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Quantum squeezing via self-induced transparency in a photonic crystal fiber
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We study the quantum squeezing produced in self-induced transparency in a photonic crystal fiber by
performing a fully quantum simulation based on the positive P representation. The amplitude squeezing depends
on the area of the initial pulse: When the area is 2π , there is no energy absorption and no amplitude squeezing.
However, when the area is between 2π and 3π , one observes amplitude-dependent energy absorption and a
significant amount of squeezing. We also investigate the effect of damping, detuning, and temperature: The
results indicate that a heightened atom-pulse coupling, caused by an increase in the spontaneous emission ratio,
reduces the amplitude squeezing.
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I. INTRODUCTION

Self-induced transparency (SIT) in two-level atomic sys-
tems is one of the most well-known coherent pulse prop-
agation phenomena: Above a certain intensity threshold,
the absorption of a pulse by resonant transitions decreases
strongly and the medium becomes almost completely trans-
parent, which is accompanied by a considerable reduction
in the group velocity (for reviews, see Refs. [1–4]). This
was first reported by McCall and Hahn [5,6], who, by using
a semiclassical description, demonstrated that the two-level
medium becomes transparent to a 2π pulse through a strong
absorption. This semiclassical model is nowadays standard
in quantum-optics textbooks that study the effects of atomic
coherence [7–9].

The SIT solitons have been proposed as candidates for
pulsed squeezed-state generation [10], quantum nondemoli-
tion measurements [11], and quantum information storage
and retrieval [12]. Moreover, with the recent advances in
microstructured fiber technologies [13], the generation of
squeezing via SIT solitons inside gas-filled single-mode pho-
tonic crystal fibers is being considered [14], which simplifies
transverse effects.

In all these advances, the quantum noise and the quantum
correlations play a dominant role that cannot be captured
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by any semiclassical approach. Therefore, a full quantum
approach to SIT is an essential step toward a complete un-
derstanding of the physics involved. A theory of SIT using
a linearization ansatz has been developed [15] within the
framework of the inverse-scattering method [16]. A further
refinement was suggested by using a coarse-grain-averaged
light-atom interaction [17] and treating the quantum noise by
the backpropagation method [18], which can take into account
the field continuum contributions and the atomic fluctuations
generally.

These results, important as they are, do not provide proper
guidelines for realistic experiments, because they fail to ac-
count for any limitations on the squeezing. In this paper, we
take an alternative route and adapt a method to deal with
the propagation of radiation in an optically pumped two-level
medium that has collisional and radiative damping [19]. The
idea is to derive a set of stochastic c-number differential equa-
tions that are equivalent to the Heisenberg operator equations.
This is accomplished through use of the positive P representa-
tion [20], which provides a probabilistic description in which
stochastic averages correspond to normally ordered correla-
tions. The method has the advantage of yielding equations that
may be solved numerically, while keeping the key elements
that characterize the quantum nature of the field.

On the experimental side, when sending a light pulse
through an atomic ensemble, the response of each atom will
depend on the field amplitude at its respective position, lead-
ing to a transverse structure in the resulting light field and
in the atomic ensemble as well. This situation changes if
the atoms interact with only one single mode of the field.
Then, each photon interacts with all atoms and no transverse
structure will develop. To achieve this situation, one might
think, e.g., of a glass capillary as a waveguide, but this would
not be a good waveguide as it is lossy by coupling to modes
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FIG. 1. Schematics of the propagation of a coherent pulse in a
medium consisting of N two-level atoms in a hollow-core fiber. The
system (including both the coherent field and the atoms) interacts
with the bath, but the interaction between the atoms is considered
negligible.

propagating to the sides out of the capillary. Lossless guiding
by total internal reflection requires a higher index in the core,
which is not possible with a simple capillary. But a photonic
crystal fiber (PCF) [13] provides both nearly lossless guiding
and a hollow core for the atom vapor. An additional advantage
of a PCF is that the decay of the atoms in the core into modes
other than the single longitudinal mode is largely suppressed.

The plan of this paper is as follows. In Sec. II we intro-
duce the model Hamiltonian, investigating how the quantum
noise sources arise as coming from both damping and non-
linearities in the Hamiltonian. We explore the dynamics by
numerically solving the fully nonlinear stochastic differential
equations emerging from the positive P representation. The
additional effect of damping, reservoir noise, and atom-field
coupling is also investigated. In Sec. III we present the main
results of our model. We show that the pulse area indeed is
the crucial quantity in observing the amplitude squeezing for
SIT solitons. Due to the complexity of the dynamics in the
expanded phase space, one needs a high number of samples to
increase the accuracy of the method. We discuss the effect of
pulse reshaping on the squeezing, as well as the role of damp-
ing and temperature. Our results indicate that the stronger
the atom-field coupling, the less is the amplitude squeezing.
Finally, our concluding remarks are presented in Sec. IV.

