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Today’s mechanical sensors are capable of detecting extremely weak perturbations while operating near the
standard quantum limit. However, further improvements can be made in both sensitivity and bandwidth when
we reduce the noise originating from the process of measurement itself—the quantum-mechanical backaction
of measurement—and go below this ‘standard’ limit, possibly approaching the Heisenberg limit. One of the
ways to eliminate this noise is by measuring a quantum nondemolition variable such as the momentum in a
free-particle system. Here, we propose and characterize theoretical models for direct velocity measurement that
utilize traditional electric and magnetic transducer designs to generate a signal while enabling this backaction
evasion. We consider the general readout of this signal via electric or magnetic field sensing by creating toy
models analogous to the standard optomechanical position-sensing problem, thereby facilitating the assessment
of measurement-added noise. Using simple models that characterize a wide range of transducers, we find that
the choice of readout scheme—voltage or current—for each mechanical detector configuration implies access
to either the position or velocity of the mechanical subsystem. This in turn suggests a path forward for key
fundamental physics experiments such as the direct detection of dark matter particles.

DOI: 10.1103/PhysRevResearch.6.023141

I. INTRODUCTION

The ability of the state-of-the-art quantum sensors to mon-
itor the position of objects with high precision [1,2] has driven
tremendous advances in fundamental physics, particularly in
the first detection of gravitational waves [3]. Recently there
has been renewed interest in the use of momentum measure-
ment [4,5] for ultrasensitive force detection, specifically for
the purposes of dark matter detection [6]. Approaches for
monitoring or measuring particulate dark matter by observing
changes in the momentum of test particles, such as those being
considered by the Windchime collaboration [7,8], represent a
key motivation to explore and develop impulse metrology for
broadband force sensing.

The measurement of weak forces generally requires the
transduction of the induced motion of a system into an electri-
cal or optical signal. Thus, estimating such forces is limited
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by both technical issues, such as thermal noise and instru-
mental noise, but also by the noise limits arising from the
act of measurement itself [1]. This is usually characterized
by the standard quantum limit (SQL), which places a lower
bound on how precisely the conjugate variables of a system
can be measured. Recently, efforts to get beyond the SQL
with mechanical sensors have yielded substantial successes,
in part by reducing or removing the effects of measurement
backaction [2,4,9–13]. For practical or fundamental applica-
tions, including gravitational wave detection [1,4,13,14] and,
more recently, the detection of potential dark matter candi-
dates [6,7,15], the ability to measure beyond the SQL may
also be paired with the need to do so over a wide range of
signal frequencies, as in the case of broadband signals from a
black hole in-spiral or the case of signals from rapidly moving
particulate dark matter.

With these interests in mind, a particular opportunity
emerges for going beyond the SQL: quantum nondemoli-
tion (QND) measurement. The simplest example occurs when
measuring a free particle, or a harmonic oscillator well above
its resonance frequency: measurements of momentum at dif-
ferent times commute, even when accounting for the evolution
of the system, and thus backaction can be pushed into the
position variable without it disturbing subsequent measure-
ments, thereby circumventing the SQL [1,16]. In practice, the
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FIG. 1. (a) Schematic representation of the magnetomechanical transducer, consisting of a structured magnetic mass m suspended by a
spring with spring constant k. In the cross section, the radial magnetic field in the air gap experienced by the coil is indicated in green. The
lumped-element detector circuit for the magnetomechanical case is shown in (b), where the magnetomechanical element of (a) is modeled as
an inductor L threaded by an external flux �ext = Tvx (shown in green) dependent on the position of the magnetic mass. Sign conventions for
analysis are indicated as well as the reference ground node and node variables Q, �. (c) Schematic representation of the electromechanical
transducer, including the electric field (dark blue) between the charged plates of the mechanical capacitor consisting of a movable plate of
mass m and charge −Qb

C connected to a fixed plate of charge +Qb
C by a spring with spring constant k. Equilibrium distances are indicated

for reference. In (d), the electromechanical element of (c) is depicted in a lumped-element detector circuit via the capacitance C(x). Sign
conventions for analysis are indicated as well as the reference ground node and node variables Q, �. In (e), we indicate the relative scale of
frequencies in the system for our chosen parameters, including that of the to-be-incorporated parametric cavities (see Fig. 2). The input force
on the test masses is indicated in red, resulting in the broad sensing region indicated by the red shaded region.

canonical momentum of a combined probe and mechanical
system is not a QND variable [5]. Nevertheless, measurement
of the mechanical subsystem’s momentum, rather than its po-
sition, can provide a significant reduction of the measurement
backaction.

In this work, we explore options to transduce a force signal
to an electrical signal, enabling measurement using a paramet-
ric cavity in the microwave or optical regime (Fig. 1), a typical
paradigm from the optomechanics and electromechanics com-
munity [17–22]. In contrast to most work in the field, here
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we are focused on broadband frequency signals (impulses
delivered over very short times), typically well above the
mechanical resonance [as indicated in Fig. 1(e)], and thus
seek to exploit the QND opportunities such measurements
enable. Our detailed examination reveals that the mechani-
cal variable (position or momentum) accessed is dependent
on the chosen measurement readout of the electrical system:
via charge or flux. This indicates two different approaches
for broadband backaction-evading measurement transduced to
the microwave domain. Of specific interest in our case is lever-
aging the intuition of Faraday’s law—that velocity creates a
voltage—to find a magnetomechanical scheme that utilizes
a traditional voice coil, which is used in dynamic micro-
phones and loudspeakers [23,24]. We find QND measurement
of velocity occurs when this coil’s voltage is measured
rapidly. Surprisingly, we also find that for an electromechan-
ical detector, such as a variable-position capacitor used in
a condenser microphone [23–26], we also can get backac-
tion evasion by rapid measurement of the current from the
microphone.

We remark that there are other electrical measurement ap-
proaches, such as DC current or voltage measurement, that
can in principle allow direct velocity measurements to be
naturally implemented without the use of a parametric cavity.
However, there are a variety of technical challenges in achiev-
ing the SQL with DC current or voltage measurement. We also
note that compared to the optical domain, electrical systems
overall offer a more energy efficient readout by operating
in the microwave regime. As a consequence, far less power
is required to interrogate a system’s sensors and achieve a
SQL-level resolution [27–30].

This paper is organized as follows. In Sec. II, we introduce
and explore two detector configurations that utilize different
electrical transducers: a magnetomechanical detector scheme
and an electromechanical detector scheme. The general read-
out of a transduced electrical signal is considered in Sec. III,
by using a parametric cavity for either electric field or mag-
netic field sensing. This creates an optomechcanical analog
that enables the use of standard techniques from optome-
chanics. In Sec. IV, we assess measurement-added noise and
consider an example signal, comparing the four cases given
by the combination of the two detector schemes presented in
Sec. II and the two readout options discussed in Sec. III. We
conclude and discuss the implications of our results in Sec. V.

II. TRANSDUCERS

A. Magnetomechanical detector scheme

We begin by examining the magnetomechanical trans-
ducer and detector scheme shown in Figs. 1(a) and 1(b),
respectively, which operate as a consequence of Faraday’s
law [31,32]. This fundamental principle of electromagnetism
describes the voltage generated when a time-varying magnetic
flux threads a conducting loop. This allows us to first consider
the magnetomechanics of the transducer and establish the
transducer constant before deriving the Hamiltonian describ-
ing the total detector scheme. A review of Faraday’s law and
its application in the example we consider can be found in
Appendix A.

The magnetomechanical transducer we consider, shown
in Fig. 1(a), consists of two main elements: a magnetic test
mass and a pick-up coil. We take the pick-up coil to be su-
perconducting so as to neglect any internal dissipation. The
mass is attached to a spring with spring constant k. The
test mass is a cylindrical magnetic structure of mass m that
contains an annular air gap at a radius R through the length
of the cylinder, as shown in the cross-section in Fig. 1(a).
This magnetic mass is arranged such that within the air gap
a uniform radial magnetic field B = Br r̂ is maintained. Em-
bedded within the air gap is a pick-up coil of radius R and
turn number N . This is known as the voice-coil configuration,
common to dynamic microphones and loudspeakers [23,24].
This transducer allows for a simple closed-form expression for
the induced voltage, which due to the uniform field, is purely
velocity-dependent, as we now show.

We consider an impulse which causes the magnetic mass to
move with a velocity v = −vẑ. For velocities much less than
the speed of light, it is both equivalent and convenient to com-
pute the voltage in the rest frame of the magnet, rather than the
rest frame of the voice coil (as in our detection scheme). In the
rest frame of the magnet, the voice coil moves with velocity
v = vẑ, experiencing the magnet’s uniform magnetic field
B = Br r̂ and no electric field (E = 0). We then use Faraday’s
law to calculate the induced voltage across the voice coil to be

ε = 2πNRBrv = Tvv. (1)

We note that this induced voltage is proportional to velocity
via the transducer constant Tv = 2πNRBr , which is simply
the product of the length of wire used in the voice coil and the
magnetic field. Through this constant, the mechanical motion
of the magnetic test mass is transduced to a voltage, which
may be read out electrically.

The magnetomechanical detector scheme, shown in
Fig. 1(b), is a parallel LC-circuit that models the transducer
as an inductor with inductance L threaded by an external
flux �ext, due to the interaction between the voice coil and
magnetic test mass of the transducer, with the capacitance
CL in parallel. We then employ the usual techniques for cir-
cuit quantization [33] to come to a Hamiltonian description
of the magnetomechanical detector scheme that includes the
mechanical motion. This derivation and its associated de-
tails can be found in Appendix B. The coupling between
the mechanics and the circuit occurs via the presence of the
position-dependent external flux �ext = Tvx, where we iden-
tify �̇ext with the induced voltage ε in Eq. (1) and x with the
position of the test mass.

We first consider a simplified case, treating �ext as only a
time-dependent external flux. This leads to two distinct gauge
descriptions of the circuit that differ in how they couple to the
external flux: one to its time-derivative (a voltage) via a term
Q�̇ext and the other to the external flux via a term ��ext/L,
where Q and � correspond to the circuit’s degrees of free-
dom. Upon promoting the degrees of freedom to quantum
operators Q̂ and �̂, which satisfy the commutation relation
[Q̂, �̂] = −ih̄, we see that these two equivalent descriptions
are related by a time-dependent gauge transformation given
by the unitary:

Û = e−iQ̂�ext/h̄. (2)
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We note that recent work [34–37] has focused on the term
Q�̇ext of the first gauge, exploring other equivalent descrip-
tions that eliminate its necessity. In contrast, we focus on
both of these gauge choices to highlight and compare how
the two gauges couple the circuit to the mechanical degrees of
freedom.

Incorporating the mechanical degrees of freedom intro-
duces the canonical momentum p into the Hamiltonian.
Importantly, p is not necessarily the mechanical momentum
mẋ; the gauge choice determines whether or not this is the
case. In particular, in the first gauge, p = mẋ + CLTv (�̇ +
Tv ẋ). In the second gauge, p = mẋ. As before, upon promot-
ing the degrees of freedom to operators where [Q̂, �̂] = −ih̄
and [ p̂, x̂] = −ih̄, we find these two equivalent descriptions
are now related via a more general unitary (gauge) transfor-
mation

Û = e−iTvQ̂x̂/h̄. (3)

Altogether, we find the Hamiltonians

Ĥ (E ,v)
1 = p̂2

2m
+ 1

2
kx̂2 − Tv

m
Q̂p̂ + Q̂2

2

(
1

CL
+ T 2

v

m

)
+ �̂2

2L
(4)

and

Ĥ (E ,v)
2 = p̂2

2m
+ 1

2
kx̂2 + Q̂2

2CL
+ (�̂ − Tv x̂)2

2L
, (5)

where Q̂ and p̂ are the canonical node charge and momentum
conjugate to the node flux �̂ and position x̂, respectively. With
only the capacitance CL connected to the node, Q̂ directly
corresponds to the charge on this capacitor’s plates. The sub-
scripts in Eqs. (4) and (5) enumerate the two gauge choices in
this detector scheme, while the superscripts indicate the read-
out scheme (explored in Sec. III) and detector configuration.

