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Variational manifolds for ground states and scarred dynamics of blockade-constrained
spin models on two- and three-dimensional lattices
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We introduce a variational manifold of simple tensor network states for the study of a family of constrained
models that describe spin- 1

2 systems as realized by Rydberg atom arrays. Our manifold permits analytical
calculation via perturbative expansion of one- and two-point functions in arbitrary spatial dimensions and allows
for efficient computation of the matrix elements required for variational energy minimization and variational
time evolution in up to three dimensions. We apply this framework to the PXP model on the hypercubic lattice
in one, two, and three dimensions and show that, in each case, it exhibits quantum phase transitions breaking the
sublattice symmetry in equilibrium, and hosts quantum many-body scars out of equilibrium. We demonstrate that
our variational ansatz qualitatively captures all these phenomena and predicts key quantities with an accuracy
that increases with the dimensionality of the lattice, and conclude that our method can be interpreted as a
generalization of mean-field theory to constrained spin models.

DOI: 10.1103/PhysRevResearch.6.023146

I. INTRODUCTION

Arrays of neutral atoms trapped in optical tweezers [1–5]
have recently emerged as a promising platform for the quan-
tum simulation of many-body spin models. These Rydberg
atom quantum simulators have been used for the experimental
study of a variety of quantum phenomena in equilibrium, in-
cluding zero-temperature quantum phase transitions between
trivially disordered states and states that break a variety of
spatial symmetries [6–9], as well as spin liquids with topolog-
ical order [10–15] and symmetry-protected topological phases
[16]. They can also be used to study thermalization dynamics
[17,18] and were instrumental in the experimental discovery
[19,20] of the out-of-equilibrium phenomenon now known
as quantum many-body scars (QMBS) [21], which have
sparked interest as an example of nonthermalizing behavior
in quantum many-body systems, violating the eigenstate ther-
malization hypothesis [22,23]. Remarkably, often the physics
of these systems simply emerges from the Rydberg block-
ade mechanism [24–26] that forbids neighboring Rydberg
excitations, introducing a constraint between otherwise freely
rotating spins. It is this constraint that renders the problems in
general nontrivial and thus underlies the difficulty of describ-
ing these systems in a many-body setting.

Nevertheless, we expect that it should be possible to
capture some of the above phenomena by an appropriately
constructed mean-field theory for these constrained systems.
This includes, in particular, phase transitions breaking the
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sublattice symmetry, as well as the dynamics associated with
QMBS. On a technical level such an attempt faces the chal-
lenge of formulating a proper variational manifold of states
that satisfies the blockade constraint, and at the same time
allows for an efficient calculation of physical observables. In
this work we address this challenge and introduce a manifold
of constraint-satisfying states that can be elegantly repre-
sented as minimally entangled tensor networks. Our ansatz
can be seen as a generalization of minimal matrix product
wave functions that have been employed for one-dimensional
(1D) chains [27,28] and the related tree networks in Ref. [29].

Going beyond these previous results, we show that our
variational ansatz allows for efficient calculation of ex-
pectation values, in the relevant parameter regimes, in
two-dimensional (2D) square and three-dimensional (3D) cu-
bic lattices directly in the thermodynamic limit. In particular,
we recover the quantum phase transition between a disordered
and a symmetry-broken phase in the ground states of general-
ized PXP models, as well as the periodic dynamics of special
initial states associated to quantum scars in PXP models, via
a time-dependent version of the variational principle [30,31].
In 1D, the phase diagram has been studied analytically [32],
and in 1D and 2D, these phenomena have been observed
experimentally [7,19,20] and studied numerically with den-
sity matrix renormalization group techniques [33]. Here our
method provides a complementary viewpoint and adds the
benefit of an analytical description. In addition, it also treats
the so far unexplored case of 3D lattices, and allows for
quantitative predictions, such as the location of the quantum
phase transition point in equilibrium, or the period of revival
in scarred dynamics.

The paper is structured as follows. We first introduce the
class of PXP models analyzed in this work in Sec. II and
review the basic phenomena that this model is expected to
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FIG. 1. Schematic depiction of the setups considered in this
work, consisting of PXP models in 1D, 2D, and 3D hypercubic
lattices. The blockade constraint in these systems does not allow two
neighboring spins to be simultaneously in the Rydberg state. After
imposing unit-cell translation invariance, the system is parametrized
by two variational parameters θA and θB, corresponding to the two
sublattices.

display. In Sec. III we introduce our variational manifold and
we present a method that allows us to perform tensor network
contractions in two and three dimensions in the form of a
power series. In Sec. IV we discuss the ground-state phase
diagram of our model in 1D, 2D, and 3D using our variational
ansatz, and compare its predictions with exact diagonalization
results. In Sec. V we discuss time evolution obtained via the
time-dependent variational principle (TDVP) and contrast its
predictions with the exact dynamics of the PXP model.

II. MODEL

A. Constrained Hilbert space

In this work we are interested in constrained spin models
that are often referred to as PXP models. Specifically, we
consider N spin- 1

2 particles, each with basis states |↓〉 and
|↑〉, that are defined on the sites of a D-dimensional lattice,
as depicted in Fig. 1. We consider states of this spin systems
that satisfy a constraint that prevents two spins on neigh-
boring lattice sites to be simultaneously in the |↑〉 state. In
physical realizations this constraint arises dynamically from
strong state-dependent nearest-neighbor interactions. Specif-
ically, this constraint captures the essence of the Rydberg
blockade mechanism in Rydberg atom arrays. The spin con-
figurations that satisfy this constraint form a subspace of the
2N -dimensional Hilbert space. For large system sizes, the di-
mension of this constrained Hilbert space grows as xN , where
the value of x < 2 depends on the lattice. For a 1D chain,
x = (1 + √

5)/2 � 1.618.1 In higher dimensions the larger
coordination number increases the effect of the constraint,
leading to a decrease of x with higher D.

In the following we denote the projector onto the
constraint-satisfying subspace by P . It can be composed from
local projectors Pi j that act on pairs of neighboring spins i and

1The Hilbert space dimension of N spins dH (N ) satisfies the equa-
tion dH (N + 1) = dH (N ) + dH (N − 1), which implies dH ∼ φN for
large N , where φ is the golden ratio.

j, i.e., P = ∏
〈i j〉 Pi j . Here Pi j = |↓↓〉 〈↓↓| + |↓↑〉 〈↓↑| +

|↑↓〉 〈↑↓| simply annihilates components that do not satisfy
the constraint on the link between i and j.

B. Hamiltonian

Let us now write the Hamiltonian of a spin model that lives
in this constrained Hilbert space; the simplest example is the
PXP model

HPXP = �
∑

i

Pσ x
i P, (1)

where σ x = |↑〉 〈↓| + |↓〉 〈↑|. The Hamiltonian (1) can be
interpreted as the projection of a noninteracting model of
independently rotating spins into the constraint-satisfying
subspace. It induces a conditional dynamics, where a spin only
precesses if all its neighbours are in the |↓〉 state. Crucially,
this projected Hamiltonian is interacting, and in general non-
integrable [34,35]. Note that the geometry of the lattice enters
in (1) implicitly via the projection operation, which manifestly
depends on the lattice structure.

In this work we study the physics of what we shall call
generalized PXP models, the family of Hamiltonians of the
PXP model (1) with the addition of a transverse-field term
and a next-nearest-neighbor interaction:

H =
∑

i

P
(
�σ x

i − �ni
)
P + V

∑
〈〈i j〉〉

Pnin jP, (2)

where n = |↑〉 〈↑|.
This Hamiltonian may be interpreted as a toy model for an

array of coherently driven Rydberg atoms. In these systems
the state |↓〉 represents an internal electronic ground state of
an atom and the state |↑〉 represents a highly excited Rydberg
state. When driven by a laser that couples these two states, the
system is described by a Hamiltonian of the form

HRydberg =
∑

i

(
�σ x

i − �ni
) +

∑
i j

Vi jnin j . (3)

Here � and � denote the Rabi frequency and the laser de-
tuning, and Vi j = C/|i − j|6 is the van der Waals interaction
between two atoms i and j that are both in the Rydberg
state. The strength of the interaction depends on the geometric
distance between the atoms, with a length scale set by the
blockade radius Rb = (C/�)1/6. In the so-called blockade ap-
proximation one considers the limit Vi j → ∞ if two atoms are
less than one blockade radius apart, and Vi j → 0 otherwise.
In particular, when Rb equals one lattice spacing a, the model
reduces to Eq. (2) with V = 0, which becomes the PXP model
for � = 0. If one sets Vi j = V for next-nearest-neighbor sites,
i.e. for |i − j| = 2a in 1D or |i − j| = √

2a in D > 1, then
one recovers the Hamiltonian in Eq. (2). While it is natural to
have V > 0, it is also theoretically and experimentally [36]
interesting to consider the case V < 0, i.e., with attractive
next-nearest-neighbor interactions. In what follows, we will
set � = 1.

C. Physics of the PXP model on bipartite lattices

Hamiltonians of the form (2) host a remarkably rich variety
of physical phenomena. For instance, depending on the choice
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of the lattice, which selects the form of P , the ground state
of (2) can host a plethora of symmetry-broken ordered phases
[32,33,37] as well as topologically ordered phases [11]. In
this work we focus on bipartite lattices, in particular on
hypercubic lattices, and denote the two sublattices by A and
B, respectively. For such bipartite lattices we now briefly
review the expected qualitative features of the system in and
out of equilibrium.

1. Equilibrium

The ground-state phase diagram of the Hamiltonian in
Eq. (2), at fixed finite values of V , depends only on �. For
� → −∞, the ground state is unique and given by |↓〉⊗N

independent of the lattice geometry. For � → +∞ and any
finite V , the ground state maximizes the number of spins
in the |↑〉 state that is consistent with the constraints. For a
bipartite lattice this gives a twofold-degenerate ground state,
which spontaneously breaks the sublattice symmetry: the two
ground states are given by configurations where all spins on
sublattice A are in the |↑〉 state and all spins on sublattice B
are in the |↓〉 state, or vice versa. We denote these states by
|Z2〉 = |↑〉⊗A |↓〉⊗B and |Z′

2〉 = |↓〉⊗A |↑〉⊗B, respectively. In
the limit �,V → +∞, with constant �/V = c, the ground
state can be different. In 1D for c > 3, a period-3 density-
wave state with 1

3 density of up spins is favored. In 2D and 3D
the states |Z2〉 , |Z′

2〉 cease to be the classical ground states for
c > 4 and c > 6, respectively, in favor of states with density
1
4 , leading to a fourfold-degenerate striated phase which arises
perturbatively due to quantum fluctuations [33]. The latter
can stabilize these non-Z2-ordered phases even at finite V . In
fact, in 1D, the interplay between Z2 and Z3 order gives rise
to several interesting phenomena such as floating phases and
chiral transitions [38–41]. In D > 1, the precise nature of the
phase transition along all phase boundaries of (2) is less clear
[33]. Here, we focus on the regime where V , when positive,
is sufficiently small, such that as � is tuned from −∞ to +∞
the system undergoes a direct quantum phase transition from
the gapped, disordered phase to the gapped, Z2 ordered phase.
When D = 1 and for V � 0, the phase transition is second
order. For sufficiently strong attractive next-nearest-neighbor
interaction V < 0, the phase transition becomes discontinuous
and first order. A tricritical point for V < 0 separates these
two regimes. The most accurate numerical study of the entire
transition line was performed in Ref. [38]. The location of
the tricritical point is known analytically since it lies on the
integrable line � = V − 1/V for V = −(

√
5 + 1)/2)5/2 [32].