II. MODEL

A. Hamiltonian

Following the ideas of Ref. [19], we first introduce a suit-
able Hamiltonian that describes the interaction of an ensemble
of two-level atoms with a single mode of the radiation field.
A schematic picture of our model is shown in Fig. 1. In the
rotating-wave and dipole approximations the model Hamilto-
nian reads as

Ĥ = ĤA + ĤF + ĤB + ĤFB + ĤAB + ĤAF, (2.1)

where

ĤA = 1

2

∑
μ

h̄ωμσ̂ 3
μ,

ĤF =
∑

k

h̄ωk â†
k âk,

ĤB = Ĥa + Ĥσ + Ĥ z,

ĤAF = h̄
∑

k

∑
μ

(
gâ†

k σ̂
−
μ e−ikzμ + H.c.

)
,

ĤAB = h̄
∑

μ

(
�̂σ †

μ σ̂−
μ + �̂σ

μσ̂+
μ + �̂3

μσ̂ 3
μ

)
,

ĤFB = h̄
∑

k

(
�̂a†

k âk + �̂a
k â†

k

)
. (2.2)

Here, ĤA is the free Hamiltonian of the atoms, with ωμ the
resonant frequency of the μth atom described in terms of the
standard Pauli operators [21], and ĤF is the free Hamiltonian
of the paraxial field modes propagating in the fiber, each one
having frequency ωk and with an annihilation operator âk (for
a single polarization).

The piece ĤB is the free Hamiltonian of the baths corre-
sponding to field modes Ĥa, atomic dipoles Ĥσ , and collisions
Ĥ z. In addition, ĤAF is the interaction of the paraxial field with
dipole-field coupling g; ĤAB is the interaction of atomic and
collisional reservoirs with atoms and, finally, ĤFB is the inter-
action of the background reservoir with the radiation field.

Let us briefly discuss the physics behind the bath terms in
(2.1). The paraxial modes are coupled to a background of ab-
sorbing dipoles �̂a

k , with free Hamiltonian Ĥa. This describes
background absorption and reemission due to other atoms in
the medium, as opposed to the resonant ones.

In general, the atoms are also coupled to modes with
nonparaxial wave vectors, which form independent radiative
reservoirs for each atom, whose operators are �̂σ

μ. The free
Hamiltonian of these atomic reservoirs is Ĥσ . This approx-
imation of independent reservoirs neglects any transverse
dipole-dipole coupling and is thus valid only for relatively
low-density optical media, where local-field corrections are
negligible. Any optical pumping is also included in these
reservoirs.

Finally, the operators �̂3
μdescribe a coupling of the res-

onant atoms to a collisional phase-damping reservoir with
free Hamiltonian Ĥ z, which describes weak collisions with
nonresonant atoms.

To enable a continuous description, we first divide the
available volume up into small elements of size �V centered
at positions r j along the fiber and containing Nj resonant
atoms. The density of resonant atoms in a certain position r
and a certain frequency ω can then be defined as

ρ(r j, ω) = Nj

�V
fω(ω), (2.3)

where f (ω) is a spectral line shape [22]. The medium can
be considered to be either homogeneously (i.e., Lorentz) or
inhomogeneously (i.e., Gaussian) broadened around a central
frequency ω0.

The dipole-field coupling is assumed to be identical for
all the atoms and independent of the frequency and the wave
vector. For an ideal two-level atom this coupling reads [7]

g2 =
(

ω0|d12 · e|2
2h̄ε0V

)
, (2.4)

where ω0 is the resonant frequency, V the quantization mode
volume, d12 is the relevant dipole matrix element and e is the
mode polarization.
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The evolution of the system can be studied by the
master equation for the atom-field system by tracing out
the reservoir variables and applying the standard Markov
approximation [21],

d	̂

dt
= 1

ih̄
[Ĥ, 	̂] + L̂AB[	̂] + L̂FB[	̂], (2.5)

where 	̂ is the density matrix of the system. The Lindbladian
superoperators L̂AB and L̂FB describe relaxation into the reser-
voir modes in both atomic and field variables and take the
form [23]

L̂AB[	̂] =
∑

μ

1

2
W21([σ̂−

μ 	̂, σ̂+
μ ] + [σ̂−

μ , 	̂σ+
μ ])

+ 1

2
W12([σ+

μ 	̂, σ̂−
μ ] + [σ+

μ , 	̂σ̂−
μ ])

+ 1

4
γp

([
σ̂ 3

μ, 	̂σ̂ 3
μ

] + [
σ̂ 3

μ	̂, σ̂ 3
μ

])
,

L̂FB[	̂] = 1

2
cκ

∑
k

(1 + n̄)([âk 	̂, â†
k] + [âk, 	̂â†

k])