Examination of Eqs. (4) and (5) reveals an interesting
feature of this detector configuration: equivalent descriptions
contain different couplings to the mechanical degrees of free-
dom. In the first gauge, the voice coil and its mechanics are
coupled through momentum and charge, while in the second
gauge, position and flux are coupled. We account for both of
these gauge descriptions in the magnetomechanical case as we
consider the different readout schemes in Sec. III. However,
these different gauges are equivalent descriptions and do not
yield any differences in performance, as discussed in Sec. IV.

B. Electromechanical detector scheme

In contrast to the magnetomechanical configuration, an
electromechanical detection scheme is governed by electro-
static principles. In this case, we begin with the Hamiltonian
description and leverage this understanding to establish how
mechanical motion translates to an electrical signal. We con-
sider the electromechanical transducer and detector scheme
shown in Figs. 1(c) and 1(d), respectively. The electromechan-
ical transducer consists of two oppositely charged plates with
charge ±Qb

C connected by a spring with spring constant k.
This forms a capacitor with one fixed plate and one movable
plate of mass m whose capacitance is a function of the position
of the movable plate, namely, C(x) = ε0A

d0−x . We take the area

of the plates A to be much larger than their uncharged equi-
librium separation d0. As the massive plate moves due to an
impulse, the capacitance changes, thereby altering the charge
on the plates and the voltage across them. In the language of
fields, as the plate moves, the uniform electric field between
the plates changes strength. These are the working principles
behind condenser microphones [23–26].

We consider such a mechanically varying capacitor in the
detector circuit shown in Fig. 1(d). In addition to the capac-
itance C(x), this circuit consists of a voltage source VDC in
series to charge the capacitor, in parallel with a large inductor
L and its parasitic capacitance CP. We then employ the usual
techniques for circuit quantization [33] to come to a Hamil-
tonian description of the detector circuit. Due to the inverse
dependence on position in the capacitance C(x), the coupling
between the circuit and mechanical degrees of freedom is
nontrivial in form. However, we can linearize the coupling by
considering impulses that amount to only small displacements
from equilibrium. Details of this derivation can be found in
Appendix B.

In total, we come to a linearized Hamiltonian of the form

Ĥ (E ,x) = p̂2

2m
+ 1

2
keff(x̂ − x0)2 − Tx

CP
(Q̂ − Q0)(x̂ − x0)

+ (Q̂ − Q0)2

2Ceff
+ �̂2

2L
+ V (Q0, x0), (6)

where Q̂ and p̂ are the canonical node charge and canonical
momentum, which are conjugate to the node flux �̂ and posi-
tion x̂, respectively. In this case, Q̂ corresponds to the sum of
the charge on the plates of the two capacitors connected to the
node, while p̂ is the mechanical momentum of the movable
plate. We define the effective capacitance as Ceff = C(x0) +
CP and the effective spring constant to be keff = k − CeffT 2

x
C(x0 )CP

.
The point {Q0, x0} corresponds to the equilibrium node charge
and position when the plates are charged. While the distance
d0 corresponds to the separation of the plates when uncharged,
as the plates charge, the plate separation decreases as elec-
trostatic attraction shifts the position of the movable plate
closer to its counterpart. This equilibrium point corresponds
to the position where the force of electrostatic attraction and
the restorative force of the spring exactly balance, and is a
function of the spring constant k, the voltage bias VDC, and the
geometry of C(x), namely, the area A and plate separation d0.
We define the energy associated with this equilibrium charge
and position configuration as V (Q0, x0), whose functional
form is given in Appendix B.

Importantly, this linearization procedure enables us to de-
fine the transducer constant Tx in this system:

Tx = CP
(Q0 − CPVDC)

ε0A

(
C(x0)

Ceff

)2

, (7)

which characterizes how changes in the position x of the mov-
able plate result in changes of the charge on the mechanically
varying capacitor’s plates ±Qb

C , i.e.,

Qb
C ≈ C(x0)

Ceff
(Q − CPVDC) + Tx(x − x0). (8)
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(c)

(a) (b)

FIG. 2. (a) Schematic representation of the configuration for voltage measurement via electric field sensing using a parametric cavity (such
as a rf-SET) with a resonance frequency that depends on the electric field E (indicated in dark blue) inside a capacitor of each detector circuit.
(b) Schematic representation of the configuration for current measurement via magnetic field sensing using a parametric cavity (such as a
resonator terminated with a DC SQUID) with a resonance frequency that depends on the magnetic field B (indicated in green) generated by an
inductor LM connected to each detector circuit. We show here that the parametric cavity readout depends on the electric field or the magnetic
field and is naturally gauge invariant. In (c), we provide a visual table showing the different combinations of measurement schemes and detector
configurations considered in the main text, including small blue and green ovals representing the cavities to indicate which circuit elements
interact with the parametric cavities in each case as well as a labeling of which schemes access the mechanical position or velocity.

With this description, it is clear that the charge on the plates of
the capacitor is sensitive to the position of the movable plate
while the current through the mechanically varying capacitor
is sensitive to the velocity:

ib
C = Q̇b

C ≈ C(x0)

Ceff
Q̇ + Txẋ. (9)

From Eqs. (8) and (9), we see how the position of the movable
plate affects the charge (and by extension, the voltage) on
the mechanically varying capacitor and how the motion of
the plate results in a current. Together with Eq. (6), these
equations characterize the behavior and response of the elec-
tromechanical transducer shown in Fig. 1(c).

Up until this point, we have focused on the detector config-
urations and the corresponding electrical signals produced as
a result of the motion of a test mass. In the following section,
we shift our attention to the measurement of this signal by
considering various readout schemes.

III. IDEALIZED RECEIVERS

Our interest lies in the measurement-added noise associ-
ated with each detector scheme, in which a mechanical signal
of interest is transduced to an electrical one. In this section, we
consider readout schemes to access the mechanical degrees of
freedom via the detector circuits’ degrees of freedom. Because
measurement-added noise in optomechanical systems is well
understood, we imagine reading out the degrees of freedom
of the detector circuits using a parametric cavity whose fre-
quency depends on the electric or magnetic fields generated
in each detector circuit, as shown in Fig. 2. This parametric
cavity approach is exemplified by the rf-SET (radio-frequency
single-electron transistor) [38], a Cooper-pair box connected
to a resonant circuit where variations in the local electric
field change the circuit properties and can be detected in
reflectometry. Thus our approach amounts to a measurement
of the mechanically generated electrical signal as a voltage
via the electric field of a capacitor or a current via the mag-
netic field of an inductor. As such, we consider voltage and
current readout schemes for both the magnetomechanical and
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electromechanical detection schemes of Sec. II, including the
two gauge descriptions outlined in Sec. II A.

We note again that in practice, there are methods for
reading out the degrees of freedom of an electrical circuit
which may be more direct, such as using a Cooper-pair box
or a superconducting quantum interference device (SQUID)
[39–48]. However, this Gedankenexperiment serves as a
useful scaffolding for us to develop our understanding of
measurement-added noise in electrical systems.

A. Electric field sensing

To access a detector circuit’s voltage, we consider mea-
suring the electric field across a capacitor using a parametric
cavity sensitive to electric fields, as indicated in Fig. 2(a)
and the left column of Fig. 2(c), and exemplified in a rf-SET
[38] or similar device from circuit quantum electrodynamics
(circuit QED) [39–42] in the microwave domain. We then
imagine the parametric cavity to have a resonance frequency
that depends on the electric field of a capacitor coupled to the
cavity. For a parallel plate capacitor, we express the electric
field in terms of the charge on the plates Qb and their area
A, or in terms of the voltage across the plates vb and their
separation d ′: E = Qb

ε0A = vb

d ′ . Here, Qb and vb refer to the
branch charge and branch voltage of the capacitor, which are
unique to each detector configuration. We use the superscript
b to denote branch variables throughout the text; this is to
distinguish from other variables, such as velocity v, present in
our analysis. Branch variables and their role in circuit analysis
are discussed in Appendix B.

In the magnetomechanical detector configuration, we take
the parallel capacitance CL as the capacitor coupled to the
parametric cavity. As described in Sec. II A, the charge on this
capacitor’s plates corresponds to the node charge Q. One can
also confirm, using Appendix B, that the voltage across the
capacitor, vb

CL
= �̇b

CL
= −Q/CL, is gauge-independent.

Therefore, in both gauges, we express the electric field in
terms of the degrees of freedom of the circuit as

E v = − Q

ε0A
= − Q

CLdL
, (10)

where we have taken CL = ε0A
dL

with dL the separation of the
plates.

In the electromechanical case, we take the mechanically
varying capacitor C(x) to be the capacitor coupled to the
parametric cavity. To express the electric field in this capacitor
in terms of the degrees of freedom of the circuit, we use
the linearized expression for the charge on the plates of the
capacitor C(x), given by Eq. (8). This yields an approximate
expression for the electric field of the form

Ex ≈ C(x0)

Ceff

(Q − CPVDC)

ε0A
+ Tx

ε0A
(x − x0), (11)

and ensures a linear coupling of position to the cavity for small
displacements.

We then incorporate the parametric cavity into the Hamil-
tonian description from Sec. II, given by Eqs. (4)–(6). The
cavity Hamiltonian takes the usual form

ĤE
cav = h̄ω(E )â†â, (12)

where â†, â are the creation and annihilation operators of the
cavity mode that satisfy the commutation relation [â, â†] =
1 and ω(E ) is the resonance frequency of the cavity that
depends on the electric field E . To generate the usual optome-
chanical coupling, we expand ω(E ) about some equilibrium
field value E0:

ω(E ) = ω(E0) + ηE (E − E0) + · · · , (13)

where we define the cavity’s sensitivity to electric fields ηE =
dω(E )

dE |E=E0 . We then make the substitutions for E v and Ex

from Eqs. (10) and (11) and truncate at linear order to define
the cavity frequencies

ω(E v ) = ω
(E ,v)
0 − g(E ,v)

Q Q̂ (14)

and

ω(Ex ) = ω
(E ,x)
0 + g(E ,x)

Q Q̂ + gxx̂, (15)

where we define the coupling constants g(E ,v)
Q = ηE

CLdL
, g(E ,x)

Q =
ηEC(x0 )
Ceffε0A , and gx = ηE Tx

ε0A . We have also defined the rescaled

cavity frequencies ω
(E ,v)
0 = ω(E v

0 ) − ηE E v
0 and ω

(E ,x)
0 =

ω(Ex
0 ) − ηE Ex

0 − g(E ,x)
Q CPVDC − gxx0.

Altogether, we write the cavity Hamiltonian in Eq. (12)
for the magnetomechanical and electromechanical detector
configurations as

Ĥ (E ,v)
cav = h̄ω

(E ,v)
0 â†â − h̄g(E ,v)

Q Q̂â†â (16)

and

Ĥ (E ,x)
cav = h̄ω

(E ,x)
0 â†â + h̄

(
g(E ,x)

Q Q̂ + gxx̂
)
â†â, (17)

respectively, where in both cases, we have generated the
coupling between the cavity and the circuit, akin to the op-
tomechanical treatment.