A sketch of the (�,V ) phase diagram is shown in Fig. 2.
We expect a similar phase diagram to hold in D > 1 and, as
we show below, our variational method predicts that this is
indeed the case; in particular, we will use it to locate the phase
boundary and the tricritical point in D = 1, 2, 3 and we will
compare the outcome with exact diagonalization results on 2D
and 3D lattices with up to 48 and 64 sites, respectively. We
note that, whereas in 1D the transition is always surrounded
by a disordered regime for any finite �,V , in 2D and for
large enough � the system undergoes a direct second-order
transition from the Z2 phase to the striated phase, with V as
driving parameter [33,42]. Since our ansatz only captures Z2

disordered 

phase

phase

FIG. 2. Sketch of the phase diagram for the generalized PXP
model with next-nearest-neighbor interaction (2). A disordered phase
and a Z2 ordered phase are separated by second-order (dotted line)
and first-order (solid line) transitions, which meet at the tricritical
point (red dot). Quantitative versions of this for 1D, 2D, and 3D are
shown in Fig. 6.

order, we will restrict our discussion to the regime where the
effect of the 1

4 -density ordered phase is negligible.

2. Quantum many-body scars

When � = V = 0, the Hamiltonian in Eq. (2) reduces to
the PXP model which is known to host quantum many-body
scars. These are special eigenstates that do not satisfy the
eigenstate thermalization hypothesis [22,23] and have been
proposed in Ref. [43] as the explanation of the anomalous
dynamics observed in a Rydberg atom simulator initialized
in one of the two |Z2〉 states [19]. The anomaly consists in the
fact that despite the Hamiltonian (1) being nonintegrable, and
the initial |Z2〉 state having the energy density of an infinite-
temperature ensemble, the system does not rapidly thermalize,
but rather exhibits (approximate) periodic dynamics with al-
ternating revivals of the two |Z2〉 states. It is now believed that
this phenomenon arises in the PXP model in any dimension
whenever the lattice is bipartite [44], although numerical stud-
ies in D > 2 are absent in the literature. The name quantum
scars comes from the analogy, put forward in Ref. [43], with
single-particle physics, where the quantum system possesses
special eigenstates that are “scars” of unstable periodic orbits
of their, otherwise chaotic, classical counterpart [45]. In this
context, the one-dimensional version of the variational ansatz
which we will introduce in Sec. III was employed in Ref. [27]
to map the constrained dynamics of the PXP model into
classical equations of motion where the |Z2〉 states indeed
lie on unstable periodic orbits. Below we generalize these
findings to D > 1 and demonstrate the predictive power of
our variational ansatz in two and three dimensions. Figure 3
schematically depicts these periodic orbits and how they are
captured by the variational method. A characteristic quantity
that we can compute in our framework is the revival time,
which we find to increase with the coordination number of
the lattice. By comparing the result with the exact many-body
quantum dynamics on small systems, we will show that our
method predicts the period with an accuracy increasing with
the lattice dimension.

III. VARIATIONAL ANSATZ

We now introduce a variational manifold of states that is
designed to capture some of the physics of PXP-type models
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|Z2

|Z2

FIG. 3. Schematic illustration of the periodic revivals in quan-
tum scarred systems, and how they are captured by the variational
method. The 2D surface represents the variational manifold, and
the loop on it represents the exact periodic orbits in the variational
dynamics connecting the two |Z2〉 states. The dotted line represents
the true time-evolved state e−iHPXPt |Z2〉.

on bipartite lattices. The manifold of states |ψ (θ, φ)〉 can
be represented as tensor network states with bond dimension
χ = 2 on the network given by the lattice of interest. The key
feature of our variational manifold is that the states satisfy
the blockade constraint on the corresponding lattice by con-
struction, i.e., they do not contain configurations where two
neighboring spins are both in the |↑〉 state. The variational
manifold is parametrized by two angles, θi ∈ [−π, π ) and
φi ∈ [0, 2π ), for each lattice site i. We emphasize that for the
applications presented in this paper, we only work with two-
site unit-cell translationally invariant systems (i.e., systems
invariant under a translation by an even number of sites in
any direction) with parameter space (θA, θB, φA, φB), although
in the discussion here we will refer to the general case (θ, φ)
when it presents no additional difficulty.

The variational state |ψ (θ, φ)〉 is a projected entangled pair
state (PEPS) [46] with a PEPS tensor M(θi, φi ) defined at each
lattice site i. In 1D, the state is a matrix product state (MPS),
and the MPS tensor is

= M(θ, φ)(j)ab

= ,
cos θ

2 |↓ j −ieiφ sin θ
2 |↑ j

|↓ j 0
ab (4)

where |↓〉 = (1 0)T and |↑〉 = (0 1)T , and where j is the
physical index and a and b are the virtual indices. In the
graphical notation above we assigned a direction to the virtual
legs; the usefulness of this should be readily apparent when
we consider higher-dimensional generalizations.

We generalize this ansatz as follows. On a 2D square lat-
tice, the PEPS tensors take the form

= M(θ, φ)(j)(ab)(cd)

= ⎝

cos θ
2 |↓ j 0 0 −ieiφ sin θ

2 |↑ j

|↓ j 0 0 0
|↓ j 0 0 0
|↓ j 0 0 0

(ab)(cd)

,

(5)

where the matrix is written in the basis (00,01,10,11). Figure 4
depicts the 2D PEPS for a system with a two-site unit-cell
translation symmetry imposed.

FIG. 4. PEPS for the 2D square lattice.

The above construction suggests a generalization that can
be applied to arbitrary dimensional lattices: in general each
tensor will have some “in” virtual indices, and some “out”
virtual indices. For a hypercubic lattice in D dimensions, each
PEPS tensor will have 2D + 1 total legs, with D incoming vir-
tual indices and D outgoing virtual indices. Diagrammatically,
we write

= M(θ, φ)(i)(in)(out), (6)

where a thick line collectively represents all incoming or
outgoing legs. Introducing a bra-ket notation on the virtual
indices, the tensor M reads as

M =
∑

i=↓,↑

∑
in, out

M (i)
(in)(out) |i〉 |in〉 〈out| . (7)

Let I ∈ {0, 1}D be a binary string of length D, let
∑

I be
the sum over all 2D such strings, and denote by |I〉 the
corresponding product state in the virtual Hilbert space. We
further use the shorthand notation 0 = (0, 0, 0, . . . ) and 1 =
(1, 1, 1, . . . ), and define |α〉 ≡ ∑

I |I〉 and |β〉 ≡ ∑
I �=0 |I〉 =

|α〉 − |0〉. Using this notation, the tensor M can be written in
general dimensions as

M(θ, φ) = |↓〉 [cos(θ/2)|0〉〈0| + |β〉 〈0|]
− ieiφ sin(θ/2) |↑〉 |0〉〈1|. (8)

It is straightforward to see that this reproduces Eqs. (4) and
(5) for D = 1, 2, respectively.

The variational ansatz |ψ〉 has several interesting proper-
ties. As already noted, it satisfies the blockade constraint. Re-
markably, it is always normalized, i.e., 〈ψ (θ, φ)|ψ (θ, φ)〉 =
1, in the thermodynamic limit; this follows from a sim-
ple but rather technical calculation which we present in
Appendix A. An important consequence of the normalization
is that it allows one to calculate also expectation values and
time evolution of states using the TDVP. For bipartite lattices,
the variational manifold contains the important state |Z2〉 =
|↓〉⊗A |↑〉⊗B; this can be checked by setting θi = ±π, θ j = 0
for all sites i ∈ A, j ∈ B. This is in fact a special case of
a more general property: product states with all spins on
one sublattice in the state |↓〉, and with all spins on the
other sublattice being any state on the Bloch sphere, are
contained in the variational manifold. In D = 1 the varia-
tional manifold is known to be equivalent to the manifold
of all product states projected into the constraint-satisfying
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FIG. 5. Depiction of the (θA, θB ) space that our variational state
|ψ (θA, θB )〉 is in. Points along the axes are all product states, where
we have defined |θφ〉 = cos(θ/2) |↓〉 − ieiφ sin(θ/2) |↑〉, and |Z2〉 =
|↑〉⊗A |↓〉⊗B and |Z′

2〉 = |↓〉⊗A |↑〉⊗B. (For the applications here φ

is irrelevant and can be fixed to 0 or ±π/2.) The shaded regions
correspond to the nonperturbative regime (which is slightly larger
in 3D than in 2D). In 1D and 2D we can access the entire space
via explicit contraction, while in 3D we are limited to the unshaded
region. However, we find that the perturbative regime captures all of
the physics discussed in this work.

Hilbert space [27]. This is not the case in D > 1. In fact,
the projected product state has a different tensor network
representation that is not gauge equivalent to Eq. (8) and
does not yield a normalized state in the thermodynamic limit.
Since this property provides remarkable simplifications in
the following variational calculations, we will stick to the
ansatz in Eq. (8) and provide a more in-depth discussion
about its relation to the projected product state manifold in
Appendix D.

1. (θA, θB) space for systems on bipartite lattices

For the applications that follow, we only consider two-site
unit-cell translational invariant states |ψ (θA, θB, φA, φB)〉. The
φ variables are a priori relevant, but we will show that for
the variational dynamics, the trajectories contain only states
with φA, φB = 0, and that the variational ground states have
φA, φB = ±π/2. Thus, the value of φA and φB can be consid-
ered fixed, and we have a two-dimensional parameter space
θA, θB ∈ [−π, π ), which contains the states relevant for varia-
tional energy minimization, and in which the variational time
evolution takes place. This space is shown in Fig. 5, where we
label the |Z2〉 states and the product states along the θA and
θB axes, as well the nonperturbative and perturbative regimes
for the series expansion calculation of expectation values
(discussed below).