+ n̄([â†
k 	̂, âk] + [â†

k, 	̂âk]). (2.6)

Here, W21 is the relaxation rate from the excited to the ground
state, W12 is the incoherent pumping rate, and γp = 3γ0 is the
pure dephasing rate. For the field, κ is the absorption rate
during the propagation within the medium and

n̄ = 1

exp
(

h̄ω0
kBTf

)
− 1

(2.7)

is the mean equilibrium photon number in each reservoir
mode of interest with Tf to be the temperature of the field
background reservoir. Note that for a PCF, n̄ will be the closer
to zero the lower are the losses. In that sense n̄, albeit not a
material property, is determined by the quality of the PCF.

If we consider the thermal temperature of the radiative
reservoir for the atoms to be Ta, then

W21 = γ0(1 + n̄a), W12 = γ0n̄a, (2.8)

with the photon occupation number n̄a given by (2.7) with
temperature Ta.

It is customary to define the longitudinal and transverse
damping rates as

γ‖ = W12 + W21, γ⊥ = γp + 1
2γ‖. (2.9)

These coefficients γ‖ and γ⊥ correspond to two different
damping mechanisms, namely, longitudinal (population de-
cay) and transverse (dephasing). In the case of population
decay, the excited atoms have a spontaneous tendency to
decay to the ground state. Since this is a stochastic process,
it randomly breaks the coherence of the light field. Con-
sequently, a spontaneous emission decay would constantly
interrupt the Rabi oscillations. On the other hand, the trans-
verse damping process causes the excited atoms to undergo an
elastic or near-elastic collision, which breaks the phase of the
light pulse without modifying the population of the excited
state. Eventually, the effect of randomizing the phase of the
light field will destroy the Rabi oscillations.

B. Quantum evolution in the slowly varying envelope
approximation

We will assume that only one transverse mode of the op-
tical waveguide is relevant (i.e., other transverse modes are
either not supported by the waveguide or else are not excited
during propagation) and that the transverse mode profile u(r⊥)
is uniform along the length of the fiber. The relevant electro-
magnetic modes are those with the wave vector aligned with
the waveguide axis (which we take as the z axis), and thus we
can define an optical field (scaled to be a Rabi frequency) at
position zl as

�̂(zl ) ≡ 2ig
∑

m

eikmzl âm, (2.10)

where âm are the annihilation operators for modes with fre-
quency ωm and corresponding wave numbers km = m�k,
where �k = 2π/L and L is the quantization length (i.e.,
length of the fiber). We use the index l to refer to grid positions
along the z axis. We further subdivide in transverse directions
to create cells centered at locations r j , each of volume �V =
�A �z, where �A is the cells’ transverse area. The index for
the volume cells j thus includes l for the z grid, together with
other indices for the transverse locations.

We define atomic field operators by adding together opera-
tors for individual atoms in a given spatial cell at r j and within
the frequency band centered at ωm,

R̂3(r j, ωm) ≡ 1

Njm

Njm∑
n

σ̂ 3
jmn,

R̂±(r j, ωm) ≡ 2

Njm

Njm∑
n

σ̂±
jmn, (2.11)

where the atomic index μ = ( j, m, n) has been expanded so
that we can sum over only those atoms satisfying the above
conditions. Note that the number of atoms in each spatiofre-
quency cell can be written as Njm = ρ(r j, ωm)�V �ω, where
the density ρ(r j, ωm) is given in Eq. (2.3).

It can be helpful to consider the Heisenberg equations of
motion for these field operators, in the absence of reservoir
couplings. We start with the original field modes and individ-
ual atomic operators,

d

dt
âm = −iωmâm − ig

∑
μ

σ̂−
μ u∗(r⊥μ)e−ikmzμ,

d

dt
σ̂−

μ = −iωμσ̂−
μ + igσ̂ 3

μu(r⊥μ)
∑

m

âmeikmzμ,

d

dt
σ̂ 3

μ = 2ig
∑

m

[â†
mσ̂−

μ u∗(r⊥μ)e−ikmzμ − âmσ̂+
μ u(r⊥μ)eikmzμ ],

(2.12)

which can be immediately obtained via the standard commu-
tation relations.