B. Magnetic field sensing

For current measurement via magnetic field sensing, we
exploit the magnetic fields generated by the current flow-
ing through an inductor and read out the magnetic field
using a magnetic-field sensitive parametric cavity, as shown
in Fig. 2(b), and exemplified by a microwave transmission
line resonator terminated with a DC SQUID [43–48]. In this
case, we take the parametric cavity to be characterized by a
resonance frequency dependent on the magnetic field of a cou-
pled inductor, adding a parallel inductance LM to the circuits
considered thus far, as shown in the right column of Fig. 2(c).
We choose this inductance such that LM < L in order for
this additional inductor to act as a relatively low-impedance
element for current to flow through.

Noting that the motion of the test masses will alter the cur-
rent through the inductor LM , thereby changing the magnetic
field it generates, we consider the expression of this magnetic
field in terms of circuit quantities. For a long solenoid,

B = μnib
LM

= μn�b
LM

LM
, (18)

where μ is the magnetic permeability of the material making
up the core of the inductor and n is its turn density. The current
flowing through the inductor ib

LM
is expressed in terms of its

branch flux �b
LM

in the usual way. We note that expressing the
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branch flux in terms of circuit degrees of freedom is dependent
on the detector configuration, and in the magnetomechanical
case, also dependent on the gauge choice. This necessitates
some care in expressing �b

LM
in terms of the circuit degrees of

freedom.
One can perform an analogous treatment of the current

measurement circuits in Fig. 2(c), following the procedures
in Appendix B, and confirm that in the magnetomechanical
case, the first gauge yields �b

LM
= −(� + Tvx) and the sec-

ond gauge yields �b
LM

= −�, while in the electromechanical
case �b

LM
= �. The associated Hamiltonians are equivalent to

their voltage counterparts except for the addition of an induc-
tive term, (�b

LM
)2/2LM . For the magnetomechanical detector

scheme, the Hamiltonians for each gauge are

H (B,v)
1 = H (E ,v)

1 + (� + Tvx)2

2LM
(19)

and

H (B,v)
2 = H (E ,v)

2 + �2

2LM
. (20)

In the electromechanical case,

H (B,x) = H (E ,x) + �2

2LM
. (21)

To include the parametric cavity, we proceed analogously
to the voltage measurement case, exchanging ω(E ) for ω(B)
and remaining mindful of the various expressions of the mag-
netic field appropriate for different detector configurations and
gauges. We then find the cavity Hamiltonians appropriate for
each gauge in the magnetomechanical detection scheme to be

Ĥ (B,v)
cav,1 = h̄ωB

0 â†â − h̄gB(�̂ + Tv x̂)â†â (22)

and

Ĥ (B,v)
cav,2 = h̄ωB

0 â†â − h̄gB�̂â†â, (23)

where we have defined the coupling constant gB = ηBμn
LM

, the
rescaled resonance frequency ωB

0 = ω(B0) − ηBB0, and the
cavity’s sensitivity to magnetic fields ηB = dω(B)

dB |B=B0 . Sim-
ilarly, we find the cavity Hamiltonian

Ĥ (B,x)
cav = h̄ωB

0 â†â + h̄gB�̂â†â (24)

for the electromechanical case.

C. Exploiting the optomechanics analogy

To consider the measurement-added noise in these toy
models, we incorporate a drive to probe the parametric cav-
ities. We follow the usual formulation for optomechanical
systems [49–51] to include the drive and model the noise
associated with quantum fluctuations of the vacuum. Details
of this analysis can be found in Appendix C. Altogether, we
arrive at the Hamiltonians for voltage and current measure-
ment in both the magnetomechanical and electromechanical
detection schemes, accounting for the two gauges in the mag-
netomechanical case.

For voltage measurement in the magnetomechanical case,
we obtain the Hamiltonian

Ĥ ′(E ,v)
i = −h̄�â†â−h̄G(E ,v)

Q Q̂X̂ + Ĥ (E ,v)
i + ĤB + Ĥint, (25)

where i = 1, 2 for the two gauge choices. We have defined
the detuning � = ωL − ω

(E ,v)
0 with ωL the drive frequency,

while the Hamiltonians ĤB and Ĥint describe those of the
bath and the bath-cavity coupling, respectively, as defined
in Appendix C. Relevant constants have been collected to
define G(E ,v)

Q = √
2αg(E ,v)

Q , with α corresponding to the drive
strength. Similarly, in the electromechanical case the Hamil-
tonian is

Ĥ ′(E ,x) = − h̄�â†â + h̄
(
G(E ,x)

Q Q̂ + Gxx̂
)
X̂

+ Ĥ (E ,x) + ĤB + Ĥint, (26)

where G(E ,x)
Q = √

2αg(E ,x)
Q and Gx = √

2αgx. In both detector
schemes, we take the drive strength α to be real, enabling the
cavity-circuit coupling to be written in terms of the amplitude
quadrature of the cavity, X̂ = (â + â†)/

√
2. We note there is

no loss of generality with this choice of α; taking α to be
purely imaginary yields a circuit-cavity coupling that goes
instead as the phase quadrature of the cavity, Ŷ = −i√

2
(â − â†).

For current measurement in each of the detector configura-
tions and gauges, we find the Hamiltonians

Ĥ ′(B,v)
1 = −h̄�â†â−h̄GB(�̂ + Tv x̂)X̂ + Ĥ (B,v)

1 + ĤB + Ĥint,

(27)

Ĥ ′(B,v)
2 = −h̄�â†â−h̄GB�̂X̂ + Ĥ (B,v)

2 + ĤB + Ĥint, (28)

and

Ĥ ′(B,x) = −h̄�â†â+h̄GB�̂X̂ + Ĥ (B,x) + ĤB + Ĥint, (29)

where here we have defined the coupling constant GB =√
2αgB.
In what follows, we use the Hamiltonians in Eqs. (25)–(29)

to find and solve the Heisenberg-Langevin equations, enabling
the assessment of noise sensitivities.

IV. COMBINATIONS OF TRANSDUCERS AND RECEIVERS

We now turn our attention to measurement and the con-
sequences of different transducer and receiver combinations,
given by the Hamiltonians in Eqs. (25)–(29). For each of these
combinations, we solve the Heisenberg equations of motion
to find the force noise power spectral density (PSD). We then
use the force noise PSD to compare the sensitivities of the
different configurations at different frequencies.

A. The equations of motion

We begin with the usual methods from input-output theory
[52], writing down and solving the Heisenberg equation of
motion for the bath modes b̂(ω). This enables the equations of
motion for the cavity operators â, â† to be expressed in terms
of the input modes b̂in and output modes b̂out. The details of
this procedure can be found in Appendix D.

At this stage, it is preferable to recast the equations of mo-
tion for the cavity operators in terms of quantities accessible
to measurement, namely, the amplitude and phase quadratures
of the cavity, X̂ and Ŷ , respectively, where [X̂ , Ŷ ] = i. We also
define the quadratures of the input and output bath modes as
X̂in = (b̂in + b̂†

in)/
√

2, Ŷin = −i(b̂in − b̂†
in)/

√
2, X̂out = (b̂out +

b̂†
out)/

√
2, and Ŷout = −i(b̂out − b̂†

out)/
√

2. Using these defi-
nitions and the input-output relation given by Eq. (D7) in
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Appendix D, it can be verified that each of the input and
output quadratures satisfy their own input-output relations of
the form

X̂out = X̂in + √
κX̂ (30)

and

Ŷout = Ŷin + √
κŶ , (31)

where κ corresponds to the cavity decay rate.
By combining the equations of motion for â and â† we

find the equations of motion for each cavity quadrature. These
equations, in combination with the Heisenberg equations of
motion for the remaining system operators (x̂, p̂, �̂, and Q̂),
specify the complete system of equations describing each
case. Below, we explicitly show the equations of motion for
each detector configuration, measurement scheme, and gauge.
We also include an input force F̂in in the equation for the
canonical momentum to account for the impulse we wish to
detect. We note that while the impulse acts upon the mechani-
cal subsystem, its appearance in the equation for the canonical
momentum is appropriate, as in each instance we consider,
the canonical momentum is either strictly the mechanical mo-
mentum or a linear combination that includes the mechanical
momentum.

We first consider the equations of motion for voltage mea-
surement via electric field sensing. In the magnetomechanical
case, the first gauge yields the equations of motion

dx̂

dt
= p̂

m
− Tv

m
Q̂,

d p̂

dt
= −kx̂ + F̂in,

d�̂

dt
= −h̄G(E ,v)

Q X̂ − Tv

m
p̂ +

(
1

CL
+ T 2

v

m

)
Q̂,

dQ̂

dt
= − �̂

L
,

dX̂

dt
= −�Ŷ − κ

2
X̂ − √

κX̂in,

dŶ

dt
= �X̂ + G(E ,v)

Q Q̂ − κ

2
Ŷ − √

κŶin. (32)

It is convenient to rewrite these equations in a more compact
form. Defining the matrix

M1
(E ,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 − Tv

m 0 0
−k 0 0 0 0 0
0 − Tv

m 0 1
C′

L
−h̄G(E ,v)

Q 0

0 0 − 1
L 0 0 0

0 0 0 0 − κ
2 −�

0 0 0 G(E ,v)
Q � − κ

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(33)

we can rewrite Eq. (32) as

d

dt
Ẑ = M1

(E ,v)Ẑ + Ẑin, (34)

where we have defined the vector of operators
Ẑ = {x̂, p̂, �̂, Q̂, X̂ , Ŷ } and the vector of inputs
Ẑin = {0, F̂in, 0, 0,−√

κX̂in,−√
κŶin}. We also define

the capacitance C′
L for convenience to be 1

C′
L

= 1
CL

+ T 2
v

m . The
equations of motion for the second gauge can be similarly
represented via Eq. (34) with the matrix M2

(E ,v), defined as

M2
(E ,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 0 0 0

−k′ 0 Tv

L 0 0 0
0 0 0 1

CL
−h̄G(E ,v)

Q 0
Tv

L 0 − 1
L 0 0 0

0 0 0 0 − κ
2 −�

0 0 0 G(E ,v)
Q � − κ

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(35)

where we have defined for convenience k′ = k + T 2
v

L . Like-
wise, the electromechanical case is described by the matrix

M (E ,x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 0 0 0

−keff 0 0 Tx
CP

−h̄Gx 0

− Tx
CP

0 0 1
Ceff

h̄G(E ,x)
Q 0

0 0 − 1
L 0 0 0

0 0 0 0 − κ
2 −�

−Gx 0 0 −G(E ,x)
Q � − κ

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

We can analogously describe the equations of motion for
the current measurement scheme. In the magnetomechanical
case, we find for the two gauges

M1
(B,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 − Tv

m 0 0
−k′

M 0 − Tv

LM
0 h̄GBTv 0

0 − Tv

m 0 1
C′

L
0 0

− Tv

LM
0 − 1

L′ 0 h̄GB 0
0 0 0 0 − κ

2 −�

GBTv 0 GB 0 � − κ
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(37)

and

M2
(B,v) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 0 0 0

−k′ 0 Tv

L 0 0 0
0 0 0 1

CL
0 0

Tv

L 0 − 1
L′ 0 h̄GB 0

0 0 0 0 − κ
2 −�

0 0 GB 0 � − κ
2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (38)

where we have defined for convenience the quantities k′
M =

k + T 2
v

LM
and 1

L′ = 1
L + 1

LM
. For the electromechanical detector

configuration, we have

M (B,x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
m 0 0 0 0

−keff 0 0 Tx
CP

0 0

− Tx
CP

0 0 1
Ceff

0 0
0 0 − 1

L′ 0 −h̄GB 0
0 0 0 0 − κ

2 −�

0 0 −GB 0 � − κ
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(39)
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B. Assembling the noise PSD

These linear equations are straightforward to solve in the
frequency domain. Defining the Fourier transform of our
relevant operators as follows:

f̂ (ν) = 1√
2π

∫ ∞

−∞
f̂ (t )e−iνt dt,

f̂ (t ) = 1√
2π

∫ ∞

−∞
f̂ (ν)eiνt dν, (40)

where the frequency dependence of f̂ (ν) is explicit, the time
derivatives in the equation of motion given by Eq. (34) for

each matrix M simply transform as d f̂ (t )
dt → iν f̂ (ν).