A. Calculation of expectation values

The structure of the variational state |ψ〉 = |ψ (θ, φ)〉
allows us to efficiently calculate quantities of the form

〈ψ |Ô|ψ〉, for product operators Ô in up to three dimensions.
This includes in particular local observables but also n-point
functions, although in this work we only consider one- and
two-point functions. In this section we give an outline of the
methods we use; a full discussion is in Appendix A.

In general, for a bond-dimension χ tensor network state
|�〉, evaluating quantities like 〈�|Ô|�〉 requires the contrac-
tion of a tensor network of bond dimension χ2. However, even
though the tensor network states introduced above have bond
dimension χ = 2, it turns out that the evaluation of quantities
of the form 〈ψ |Ô|ψ〉 reduces to the contraction of a tensor
network, whose bond dimension is not 4 but instead only 2.
For D = 1 the tensor network can be contracted analytically
for infinite systems and for D = 2, one can calculate 〈ψ |Ô|ψ〉
via explicit tensor network contraction on infinite cylinders
with finite circumference. The reduced bond dimension al-
lows one to perform the calculation for up to relatively large
circumference. We performed our numerical calculations with
cylinders of circumference L = 10 sites, but we verified that
compared to larger cylinders the results are unchanged to
several significant figures.

1. Perturbative expansion

For D � 2, we introduce a method to express the tensor
network contraction as a perturbative expansion. This pertur-
bative method, while powerful, is quite technical and does not
have a simple intuitive interpretation. In this section, we give
a high-level overview and then simply state the result, while a
full derivation of the method can be found in Appendix A 3.

The main idea is to decompose each tensor in the network
into a sum of two tensors. This seems counterproductive at
first since it expresses the quantity 〈ψ | Ô |ψ〉 not as a con-
traction of a single tensor network, but instead as sum over
contractions of 2N tensor networks. However, with a clever
choice of the decomposition, one can show that only few
of those contractions give a nonzero contribution. Moreover,
those contractions that give a finite contribution can be easily
evaluated. These terms can be counted and collected into a
series expansion with sin2(θA/2) and sin2(θB/2) as the expan-
sion parameter.

Let us illustrate this. For simplicity, we focus on the case
of a local operator Ô acting on a single site in a 2D lattice.
An important object in the tensor network representing the
quantity 〈ψ | Ô |ψ〉 is the tensor T formed by contracting the
PEPS tensor M with its conjugate:

T = = . (9)

As mentioned above, it is useful to express T as a sum of two
tensors:

T = + . (10)

The black dot is a constant tensor (i.e., independent of the
variational parameters), while the blue dot carries a factor of
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sin2(θ/2). In the notation introduced in Appendix A 1, the
black dot is p and the blue dot is − sin2(θ/2)q. These tensors
have the crucial property that the following contraction is
zero:

= 0
(11)

Using the decomposition (10) and the property (11), it is easy
to see 〈ψ | Ô |ψ〉 can be expressed as a sum of tensor network
contractions of the following form:

ψ| Ô |ψ = +

+ +

+ + · · ·
(12)

Here the red tensor is obtained by inserting the local operator
Ô between the tensors M and M∗ in Eq. (9). Equation (12)
shows a subset of diagrams that give nonzero contribution
at various order of sin(θ/2). To obtain the perturbative ex-
pansion, we collect all terms that contribute in the same
order of sin(θ/2). For the unit-cell translation invariant
states |ψ (θA, θB, φA, φB)〉 that we consider below, the quantity
〈ψ | Ô |ψ〉 can thus be expressed as

〈ψ | Ô |ψ〉 = h(θA, θB, φA, φB)( f , θA, θB),

( f , θA, θB) =
∞∑

n,m=0

(−1)n+m fn,m sin2n
(θA

2

)
sin2m

(θB

2

)
,

(13)

where the prefactor h(θA, θB, φA, φB) is a function that de-
pends on the operator Ô, while f is a simple matrix of
“counting factors,” that also depends on Ô, but is independent
of the variational parameters.

We note that Eq. (13) should be understood as an asymp-
totic series. This is because the counting factors fn,m scale
superexponentially (that is, there do not exist any a, b ∈ R
such that fn,m < anbm for all n, m ∈ N), causing the series to
eventually diverge at high enough order. However, we find that
in regions of the (θA, θB) plane where the effective expansion
parameters sin2(θA/2) and sin2(θB/2) are small enough, i.e.,
a star-shaped region around the x and y axes, the terms of the
series decrease quickly, and accurate results are obtained at
finite order. The perturbative regimes in Fig. 5 were defined

as the region where the expansion is accurate to an error of
10−3. We verified that this perturbative method is valid for
the two applications we work with (energy minimization and
time evolution): for the former, we verify that our variational
ground states lie inside the perturbative region, and for the
latter, we considered time-evolved trajectories from different
orders of the expansion, and verified that they converge.

Finally, we note that the perturbative expansion can be
interpreted as an expansion around product states. For states in
the variational manifold that are product states (i.e., θA = 0 or
θB = 0), the sum (13) contains only a finite number of terms.
As seen in Fig. 5, the perturbative regime is located in the
region around the set of product states, with the nonperturba-
tive region corresponding to the states in the manifold with
higher entanglement. We also note that states with increasing
correlation length require higher-order expansion terms. For
example, if one considers the equivalent of Eq. (12) for a
two-point function 〈ψ | ÔiÔ j |ψ〉, one would have to go to at
least order |i − j| to obtain nontrivial results.

IV. GROUND-STATE PHASE DIAGRAM

As a first application of the variational manifold, we cal-
culate the energy E = 〈ψ | H |ψ〉 and study the properties
of the variational ground state. We consider the generalized
PXP model including the detuning term and a next-nearest-
neighbor (NNN) term (2).

We use our variational manifold as a minimal ansatz be-
yond mean-field theory to study the ground state of this
Hamiltonian and to reproduce the phase diagram. With trans-
lation invariance we have a four-dimensional parameter space
with variational states |ψ (θA, θB, φA, φB)〉. However, we can
restrict the manifold to real states by setting φA = φB = π/2,
as the Hamiltonian is real. We consider the energy function
E (θA, θB) on the variational space θA, θB ∈ [−π, π ) and find
the variational ground state by minimizing E (θA, θB). Figure 6
shows the resulting phase diagrams.

Let us first qualitatively describe the landscape of the op-
timal variational parameters θGS

A , θGS
B as the Hamiltonian is

tuned. Suppose we fix V and allow � to vary: when � = −∞,
the ground state is the |0〉 state, and when � remains large and
negative, we find that θGS

A = θGS
B at the minimum energy state

of the variational manifold. As � reaches a critical value �c,
the variational ground state changes from the symmetric phase
to a symmetry-broken phase where θA �= θB. When � > �c,
the variational ground state becomes twofold degenerate, with
nonzero θGS

A − θGS
B . For V = 0, we find that the transition

occurs at �1D
c � 0.77 in 1D, at �2D

c � −0.45 in 2D, and at
�3D

c � −1.0 in 3D. In 1D it is known from exact diagonaliza-
tion studies that �c � 1.31 [47]. In 2D, exact diagonalization
on small systems sizes combined with finite-size scaling in-
dicate that �c � −0.2 (see Appendix G). In 3D, the critical
point for 64 sites is at �c � −0.61. Thus, we see that in
all cases the variational method approximates, but underes-
timates, the transition point.

When considering different values of the NNN interaction
V , we find that in all three cases (D = 1, 2, 3) the variational
method predicts a change from a second-order transition to
a first-order transition as V is decreased. For V > Vc the
variational ground state (θGS

A , θGS
B ) evolves smoothly with �,
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FIG. 6. (�,V ) phase diagrams for the generalized PXP model (2) with the magnetization 〈σ z
A〉GS − 〈σ z

B〉GS as the order parameter. The red
dots denote the tricritical points (as found from the variational method) while the lines show, for comparison, the phase boundaries found via
exact diagonalization on various system sizes. Finite-size critical points are extracted from the peaks in the ground-state fidelity susceptibility
(see Appendix G for details). In 1D, we also show the analytically known tricritical point.

while for V < Vc it changes abruptly at the transition point.
We find that Vc � −1.0,−0.6, and −0.25 in 1D, 2D, and
3D, respectively. In 1D, this significantly overestimates the
tricritical point compared with the known analytical value of
Vc � −3.33 [32], although it is still notable that the effect
is captured by the variational method. For �, we find that
�tricritical � −0.51,−1.1, and −1.5 in 1D, 2D, and 3D, re-
spectively.

We present the data here in two series of plots. In
Fig. 6 we plot the (�,V ) phase diagrams, using the
order parameter 〈σ z

A〉GS − 〈σ z
B〉GS. In Fig. 7 we present

the one-dimensional plots of minimum energies along

FIG. 7. Plots of the minimum energy (per site) along lines of
constant θA − θB for D = 1, 2, 3, showing the second-order transition
(top row) and first-order transition (bottom row).

lines of constant θA − θB, i.e., Eminimum(ζ = θA − θB) where
Eminimum(ζ ) = minθA [E (θA, θA − ζ )], for various values of �

at both V = 0 and V < Vc. In these plots one can clearly ob-
serve the continuous and discontinuous change of the ground
state in the second-order and first-order transition regimes,
respectively. Moreover, we extract the critical exponent of the
order parameter by fitting the numerical data close to the tran-
sition point at V = 0, where the transition is continuous, and
find that it agrees with the Ising mean-field critical exponent
β = 1

2 [see Fig. 8(c)].

Correlation length from two-point functions

The energy optimization presented above only requires the
calculation of one-point functions. However, as described in
Appendix A 2, the perturbative expansion can be employed
to compute also two-point functions, and can be in principle
extended to the calculation of any n-point function. Here,
we focus on the density-density connected two-point func-
tions f (|i − j|) = 〈nin j〉 − 〈ni〉〈n j〉, which we compute on

FIG. 8. (a) Correlation lengths ξ as function of � − �c of the
variational ground state, for V = 0. �c = 0.77, −0.45, −1.0 for 1D,
2D, and 3D, respectively. (b) Illustration of how ξ is computed: plots
of the correlation function at different values of �, in 1D. (c) Plot
of |θGS

A − θGS
B | as a function of � − �c, showing scaling with the

critical exponent β = 1
2 .
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the optimal variational ground state for various values of �

and V = 0. We plot a few examples of f (|i − j|) for 1D in
Fig. 8(b). By fitting the exponential decay via f (|i − j|) =
A exp(−|i − j|/ξ ) we can extract the correlation length ξ ,
which we plot as a function of � (for the case V = 0) in
Fig. 8(a). As expected from a mean-field ansatz, the corre-
lation length is always finite. Note, however, that our ansatz
is a tensor network with bond dimension 2; such states can
be gapless in D > 1 [48], but we find that our variational
manifold only includes gapped states.