Now, we can use these expressions to calculate the time
derivatives of the field operators defined above. For the optical
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field,

∂

∂t
�̂(zl ) � −i

∑
l ′

ω(zl , zl ′ ) �̂(zl ′ )

+ G
∑
j|l,m

�A�ωρ(r j, ωm)u∗(r⊥ j )R̂
−(r j, ωm),

(2.13)

where G = g2L and the function

ω(zl , zl ′ ) ≡ 1

M

∑
m

ωmeikm (zl −z′
l ), (2.14)

with M the number of z bins, describes the dispersive prop-
erties of the waveguide. Here, the notation j|l indicates that
the sum is over all volume elements located at zl . Taking the
continuum limit, we obtain

∂

∂t
�̂(t, z) =

(
−iω0 − c

∂

∂z

)
�̂(t, z)

+ G
∫

ρ(r, ω)u∗(r⊥)R̂−(r, ω) d2r⊥dω,

(2.15)
where we have used a first-order Taylor expansion in the
dispersive term to account for group velocity, ignoring higher-
order dispersive effects.

For the atomic fields, the equations of motion are a little
more straightforward,

d

dt
R̂−(r j, ωm) � − iωmR̂−(r j, ωm)

+ u(r⊥ j )�̂(zl )R̂
3(t, r j, ωm),

d

dt
R̂3(r j, ωm) = − 1

2
[u(r⊥ j )�̂(zl )R̂

+(t, r j, ωm)

− u∗(r⊥ j )�̂
†(zl )R̂

−(t, r j, ωm)], (2.16)

where we have assumed that the frequency band is sufficiently
small so that all atoms within the mth band have the same
resonance frequency ωm. The continuum limit is then

∂

∂t
R̂−(t, r, ω) = − iωR̂−(t, r, ω) + u(r⊥)�̂(t, z)R̂3(t, r, ω),

∂

∂t
R̂3(t, r, ω) = − 1

2

[
u(r⊥)�̂(t, z)R̂+(t, r, ω)

−u∗(r⊥)�̂†(t, z)R̂−(t, r, ω)
]
. (2.17)

The optical and atomic fields can be furthermore trans-
formed to a rotating frame, with the fast optical frequency
ω0 removed, leading to equations for the slowly varying en-
velopes. This will be used in the next section.

C. Dynamics of the positive P distribution

Let us now include the coupling with the reservoirs, but
keeping the same approximations as in the previous sec-
tions that lead to an effective one-dimensional dynamics.
Since a direct numerical simulation of the master equation for
an N two-level atom system is extremely difficult, our strat-
egy is to derive the suitable equations of motion in phase
space. As heralded in the Introduction, we use the positive P
approach [20], which is a normally ordered operator repre-
sentation such that it identifies the moments of 	̂ with the
corresponding c-number moments of a positive P distribution.

In this approach, we have a mapping �̂ ↔ �, �̂† ↔ �†,
R̂± ↔ R±, R̂3 ↔ R3, and, following the standard procedures,
the master equation can then be transformed into an equivalent
Fokker-Planck equation for P(�,�†, R−, R+, R3). This equa-
tion is valid only when the distribution P(�,�†, R−, R+, R3)
vanishes sufficiently rapidly at the boundaries. In practi-
cal applications, it is usually the case that the damping
terms provide a strong bound at infinity on the distribution
function [24].

In terms of these variables, and in the limit of large N , we
get the following set of stochastic equations which serve as
the basis for the simulation,

(
∂

∂z
+ 1

c

∂

∂t

)
�(t, z) = −1

2
κ�(t, z) + G

c

∫
ρ(r, ω)R−(t, r, ω) dr⊥dω + F�(t, z),

∂

∂t
R−(t, r, ω) = −[γ⊥ + i(ω − ω0)]R−(t, r, ω) + u(r⊥)�(t, z)R3(t, r, ω) + F R(t, r, ω),

∂

∂t
R3(t, r, ω) = −γ‖[R3(t, r, ω) − σ SS] − 1

2
[u(r⊥)�(t, z)R+(t, r, ω) + u∗(r⊥)�†(t, z)R−(t, r, ω)] + F z(t, r, ω),

(2.18)

where

σ SS = W12 − W21

W12 + W21
. (2.19)

Equations (2.18) are identical with the usual semiclassical equations for the slowly varying envelope fields [25,26], except for the
presence of the Langevin terms F that describe quantum fluctuations and depend on the bath and nonlinear atom-field coupling,
and are expressed as

F�(t, z) = 2ξα (t, z)

√
Gκn

c
= [F�†

(t, z)]∗,

F R(t, r, ω) = 1√
ρ(r, ω)

{ξ J (t, r, ω)
√

2u(r⊥)�R− + 2ξP(t, r, ω)
√

γP(R3 + 1) + 2ξ o(t, r, ω)
√

W12},

023142-4



QUANTUM SQUEEZING VIA SELF-INDUCED … PHYSICAL REVIEW RESEARCH 6, 023142 (2024)

F R†
(t, r, ω) = 1√

ρ(r, ω)
{ξ J†

(t, r, ω)
√

u∗(r⊥)�†R+ + 2ξP∗(t, r, ω)
√

γP(R3 + 1) + 2ξ o∗(t, r, ω)
√

W12},

F z(t, r, ω) = 1√
ρ(r, ω)