Solving the systems of equations given by Eq. (34) in the
frequency domain, for zero detuning (� = 0), yields a general
solution of the form

Ẑ (ν) = (iν1 − M )−1Ẑin(ν), (41)

where we focus on the solutions for the phase quadrature of
the cavity Ŷ (ν), given by the final row of Eq. (41). The circuit
degrees of freedom are coupled to X̂ , hence, the information
about the circuit, the mechanics, and ultimately F̂in are found
in the equation of motion and solution of its conjugate, Ŷ (as
opposed to X̂ , the other quantity accessible to measurement).

In the magnetomechanical system, the solutions found in
each gauge are identical, sans the solutions for p̂ and �̂. This
is unsurprising, since these quantities are those affected by
the unitary [Eq. (3)] that connects the gauges. This is true in
both the voltage and current measurement cases. For both the
magnetomechanical and electromechanical detector schemes,
the solutions for Ŷ (ν) may then be used in the input-output
relation, Eq. (31), to find the output quadrature Ŷout(ν). These
solutions are explicitly shown in Appendix E.

We then use the solution for the output quadrature Ŷout(ν)
to assess the noise sensitivity. We define the force estimator as
the output phase quadrature in force units (i.e., we divide Ŷout

by the coefficient of F̂in):

F̂E (ν) = F̂in + β(ν)X̂in + γ (ν)Ŷin, (42)

where β represents the coefficient for the measurement back-
action noise term and γ corresponds to the shot noise term in
this measurement, as we are measuring the Ŷ quadrature.

The frequency dependence of the noise sensitivity is given
by the force noise power spectral density (PSD):

SFF(ν) =
∫ ∞

−∞
〈F̂ †

E (ν)F̂E (ν ′)〉 dν ′. (43)

To evaluate the noise PSD in Eq. (43), we note the following
regarding the resulting noise correlation functions:

〈X̂ †
in(t )X̂in(t ′)〉 = 〈Ŷ †

in(t )Ŷin(t ′)〉 = 1
2δ(t − t ′),

〈F̂ †
in(t )F̂in(t ′)〉 = NBMδ(t − t ′), (44)

where we have taken the vacuum fluctuations of the cavity to
be white noise and the input signal noise from the mechanics
to be thermal noise. We consider here an Ohmic model for

thermal noise corresponding to Brownian motion1 with noise
amplitude NBM. We assume there is no correlation between
the signal noise and vacuum fluctuations, and no correlation
between the vacuum fluctuations. Taking all of the above into
consideration, Eq. (43) can be rewritten as

SFF(ν) = |β(ν)|2
2

+ |γ (ν)|2
2

+ NBM. (45)

In what follows, we list the noise PSD expressions for
each combination of detector configuration and measurement
scheme (recalling that the solutions across gauges are iden-
tical) in terms of relevant susceptibilities. In each case, we
optimize the coupling strength (and as a result, the drive
strength) to balance the backaction and shot noise terms at
some fixed frequency, thereby identifying the SQL at this fre-
quency for each case. Then, we compare the performances of
different detector and measurement combinations and discuss
the features of these noise PSD expressions.

It is convenient to first define the frequencies

ω2
m = k

m
, ω2

c(ce) = 1

LCL(eff )
, ω2

l (le) = 1

LMCL(eff )

δ2
v = T 2

v

mL
, δ2

x = CeffT 2
x

mC2
P

, (46)

as well as the cavity and bare mechanical susceptibilities χκ

and χm, respectively:

χκ = −√
κ

κ
2 + iν

, χm = −1

ν2 − ω2
m

. (47)

For the magnetomechanical detector scheme, voltage mea-
surement via electric field sensing yields the noise PSD

S(E ,v)
FF = h̄2G(E ,v)

Q
2
m|χκ |2

2Lδ2
vχ

2
mν2

+ mL

2G(E ,v)
Q

2
δ2
v |χκ |2χ2

mχ
(E ,v)
lc

2
ν2

+ NBM, (48)

where we define the circuit susceptibility as

χ
(E ,v)
lc = −1

ν2 − ω2
c − δ2

v

(
1 − χmω2

m

) . (49)

1In this analysis, we are considering only an idealized mass, i.e.,
one without any damping beyond that provided by the electromag-
netic system it is coupled to. If we were to analyze frequencies closer
to, or below, the mechanical resonance, mechanical damping would
be a key element of the response of the total system. However, it
is a straightforward exercise to include mechanical damping in the
linear response theory provided in Sec. IV. More important than
the mechanical damping per se is the role the bath that leads to the
damping plays: we expect, via the fluctuation-dissipation theorem,
that this bath will lead to Brownian-motion-like noise on the me-
chanics, which may overwhelm any impulse signal we look for. Our
example in Sec. IV E elucidates a specific case where this noise may
be the limit, once quantum measurement-added noise is sufficiently
reduced.
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Upon balancing the backaction and shot noise terms for some
fixed frequency, we find the optimized coupling strength

G(E ,v)
Q

2 = L

h̄|χκ |2
∣∣χ (E ,v)

lc

∣∣ . (50)

For current measurement via magnetic field sensing, we find
the noise PSD

S(B,v)
FF = h̄2GB2mL|χκ |2

2δ2
vχ

′
m

2

+ m

2GB2Lδ2
v |χκ |2χ ′

m
2χ

(B,v)
lc

2
ω4

c

+ NBM, (51)

where we have instead defined the dressed mechanical sus-
ceptibility

χ ′
m = −1

ν2 − ω2
m − δ2

v

(52)

as well as the circuit susceptibility in this case as

χ
(B,v)
lc = −1

ν2 − ω2
c − ω2

l + δ2
vω

2
cχ

′
m

. (53)

In this instance, we find the optimized coupling strength to be

GB2 = 1

h̄|χκ |2
∣∣χ (B,v)

lc

∣∣Lω2
c

. (54)

We note that in the magnetomechanical detector scheme,
the various mechanical and circuit susceptibilities are gauge-
dependent—just as the canonical momenta are different
across the two gauges, so are the associated response func-
tions. The physical meaning of these susceptibilities therefore
depends on the gauge choice. We emphasize that the noise
PSDs are gauge-independent, however, expressing the noise
PSDs in terms of these gauge-dependent functions yields dif-
ferent functional forms of the noise PSDs. We direct the reader
to Appendix F for the explicit forms of the noise PSDs written
in terms of the relevant frequencies defined in Eq. (46).

For the electromechanical detector scheme, voltage mea-
surement via electric field sensing yields the noise PSD

S(E ,x)
FF ≈ h̄2G(E ,x)

Q
2
m|χκ |2

2δ2
x χ

2
mLω2

ce

+ mL

2G(E ,x)
Q

2
δ2

x |χκ |2χ2
mχ

(E ,x)
lc

2
ω2

ce

+ NBM, (55)

where in this case we define the circuit susceptibility

χ
(E ,x)
lc = −1

ν2 − ω2
ce + δ2

x ω
2
ceχm

. (56)

In Eq. (55), we have taken Gx → 0, as for our chosen pa-
rameters, G(E ,x)

Q 	 Gx. The exact noise PSD, including the
contributions from Gx, can be found in Appendix F. We note
that this contribution is included in the numerics we present
in Secs. IV C and IV D, which confirms the negligible con-
tribution from Gx. Therefore we optimize the coupling to
balance the backaction and shot noise terms with respect to
G(E ,x)

Q only, using Eq. (55). We find this coupling strength

to be

G(E ,x)
Q

2 = L

h̄|χκ |2
∣∣χ (E ,x)

lc

∣∣ . (57)

For current measurement via magnetic field sensing we find
the expression

S(B,x)
FF = h̄2GB2mLω2

ce|χκ |2
(
1 − δ2

x χm
)2

2δ2
x χ

2
mν2

+ m

2GB2Lδ2
x |χκ |2χ2

mχ
(B,x)
lc

2
ω2

ceν
2

+ NBM, (58)

where we define the circuit susceptibility

χ
(B,x)
lc = −1

ν2 − ω2
ce − ω2

le + δ2
x

(
ω2

ce + ω2
le

)
χm

. (59)

To balance backaction noise and shot noise, we find the opti-
mized coupling

GB2 = 1

h̄|χκ |2
∣∣χ (B,x)

lc

∣∣∣∣1 − δ2
x χm

∣∣Lω2
ce

. (60)

In what follows, we examine the noise PSDs given by
Eqs. (48), (51), (55), and (58), comparing their behavior to
the standard optomechanical case and examining their specific
functional features.

C. Comparison to optomechanical systems

Our goal is to look for signals which have broad character-
istics in frequency space (i.e., an impulse in the time domain),
requiring an integration of the noise over a frequency band
to be able to predict a signal to noise ratio (SNR). Thus our
interest is in the broadband sensitivity of the noise PSDs.
Additionally, if we can directly access a QND-like variable,
such as the velocity of the mechanical system, we expect the
measurement backaction to decrease over a broad frequency
spectrum. Therefore we restrict our discussion to the broad-
band frequency response of the noise PSDs in an effort to
understand the best readout strategies for certain kinds of
transducers subject to broadband signals.

In Fig. 3, we show the total measurement-added noise for
each detector circuit and measurement readout combination,
given by Eqs. (48), (51), (55), and (58). We note that we have
taken the thermal noise NBM affecting the mechanical oscil-
lator to be negligible. In addition, we have fixed the coupling
coefficients to their optimized SQL values, given by Eqs. (50),
(54), (57), and (60), for a target frequency of 1 MHz. Taken
together, the total noise and its associated behavior are partic-
ularly relevant in the context of the standard optomechanical
position-sensing problem as well as previous work on velocity
sensing in optomechanical systems [6,53]. For convenience
of comparison, we include Fig. 4, which shows the expected
noise PSD for both position- and velocity-sensing scenarios in
an optomechanical analog, specifically for use with a broad-
band signal. Details associated with this plot can be found in
Appendix G.

Upon comparison, it is immediately clear that current
readout of the magnetomechanical detector scheme and volt-
age readout of the electromechanical detector scheme share
similarities with the noise PSD for standard optomechanical
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FIG. 3. Total measurement-added noise for each detector con-
figuration and readout choice. The dark blue curves correspond to
voltage readout via electric field sensing for the magnetomechanical
and electromechanical configurations. Here, the magnetomechani-
cal system displays a backaction-evading characteristic absent in
the electromechanical case. The green curves correspond to current
readout via magnetic field sensing for each detector configuration.
However, in this case, the electromechanical system displays a
backaction-evading feature rather than the magnetomechanical case.
The parameters used for generating these plots are as follows: detec-
tor mass m = 1 g, mechanical resonance frequency ωm/2π = 10 Hz,
cavity decay rate κ/2π = 1 MHz, inductance L = 10 µH, mu-
tual inductance LM = 1 nH, circuit resonance frequencies ωc/2π =
10 MHz and ωce/2π ≈ 1 MHz, capacitance CP = 25 fF, with trans-
ducer constants Tv = 2 T · m and Tx = −10−10 C/m. The coupling
coefficients are fixed to their SQL values for a target frequency
of 1 MHz, as given by Eqs. (50), (54), (57), and (60), with Gx ≈
TxG(E ,x)

Q .