V. VARIATIONAL DYNAMICS

We now use our variational manifold combined with the
time-dependent variational principle (TDVP) [30,31] to study
the time evolution of the PXP model (1) with � = 1, and show
that it captures the periodic revivals characteristic of quan-
tum scarred systems. The 1D results were already obtained
in Ref. [27] and are presented here for comparison with the
D > 1 case.

A. TDVP equations of motion

In general, the variational manifold is parametrized by the
variables θ and φ. However, since we are mainly concerned
with time evolution from the initial states |Z2〉 = |↑〉⊗A |↓〉⊗B

and |Z′
2〉 = |↓〉⊗A |↑〉⊗B, it suffices to consider unit-cell trans-

lationally invariant states. Also, since the TDVP is energy
conserving [30,31], it can be shown that d φ/dt = 0 when
starting from the |Z2〉 states, and we can set all φ = 0 (see
Ref. [27] and Appendix C 3 b). Thus, our variational manifold
is two dimensional, parametrized by the position vector θ =
(θA, θB). We calculate the dynamics within this variational
space by minimizing the leakage rate, or “quantum leakage,”
given by �2 = 〈δ|δ〉, where |δ〉 is the component of the exact
time evolution that is orthogonal to the variational space.

The application of the TDVP to this variational manifold
(described in Appendix C) results in equations of motion
̇θ = (θ̇A, θ̇B) that, due to symmetry, may be expressed in the
form θ̇A = f (θA, θB) and θ̇B = f (θB, θA), where f (θA, θB) can
be calculated by exact tensor network contraction in D � 2
and via perturbative expansion in any D.

Along the axes of the (θA, θB) space, the equations of mo-
tion take on the following, particularly simple form (derived
in Appendix F):

̇θ (θA, 0) = 2[θ̂A + cosD(θA/2)θ̂B], (14a)

̇θ (0, θB) = 2[cosD(θB/2)θ̂A + θ̂B], (14b)

where θ̂A and θ̂B are the unit vectors. In 1D there also ex-
ists a closed-form expression for the equations of motion in
general; it was shown [27] that these tensor network calcula-
tions can be performed analytically to show that f (θA, θB) =
2[cos(θB/2) + sin(θA/2) cos(θA/2) tan(θB/2)].

B. Periodic trajectories

In the TDVP framework, the interacting spin problem is ap-
proximated by a two-dimensional nonlinear dynamical system

FIG. 9. Flow diagrams and paths for 1D (left) and 2D (right). The
heat map is the leakage rate γ = √〈δ|δ〉 /N ; note that the leakage
rate is exactly zero along the x and y axes.

with equations of motion dθ/dt = ̇θ (θA, θB). These equations
can be integrated numerically to obtain trajectories starting

from any initial condition, and the vector field ̇θ (θA, θB) can
be straightforwardly analyzed to infer the stability of these

trajectories. In Figs. 9 and 10 we plot ̇θ (θA, θB) and the leakage
rate in the (θA, θB) plane of the exact equations of motion
obtained analytically in Ref. [27] in 1D, on finite cylinders
via exact contraction of the tensor network in 2D (Fig. 9),
and the equation of motions obtained from the perturbative
expansion in 2D and 3D (Fig. 10). We have marked the |Z2〉
and |Z′

2〉 states; the all spin-down state |↓〉⊗N is at the origin.
Note that all points on the x and y axes correspond to product
states. For example, points on the x axis are states of the form⊗

i∈A[cos(θA/2) |↓〉i − i sin(θA/2) |↑〉i] ⊗ (
⊗

j∈B |↓〉 j ).
In each case (1D, 2D, and 3D), we observe a periodic

path connecting the |Z2〉 and |Z′
2〉 states; these nonergodic

trajectories correspond to the revival behavior observed in the
quantum spin system and it is easy to see from the vector

field plot of ̇θ (θA, θB) that they are unstable orbits alike the
one-dimensional case. The path periods, i.e., the time it takes
to go |Z2〉 → |Z′

2〉 → |Z2〉, are TTDVP = 4.820, 5.168, 5.345
for 1D, 2D, 3D, respectively. These have to be compared to
the revival times Texact = 4.786, 5.154, 5.340 that we obtained
from the exact calculation of the many-body dynamics on
periodic systems of up to 36, 48, and 64 sites in 1D, 2D,

FIG. 10. Flow diagrams and paths for 2D (left) and 3D (right),
from the perturbative method. Note that the corners have been
removed: in these regions the perturbative expansion behavior is
uncontrolled at the order N = 12 (2D) and N = 9 (3D) at which
the calculation is performed. The heat map is the leakage rate γ =√〈δ|δ〉 /N .

023146-8



VARIATIONAL MANIFOLDS FOR GROUND STATES AND … PHYSICAL REVIEW RESEARCH 6, 023146 (2024)

and 3D, respectively. Despite these numbers being extracted
from small systems, they exhibit no noticeable finite-size
effects (see Appendix G for details) and they demonstrate
that the TDVP combined with our variational ansatz pro-
vide periods that improve with increasing D (TTDVP − Texact =
0.035, 0.014, 0.005 for D = 1, 2, 3).

We also plot the leakage rate γ = √〈δ|δ〉 /N, normalized
to be an intensive quantity. In regions where the leakage rate is
small, the variational dynamics closely approximates the true
evolution of the quantum system. We observe that the periodic
paths lie within regions of low leakage, thus giving valid-
ity to the results. We calculated the integrated leakage rates∮

γ dt � 0.17 in 1D,
∮

γ dt � 0.16 in 2D, and
∮

γ dt � 0.13
in 3D. The leakage rate is exactly zero along the lines θA = 0
and θB = 0; we show this analytically (in any dimension) in
Appendix F.

It is nontrivial that the variational dynamics remains accu-
rate along the entire path. In general, a starting point in an area
of low leakage may travel to an area of high leakage, given
our variational manifold of low-entanglement states. A simple
example is the path starting at the origin (i.e., with initial state
|↓〉⊗N ) and ending at (π, π ), which has leakage

∮
γ dt � 1.28

and 0.46 in 1D and 2D, respectively.
Observing the trend from one to three dimensions, we

conjecture that as one goes to higher-dimensional hypercubic
lattices, the path period will monotonically increase, asymp-
totically approaching 2π in the infinite-dimensional limit,
with the trajectory becoming more and more square shaped,
i.e., more closely following the x and y axes. We can give
an intuitive argument for this. Consider starting in the state
|Z2〉 = |↑〉⊗A |↓〉⊗B. Initially, the A spins will rotate freely
while the B spins are frozen. As the dimension increases, so
does the number of neighbors of each site, thus increasing
the effect of the Rydberg blockade. In the infinite-dimensional
limit, the B spins will remain nearly frozen until the A spins
are nearly pointing down, so we expect the time of half a
periodic path to approach π .

This is corroborated by the variational equations of motion
(14): in the limit D → ∞, the velocity is 2θ̂A along the x axis
and 2θ̂B along the y axis. An alternative picture of the higher-
dimensional limit can be given via the related idea of PXP
models on complete bipartite graphs [49].

VI. CONCLUSION

We have introduced a manifold of low-entanglement states
that accurately captures much of the essential physics of the
Rydberg arrays in the blockade regime on hypercubic lattices.
Our approach provides a general way to study such con-
strained systems by a variational mean-field method, which
is otherwise challenging due to the blockade, that precludes
direct application of product state ansatzes.

We studied the equilibrium properties of the generalized
PXP model with the variational ansatz in cubic lattices up to
three dimensions, and found that it predicts phase boundaries
and transitions in good agreement with exact diagonalization
and previously known results.

We applied the TDVP to calculate the approximate time
evolution of the PXP model by considering only the com-
ponent that lies within the variational manifold. We not only

obtained important evidence of the nonergodic behavior that
originates from the Z2 initial state in D > 1 PXP models, but
also demonstrated that TDVP on this manifold of states yields
quantitative predictions that improve with increasing lattice
dimensionality, as validated by leakage rate and accuracy of
the revivals period T . Moreover, our results allowed us to
infer the infinite-dimensional limit of the PXP nonergodic
dynamics, that consists of a periodic orbit exactly supported
on the Cartesian axes in the parameter space of our variational
manifold, with period T = 2π .

There are several potential directions for future work. At
equilibrium, our ansatz can be generalized to larger block-
ade radii, to encode lower-density symmetry-broken phases
of Rydberg arrays. Moreover, thanks to its tensor network
representation, it can be employed to approximate low-energy
excitations of Rydberg atom Hamiltonians [50]. Out of equi-
librium, the TDVP can expended to calculate the variational
dynamics for constrained systems with a time-dependent
Hamiltonian, which is especially relevant in experimental
platforms [20].
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APPENDIX A: METHODS

The simple structure of the variational ansatz allows one to
perform tensor network calculations relatively easily. Here we
provide the details of how these calculations are done.

Specifically, we discuss methods to calculate 〈ψ |Ô|ψ〉,
where |ψ〉 = |ψ (θ, φ)〉 is the variational state and Ô is a local
operator. We will show that it is possible to calculate 〈ψ |Ô|ψ〉
by contracting a bond dimension 2 tensor network. This al-
lows one to perform explicit tensor network contractions for
up to relatively large quasi-2D cylinders. We also introduce,
for D � 2, a method to express the tensor network contraction
as a perturbative expansion. As a corollary, we will show that
the variational state is always normalized, i.e., 〈ψ |ψ〉 = 1.

1. Properties of the variational ansatz

For clarity, let us temporarily work in two dimensions. We
define the tensor T as a contraction of the PEPS tensor M with
its adjoint

T = = , (A1)
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where parallel in and out legs have been combined, so the
legs of T have dimension 4. The quantity 〈ψ |ψ〉 is thus a
contraction of an infinite network of T ’s.

It turns out that the network of T ’s is equal to a network of
bond-dimension-2 tensors t . That is, for the purposes of calcu-
lating 〈ψ |ψ〉 or 〈ψ |Ô|ψ〉, we can perform a “bond dimension
reduction” operation

−→ , (A2)

where tabcd = T(aa)(bb)(cc)(dd ) for a, b, c, d ∈ {0, 1}, and all
other elements of T are discarded. This works because for
all the nonzero elements of T , the outgoing legs are (00) or
(11). Thus, when considering the entire network contraction,
we can ignore the indices (01) and (10).