{ξ z(t, r, ω)
√

[2γ‖(1 − σ SSR3) + [R−u∗(r⊥)�† − R+u(r⊥)� − 2W12R+R−]1/2

− [ξ o(t, r, ω)R+ + ξ o∗(t, r, ω)R−]
√

W12}. (2.20)

The terms optical thermal noise ξα (t, z), incoherent pumping noise ξ o(t, r, ω), and collisional dephasing noise ξP(t, r, ω) are
complex, while the photon-atom interaction noises ξ J (t, r, ω), ξ J†

(t, r, ω), ξ z(t, r, ω) are real. The correlation properties are

〈ξα (t, z)ξα∗(t ′, z′)〉 = δ(t − t ′)δ(z − z′),

〈ξ o(t, r, ω)ξ o∗(t ′, r′, ω′)〉 = δ(t − t ′)δ(3)(r − r′)δ(ω − ω′),

〈ξP(t, r, ω)ξP∗(t ′, r′, ω′)〉 = δ(t − t ′)δ(3)(r − r′)δ(ω − ω′),

〈ξ J (t, r, ω)ξ J (t ′, r′, ω′)〉 = δ(t − t ′)δ(3)(r − r′)δ(ω − ω′),

〈ξ J†
(t, r, ω)ξ J†

(t ′, r′, ω′)〉 = δ(t − t ′)δ(3)(r − r′)δ(ω − ω′),

〈ξ z(t, r, ω)ξ z(t ′, r′, ω′)〉 = δ(t − t ′)δ(3)(r − r′)δ(ω − ω′).

(2.21)

Since the equations are derived through a normally ordered
representation, there are bath noise terms associated with de-
phasing (γp) and gain (W12), but not loss (W12). Furthermore,
the gain noise is only present at finite temperatures. In addition
to the bath noise, the positive P method has noise associated
with the atom-field coupling, which is present even for unitary
evolution and corresponds in some sense to shot-noise effects
in the atom-light interaction. In addition, c represents the
speed of light in the fiber, taking into account linear disper-
sion.

III. RESULTS

A. Amplitude squeezing

For the purpose of illustrating the method, we make the
additional simplification that the transverse mode is uniform.
The atomic fields can then also be considered as a function of
z only. To solve the system (2.18) it proves convenient to use
a propagating reference frame moving with the center of the
pulse in the propagation direction z with the velocity vg, and
thus involving a retarded time [27,28] τ = t − z/vg. In this
retarded frame, the first equation in (2.18) becomes
[

∂

∂z
+

(
1

c
− 1

vg

)
∂

∂τ

]
�(τ, z)

= −1

2
κ�(τ, z) + G

c

∫
ρ(z, ω)R−(τ, z, ω)dω + F�(τ, z).

(3.1)

For a coherent field the appropriate initial condition is

P(τ,�,�†) = δ(2)(�∗ − �†)δ(2)[� − E (0, τ )], (3.2)

with E (z, τ ) being the soliton-shaped pulse in the retarded
time frame,

E (z, τ ) = 2A cosh−1 [A(τ − τ0)] exp {i[δτ + φ(z)]},

φ(z) = δ

A2 + δ2
Gρz/c,

(3.3)

where 2A is the pulse amplitude, τ the pulse timing, δ is
detuning, φ(z) is the phase, and vg obeys

1

vg
= 1

c
+ 1

2

Gρ/c

A2 + δ2
. (3.4)

For the atoms initially distributed in the ground state we have
the initial condition

R+ = R− = 0, R3 = −1

2
. (3.5)

We next concentrate on amplitude squeezing, which is
more easily detectable. Therefore, we want to analyze the
fluctuations of the integrated pulse intensity:

M̂(z) ≡
∫

dt�̂†(t, z)�̂(t, z). (3.6)

We work with elapsed time where the pulse envelope can be
assumed to be stationary (i.e., the transit time of the pulse).
Then the equal-space commutation relations of the field oper-
ators (in the interaction picture) are

[�̂(t, z), �̂†(t ′, z)] = 4g2
∑
m,m′

[e−iωmt âm, eiωm′ t ′
â†

m′ ]

= 4g2
∑

m

e−iωm (t−t ′ ), (3.7)

which in the continuum limit becomes

[�̂(t, z), �̂†(t ′, z)] = 4g2

�ω

∫
dωe−iω(t−t ′ ) = 4G

vg
δ(t ′ − t ),

(3.8)
where we have made use of �ω � (dω/dk)�k = 2πvg/L,
with group velocity vg.