FIG. 4. The noise PSD representing total measurement-added
noise in an optomechanical system is plotted for both position- and
velocity-sensing protocols while operating at the optimal power for
position sensing with a 0.1 MHz target frequency [using Eq. (G6)].
This is derivative of work from Refs. [6,53]. The noise for velocity
sensing is lower than position sensing across a broad frequency
range, with the functional dependence ν−2 below resonance and ν2

above. The optomechanical coupling strengths in these techniques
are related by the velocity coupling coefficient G′ → G/(mκ ), with
position coupling coefficient G/2π ≈ 1023 Hz/m, mechanical fre-
quency ωm/2π = 10 Hz, cavity decay rate κ/2π = 1 MHz, detector
mass m = 1 g, and mechanical damping rate μ/2π = 0.1 mHz.

position sensing, specifically the “flat at low-frequency” fea-
ture. Furthermore, voltage readout of the magnetomechanical
detector scheme and current readout of the electromechanical
detector scheme bear striking similarity to the noise PSD for
velocity sensing. Both show a decrease in total noise near the
mechanical resonance, and share the same frequency depen-
dence in this region, namely, going as ν−2 below resonance
and ν2 above resonance.

We understand these similarities by using the fundamental
relations describing how the mechanics are tranduced to an
electrical signal in each detector configuration, outlined in
Sec. II. In the magnetomechanical case, the flux (comparable
to current) is proportional to the position x of the mechan-
ical oscillator, while in the electromechanical case, charge
(comparable to voltage) is proportional to position. Thus, by
coupling the parametric cavity to a specific circuit degree of
freedom, both of these readout schemes access the position
of the mechanical oscillator. Alternatively, it is voltage in the
magnetomechanical case and current in the electromechanical
case which are directly proportional to velocity. Therefore
electromechanical current readout and magnetomechanical
voltage readout directly access the velocity of the oscillator,
providing a way to reduce the measurement-added backaction
noise over certain bandwidths of frequencies.

These results indicate that if we want to attain a QND-like
measurement using an electrical circuit setup in the mi-
crowave domain, we need to combine a magnetomechanical
or electromechanical detection scheme with the appropri-
ate measurement readout. Namely, voltage readout for a
magnetomechanical detector and current readout for an elec-
tromechanical detector may yield a QND-like measurement
with reduced backaction over a broad frequency range. We
note that upon comparing the relative scale of the noise be-
tween these cases, voltage readout of the magnetomechanical
detector scheme yields a considerably lower noise floor than
current readout of the electromechanical detector scheme.
However, the total noise and its associated resonances (dis-
cussed in Sec. IV D) are dependent on the system parameters
and relevant frequencies.

D. Details of the noise curves

Upon closer inspection of Eqs. (48), (51), (55), and (58),
we find that each of the noise PSDs has a term inversely

proportional to the coupling coefficient squared, i.e., G(E ,x)
Q

2

and G(E ,v)
Q

2
for the voltage measurement scenarios or GB2

for the current measurement scenarios. These terms originate
from the 〈Ŷ 2

in〉 contribution to the noise PSD, corresponding to

the factor |γ |2
2 in Eq. (45). As we are interested in monitoring

the Ŷout quadrature, we understand this contribution as shot
noise—it constitutes the statistical counting error at the output
port. In addition, each noise PSD has another term which
is directly proportional to the coupling coefficient squared.
These terms arise from the 〈X̂ 2

in〉 contribution to the noise

PSD, corresponding to the factor |β|2
2 in Eq. (45). These terms

form the basis of backaction noise on the measurement of the
output phase quadrature. Figure 5 shows curves representing
these shot noise and backaction noise contributions to the
total noise PSD, for each of the different detector and readout
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(c) (d)

(a) (b)

FIG. 5. Shot noise (light blue) and backaction noise (dark red) curves at different coupling strengths for the magnetomechanical and
electromechanical setups. In all instances solid curves correspond to weaker coupling strengths relative to the dashed curves, as indicated
in the legend. The weak coupling strengths correspond to the values G(E ,v)

Q /2π = G(E ,x)
Q /2π = 1023 Hz/C and GB/2π = 1023 Hz/Wb, while

strong coupling strengths correspond to the values G(E ,v)
Q /2π = G(E ,x)

Q /2π = 1025 Hz/C and GB/2π = 1025 Hz/Wb. Plots in (a) and (b) show
the curves for the magnetomechanical detector configuration, where (a) represents the electric field-dependent parametric cavity or voltage
readout and (b) represents the magnetic field-dependent parametric cavity or current readout. Plots in (c) and (d) show the curves for
the electromechanical detector configuration, where (c) represents the electric field-dependent parametric cavity or voltage readout and
(d) represents the magnetic field-dependent parametric cavity or current readout. The parameters used for generating these plots are as follows:
detector mass m = 1 g, mechanical resonance frequency ωm/2π = 10 Hz, cavity decay rate κ/2π = 1 MHz, inductance L = 10 µH, mutual
inductance LM = 1 nH, circuit resonance frequencies ωc/2π = 10 MHz and ωce/2π ≈ 1 MHz, capacitance CP = 25 fF, with transducer
constants Tv = 2 T · m and Tx = −10−10 C/m and coupling coefficient Gx ≈ TxG(E ,x)

Q .

combinations. Also included in Fig. 5 is a comparison of
two different coupling strengths for each noise contribution,
where we see that the shot noise decreases with an increase in
coupling strength (i.e., a stronger drive) while the backaction
noise increases.

We also note the presence of various resonances. For
voltage readout of the magnetomechanical system, shown in
Fig. 5(a) and described by Eq. (48), the backaction noise term
exhibits a resonance at the mechanical frequency ωm while
the shot noise term has two resonances: one near ωm and
the other near the self-resonance of the detector circuit ωc.
This is a consequence of our chosen parameters which result
in ω2

l 	 ω2
c 	 δ2

v 	 ω2
m, where the frequency δv represents

the shift in the mechanical resonance due to the circuit cou-
pling. Similarly, for current readout in the magnetomechanical

system, shown in Fig. 5(b) and described by Eq. (51), reso-
nances occur near δv in both the backaction and shot noise
terms. Here the mechanics are dressed by the circuit, yielding
an effective mechanical resonance at δv with a negligible
contribution from ωm.

For the electromechanical system, described by Eqs. (55)
and (58) and shown in Figs. 5(c) and 5(d), both voltage and
current readout demonstrate resonances near ωm. In addition,
a resonance near the circuit’s self-resonance ωce is visible
in the voltage measurement case in Fig. 5(c). As before,
the locations of these resonances are a consequence of our
chosen parameters and the coupling between the mechani-
cal system and the circuit, where we note G(E ,x)

Q 	 Gx and
ω2

le 	 ω2
ce 	 ω2

m 	 δ2
x . Here again the mechanics dress the

circuit; however, in contrast to the magnetomechanical case,
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the contribution from δx is negligible in comparison to the bare
mechanical resonance at ωm.

While these resonance features might be useful for some
applications, our interest is in the broadband sensitivity,
rather than the sensitivity to monochromatic signals. With
monochromatic signals, noise optimization at a specific fre-
quency, especially efforts to tune a setup around the resonance
frequencies, is important. In particular, the resonances present
in the backaction noise term correspond to target frequencies
for which backaction noise is completely eliminated. This
strict backaction evasion is distinct from a reduction in back-
action noise over a broad range of frequencies, characteristic
of QND-like measurements, as we now discuss.

Of particular interest is the behavior observed in the region
of frequency above the mechanical resonance but below the
cavity decay rate κ . This is a consequence of our signal of
interest: an impulse delivered over a very short time. Thus
we are interested in making measurements on the timescale
associated with this frequency range. We note a sharp contrast
in the behavior of the magnetomechanical current readout
and electromechanical voltage readout cases [Figs. 5(b) and
5(c)] when compared to that of magnetomechanical voltage
readout and electromechanical current readout [Figs. 5(a) and
5(d)]—a consequence of the different mechanical degrees of
freedom accessed in each set of cases. In the former, back-
action and shot noise are constant in the regions for which
ν < ωm, δv , and in the region ωm, δv < ν < κ , diverge as ν4.
This is consistent with the behavior observed in the position-
sensing case shown in Fig. 4. In the latter, backaction and shot
noise go as ν−2 for ν < ωm and ν2 for ωm < ν < κ . In other
words, the magnetomechanical voltage and electromechanical
current schemes exhibit a decrease in backaction noise in
the vicinity of the mechanical resonance, analogous to the
velocity-sensing case.

At high frequency where ν > κ , we see similar behav-
ior in the backaction and shot noise terms across all of the
detector and readout combinations. In particular, backaction
noise is either constant in this region, as in Figs. 5(a) and
5(d) for magnetomechanical voltage readout and electrome-
chanical current readout, respectively, or diverges as ν2, as
in Figs. 5(b) and 5(c) for magnetomechanical current read-
out and electromechanical voltage readout, respectively. On
the other hand, shot noise diverges as either ν4 for magne-
tomechanical voltage readout and electromechanical current
readout or ν6 for magnetomechanical current readout and
electromechanical voltage readout.

E. Analysis in the context of Windchime

Recent advances in sensing technologies suggest that we
can search for dark matter (DM) candidates through their
gravitational interaction alone by building an array of many
mechanical sensors [7]. Based on this proposal, the Wind-
chime collaboration is developing the necessary experimental
techniques and devices for the gravitational detection of DM
candidates around the Planck mass range (∼21.76 µg) [8].
In particular, we are considering milligram- to gram-scale
sensors with very low natural resonance frequencies (about
1–100 Hz) and with significant environmental isolation using
a dilution refrigerator at temperatures of 10 mK, which makes

the thermal noise floor extremely low. We are thus mostly
limited by measurement-added noise. We wish to compare
the performances of voltage and current readout of the mag-
netomechanical detector scheme to the SQL-level benchmark
associated with force measurement, specifically in the context
of a signal of interest for the Windchime collaboration.

For an individual sensor of mass m in the array, a DM
candidate of mass mdm, passing at a distance b and with
velocity v, interacts with the sensor through the Newtonian
gravitational force. We are interested in the component of the
gravitational force which is perpendicular to the DM candi-
date’s trajectory. This is our intended signal [6],

Fsig(t ) = GN mmdmb

(b2 + v2t2)3/2
. (61)

In the frequency domain, it takes the form

Fsig(ν) =
√

2

π

GN mmdm|ν|
v2

K1

(
b

v
|ν|

)
, (62)

where GN is the gravitational constant and K1 is a modified
Bessel function. We note that this signal is well approximated
by

F approx
sig (ν) =

√
2

π

GN mmdm

bv
e−b|ν|/2v, (63)

which we use to estimate a signal-to-noise ratio (SNR).
The signal is delivered over a very short period of time, set

by the timescale τ ∼ b/v. In the frequency domain, this trans-
lates to a constant broadband signal that rapidly diminishes
at a frequency set by the timescale τ , thereby determining
the signal bandwidth. For example, if we consider a DM
candidate with a velocity around 200 km/s [54] passing at
a distance b ∼ 1 mm, the timescale of the signal is approx-
imately τ ∼ 10−8 s. In the frequency domain, this signal is
constant until very high frequency, approximately 1 GHz,
after which the signal falls off to zero. We wish to identify
this signal amidst collected time series data. As explored in
Ref. [6], an efficient search strategy for such a broadband
signal is to use an optimal filter to scan through the time series
data, yielding the SNR

SNR2
opt =

∫ ∞

0

|Fsig(ν)|2
SFF(ν)

dν, (64)

where the effective bandwidth of integration is set by the
signal’s timescale.