Let us now consider the general (D-dimensional) case.
Using the thick-line notation introduced in Eq. (6), we write
the tensor T as

T = . (A3)

Using the matrix elements of M from Eq. (8), we can find the
matrix elements of T = 〈M|M〉, which is given by

T = cos2(θ/2)|0〉〈0| ⊗ |0〉〈0| + sin2(θ/2)|0〉〈1| ⊗ |0〉〈1|
+ cos(θ/2)(|β〉〈0| ⊗ |0〉〈0| + |0〉〈0| ⊗ |β〉〈0|)
+ |β〉〈0| ⊗ |β〉〈0|, (A4)

where the |α〉 , |β〉 notation is the same as originally intro-
duced for Eq. (8). The exact meaning of Eq. (A4) is as follows:
T is a tensor with D incoming legs and D outgoing legs, and
each leg has dimension 4. Let a, b, c, d each be a string of ones
and zeros of length D. When the term x|a〉〈b| ⊗ |c〉〈 d| shows
up in the right-hand side of Eq. (A4), it means that the element
of T with incoming indices set to (a1c1), (a2c2), . . . , (aDcD)
and outgoing indices set to (b1d1), (b2d2), . . . , (bDdD) has the
value x.

Like in the 2D case, we can perform a bond dimension
reduction, and then 〈ψ |ψ〉 is equal to the contraction of a
network of bond-dimension-2 tensors t (θ ), which we express
diagrammatically as

t(in)(out) = (A5)

and are given by

t = cos2(θ/2)|0〉〈0| + sin2(θ/2)|0〉〈1| + |β〉 〈0|. (A6)

We can write t as t (θ ) = p − sin2(θ/2)q, where the con-
stant tensors p and q are

p = |α〉 〈0|, (A7a)

q = |0〉〈0| − |0〉〈1|. (A7b)

The decomposition t = p − sin2(θ/2)q turns out to be very
useful in performing calculations. Observe that in the network

of t’s, following a directed line never results in a closed loop.
(In the 2D square lattice, for example, this follows trivially if
we define all the arrows to point rightwards or downwards.)

A simple but important result [which follows directly from
Eq. (A7)] is the fact when q is contracted with a p on each of
its outgoing legs, the result is a tensor with all elements equal
to zero. That is,

= 0. (A8)

Thus, each q must be attached via an outgoing leg to at
least one other q; otherwise, the contraction of the network
will be zero. Note that Eq. (11) is the 2D version of Eq. (A8)
here.

a. Normalization

An immediate corollary is that the variational state is nor-
malized in the thermodynamic limit, i.e., that 〈ψ |ψ〉 = 1.
There is one additional condition that we must impose: we
must assume that at most a finite number of the θi’s in θ are
integer multiples of π . That is, we assume that sin(θi/2) �= ±1
for all but a finite number of θi’s.

In the expansion of 〈ψ |ψ〉 using t = p − sin2(θ/2)q, there
are no terms with a finite number of q’s due to Eq. (A8): there
are either no q’s, or at least an infinite number of them, since
each q must attach to at least one other q, ad infinitum. But
the tensor networks with an infinite number of q’s give zero
contribution, because each q comes with a factor of sin2(θ/2).
Thus, 〈ψ |ψ〉 = (network of all ps) = 1.

b. Calculation by explicit contraction

In D � 2, the most straightforward way to calculate
〈ψ |Ô|ψ〉 is to explicitly contract the tensor network. In 1D
this can be done for arbitrary system sizes, and in 2D, we can
define the system on a cylinder. Due to the reduced effective
bond dimension, we only need to work with a 2L × 2L transfer
matrix (rather than 4L × 4L), where L is the circumference
of the cylinder; in other words, the computational cost is
equivalent to performing exact diagonalization on a 1D spin
chain of length L.

Due to the limited ability of the ansatz to encode long-
range correlations, the results do not depend strongly on the
size of the cylinder. We performed numerical calculations on
L = 10 cylinders, but we verified that increasing the circum-
ference to L = 12 or 14 leaves all results unchanged well
beyond the relevant accuracy of a few significant figures.

2. Perturbative expansion

Using the results of the previous section, we show how one
can express 〈ψ | Ô |ψ〉 as an infinite series. The exposition
here is quite formal: for a practical introduction, the reader
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may skip to Appendix A 3 a below, which is a natural contin-
uation of the high-level overview in Sec. III A.

In the interest of presenting the ideas here compactly,
we write things as algebraic equations rather than diagrams,
but at the expense of using somewhat schematic notation.
Here, Tr(. . . ) means a contraction over the infinite network,
and when tensors inside a Tr(. . . ) are “multiplied,” they are
being placed on lattice sites and then contracted. In the one-
dimensional case, the tensors are matrices, Tr(. . . ) is indeed a
trace, and the equations here may be taken literally.

Recall that 〈ψ |ψ〉 is the contraction of a network of t
tensors. Let � be the tensor that results when Ô is sandwiched
with the PEPS tensors: then 〈ψ | Ô |ψ〉 is the contraction of a
network with � on a local region and t on all other sites. That
is,

� =
( ∏

i∈I

M(θi )
∗
)
Ô

( ∏
i∈I

M(θi )

)
, (A9)

〈ψ | Ô |ψ〉 = Tr

(
�

∏
i/∈I

t (θi )

)
, (A10)

where I is the region (i.e., set of sites) that � covers. Note
that due to the mechanics of the bond dimension reduction
operation, I may be slightly larger than the region that Ô itself
acts on.

Using t (θi ) = p − sin2(θi/2)q, we can expand

〈ψ | Ô |ψ〉 = Tr

(
�I

∏
i/∈I

[pi − sin2(θi/2)qi]

)
(A11)

=
∑

J

Tr

[ ∏
j∈J

[− sin2(θ j/2)q j]

( ∏
i/∈J∪I

pi

)
�I

]
(A12)

=
∑

J

(
(−1)|J|

( ∏
j∈J

sin2(θ j/2)

)
Tr

[
�I

∏
j∈J

i/∈J∪I

q j pi

])
. (A13)

We have expressed 〈ψ | Ô |ψ〉 as a sum over regions J . Note
that p and q are constant tensors: the subscript denotes which
site they are on. Likewise, we wrote �I to emphasize that it
lies on the region I . |J| is the number of sites in J .

The key point now is that Tr(�
∏

qi p j ) will be zero, due
to Eq. (A8), unless the region J is “anchored” by �. When
Tr(�

∏
qi p j ) is nonzero, it can usually be computed quickly

by reading off the tensor elements of �. The perturbative
expansion is thus a sum over allowed regions J . This is the
general idea; the numerical implementation is described be-
low.

3. Numerical implementation

Now let us discuss the practical implementation. Vari-
ants of the calculation we discuss here are used for both
the ground-state and the TDVP calculations. Let us now
restrict ourselves to the unit-cell translation invariant case,
where the variational ansatz becomes |ψ (θA, θB, φA, φB)〉. Us-
ing Eq. (A13), we can express 〈ψ | Ô |ψ〉 as

〈ψ | Ô |ψ〉 = h(θA, θB, φA, φB)( f , θA, θB), (A14)

where the prefactor h(θA, θB, φA, φB) is some function that
comes from the aforementioned Tr(�

∏
qi p j ), and is usually

not hard to evaluate, and where ( f , θA, θB) is the perturbative
expansion:

( f , θA, θB) =
∞∑

n,m=0

(−1)n+m fn,m sin2n
(θA

2

)
sin2m

(θB

2

)
,

(A15)

where f is a matrix of “counting factors” that depends on
Ô and is obtained by counting the ways that the qi’s may
be arranged in Tr(�

∏
qi p j ). To see how exactly Eq. (A15)

arises, it is instructive to work out the calculation for a specific
example.

a. Example: 〈ψ| ni |ψ〉
Consider the case where Ô is the number operator ni,

for some site i ∈ A. Note that since the state |ψ〉 lies inside
the constrained subspace, this is equivalent to calculating
〈ψ |PniP |ψ〉. In this case, the tensor � occupies only a single
site, and the prefactor h is simply h = h(θA) = sin2(θA/2).

Let us assume that we have a 2D square lattice with all
arrows pointing rightwards or downwards, though the general
idea is the same for other lattices. [In particular, Eq. (A15), as
written, applies for any lattice, as long as a suitable version of
fn,m is used.]

We want to calculate the contraction of a tensor network
with � on one site, and t on all other sites. We use the fact that
t = p − sin2(θ/2)q, and then expand in powers of sin2(θ/2).
That is, we want to express the result of the contraction of
the tensor network as sum = (� with p on all other sites)
+ (configurations with one q) + (configurations with two
qs) + · · · .

The allowed configurations are constrained by where the
q’s can be placed: each q must be above or to the left of
another q, or �. Also, note that each q comes with a factor
of − sin2(θ/2). We can write the expansion as in Eq. (A15),
where, in each term in the sum, n is the number of q’s on
sublattice B and m is the number of q’s on sublattice A, and
where fn,m is a coefficient that can be obtained by counting.

Specifically, fn,m is defined as the number of possible con-
figurations on a bipartite lattice (with the origin on sublattice
A) with n q tensors on B, m q tensors on A, a single �

tensor at the origin, and a p tensor on all the other sites; with
the constraint that each q must have another q (or the �)
immediately “downstream” of it (i.e., to the right of and/or
below).

The f matrix elements are obtained via brute force count-
ing using a computer. For a 2D square lattice, the first few
values of fn,m are (where the top left element of the matrix is
f0,0)

f (2D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 . . .

2 4 2 0 0 0 0
1 11 25 21 6 0 0
0 10 72 174 192 100 20
0 3 87 510 1281 1680
0 0 48 732 3780
0 0 10 560

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A16)
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FIG. 11. Plot of |SN − SN−1| in logarithm scale, across the pa-
rameter space, for N = 12 in 2D (left) and N = 9 in 3D (right).
Note that the color-map scale has been truncated in the sense that
numbers <10−5 have been neglected.

The perturbative expansion only is valid in the re-
gion where θA or θB or both are small enough that
fn,m[sin2(θA/2)]n[sin2(θB/2)]m decreases with larger values of
n and m.

b. Two-point functions

The method described here also allows for the calculation
of two-point functions, which in practice corresponds to cal-
culating 〈ψ | Ô |ψ〉 where Ô is a nonlocal operator consisting
of two parts. The simplest example would be 〈ψ | nin j |ψ〉,
which may be calculated by a generalization of the procedure
described above for 〈ψ | ni |ψ〉.