Using this relation, we can write the variance of M̂ in terms
of normally ordered quantities. If we notice that

M̂2 =
∫

dtdt ′�̂†(t, z)�̂(t, z)�̂†(t ′, z)�̂(t ′, z)

= :M̂2: + 4G

vg
M̂, (3.9)
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FIG. 2. (a) The normalized absorption of atoms (blue solid line) vs area. When �0 takes values of π and 3π , the pulse leaves the atoms
in the excited state. However, at �0 = 2π and �0 = 4π , the pulse returns back the atoms to the ground state. Looking between the range of
�0 = π and �0 = 2π, or similarly 3π to 4π , atoms are left excited in some extent and the pulse area intensifies toward 2π (or 4π in the latter
range) during the propagation. When the initial area ranges from 2π to 3π , atoms are left again excited but the pulse area shrinks toward 2π

during the propagation. (b) Excess noise as a function of the fiber length for �0 = 1.8π, 1.9π (the inset subplot indicates the growth of the
pulse area during propagation along the fiber). (c) Comparison of the squeezing of two input pulses with initial area 2π and 2.5π during their
propagation into the fiber. In the case of �0 = 2.5π , the amplitude squeezing is plotted in the presence and the absence of damping. The shaded
area around the dashed blue, red, and orange line indicates the uncertainty of the amplitude squeezing in each grid point. (d) Squeezing for
pulses with �0 = 3.1π, 3.2π, 3.3π (the subplot shows the pulse area propagation within the fiber before and after it reaches to the stable area
� = 4π ). We have set the optical pulse duration for 3π < �0 < 2π to be τ = 9.7 ns and for 2π < �0 < 3π to be 99.97 ns. The atom-field
coupling G = 0.001 742 4 s−2 m and the atomic wavelength λ0 = 9956.1 Å are considered. The optical pulse is on resonance, and the atoms
have a homogeneously broadening line shape at zero temperature. The total atom number in the fiber is 108, and the linear optical losses κ = 0.

where : : indicates normal ordering, the variance can thus be
written

Var(M̂ ) = VarP(M̂ ) + 4G

vg
〈M̂〉. (3.10)

Here, VarP(M̂ ) ≡ 〈:M̂2:〉 − 〈M̂〉2 is the normally ordered vari-
ance that can be calculated directly from the positive P
variables.

Note that for a coherent state 〈:M̂2:〉 = 〈M̂〉2 and thus

Varcoh(M̂ ) = 4G

vg
〈M̂〉. (3.11)

Defining, as is usual, the squeezing with respect to the
coherent-state level, we obtain the squeezing ratio

S ≡ Var(M̂ )

Varcoh(M̂ )
= 1 + vg

4G

VarP(M̂ )

〈M̂〉 . (3.12)

The area of a pulse is defined as [29]

�(z) =
∫

�(τ, z)dτ. (3.13)

For a hyperbolic secant soliton �0 = 2π , the pulse shape
remains unchanged during propagation. However, any initial

pulse area �0 that satisfies (m + 1)π > mπ�0 will grow in
area towards (m + 1)π if m is an odd number or it will shrink
in area towards mπ if m is an even number. Figure 2(a) shows
the total absorbed energy by atoms as a function of area.

Since when �0 = 2π the pulse amplitude remains un-
changed, there is no reduction in the fluctuations of the soliton
amplitude. Consequently, no amplitude squeezing occurs. For
pulses π < �0 < 2π , the area will grow until it reaches the
stable value �0 = 2π . This leads to an increase in the ampli-
tude fluctuations leading to no amplitude squeezing, as can be
appreciated in Fig. 2(b).

However, if we consider a pulse with �0 = 2.5π , the pulse
area is not stable during the propagation and it diminishes
towards � = 2π . As a result, the pulse loses energy and leaves
the atoms excited. Our simulation shows that this reduction
in the pulse area results in diminished amplitude fluctuations,
ultimately leading to amplitude squeezing.

Figure 2(c) displays the calculated amplitude squeezing
as a function of fiber length for two different initial pulse
areas. The results reveal a precisely 2π soliton pulse exhibits
no amplitude squeezing during the pulse propagation along
the fiber, whereas a pulse with an initial area of 2.5π un-
dergoes squeezing after propagating a distance of z = 0.4 m,
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FIG. 3. At the top, we show the atomic evolution as both a trajec-
tory of the Bloch vector and as the time evolution of the population
inversion (gray inset). At the bottom the phase-space representation
of the excitation of the pulse is shown: the coherent state before the
interaction (red) and the distorted state after the interaction (pink).
In (a) the initial pulse area is less than 2π and in (b) the pulse area
is larger than 2π . The atomic excitation left behind corresponds to
an attenuation of the light pulse. In (a) larger amplitudes within the
uncertainty region are attenuated less than lower amplitudes resulting
in increased amplitude uncertainty. In (b) the roles are reversed:
Larger amplitudes are attenuated more than lower ones, leading to
squeezing of the amplitude uncertainty.

but before reaching the stable area 2π . The simulation reveals
amplitude squeezing of approximately −4 dB in this case.