We estimate the SNR using the approximated signal in
Eq. (63) and the noise PSDs appropriate for voltage or current
readout of the magnetomechanical detector scheme, given by
Eqs. (48) and (51), respectively. In Fig. 6, we show the SNRs
as a function of the radius R of the cylindrical test mass (i.e.,
the sensor of mass m). Scaling the radius impacts a variety
of parameters and circuit quantities, including the mass of
the magnetic sensor, the inductance of the voice coil, and the
transducer constant, as increasing the size of the magnetic
mass requires the voice coil to scale up as well. Relevant
details can be found in the caption of Fig. 6. We note that
we take the distance b to scale linearly with R, which yields
a timescale τ that inherently depends on R. Therefore, in
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FIG. 6. The SNR2
opt plotted as a function of the radius of the sen-

sor, starting from an original radius of R ≈ 1 mm and the parameters
listed in Figs. 3 and 5 for the magnetomechanical detector scheme.
The mass scales according to m = ρπR2h, where we fix the mass
density to ρ = 7500 kg/m3 and allow the height h to scale linearly
with R to maintain a fixed height to radius ratio of approximately 40.
The transducer constant Tv and inductance of the voice coil L scale
according to Eq. (1) and L = μ0N2πR2

h , respectively, where the total
turn number scales according to N = nh and we fix the turn density
to n ≈ 7725 turns/m and the magnetic field to B = 1 T. We fix the
characteristic impedance of each LC circuit to Zv

0 = 2π · 102 � for
voltage readout and Zx

0 ≈ 2π � for current readout, maintaining the
ratio L/LM = 104 and forcing the capacitance CL to scale with R. As
the optimized coupling strengths given by Eqs. (50) and (54) depend
on these scaling parameters, G(E ,v)

Q and GB also scale with R where
we opt to scale the target frequency as R−1 from the original 1 MHz.
The same scaling applies to the SNR2

opt for position measurement
(yellow), using the noise PSD and initial parameters indicated in
Fig. 4 where we neglect damping and scale the target frequency down
from 0.1 MHz. In all cases, we take the DM mass and velocity to
be mdm = 21.76 µg (the Planck mass) and v = 200 km/s, with the
distance b ∼ R such that τ ∼ R/v.

calculating the SNR in Eq. (64), the effective bandwidth of
integration is implicitly set by the size of the mass.

We compare these SNRs with that of the SQL-level noise
floor associated with a force measurement [1], in which we
infer the force acting on the sensor by monitoring the position
of a free particle over time, where the measurements are
separated by time τ . This is given by the relation

�FSQL ∼
√

h̄m

τ 3
. (65)

In Fig. 6, we plot the ratio [Fsig(τ )/�FSQL]2 as a function
of R, noting that the timescale τ and test mass m scale with
R according to τ ∼ R/v and m ∝ R3, respectively. Relevant
details can be found in the caption of Fig. 6. For addi-
tional comparison, we include the SNR2

opt corresponding to
the position-sensing noise PSD of an optomechanical system
shown in Fig. 4 and described in Appendix G.

We find the magnetomechanical detection scheme with
either readout option offers an improved sensitivity over both
the SQL benchmark and standard optomechanical position
sensing. In particular, voltage readout demonstrates orders of
magnitude improvement in the SNR. For example, at a radius

of approximately 10 cm, we observe about a 39 dB improve-
ment over the SQL benchmark and a 26 dB improvement
relative to standard position sensing. In contrast, current read-
out of the magnetomechanical detector scheme only offers
about a 21 dB improvement over the SQL benchmark and a
8 dB improvement over standard position sensing. In addition,
we see an overall improved sensitivity as the size of the test
mass is scaled up, with the SQL benchmark, position-sensing
case, and current readout of the magnetomechanical detector
scheme scaling as R2 and voltage readout of the magnetome-
chanical detector scheme scaling as R2.5. We attribute the
difference in scaling between the two readout options to be
a consequence of the distinct circuits associated with each
scheme, resulting in unique noise PSDs each with a differ-
ent dependence on R. While these are encouraging results,
we caution that these improvements indicate a 10-cm-radius
sensor requires a test mass of 103 kg (1 metric ton) in order
to measure a voltage signal on the order of attovolts. Granted,
these estimates may be improved by considering instead the
density and magnetic field of a superconducting material,
rather than a strong permanent magnet (neodymium), as we
have here.

V. OUTLOOK

Here we develop specific approaches for velocity and po-
sition sensing using voltage or current measurements of mag-
netomechanical and electromechanical transducers. We find
that our specific electrical circuit-based approach to velocity
sensing, namely voltage measurement of a magnetomechani-
cal transducer, allows for a reduction in measurement-added
noise while monitoring the mechanical motion in the mi-
crowave domain. While it is well known that Faraday’s law
connects voltage and velocity, this has not been used as
a method for velocity measurement to date. Here we have
shown that this may be a very fruitful domain for future
exploration that is immediately compatible with existing me-
chanical systems, such as levitated superconducting spheres
(e.g., the ones described in Refs. [43–45]), by effectively
changing their motional readout from current to voltage.

Applying the approaches we describe here to the challenge
of direct dark matter detection showcases how this type of
readout enables scaling to very large masses while keeping a
very low floor of quantum noise. In this work, using very large
objects is advantageous for measuring gravitational signals, as
we focus primarily on observing small accelerations. In con-
trast, the observation of small forces requires a very different
operating regime, offering an intriguing prospect for future
work: the design of an effective small force sensor.

This type of velocity measurement is a QND-like
measurement—a consequence of the QND structure of the
velocity variable in the context of a mechanical oscillator
well above its resonance frequency, i.e., in the free particle
limit. Consequently, we anticipate that this could be a critical
choice to make for future systems that incorporate sensors
that need to operate in an impulse-sensing domain. Further-
more, our simple implementation of voltage measurement
for a magnetomechanical transducer, which is a variation on
the well-known rf-SET, can likely be improved with modern
circuit QED techniques.
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APPENDIX A: FARADAY’S LAW

In the magnetomechanical detection scheme, our interest
lies in the voltage generated when the magnetic mass moves
through the stationary voice coil as a result of some impulse.
This induced voltage ε is given by Faraday’s law [31,32].
Faraday’s law relates ε to the time derivative of the magnetic
flux �B = ∫

S B · dA through an open surface S:

ε = −d�B

dt
= − d

dt

(∫
S

B · dA
)

. (A1)

However, in this case it is advantageous to re-express Eq. (A1)
in terms of two contributions, both integrated around the
closed path C that bounds the surface S:

ε =
∮

C
E · d� +

∮
C

(v × B) · d�. (A2)

The first term accounts for the electric field E generated by a
time-varying magnetic field, while the second term accounts
for time-varying changes in S and C, i.e., motion of the curve
with some velocity v. By considering the rest frame of the
magnetic mass and taking the coil to be moving with a ve-
locity v = vẑ, Eq. (A2) can be evaluated to yield the induced
voltage given by Eq. (1) in the main text.

By expressing Faraday’s law as in Eq. (A2) we more
readily understand the equivalence between the rest frames
of the magnetic mass and voice coil. In the rest frame of the
coil, the velocity is zero, however, a time-varying magnetic
field will be present due to the magnet’s motion, yielding a
nonzero electric field. We use a transformation between rest
frames [31,32] to express this electric field in terms of the
magnetic field in the magnet’s rest frame: E = v × B. In this
way, we see how the induced voltage in our detection scheme
is equivalent to that given by Eq. (1).

APPENDIX B: CIRCUIT ANALYSIS
OF THE DETECTOR SCHEMES

In this Appendix, we provide a pedagogical presenta-
tion of circuit quantization techniques (specifically the node
flux method, following Ref. [33]) as applied to the detector
schemes outlined in Sec. II of the main text. This connects the
circuit degrees of freedom to those of the mechanical systems
we consider to arrive at the Hamiltonians in Eqs. (4)–(6).

In an electrical circuit, every circuit element is character-
ized by a branch voltage and a branch current, whose time
integral defines the element’s branch flux and branch charge,
respectively:

�b(t ) =
∫ t

−∞
vb(t ′)dt ′,

Qb(t ) =
∫ t

−∞
ib(t ′)dt ′. (B1)

We use the superscript b to denote branch variables through-
out the text; this is to distinguish from other variables,
such as velocity v, present in our analysis. Circuit elements
are characterized by fundamental equations that relate their
branch current or charge to their branch voltage or flux.
For example, in capacitors, vb = �̇b = Qb/C, while for in-
ductors ib = Q̇b = �b/L. A nonlinear element such as a
Josephson junction is characterized by the relation ib = Q̇b =
IC sin(2π�b/�0) + CJ�̈

b, with IC its critical current, CJ its
self-capacitance, and �0 the magentic flux quantum.

Kirchhoff’s laws determine how the branch variables of
each element of a circuit relate. Kirchhoff’s current law en-
forces charge conservation at each node by equating the
currents flowing into and out of each node. Kirchhoff’s volt-
age law (an instance of Faraday’s law) demands that the
voltage around a closed loop must sum to zero. However,
the branch variables do not constitute the degrees of freedom
of the circuit, as they are not independent variables. In order
to appropriately define independent degrees of freedom for a
circuit, a so-called ‘spanning tree’ [33] must be chosen. The
spanning tree determines how each of the branch variables
may be expressed in terms of the defined independent degrees
of freedom.

In the node flux formulation, a spanning tree is constructed
as follows. Starting from a designated ground or reference
node, a path is chosen along each branch element such that
each nonreference node of the circuit is reached by a single
path. Each nonreference node is then associated with a node
flux, defined as the sum (or difference) of the branch fluxes
along the path to each node. The various possible spanning
trees for a given circuit amount to different gauge choices
and are therefore distinct but equivalent descriptions. Once
expressed in terms of node fluxes, the set of equations found
from Kirchhoff’s current law become the equations of motion
for each degree of freedom, which are used to then infer the
Lagrangian of the system. With this method, capacitive terms
yield time derivatives of the node flux, thereby playing the
role of kinetic energy terms. In contrast, inductive terms are
written in terms of the node flux, hence acting like potential
energy terms. In this way, Kirchhoff’s current laws become
equations of motion, while the Kirchhoff’s voltage laws deter-
mine how the branch fluxes are defined in terms of the node
fluxes.

We use this general procedure to find the Lagrangians and
derive the Hamiltonians for each of the detector configurations
presented in the main text. In the magnetomechanical case
(Sec. II A), we consider the lumped-element circuit shown
in Fig. 1(b). We highlight two distinct yet equivalent gauge
descriptions, which when combined with the mechanics of
the system, reveal different couplings between the circuit and
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FIG. 7. Schematic highlighting the two spanning trees associated
with each gauge in the magnetomechanical detector configuration.

mechanical degrees of freedom. In the electromechanical case
(Sec. II B), we examine the lumped-element circuit shown in
Fig. 1(d), where we find a nonlinear coupling between the
circuit and mechanical degrees of freedom. We then perform
an expansion about the minimum energy configuration to lin-
earize this coupling.

1. Magnetomechanical circuit analysis

For the magnetomechanical case, we consider the detector
circuit shown in Fig. 1(b) of the main text. Upon choosing the
bottom node as the ground node, we write the equations found
using Kirchhoff’s laws as

CL�̈b
CL

= �b
L

L
,

�̇b
L + �̇ext = −�̇b

CL
, (B2)

where we have chosen an orientation of the coil relative to
the magnet such that the self-induced voltage and externally
generated voltage are additive. Note that the inductor’s volt-
age must reflect both its own contribution (the self-induced
voltage) as well as that from the external flux of the magnet,
namely, its time derivative, given that �ext is generally a time-
dependent quantity.

