσk

dt
= −i[� + δω̂k]σk + iσ z

k

∑
i �=k

(
g(d )

ki + g(μ)
ki

)
σi + σ z

k

∑
i

(
f (d )
ki + f (μ)

ki

)
σi − i�eik0Riσ z

k + σk,in, (E15)

where σk,in is the canonical input noise due to spontaneous
emission of an atom

σk,in = iσ z
k d · E+

0 (rk ), (E16)

with expectation value zero and a frequency operator

δω̂k = 1

2

∑
i �=k

[(
�e,e

ik − �
g,g
ik

) + (
�e,e

ik + �
g,g
ik − 2�

e,g
ik

)
σ z

i

]
.

(E17)

This is a configuration and density-dependent Zeeman shift
of the kth atom’s frequency.

APPENDIX F: WEAK-EXCITATION LIMIT

The weak-excitation limit, i.e., 〈σ z
j σ j′ 〉 ≈ −〈σ j′ 〉, the equa-

tions of motion for the expectation values of the transition
operators become

d〈σk〉
dt

= −i[� + δωk]〈σk〉 − i
∑
i �=k

(
g(d )

ki + g(μ)
ki

)〈σi〉

−
∑

i

(
f (d )
ki + f (μ)

ki

)〈σi〉 + i�eik0Ri , (F1)

which is written in matrix notation in Eq. (16).
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