4. Asymptotic nature of the expansion

Here we continue the discussion on the perturbative and
nonperturbative regimes from Sec. III A. Since the exact form
of the series expansion depends on the operator being calcu-
lated, it is difficult to discuss this in a completely general way.
We use the simplest case where the operator is Ô = ni; that
is, we use fn,m = f (2D)

n,m from Eq. (A16). However, the results
are valid for any local operator Ô as the scaling of fn,m with n
and m would be similar.

We now analyze the quantitative behavior of the asymp-
totic series, Eq. (A15). We define the order of a truncated
expansion to be N ≡ max(n + m). Let sn,m refer to a term
in the sum, and let SN ≡ ∑

n+m�N sn,m be the partial sum
up to order N . To probe the accuracy of the expansion at
a certain order, we consider the quantity |SN − SN−1|. In
Fig. 11 we show |SN − SN−1| for the highest orders of the
expansion as used in the calculations in this paper, N = 12 in
2D and N = 9 in 3D. The darker region of this plot therefore
corresponds to the perturbative regime. In this work we define
it as the region where |SN − SN−1| < 10−3 at order N = 12
(2D) and 9 (3D).

The boundaries of the perturbative regimes in Fig. 5 in the
main text are the points |SN − SN−1| = 10−3 from the same
data as in Fig. 11.

a. Proof of nonconvergence

Here we prove that the series expansion (A15) divertges. In
Sec. III A it was claimed that the counting factors fn,m scale
superexponentially, i.e., that there do not exist any a, b ∈ R
such that fn,m < anbm for all n, m ∈ N. This would imply

FIG. 12. A visualization of the counting problem: one counts
the number of ways of arranging k red dots on this grid, subject
only to the constraint that for each dot, at least one of the two sites
immediately below it must be occupied (for sites on the edge, the
condition is that the one site below it must be occupied). Shown here
is one allowed configuration for k = 9.

that the sum (A15) diverges everywhere. Here, we prove
that for any N ∈ N there exists n, m > N such that fn,m >√

(n + m − 1)!/(n + m), which is a strong enough condition
to imply superexponential scaling. We present the proof for
2D, but the generalization to 3D is straightforward.

Instead of fn,m, it will be easier to work with fk , where k =
n + m. That is, define fk ≡ ∑

n+m=k fn,m, so we are counting
all allowed configurations with k sites occupied. Let us state
the definition of fk with the aid of a picture. fk is the number
of ways of arranging k dots on the vertices of the grid shown
in Fig. 12, where the first dot is placed at the bottom point,
and then each additional dot is placed with the condition that
at least one of the two sites below it must be occupied. Now
consider how fk+1 is related to fk . The number of ways to
place the (k + 1)th dot depends on the configuration of the k
dots already placed: in particular, it is equal to the “perimeter”
of the region occupied by the k dots. This is clearly smallest
when the k dots are arranged compactly, such as in the k = 9
example shown in Fig. 12, and in this case the perimeter is
2
√

k. Thus, fk+1 >
√

k fk , and by induction, fk >
√

k!.
Now let us recast the result in terms of n and m. Here let

f̄n,m be the largest fn,m such that n + m = k. Clearly k f̄n,m >

fk . Then fk >
√

k! implies that (n + m) f̄n,m >
√

(n + m)!,
which is the claimed result.

APPENDIX B: ENERGY CALCULATION

Here we elaborate on the specifics of the tensor network
calculations for the variational energy 〈ψ | H |ψ〉. Let us con-
sider the parts of the Hamiltonian (2), H = HPXP + H� +
HNNN, one by one.

From these calculations we obtain the energy E (θA, θB),
plotted in Figs. 13 and 14, and find the variational ground state
by finding the θA, θB that minimizes E (θA, θB).

1. PXP term

Let us first consider EPXP = 〈ψ | HPXP |ψ〉. Using P |ψ〉 =
|ψ〉, we have

EPXP =
∑

i

〈ψ | σ x
i |ψ〉

= N

2

( 〈ψ | σ x
a |ψ〉 + 〈ψ | σ x

b |ψ〉 )
, (B1)
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FIG. 13. Plots of the energy E (θA, θB ). Top row: 1D, at � = 0
(left) and � = 1 (right). Bottom row: 2D, at � = −1 (left) and � =
0 (right). Thus, the plots on the left are for � < �c and on the right
for � > �c. In each plot, the red dot(s) indicate the minimum of
E (θA, θB ). The line θA = θB is included as a visual aid. The red dot is
at the origin at � = −∞. As � is increased, it travels down the line,
until it splits into two at � = �c when the variational ground state
becomes degenerate.

where here (and in the sections below) we introduce the
convention that a and b each refer to any single site on the
(respectively) A and B sublattices.

To calculate 〈ψ | σ x
i |ψ〉, we must consider the following

tensor:

S(θ, φ) ≡

= ieiφ sin(θ/2) cos(θ/2)(|0 0| ⊗ |1 0| − |0 0| ⊗ |0 1|)
= ieiφ sin(θ/2) cos(θ/2)(|0 10| − |0 01|). (B2)

Note that in diagrams like the above, each in (out) leg on the
top is paired with an in (out) leg on the bottom, such that
for a D-dimensional lattice we have D in pairs and D out

FIG. 14. Plots of the energy E (θA, θB ) for 3D. at � = −1 (left)
and � = −0.6 (right). Note that we zoomed in on a smaller window
near the origin. The red dot is the minimum.

pairs. Since this tensor S has outgoing indices of the form 01,
we cannot perform the bond dimension reduction described
above. The solution is to consider the object

(B3)

as a single unit, a tensor occupying D + 1 sites, on which we
can perform the bond dimension reduction.

The quantity 〈ψ | σ x
a |ψ〉 is the contraction of the tensor

network with S(θA, φA) on a single site, and with T (θA) or
T (θB) on all other sites: the calculation may be performed
via either explicit contraction (D � 2) or the perturbative
method (D � 2). Upon performing this calculation, we find
that the θ, φ dependence decouples in a way that we may
write 〈ψ | σ x

a |ψ〉 = sin φA F (θA, θB), and thus for the energy
we have

EPXP(θA, θB, φA, φB) (B4)

= N

2
(sin φA F (θA, θB) + sin φB F (θB, θA)), (B5)

It is easy to check that due to the symmetry of F (θA, θB), one
can without loss of generality set φA = φB = π/2.

2. Detuning and next-nearest-neighbor terms

For the detuning and NNN terms, we have, similar to the
above

E� = −�
∑

i

〈ψ | ni |ψ〉

= −�N

2
(〈ψ | na |ψ〉 + 〈ψ | nb |ψ〉), (B6)

ENNN = V
∑
〈〈i j〉〉

〈ψ | nin j |ψ〉 . (B7)

We thus need to consider the tensor

J(θ) ≡ = sin2(θ/2)|0 1|. (B8)

It follows that the quantity 〈ψ | ni |ψ〉 is the contraction of
a tensor network with J (θi ) on a single site and T on all
other sites, and that 〈ψ | nin j |ψ〉 would be the contraction of
a tensor network with J (θi ) on site i and J (θ j ) on site j and T
on all other sites.

APPENDIX C: TDVP CALCULATIONS

Here we present the technical details of the variational
dynamics calculations. We first give a brief but self-contained
review of the TDVP.
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1. TDVP

The TDVP (see Fig. 3 for a visualization in the context
of quantum scarred dynamics) is a way of calculating the ap-
proximate time evolution of a quantum state by projecting the
true unitary time evolution onto a variational manifold, which
in our case is the family of tensor network states introduced
in Sec. III. As explained in the main text, we may impose
unit-cell translation invariance, i.e., have all spins on each
sublattice be in the same state, and due to energy conservation
we may set φ = 0, so that ultimately our variational manifold
is parametrized by only two variables θA and θB.

Let the variational state be |ψ (θA, θB)〉. Define the vector
|δ〉 as the difference between the time evolution within the
manifold, and the true evolution within the full Hilbert space.
The latter is given by the Schrödinger equation i d|ψ〉

dt = H |ψ〉.
In the following we use greek letters as placeholders for the
sublattices A and B, and use the notation |∂μψ〉 ≡ ∂|ψ〉

∂θμ
. The

leakage rate vector is given by

|δ〉 =
∑

μ

|∂μψ〉 θ̇μ + iH |ψ〉 . (C1)

The leakage rate is defined as �2 = 〈δ|δ〉. To derive the TDVP
equations of motion, we minimize the leakage rate with re-
spect to θ̇A and θ̇B. That is, we have ∂�2/∂θ̇A = ∂�2/∂θ̇B = 0,
which gives us the equations of motion

θ̇A = −i
〈∂Aψ |H |ψ〉
〈∂Aψ |∂Aψ〉 , θ̇B = −i

〈∂Bψ |H |ψ〉
〈∂Bψ |∂Bψ〉 . (C2)

In deriving these equations, we used the fact that
〈∂Aψ |∂Bψ〉 = 0, i.e., the Gram matrix Gμν ≡ 〈∂μψ |∂νψ〉 is
diagonal. This is nontrivial, but we will derive this below.

After performing the calculations for the numerators and
denominators of Eq. (C2), it turns out that we can write the
equations of motion as θ̇A = f (θA, θB) and θ̇B = f (θB, θA),
where

f (θA, θB) = K(θA, θB) + DS(θA, θB)

G(θA, θB)
, (C3)

where D is the dimension of space, and K, S, and G are
each the contraction of a single (infinite) tensor network, the
technical details of which are described below.

2. Gram matrix calculation

Here we describe the calculation of the Gram matrix, i.e.,
quantities of the form 〈∂μψ |∂νψ〉 ≡ Gμν . We have, from the
product rule of calculus, that |∂Aψ〉 = ∑

a∈A |∂aψ〉, so that
〈∂μψ |∂νψ〉 = ∑

i∈μ, j∈ν〈∂iψ |∂ jψ〉, where |∂iψ〉 means that
the derivative is only applied on the site i. In other words,
|∂iψ〉 is a tensor network state with the tensor ∂M(θi ) on site i,
and the usual M(θ j ) tensor on all other sites j �= i. The tensor
∂M is defined as

∂M ≡ dM

dθ
=

= − i

2
sin(θ/2) |↓ 0 0| − 1

2
cos(θ/2) |↑ 0 1| (C4)

Define the tensor

∂T = . (C5)

It turns out that, after performing the bond dimension
reduction, that ∂T ∝ q. This allows us to conclude that
〈∂iψ |∂ jψ〉 = 0 for all pairs of sites i �= j. This leads to the
conclusion that the Gram matrix is diagonal, and that GAA =
(N/2)〈∂aψ |∂aψ〉, and the analogous equation for the B sublat-
tice. Here a is any single site in A, and N is the total number of
sites (N is infinite, but it always cancels out and never shows
up in any final results).