In this case, there is only one nonreference node and
only two potential paths to reach it: through the capacitor or
through the inductor. For each of these spanning trees, shown
in Fig. 7, we define an appropriate node flux. The presence
of an external flux results in two spanning trees with distinct
definitions of each branch flux in term of the node flux. For
the first path (through the inductor), we define � = �b

L. Al-
ternatively, for the second path (through the capacitor) we
find � = −�b

CL
. By implementing these distinct node flux

definitions in Eq.(B2), we see that the voltage law defines each
alternate branch flux in terms of the node flux, and the current
law provides the equation of motion governing �.

In the first case, where � = �b
L, Eq.(B2) implies that

�̇b
CL

= −(�̇ + �̇ext ) and yields the equation of motion

CL(�̈ + �̈ext ) = −�

L
. (B3)

In the second case, where � = −�b
CL

, Eq.(B2) implies that
�̇b

L = �̇ − �̇ext and yields the equation of motion

CL�̈ = − (� − �ext )

L
. (B4)

These equations of motion can be used to obtain the La-
grangians, which for each respective spanning tree are

written as

L1 = 1

2
CL(�̇ + �̇ext )2 − �2

2L
(B5)

and

L2 = 1

2
CL�̇2 − (� − �ext )2

2L
. (B6)

With the Lagrangians of each spanning tree specified, we use
the usual Legendre transformation to obtain the Hamiltonians
[55] in each case:

H1 = Q2

2CL
+ �2

2L
− Q�̇ext (B7)

and

H2 = Q2

2CL
+ (� − �ext )2

2L
, (B8)

where Q = dLi

d�̇
represents the canonical charge degree of

freedom, conjugate to the node flux �. With only the lone
capacitance CL connected to the node, Q represents the charge
on this capacitor’s plates. These Hamiltonians are related by
the gauge transformation given by Eq. (2) in Sec. II A of the
main text.

To incorporate the mechanical degrees of freedom due to
the magnetic mass’s motion, we recall that �ext represents
the flux penetrating the voice coil due to the presence of the
magnetic mass. Therefore �̇ext corresponds to the induced
voltage ε in Eq. (1) of the main text. This enables us to rewrite
Eq. (1) in terms of �ext, the mechanical degrees of freedom,
and the transducer constant Tv:

�̇ext = Tv ẋ

�ext = Tvx,
(B9)

where x represents the mass’s position and ẋ its velocity v.
We then incorporate the motion of the mass and its attached
spring in the Lagrangians of Eqs. (B5) and (B6) by making the
substitutions indicated in Eq. (B9) and including terms that
describe the energy associated with the mechanical motion. In
full, we come to the Lagrangians

L(E ,v)
1 = 1

2
mẋ2 − 1

2
kx2 + 1

2
CL(�̇ + Tv ẋ)2 − �2

2L
(B10)

and

L(E ,v)
2 = 1

2
mẋ2 − 1

2
kx2 + 1

2
CL�̇2 − (� − Tvx)2

2L
. (B11)

Moving to the Hamiltonian description via a Legendre trans-
form yields the Hamiltonians given in Eqs. (4) and (5).

As an aside, we can confirm the Lagrangians in Eqs. (B10)
and (B11) appropriately characterize the mechanics by con-
sidering the forces acting on the magnetic mass. Theses forces
include the restorative force of the spring as well as a magnetic
force due to the interaction between the current-carrying voice
coil and the magnetic mass. Due to the interaction between the
current in the voice coil and the magnetic field in the air gap
of the magnetic mass, the voice coil experiences a magnetic
force of the form F = ∫

ib
Ld� × B = −Tvib

L. As a result of
Newton’s third law, the force felt by the magnetic mass is
equal and opposite to the force felt by the voice coil. The
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equation of motion for the position of the magnetic mass can
then be written as

mẍ = −kx + Tv

L
�b

L, (B12)

where we have made the substitution for the branch flux of
the inductor via ib

L = �b
L/L. One can confirm that by making

the appropriate substitutions for branch flux in each gauge
yields an equation of motion [combined with either Eq. (B3)
or Eq. (B4)] generated by the Lagrangians in either Eq. (B10)
or Eq. (B11).

2. Electromechanical circuit analysis

For the electromechanical configuration, we begin with the
lumped-element circuit shown in Fig. 1(d) of the main text and
designate the bottom node as the ground or reference node and
assemble the appropriate expressions from Kirchhoff’s laws.
This yields the equations

d

dt

[
C(x)�̇b

C

] = �b
L

L
+ CP�̈b

CP
,

VDC + �̇b
C + �̇b

L = 0, (B13)

�̇b
L = �̇b

CP
,

where the first equation arises from applying Kirchhoff’s cur-
rent law to the top node and the remaining equations are the
result of applying Kirchhoff’s voltage law around each of
the circuit’s two loops. Note that we have written the current
through the mechanically varying capacitor generally in terms
of the total time derivative of the charge on the capacitor’s
plates Qb

C = C(x)�̇b
C . This is due to the fact that the capaci-

tance is a function of the mechanical position.
We next construct a spanning tree to define the node flux

�. While there are three potential spanning trees in this cir-
cuit, without any externally threaded flux all three choices
yield identical definitions of the branch fluxes in terms of
the node flux. Namely, �̇b

C = �̇ − VDC and �̇b
L = �̇b

CP
= −�̇.

Expressing Kirchhoff’s current law in Eq. (B13) in terms of
the node flux, we find the equation of motion

d

dt
[C(x)(�̇ − VDC)] = −�

L
− CP�̈. (B14)

Working backwards, we infer the Lagrangian that describes
the circuit dynamics:

L = 1

2
C(x)(�̇ − VDC)2 + 1

2
CP�̇2 − �2

2L
. (B15)

This Lagrangian does not fully describe the system as it does
not completely account for the mechanical motion. However,
we need only add the usual mechanical contributions due to
the kinetic energy of the plate and the potential energy of the
attached spring, yielding the total Lagrangian

L(E ,x) = 1

2
mẋ2 − 1

2
kx2 + 1

2
C(x)(�̇ − VDC)2

+ 1

2
CP�̇2 − �2

2L
. (B16)

We can confirm that this Lagrangian appropriately ac-
counts for the mechanical degrees of freedom by considering

the forces acting on the movable plate: the restorative force of
the attached spring and the electrostatic attraction between the
oppositely charged plates of the capacitor. When the plates are
uncharged, we take the spring to be in its equilibrium position
so that the plate’s position is x = 0 and the plate separation
is d0. In this coordinate system, we express the mechanically
varying capacitance as C(x) = ε0A

d0−x where A is the area of the
two plates and ε0 the permittivity of free space. Assuming that
the area of plates is much larger than their original separation
such that they may be treated approximately as two infinite
sheets with charge ±Qb

C , the electric field between them is

uniform, given by E = Qb
C

ε0A , and the force of attraction felt

by the movable plate is given by F = 1
2 EQb

C = (Qb
C )2

2ε0A . Using
Newton’s second law, the equation of motion for the position
of the movable plate is then

mẍ = −kx +
(
Qb

C

)2

2ε0A

= −kx + C(x)2(�̇ − VDC)2

2ε0A

= −kx + 1

2

∂C(x)

∂x
(�̇ − VDC)2, (B17)

where in the second line we have made the substitution Qb
C =

C(x)�̇b
C = C(x)(�̇ − VDC) such that the mechanical equa-

tion of motion is expressed in terms of the circuit’s degree of
freedom, the node flux �. This is further simplified in the third
line by noting ∂C(x)

∂x = ε0A
(d0−x)2 = C(x)2

ε0A . Working backwards,
we can confirm that this equation of motion for x is generated
by the Lagrangian in Eq. (B16).

We then use this Lagrangian and the usual Legendre trans-
formation [55] to find the Hamiltonian:

H (E ,x) = p2

2m
+ �2

2L
+ V (Q, x), (B18)

where we define the quantity V (Q, x) as

V (Q, x) = 1

2
kx2 + Q2 + 2C(x)VDCQ − CPC(x)V 2

DC

2(C(x) + CP )
(B19)

and identify Q and p as the canonical node charge and
momenta conjugate to the node flux � and position x, respec-
tively. In this case, Q corresponds to the sum of the charge
on the plates of the two capacitors connected to the node,
while p is the mechanical momentum of the movable plate.
The coupling between the circuit and the mechanical degrees
of freedom is contained in V (Q, x) and unsurprisingly, this
coupling is nontrivial since the capacitance C(x) is inversely
proportional to x. However, by considering small displace-
ments of the movable plate of the capacitor, we can linearize
the Hamiltonian by expanding about the equilibrium of the
circuit and mechanical systems.

We understand this equilibrium as follows. When the plates
are uncharged, the separation between them is given by d0 and
the location of the movable plate is at x = 0. Once charged,
the electrostatic attraction between the oppositely charged
plates brings them closer together, resulting in a new position
for the movable plate at x = x0. This position corresponds
to the position where the restorative force of the spring and
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the force of electrostatic attraction are balanced. Examining
the Hamiltonian, the contribution V (Q, x) describes a two-
dimensional potential energy landscape dependent on charge
and position in which this point must be minimum. This
equilibrium is where the plate exists upon perturbation due
to some detection event. If we assume these perturbations
are small, we can approximate this two-dimensional land-
scape by considering just the region in the vicinity of the
equilibrium {Q0, x0}, thereby linearizing the charge-position
interaction. Therefore we seek the solution {Q0, x0} to the
equation ∇V (Q, x) = 0 such that {Q0, x0} is a minimum.

With this equilibrium point in hand, we expand V (Q, x)
about this point to find

V (Q, x) = V (Q0, x0) + ∇V (Q0, x0) · Q

+ 1
2 QT D Q + . . . , (B20)

where we have defined the vector Q = {Q − Q0, x − x0} and
the matrix D as the Hessian matrix evaluated at the minimum
{Q0, x0}. We express D in the compact form

D =
[

1
Ceff

− Tx
CP

− Tx
CP

keff

]
(B21)

where have defined the effective capacitance Ceff = C(x0) +
CP, the effective spring constant keff = k − CeffT 2

x
C(x0 )CP

, and the
transducer constant Tx as

Tx = CP
(Q0 − CPVDC)

ε0A

(
C(x0)

Ceff

)2

. (B22)

We understand this transducer constant to be the constant
of proportionality that takes changes in the position of the
movable plate to changes in the charge on the capacitor’s
plates. That is, if we examine the expression for the charge on
the mechanically varying capacitor’s plates and expand about
the minimum {Q0, x0},

Qb
C = C(x)(Q − CPVDC)

C(x) + CP

≈ C(x0)

Ceff
(Q − CPVDC) + Tx(x − x0) + . . . , (B23)

we find the approximately linear relationship between the
movable plate’s position and the charge on the mechanically
varying capacitor’s plates via the transducer constant Tx.

Inserting the expansion of V (Q, x) from Eq. (B20) into the
Hamiltonian of Eq. (B18) (noting that the linear order term is
zero at the minimum), the expanded linearized Hamiltonian
then takes the form given by Eq. (6) in the main text.

APPENDIX C: ADDING THE DRIVE AND MOVING TO
THE LINEARIZED REGIME

In this Appendix, we provide a brief overview of the stan-
dard methods employed in optomechanical analyses [49–51]
(as applied to our systems of interest) that lead to Eqs. (25)–
(29) in Sec. III of the main text. We begin by coupling the
schemes for electric and magnetic field sensing to a bath that
serves as a source of drive and mode of dissipation. Thus we

include in the Hamiltonians the terms

ĤB =
∫ ∞

−∞
dωh̄ωb̂†(ω)b̂(ω) (C1)

and

Ĥint = ih̄

√
κ

2π

∫ ∞

−∞
dω[b̂†(ω)â − b̂(ω)â†], (C2)

where b̂†(ω), b̂(ω) are the creation and annihilation operators
for the bath modes, which satisfy the commutation relation
[b̂(ω), b̂†(ω′)] = δ(ω − ω′), and κ corresponds to the cavity
decay rate. Eq. (C1) represents the Hamiltonian of the bath
while Eq. (C2) is the coupling between the parametric cavity
and the bath.