In contrast, when the initial area is considered �0 > 3π ,
the pulse area intensifies until it reaches 4π . Hence the pulse
amplitude fluctuations increase, and no squeezing is observed;
see Fig. 2(d). An intuitive picture of these facts can be seen in
Fig. 3.

We can think of the results as a consequence of the pulse
reshaping area. When the pulse area shrinks toward mπ ,
where m is an even number, the fluctuations get squeezed.
On the other hand, when the pulse expands towards mπ , the
fluctuations are antisqueezed.

B. Optimal squeezing

We next examine the effect of the longitudinal damping
γ‖ on the amplitude squeezing. Specifically, we compare the
results when the longitudinal damping is treated as γ‖ = γ0

with the previous scenario where longitudinal damping was
assumed to be zero.

Figure 4 illustrates the optimal squeezing as a function of
the pulse area, both in the presence and absence of longitu-
dinal damping. The error bar on each data point is calculated
from 4000 samples. It is evident that taking into account γ‖
leads to a decrease in the amplitude squeezing. Longitudinal
damping enhances the decay of atoms into the ground state
and this continuous decay process disrupts the Rabi frequency
and contributes to increased amplitude pulse fluctuations, re-
sulting in the reduction of amplitude squeezing observed in
the system. Since the temperature is taken as zero in Fig. 3,
there is no contribution of thermal noise. The remaining

FIG. 4. Optimum squeezing as a function of the initial area of
the input pulse in the presence and absence of longitudinal damping.
The bottom subplots indicate the evolution of squeezing for pulses
with the initial area 2π , 2.3π , and 2.8π . The blue curves are in the
absence of the longitudinal damping while the red curves capture the
effect of the damping. The transparent shaded color shows the un-
certainty of the achieved squeezing from 4000 samples in each grid
point. The longitudinal damping rate is taken to be γ‖ = 5.013 kHz,
while temperature is kept at zero. The pulse duration τ = 99.97 ns
and the atomic properties are the same as in Fig. 2.

sources of noise originate from the dipole-field interaction and
spontaneous emission.

Looking at Fig. 2(a), the pulse energy loss has its maximum
at �0 = 3π , the incident pulse with �0 = 3π undergoes the
greatest reshaping before it reaches to the stable area, �0 =
2π . Consequently, starting with a pulse with �0 = 3π results
in the most pronounced reduction of amplitude fluctuations,
and eventually leading to the squeezing dip.

Furthermore, the effect of damping on the optimum
squeezing for each pulse is shown in the subplots in Fig. 3.
The three subplots indicate the squeezing in the presence and
absence of longitudinal damping within the fiber for �0 =
2π , �0 = 2.3π , and �0 = 2.8π . Comparing the two pulses
with �0 = 2.3π and the other with an area of 2.8π , the pulse
with 2.3π reaches the stable area sooner. As a result, the
optimum squeezing (Sopt) occurs over a shorter distance for
the 2.3π pulse, as illustrated in Fig. 4.

It is interesting to check the minimum length required for
a pulse to reach its soliton power. This is shown in Fig. 5 for
a pulse of duration τ = 99.77 ns. We can appreciate that this
length is fairly independent of the longitudinal damping and
increases quadratically with the initial pulse area �0.

Figure 6 illustrates the effect of detuning on amplitude
squeezing. The simulation concludes that the small detunings
have little effect on the squeezing. Only for large detuning do
we observe a significant decrease in squeezing.

In Fig. 7, the impact of temperature on the squeezing is
examined, for the particular case of a pulse with �0 = 2.8.
All sources of noise, including thermal noise and sponta-
neous emission, are taken into account. In addition, atoms
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FIG. 5. Minimum length required for the pulse to reach a soliton
power, as a function of the initial area. The pulse duration is τ =
99.73 ns and the atomic properties are the same as those presented in
Fig. 2.

experience a Doppler broadening as the temperature in-
creases. In terms of β = h̄ω0/kBT , where ω0 = 8.218 84 ×
1014 Hz, the highest squeezing occurs within the range β =
2–6 × 107, which corresponds to temperatures in the range of
microdegrees Kelvin. Note that the data set is not optimized:
Depending on the system parameters, such as the number of
atoms and pulse characteristics, one might achieve different
optimal regimes for the amplitude squeezing.