Let us define

g = −→ , (C6)

performing a bond dimension reduction as before. The el-
ements of g are given by g(θ ) = (1/4) sin2(θ/2)|0〉〈0| +
(1/4) cos2(θ/2)|0〉〈1|.

Thus, 〈∂aψ |∂aψ〉 is the contraction of a tensor network
with g(θA) on a single site and T on all other sites. We
define the aforementioned G as G(θA, θB) = 〈∂aψ |∂aψ〉 =
GAA/(N/2). By symmetry, the contraction of a single g(θB)
tensor on a B lattice site is G(θB, θA) = 〈∂bψ |∂bψ〉 =
GBB/(N/2). Similar to the calculation of the energy, these
tensor network calculations can either be performed explicitly
or perturbatively, using the methods introduced above.

3. Calculation of 〈∂μψ|H|ψ〉
Here we discuss the calculation of 〈∂μψ |H |ψ〉, the numer-

ator of the equations of motion (C2). Since |ψ〉 is inside the
Rydberg blockaded subspace we have

〈∂μψ |H |ψ〉 = �
∑
j∈μ

∑
i

〈∂ jψ |σ x
i |ψ〉. (C7)

We will see that 〈∂ jψ |σ x
i |ψ〉 is nonzero only if either i = j,

or j is immediately “downstream” of i, i.e., in 1D, they are
nearest neighbors with i to the left of j (and in 2D, either to
the left or above, and so on).

a. Calculation of K

Let us first consider the i = j contribution, which we call
K. Define the tensor K as

K = , (C8)

where we find that the elements are given by K (θ ) =
(i/2) cos2(θ/2)|0〉〈 10| + (i/2) sin2(θ/2)|0〉〈 01|. The quantity
K(θA, θB) = 〈∂aψ |σ x

a |ψ〉 is the contraction of a network with
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K (θA) on one site a ∈ A and T on all other sites. A ↔ B sym-
metry gives the analogous quantity K(θB, θA) = 〈∂bψ |σ x

b |ψ〉.
Similar to the calculation for S for the energy in

Appendix B 1, we cannot perform the bond dimension reduc-
tion on K alone, so we consider the tensor

. (C9)

We then contract this tensor with T on all other sites using
the same methods as for the other tensor network contractions
above, to obtain K(θA, θB).

b. Calculation of S

Next we consider 〈∂ jψ |σ x
i |ψ〉 when i �= j. To start, con-

sider the tensor S as defined in Eq. (B2), but we now have
φA = φB = 0:

S(θ) ≡

= i sin(θ/2) cos(θ/2)(|0 10| − |0 01|).

(C10)

In this case, we find that

= 0. (C11)

Note that this implies that 〈ψ | σ x
i |ψ〉 = 0 which implies that

E = 〈H〉 = 0 when |ψ〉 is a variational state with φ = 0.
[Equation (C11) is true only if all the external legs are 0
or 1, i.e., if we perform bond dimension reduction. This is
sufficient for our purposes here, but the subtlety will matter
when calculating the leakage rate.]

Thus, the only nonzero i �= j contributions are the cases
where i is next to j. By symmetry, we only need to consider
the diagram

, (C12)

multiplied by a factor of D. We contract this object with the
T tensor on all other sites, to get 〈∂ jψ |σ x

i |ψ〉. We define
S(θA, θB) = 〈∂aψ |σ x

b |ψ〉 and S(θB, θA) = 〈∂bψ |σ x
a |ψ〉.

APPENDIX D: PROJECTED PRODUCT STATES

Consider the set of projected (i.e.. Rydberg blockaded)
product states:

|ψ (ϑ, ϕ)〉 = P
⊗

i

|ϑi, ϕi〉 , (D1)

where the state of each site is a spin coherent state |ϑi, ϕi〉 =
cos(ϑi/2) |↓〉 − ieiϕi sin(ϑi/2) |↑〉. These states resemble the
variational ansatz, but are not normalized.

As noted earlier, P is the application of the two-site
operator Pi j = |↓↓〉 〈↓↓| + |↓↑〉 〈↓↑| + |↑↓〉 〈↑↓| =
diag(1, 1, 1, 0) to all nearest-neighbor pairs of sites. The
two-site projector can be decomposed in a “matrix product
operator” manner: diagrammatically, we have

= , (D2)

where the internal line has bond dimension 2. Specifically, PR

and PL are given by P0
R = (1 0

0 1), P1
R = P0

L = (1 0
0 0), and

P1
L = (0 0

0 1), where the superscript refers to the horizontal

leg.
We can use this to write the state |ψ (ϑ, ϕ)〉 as a tensor

network. In one dimension, the MPS tensor is

= . (D3)

This can be easily generalized to PEPS in higher dimen-
sions. We can read off all the nonzero elements of the PEPS
tensors. Using the same notation as we used for the variational
ansatz (A4), the PEPS tensor at each site is given by

M(ϑ, ϕ) = cos(ϑ/2) |↓〉 |α〉 〈0| − ieiϕ sin(ϑ/2) |↑〉 |0〉〈1|.
(D4)

Comparing this expression to Eq. (8) one can see that the
only difference lies in the coefficient of the component |β〉 〈0|.
In 1D, a gauge transformation exists that maps the PEPS state
resulting from the tensors contraction into each other [27]. We
checked numerically that this is not the case in D > 1. We
did so by taking the exact contraction on periodic 2D systems
of the PEPS in Eqs. (D4) and (8). For a fixed value of the
variational parameters in the former, we optimized the overlap
between the two states over the variational parameters of the
latter. The failure in finding unity overlap within numerical
precision signals the nonequivalence of the two states. This
can also be inferred from the fact that the projected product
state 2D PEPS is known to exhibit a second-order phase
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transition along the line θA = θB [51], whereas this phase tran-
sition is absent in our ansatz (8), as we verified numerically
from infinite-cylinder calculations. We stress that the main
advantage of our ansatz is the fact that it is normalized in
the thermodynamic limit. This property ensures a dramatic
simplification of the perturbative expansion which allowed us
to compute with high accuracy the overlaps and expectation
values required for the ground state and TDVP analysis of the
PXP model in two and three dimensions.

APPENDIX E: LEAKAGE RATE

Here we discuss the calculation of the leakage rate for
the variational dynamics, the rate at which the state evolving
under the full unitary evolution leaves the variational manifold
at a given instant. Specifically, we will show how the eval-
uation of the leakage rate reduces to quantities of the form
〈ψ | Ôlocal |ψ〉, which can then be calculated via a tensor net-
work contraction similar to the calculations described above.

The leakage rate is the magnitude of the leakage rate vector
|δ〉:

〈δ|δ〉 =
∑
μν

θ̇μθ̇ν〈∂μψ |∂νψ〉 + i
∑

μ

θ̇μ〈∂μψ |H |ψ〉 (E1)

−i
∑

μ

θ̇μ〈ψ |H |∂μψ〉 + 〈ψ |H2|ψ〉 (E2)

=
∑

μ

[
θ̇2
μ〈∂μψ |∂μψ〉 + 2iθ̇μ〈∂μψ |H |ψ〉] (E3)

+〈ψ |H2|ψ〉 ≡ �2, (E4)

where to get to the second line, we used the fact that (for the
first term) the Gram matrix is diagonal, and (for the second
term) the fact that 〈∂μψ |H |ψ〉 is pure imaginary, so that
〈∂μψ |H |ψ〉 = −〈ψ |H |∂μψ〉.

We can plug our derived expressions for θ̇A and θ̇B into the
leakage rate expression to get

�2 = 〈ψ |H2|ψ〉 −
∑

μ

θ̇2
μ〈∂μψ |∂μψ〉. (E5)

The new work that we have to do is to calculate 〈ψ |H2|ψ〉.
First, note that there are two equivalent ways of writing

the PXP Hamiltonian, which we call the “global” and “local”
versions:

global: H =
∑

i

Pσ x
i P, (E6)

local: H =
∑

i

[( ⊗
〈 ji〉

Pj

)
σ x

i

]
. (E7)

Here, P = |↓〉 〈↓|, and P is the whole-system Ryd-
berg blockade projection, i.e., P = ∏

〈i j〉 Pi j , where Pi j =
diag(1, 1, 1, 0). In 1D, the local version can also be written
as H = ∑

i Pi−1σ
x
i Pi+1. Working with the global version, let

us expand 〈ψ |H2|ψ〉:

〈ψ |H2|ψ〉 =
∑

i j

〈ψ |(Pσ x
i P )(Pσ x

j P )|ψ〉. (E8)

At this point, it is convenient to use the local H for the
i = j terms, and the global H for the i �= j terms. For the

i = j terms, we have∑
i

〈ψ |
[( ⊗

〈 ji〉
Pj

)
σ x

i

]2
|ψ〉 =

∑
i

〈ψ |
⊗
〈 ji〉

Pj |ψ〉 (E9)

= N

2
〈ψ |

⊗
〈ia〉

Pi |ψ〉 + N

2
〈ψ |

⊗
〈ib〉

Pi |ψ〉 . (E10)

For the i �= j terms, making use of the fact that P |ψ〉 = |ψ〉,
we have∑

i �= j

〈ψ |(Pσ x
i P )(Pσ x

j P )|ψ〉 =
∑
i �= j

〈ψ | σ x
i Pσ x

j |ψ〉 . (E11)

If i and j are not next to each other, all of the P operators in
P can be commuted out (this is easiest to see by drawing P
as a brickwork-style “quantum circuit” and noting that all the
bricks are diagonal and therefore commute with each other,
and that the bricks are annihilated upon hitting |ψ〉). So, for
non-nearest-neighbor sites,

〈ψ | σ x
i Pσ x

j |ψ〉 = 〈ψ |σ x
i σ x

j |ψ〉 = 0, (E12)

where in the last step we used the fact that we know from
the explicit tensor network calculation that 〈ψ |σ x

i σ x
j |ψ〉 is

nonzero only for adjacent sites. Specifically, by nonadjacent,
we mean neither directly adjacent nor diagonally adjacent.
The quantity 〈ψ |σ x

a σ x
a′ |ψ〉 is nonzero if a and a′ are diagonally

adjacent A sites that are downstream of the same B site.
For quantities involving the projector, we only have to deal

with the cases where i and j are next to each other. In those
cases, all of the P operators can be commuted out, except
for the one acting on i and j, so we have 〈ψ | σ x

i Pσ x
j |ψ〉 =

〈ψ | σ x
i Pi jσ

x
j |ψ〉. Using symmetry, we can write the sum as∑

〈i j〉
〈ψ | σ x

i Pσ x
j |ψ〉 = 2D

∑
i

〈ψ | σ x
i Pσ x

i+x̂ |ψ〉

+ N

2

(
D

2

)
〈ψ |σ x

a σ x
a′ |ψ〉 + (a ↔ b)