Upon coherently driving the cavity, the cavity modes
are displaced from their average value such that â → (α +
δâ)eiωLt , where α represents the drive strength, δâ the op-
erators corresponding to the dynamical quantum fluctuations
about the average, and ωL the frequency of the drive. It is then
convenient to move to a frame rotating with the drive via the
unitary transformation

Ĥ → Ĥ ′ = Û ĤÛ † + ih̄
dÛ

dt
Û † (C3)

with

Û = eiωLâ†ât . (C4)

This unitary transformation serves to eliminate the time de-
pendence from the Hamiltonian, namely, in the cavity-bath
interaction term Ĥint, as well as introduce a term −h̄ωLâ†â.

Finally, we move to the linearized regime of optomechan-
ics and assume a strong drive such that we can linearize the
interaction between the parametric cavity and the circuits for
both voltage and current measurement. For a strong drive, the
drive strength α increases in magnitude while also increasing
the fluctuations associated with the operators δâ, δâ†. Thus, in
the cavity-circuit coupling term (across all detector schemes,
readout options, and gauges), we neglect the term going as
δâ†δâ as being a factor smaller in α than the terms α∗δâ +
αδâ†. We also neglect contributions which do not dynamically
affect the evolution of the system, namely, constant terms and
terms linear in system operators.

By choosing the drive strength α to be real, and letting
δâ, δâ† → â, â† (for convenience) we arrive at the Hamilto-
nians given by Eqs. (25)–(29) in Sec. III of the main text.

APPENDIX D: DEFINING THE INPUT AND OUTPUT
BATH MODES

Here we provide a review of input-output theory [52] to
establish the quantum Langevin equation and define the in-
put and output modes for the system. We begin with the
Heisenberg equation of motion for the bath modes b̂(ω). This
equation is identical across all detector schemes, readout op-
tions, and gauges,

db̂(ω, t )

dt
= −i

h̄
[b̂(ω), Ĥ ′] = −iωb̂(ω) +

√
κ

2π
â, (D1)
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and may be solved in reference to either an initial time or final
time. This solution is written as

b̂(ω, t ) = e−iω(t−t0 )b̂(ω, t0) +
√

κ

2π

∫ t

t0

dt ′e−iω(t−t ′ )â(t ′),

(D2)

where for times t > t0 the solution references an initial state
at time t0 and for times t < t0 the solution references a final
state at time t0.

We then substitute this solution into the Heisenberg equa-
tions of motion for â, â† to find the quantum Langevin
equation. In doing so, we define the input and output modes
as

1√
2π

∫ ∞

−∞
dω e−iω(t−t0 )b̂(ω, t0) =

{
b̂in(t ) if t > t0
b̂out(t ) if t < t0

(D3)

and note the identities∫ ∞

−∞
dωe±iω(t−t ′ ) = 2πδ(t − t ′) (D4)

and ∫ b

a
dx f (x)δ(x − a) =

{ f (a)
2 if b > a

− f (a)
2 if b < a

. (D5)

We note that the equations of motion for â, â† are unique
to each detector scheme, readout option, and gauge. As an
example, for electric field sensing in the magnetomechanical
detector scheme, the equation takes the gauge-independent
form

dâ

dt
= i�â + iG(E ,v)

Q Q̂ − √
κ b̂in − κ

2
â. (D6)

Taking the difference between the equations which reference
an initial time t > t0 (in terms of b̂in) or a final time t < t0 (in
terms of b̂out) yields the familiar input-output relation

b̂out(t ) = b̂in(t ) + √
κ â(t ), (D7)

which describes how the output bath modes are related to the
input bath modes and the cavity operator.

APPENDIX E: EXPLICIT SOLUTIONS FOR THE OUTPUT PHASE QUADRATURES

Here we list the solutions for the output phase quadratures found from different transducer and receiver combinations, as
outlined in Sec. IV of the main text. For the magnetomechanical detector configuration, voltage measurement via electric field
sensing yields the solution

Ŷ (E ,v)
out (ν)=−

(
κ
2 − iν
κ
2 + iν

)
Ŷin + h̄G(E ,v)

Q
2
κ
(
ν2 − ω2

m

)
L
(

κ
2 + iν

)2[(
ν2 − ω2

c

)(
ν2 − ω2

m

) − δ2
vν

2
] X̂in + iG(E ,v)

Q

√
κδvν√

mL
(

κ
2 + iν

)[(
ν2 − ω2

c

)(
ν2 − ω2

m

) − δ2
vν

2
] F̂in,

(E1)

while for current measurement via magnetic field sensing we find the expression

Ŷ (B,v)
out (ν) = −

(
κ
2 − iν
κ
2 + iν

)
Ŷin + h̄GB2

κLω2
c

(
ν2 − ω2

m − δ2
v

)
(

κ
2 + iν

)2[(
ν2 − ω2

c − ω2
l

)(
ν2 − ω2

m

) − δ2
v

(
ν2 − ω2

l

)] X̂in

+ GB
√

κLδvω
2
c√

m
(

κ
2 + iν

)[(
ν2 − ω2

c − ω2
l

)(
ν2 − ω2

m

) − δ2
v

(
ν2 − ω2

l

)] F̂in. (E2)

For the electromechanical case, voltage measurement via electric field sensing yields

Ŷ (E ,x)
out (ν) = −

(
κ
2 − iν
κ
2 + iν

)
Ŷin + h̄κ

[
G(E ,x)

Q
2
m

(
ν2 − ω2

m

) − 2G(E ,x)
Q Gx

√
mLδxωce + G2

xL
(
ν2 − ω2

ce

)]
mL

(
κ
2 + iν

)2[(
ν2 − ω2

ce

)(
ν2 − ω2

m

) − δ2
x ω

2
ce

] X̂in

+ κ
[
GxL

(
ν2 − ω2

ce

) − G(E ,x)
Q

√
mLδxωce

]
mL

(
κ
2 + iν

)[(
ν2 − ω2

ce

)(
ν2 − ω2

m

) − δ2
x ω

2
ce

] F̂in, (E3)

while for current measurement via magnetic field sensing we find the expression

Ŷ (B,x)
out (ν) = −

(
κ
2 − iν
κ
2 + iν

)
Ŷin + h̄GB2

κLω2
ce

(
ν2 − ω2

m + δ2
x

)
(

κ
2 + iν

)2[(
ν2 − ω2

ce − ω2
le

)(
ν2 − ω2

m

) − δ2
x

(
ω2

ce + ω2
le

)] X̂in

+ iGBTx

√
κLωceν√

m( κ
2 + iν)

[(
ν2 − ω2

ce − ω2
le

)(
ν2 − ω2

m

) − δ2
x

(
ω2

ce + ω2
le

)] F̂in. (E4)

In all instances, we have utilized the frequencies defined Eq. (46) of the main text.

APPENDIX F: EXPLICIT NOISE PSD SOLUTIONS

In this Appendix, we list the noise PSD expressions for each combination of detector configuration and measurement scheme.
In contrast to those shown in the main text, here we write these expressions explicitly in terms of their frequency dependence
and the relevant frequencies given in Eq. (46). We also include the coupling Gx present in the electromechanical scheme, which
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we neglect due to its small size in the expressions in the main text. For the magnetomechanical detector configuration, voltage
measurement via electric field sensing yields the noise PSD

S(E ,v)
FF = h̄2G(E ,v)

Q
2
κm

(
ν2 − ω2

m

)2

2Lδ2
vν

2
(

κ2

4 + ν2
) + mL

(
κ2

4 + ν2
)[(

ν2 − ω2
m

)(
ν2 − ω2

c

) − δ2
vν

2
]2

2G(E ,v)
Q

2
κδ2

vν
2

+ NBM, (F1)

while for current measurement via magnetic field sensing we find the expression

S(B,v)
FF = h̄2GB2

κmL
(
ν2 − ω2

m − δ2
v

)2

2δ2
v

(
κ2

4 + ν2
) + m

(
κ2

4 + ν2
)[(

ν2 − ω2
m

)(
ν2 − ω2

c − ω2
l

) − δ2
v

(
ν2 − ω2

l

)]2

2GB2
κLδ2

vω
4
c

+ NBM. (F2)

In the electromechanical case, voltage measurement via electric field sensing yields the noise PSD

S(E ,x)
FF = h̄2κ

[
G(E ,x)

Q
2
m

(
ν2 − ω2

m

) − 2G(E ,x)
Q Gx

√
mLδxωce + G2

xL
(
ν2 − ω2

ce

)]2

2
(

κ2

4 + ν2
)[

G(E ,x)
Q

√
mLδxωce − GxL

(
ν2 − ω2

ce

)]2

+ m2L2
(

κ2

4 + ν2
)[(

ν2 − ω2
m

)(
ν2 − ω2

ce

) − δ2
x ω

2
ce

]2

2κ
[
G(E ,x)

Q

√
mLδxωce − GxL

(
ν2 − ω2

ce

)]2 + NBM, (F3)

while for current measurement via magnetic field sensing we find the expression

S(B,x)
FF = h̄2GB2

κmLω2
ce

(
ν2 − ω2

m + δ2
x

)2

2δ2
x ν

2
(

κ2

4 + ν2
) + m

(
κ2

4 + ν2
)[(

ν2 − ω2
m

)(
ν2 − ω2

ce − ω2
le

) − δ2
x

(
ω2

ce + ω2
le

)]2

2GB2
κLδ2

x ω
2
ceν

2
+ NBM. (F4)

APPENDIX G: ANALYSIS OF OPTOMECHANICAL
SYSTEMS FOR COMPARISON

Here we consider the continuous measurement of an op-
tomechanical system subject to either direct position or direct
momentum coupling. In the case where the probing optical
amplitude quadrature X̂ directly interacts with the position x̂
of the mechanical system, the interaction Hamiltonian takes
the form

Ĥint = h̄Gx̂X̂ . (G1)

This is the basis of the standard optomechanical position-
sensing problem. If instead the optical quadrature directly
interacts with the velocity, i.e., the mechanical momentum of
the system, which can be practically implemented by specific
designs of the system as in Refs. [6,53], the interaction Hamil-
tonian becomes

Ĥint = h̄G′ p̂X̂ . (G2)

Following the standard procedures in Appendix D and
Sec. IV, we write down the full Hamiltonian and derive the
equations of motion for these systems. Here we additionally
consider a mechanical damping with damping rate μ. Then,
we solve for the output phase quadrature of light Ŷout using
the input-output relations. These yield the estimated force
expressions [53]

F̂Ex = −Gh̄χcX̂in + eiφcŶin

Gχcχm
+ F̂in (G3)

and

F̂Ev
= −iG′h̄χcm

ω2
m

ν
X̂in + ieiφc

G′mνχcχm
Ŷin + F̂in. (G4)

Here we define the cavity response function χc, the me-
chanical response function χm, and the cavity phase shift
eiφc as

χc =
√

κ

−iν + κ/2
,

χm = −1

m
(
ν2 − ω2

m + iμν
) ,

eiφc = −iν − κ/2

−iν + κ/2
. (G5)

For position sensing, this helps us establish the target
frequency-dependent optimization of the coupling strength G:

G(ν) → 1√
h̄|χm(ν)|1/2|χc(ν)| . (G6)

Using these estimated force expressions, we derive the
noise PSD solutions analogously to those derived in the main
text and use them to generate the broadband noise PSD plot
shown Fig. 4 for comparison with that of our electrical readout
schemes.
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