The effect of a small spontaneous emission rate on the
amplitude squeezing exhibits a resemblance to the impact of
damping. Figure 8 illustrates the optimal squeezing achieved
for various strengths of γ0. In the weak γ0 regime, a squeezing
level of −4 dB is attained. The inset in Fig. 8 illustrates how
squeezing evolves concerning γ0 along the fiber. Within the
weak γ0 strength regime, the highest amplitude squeezing
occurs towards the fiber’s end. There are two primary reasons
for this. First, weak γ0 results in a smaller coupling strength,
causing the pulse to move more slowly through the medium.
Second, this condition also reduces the medium’s noise level.

FIG. 6. Amplitude squeezing for detuned optical pulses length as
a function of the distance z. The subplot gives the optimum value
of squeezing for each one of the detunings marked in the inset.
The pulse duration is τ = 0.002 ns with the initial area �0 = 2, the
atomic wavelength λ0 = 3650.15 Å, the spontaneous emission rate
γ0 = 0.0889 GHz, and the linear optical losses κ = 0.

FIG. 7. Density plot of the squeezing as a function of the tem-
perature (in units of β) and the distance for an optical resonant
pulse with τ = 99.97 ns and initial area �0 = 2.8. The atoms are de-
tuned by �ωDoppler with an inhomogeneously broadening line shape.
The atomic wavelength λ0 = 9956.1 Å, the atom-field strength is
G = 0.001 742 4 s−2 m, and due to the short fiber length and short
pulse duration, we assume the linear optical losses to be κ = 0. The
squeezing is calculated over 2000 samples in this data set.

However, in the moderate regimes, the squeezing significantly
diminishes.

IV. CONCLUDING REMARKS

Resorting to the formalism of the positive P function, we
have developed a full quantum model of SIT that has allowed
us to characterize the dynamic behavior of amplitude squeez-
ing. Our investigation encompassed both the influence of the
thermal and quantum noise. Our results demonstrate a strong
dependence of amplitude squeezing in SIT solitons on both
the initial pulse area and the absorbed energy. Furthermore,
we have shown that damping can noticeably diminish squeez-
ing, even when temperature effects are negligible. However

FIG. 8. The impact of spontaneous emission rate γ0 on the ampli-
tude squeezing is shown. The plot displays the optimum value of the
amplitude squeezing (Sopt) achieved from 2000 samples for a range
of γ0 between 0.6 to 1.0 kHz. The subplot indicates the evolution of
squeezing within the fiber for each γ0. The initial area of the input
pulse is set to be 2.3π . The thermal noise is kept zero.
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the primary detrimental impact arises from the thermal noise,
leading to a complete suppression of squeezing.

Due to the potential of SIT for generating pulse-squeezed
states, it has found applications in numerous areas of quantum
optics, such as quantum nondemolition measurements [30]
or information storage [31]. Optical cooperative phenomena,
such as SIT, exhibit specific features that provide the ground
for addressing fundamental problems in modern quantum
information. The progress in ultrashort pulse measurements
[32–34] makes SIT a good candidate for the development of
high-precision photonic technologies [35].

Nonetheless, gas-filled hollow-core fibers also present
challenges and potential drawbacks. The process of filling
the fiber with a suitable gas is notably complex. One spe-
cific concern involves alkali vapors, which have a not well
understood tendency to bind with and diffuse into the glass.
This makes it challenging to load the fibers and to maintain
a permanent high vapor pressure inside the core. However,
the Joly group [36] has reported successful mitigation of
this issue in their work. Moreover, as is true for all rela-
tively pure quantum states, the performance of systems in
such states is susceptible to environmental influences, with
temperature fluctuations and vibrations posing significant
threats. External perturbations have the potential to disrupt
the stability and coherence of the squeezed light. This intro-
duces some complexities in maintaining the desired quantum
properties.

The technological usage of single-mode or two-mode
squeezed (entangled) quantum properties of light to enhance
the performance of optical systems, depends on the details of
parameters such as degree of squeezing, optical bandwidth,

noise bandwidth, and the wavelength range. The details of the
generation process are immaterial for that purpose. Therefore,
it is important to study the various squeezed-state genera-
tion schemes in order to understand which parameter is best
achieved with which generation scheme. Squeezing by SIT is
one that is relevant for these generation schemes.

In summary, experimentally observing squeezing effects
in self-induced transparency (SIT) solitons is feasible, par-
ticularly by utilizing ultrashort pulses with durations shorter
than the characteristic timescales of the involved atoms. Mer-
cury atoms, previously employed within hollow-core fibers
[14], are a viable candidate due to their resonant proper-
ties. However, the short wavelength of mercury necessitates
the use of ultrashort pulses for efficient excitation. Alterna-
tively, alkali atoms possess longer wavelengths than mercury,
making them attractive candidates if one overcomes the men-
tioned challenges. In future studies, we aim to investigate
the essential conditions utilizing alkali atoms and mercury
atoms.
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