(E13)

=N

2

[
2D〈ψ |σ x

aPa,a+x̂σ
x
a+x̂|ψ〉

+
(

D

2

)
〈ψ |σ x

a σ x
a′ |ψ〉 + (a ↔ b)

]
. (E14)

In the first line, we gained a factor of 2D: the factor of 2 comes
from having considered each nearest-neighbor pair only once,
and the factor of D comes from the symmetry between the
different directions (recall the fact for each PEPS tensor, all
of the “in” legs are interchangeable, likewise for the “out”
legs). In the second line, we used translation invariance. Using
〈∂Aψ |∂Aψ〉 = N

2 〈∂aψ |∂aψ〉 (and the analogous equation for
B) for the quantity

∑
μ θ̇2

μ〈∂μψ |∂μψ〉, we now have the full
leakage rate expression:

�2

N
≡ γ 2 = 1

2
〈ψ |

⊗
〈ia〉

Pi |ψ〉 + D
(〈ψ |σ x

aPa,a+x̂σ
x
a+x̂|ψ〉)

− 1

2

(
θ̇2

A〈∂aψ |∂aψ〉) + 1

2

(
D

2

)
〈ψ |σ x

a σ x
a′ |ψ〉

+ (a ↔ b), (E15)
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where a and a′ have a specific relationship as mentioned
above, and where the (a ↔ b) applies to all of the preceding
terms. At this point, each of the terms in the above equation
can be calculated via a tensor network contraction.

APPENDIX F: EXPLICIT TDVP CALCULATIONS
FOR PRODUCT STATES

Here we analytically perform the TDVP calculations for
states along the θA and θB axes in Figs. 9 and 10. We derive
the equations of motion (14) and demonstrate that the leakage
rate is zero, i.e., that γ (θA, 0) = γ (0, θB) = 0.

Let us consider the case θB = 0; by symmetry, the case
θA = 0 will be the same but with θA ↔ θB. When doing
the TDVP calculations, we work with the variational state
|ψ (θA, θB)〉, and the states |∂aψ (θA, θB)〉 and |∂bψ (θA, θB)〉.
Recall that the latter states are defined as applying a derivative
∂/∂θA or ∂/∂θB to |ψ (θA, θB)〉 at any one particular site a ∈ A
or b ∈ B. In general, these are tensor network states; however,
when θB = 0, these become product states, allowing one to
perform the TDVP and leakage rate calculations by hand.

The state |ψ (θA, 0)〉 is the following product state:

|ψ (θA, 0)〉 =
⊗

i∈A, j∈B

|θA〉i |↓〉 j , (F1)

where |θA〉 ≡ cos(θA/2) |↓〉 − i sin(θA/2) |↑〉. The state
|∂aψ (θA, 0)〉 is obtained by taking the derivative at one site; it
is given by

|∂aψ (θA, 0)〉 = |θ ′
A〉a ⊗

( ⊗
i∈A\{a}

j∈B

|θA〉i |↓〉 j

)
, (F2)

where |θ ′
A〉 ≡ d|θA〉/dθA = −(1/2) sin(θA/2) |↓〉 −

(i/2) cos(θA/2) |↑〉.
The state |∂bψ (θA, 0)〉 is more tricky to write, as one must

start with |∂bψ (θA, θB)〉 and then derive the product state that
results when θB = 0. A careful inspection yields the result

|∂bψ (θA, 0)〉 =
( ⊗

a∈NL (b)

cos(θA/2) |↓〉a

)
⊗

(−i

2
|↑〉b

)

⊗
( ⊗

a∈NR (b)

|↓〉a

)
⊗

( ⊗
i∈A\N (b)
j∈B\{b}

|θA〉i |↓〉 j

)

(F3)

=−i

2
cosD(θA/2)

( ⊗
a∈N (b)

|↓〉a

)
⊗ |↑〉b

⊗
( ⊗

i∈A\N (b)
j∈B\{b}

|θA〉i |↓〉 j

)
, (F4)

where NL(i) is the “left neighborhood” of i, i.e., the set of
sites immediately upstream of i, and NR(i) is the “right neigh-
borhood,” i.e., the set of sites immediately downstream of i,
and N (i) = NL(i) ∪ NR(i) is the full neighborhood. Note that
|NL(i)| = |NR(i)| = D.

Note that 〈θA| σ x |θA〉 = 0, 〈θ ′
A |θA〉 = 0, 〈θ ′

A| σ x |θA〉 =
i/2, and 〈↓| σ x |θA〉 = −i sin(θA/2). This implies that

〈∂aψ | σ x
i |ψ〉 = 0 for i �= a and 〈∂aψ | σ x

a |ψ〉 = i/2. Thus, we
find that

〈∂aψ (θA, 0)|∂aψ (θA, 0)〉 = 1/4, (F5)

θ̇A(θA, 0) = −i
〈∂Aψ |H |ψ〉
〈∂Aψ |∂Aψ〉 = −i

〈∂aψ |H |ψ〉
〈∂aψ |∂aψ〉 = 2. (F6)

Now let us consider θ̇B(θA, 0). Since |∂bψ〉 has the site b
in the state |↑〉, 〈∂bψ | σ x

i |ψ〉 = 0 unless i = b. Note that
〈0 |θA〉 = cos(θA/2); thus, when taking the scalar product in
〈∂bψ | σ x

b |ψ〉 we gain a factor of cos2D(θA/2). We find that

〈∂bψ (θA, 0)|∂bψ (θA, 0)〉 = 1

4
cos2D(θA/2), (F7)

〈∂bψ | σ x
b |ψ〉 = i

2
cos3D(θA/2), (F8)

which yields

θ̇B(θA, 0) = −i
〈∂Bψ |H |ψ〉
〈∂Bψ |∂Bψ〉 (F9)

= −i
〈∂bψ |H |ψ〉
〈∂bψ |∂bψ〉 = 2 cosD(θA/2). (F10)

Now let us calculate the leakage rate using Eq. (E15). For
the case that we consider here where |ψ〉 is a product state,
only the 〈ψ | ⊗ Pi |ψ〉 terms and the θ̇2

μ 〈∂μψ |∂μψ〉 terms
contribute to the leakage rate; the second and fourth terms
in Eq. (E15) are zero. Since 〈θA| P |θA〉 = cos2(θA/2) and
〈↓| P |↓〉 = 1, we have

〈ψ (θA, 0)|
⊗

i∈N (a)

Pi |ψ (θA, 0)〉 = 1, (F11)

〈ψ (θA, 0)|
⊗

i∈N (b)

Pi |ψ (θA, 0)〉 = [cos2(θA/2)]2D. (F12)

Thus, for the leakage rate at the state |ψ (θA, 0)〉, we have
2γ 2 = 1 + cos4D(θA/2) − 1 − cos4D(θA/2) = 0.

APPENDIX G: DETAILS ON EXACT DIAGONALIZATION

In this Appendix we provide details on the exact diag-
onalization techniques employed for the ground-state and
dynamics calculations presented in the main text. For diag-
onalizing system sizes of up to 48 and 64 sites in 2D and
3D periodic lattices, respectively, we numerically computed
the Hamiltonian directly in the sector which is invariant under
the symmetry group of the lattice. In particular, we combined
translations along and reflection with respect to the Cartesian
axes. The dimensions of the neutral symmetry sectors for
the largest system sizes considered in this work are 1682382
(48 sites in 2D) and 13292545 (64 sites in 3D), which can
be easily tackled with sparse matrix techniques to obtain the
lowest-energy eigenstates and to apply the exponential of the
Hamiltonian for the time evolution of the |Z2〉 state. To extract
the phase boundaries depicted in Fig. 6 we computed the
ground-state fidelity susceptibility

F = 1 − |〈GS(�)|GS(� + d�)〉|
d�2

, (G1)

which exhibits a peak at the finite-size phase transition point.
We show in Fig. 15 the finite-size scaling of F for V = 0 in
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FIG. 15. Ground-state fidelity susceptibility for V = 0 as func-
tion of � in 2D for N = 24, 36, 48 sites and in 3D for 64 sites. The
peak position signals the finite-size phase transition point from the
disordered to the Z2-ordered phase. The inset shows the extrapo-
lation of the thermodynamic limit critical value of � resulting in
�c � −0.19.

2D, from which we extrapolate the thermodynamic limit criti-
cal value �c � −0.19, and for V = 0 in 3D for the 4 × 4 × 4
cube of 64 sites.

For the computation of the revival periods reported in
Sec. V, we need to compute the fidelity |〈Z2|e−iHt |Z2〉|.
Although the |Z2〉 state breaks the lattice symmetry of the
Hamiltonian, the revival time can be extracted from the time
evolution of the cat state |ψ0〉 = (|Z2〉 + |Z′

2〉)/
√

2, whose
dynamics is symmetric and exhibits twice the revivals occur-
ring in the nonsymmetric case (see Fig. 16). We also note,
as can be seen by comparing the upper and bottom panels of
Fig. 16, that finite-size effects on revival times are negligible
since the position of fidelity maximum is unchanged from

−0.2

0.0

log |〈ψ(t)|ψ0〉|1/N
|ψ0〉 = |Z2〉 |ψ0〉 = 1√

2
(|Z2〉 + |Z2〉)

0 1 2 3 4 5 6
t

−0.2

0.0
1D (N = 36) 2D (N = 48) 3D (N = 64)

FIG. 16. Revival fidelity employed to extract the first period of
the approximately periodic many-body dynamics generated by the
|Z2〉 initial state. The upper panel shows a comparison between the
symmetric and nonsymmetric dynamics starting from the cat state
(|Z2〉 + |Z′

2〉)/
√

2 and from the symmetry-breaking |Z2〉 state, in 1D
for N = 18. The former case produces a revival at a time t � T/2
due to the fact that the periodic orbit from the |Z2〉 state back to itself
goes through the |Z′

2〉 state. The second revival in the symmetric time
evolution exactly corresponds to the end of the orbit. The lower panel
shows the symmetric dynamics for the largest systems diagonalized
in all dimensions. Vertical lines correspond to the revival times.

L = 18 (upper panel) to L = 36 (lower panel, blue line) in
1D. We verified that the same occurs in 2D for N � 16 (4 × 4
square). For the 3D revival time a cube with 4 atoms in each
direction (N = 64) is required, otherwise the system is quasi-
two-dimensional, and the resulting revival time is the same as
in 2D.
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[44] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and
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