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Symmetry is one of the cornerstones of modern physics and has profound implications in different areas.
In symmetry-protected topological systems, symmetries are responsible for protecting surface states, which are
at the heart of the fascinating properties exhibited by these materials. When the symmetry protecting the edge
mode is broken, the topological phase becomes trivial. By engineering losses that break the symmetry protecting
a topological Hermitian phase, we show that a new genuinely non-Hermitian symmetry emerges, which protects
and selects one of the boundary modes: the topological monomode. Moreover, the topology of the non-Hermitian
system can be characterized by an effective Hermitian Hamiltonian in a higher dimension. To corroborate the
theory, we experimentally investigated the non-Hermitian one- and two-dimensional SSH models using photonic
lattices and observed dynamically generated monomodes in both cases. We classify the systems in terms of the
(non-Hermitian) symmetries that are present and calculate the corresponding topological invariants.
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I. INTRODUCTION

Ever since the first observation of topological behav-
ior through the quantum Hall effect, topological states of
matter have allowed for an entirely new perspective on
condensed-matter physics [1–3]. These states challenge the
Ginzburg-Landau classification of phases of matter in terms
of spontaneous symmetry breaking, being instead character-
ized by an underlying topology. The topological robustness
of these materials is manifest in both the presence of topo-
logical invariants at their bulk and topologically protected
states at their boundaries. Because of their dissipationless
nature, topological boundary modes are expected to become a
key ingredient in nanotechnology. Moreover, the zero-energy
topological corner states that may appear at the edges of
one-dimensional (1D) and two-dimensional (2D) systems are
promising candidates to realize qubits in the field of quantum
computing and spintronics [4–6]. For special classes of these
materials, the corner states are related by symmetry, which
makes them come in pairs. A paradigmatic example is the Su-
Schrieffer-Heeger (SSH) model [7], which exhibits two edge
states related by sublattice and inversion symmetry. Because
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these two modes are connected and located at different ends
of the lattice, they are jointly protected against symmetry-
preserving perturbations. The same argument also applies
to higher-order topology, where multiple symmetry-related
boundary modes appear at corners (2D) or hinges (3D) [8]. An
intriguing unanswered question is whether these topological
pairs could be broken, and a monomode located at one single
edge would still be topologically stable.

Recently, the understanding of topological states was
greatly enlarged by non-Hermitian Hamiltonians [9–16], in
many ways. Unique non-Hermitian topological phenomena
were revealed, like the non-Abelian topological properties of
exceptional points [17,18], or the non-Hermitian skin effect
protected by a spectral winding number [11,19–25]. By al-
lowing the Hamiltonian to be non-Hermitian, one extends
the different symmetry-protected phases [9,10]. Particularly
interesting is to investigate how structured loss, which acts as
dissipation and would naively be expected to be detrimental
to topology, can actually be harnessed for robustly targeting
boundary modes, as shown in Ref. [26].

Here, we explore the consequences of non-Hermitian phe-
nomena to design and experimentally observe how Hermitian
symmetries morph into non-Hermitian ones. Specifically, we
consider how losses, which explicitly break a symmetry of
the system, affect symmetry-related boundary modes, while
retaining a generalized non-Hermitian symmetry constraint.
We consider loss localized in one sublattice of non-Hermitian
generalizations of the SSH model in 1D and 2D, and probe the
effects of both, boundaries and topological defects. The addi-
tion of loss to one sublattice breaks the (Hermitian) sublattice
symmetry, and one would expect that these edge states would
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FIG. 1. Overview of the experimental setup. (a) Schematic overview of the waveguides fabrication. The loss is introduced by making cuts
in the waveguide. The light is focused using an objective. (b) A microscopic picture of a produced 2D SSH sample. Here, t1 = 11 µm and
t2 = 7 µm. (c) Schematic overview of the measurement process. The light from the tunable light source is focused using an objective into a
specific waveguide of the sample. At the other end, a camera captures the resulting light.

be destroyed. Nevertheless, we found that the two edge modes
remain, and one of them decays in time. We established that
this apparent contradiction can be understood by considering
how Hermitian sublattice symmetry turns into a non-Hermitian
sublattice symmetry (which is preserved by this loss configu-
ration), and how the topology of this non-Hermitian system
can be characterized by an effective Hermitian Hamiltonian in
a higher dimension. The same holds for the 2D SSH model. To
corroborate our theory, we engineer structured loss in a system
of coupled waveguides, see Fig. 1. A schematic overview of
the optical waveguide writing process is shown in Fig. 1(a).
Figure 1(b) illustrates a 2D SSH sample. Finally, Fig. 1(c)
gives a schematic overview of the measurement setup. Details
of the experimental setup and sample preparation are given in
Sec. III A.

The propagation across the waveguides is described by
a Schrödinger-like equation [27], such that the propagation
across lossy waveguides can be represented approximately by
non-Hermitian Hamiltonians [28]. Even for the simple case of
loss in only one waveguide, we find that some of these corner
zero-modes acquire a finite imaginary part, while others re-
main pinned at zero energy. Due to these spectral properties,
just a subset of the topological modes survives in time, charac-
terizing isolated monomodes in 1D and 2D. However, all the
boundary modes are still related by symmetry, which allows
us to show that these modes are robust and characterized by
topological invariants.

The dynamical preparation of the monomodes set our
work apart from other realizations of single isolated topo-

logical modes, like the odd site SSH chain [16], defective
non-Hermitian SSH boundary states [19–21], band structure
monopoles [29,30], or defect states [28,31,32]. By exploring
injection of light in multiple sites, we also show that this
differs from previous works that showed isolated modes due
to the initial state preparation [33,34]. In contrast, we present
a simple and generic way to prepare the isolated boundary
modes by engineering loss, while preserving the topological
aspects of these states, as shown by explicit calculation of the
topological invariants. The understanding of how topological
states may remain robust despite breaking the symmetry that
protects them brings a new perspective into the field of non-
Hermitian topological insulators.

The outline of this paper is the following: In Sec. II, we
present the SSH model with loss that we investigate in this
work, and show the emergence of a monomode. In Sec. III a
comparison between theory and experiment is provided for
1D and 2D systems. Finally, the topological properties are
analyzed using Chern numbers and the Jackiw-Rebbi method
in Sec. IV. Our conclusions are presented in Sec. V. The
Appendices list additional details of the experimental and
theoretical procedure for completeness.

II. SSH MODELS WITH LOSS

We consider a version of the SSH model, in which we in-
troduce a loss of strength 2γ on the A sublattice [17,28,35,36];
see Fig. 2(a). This model and others with local gain and
loss are discussed in more detail in Appendix A; see also
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FIG. 2. Theoretical description of an SSH chain with loss. (a) 1D SSH lattice, described by Eq. (5). (b) Spectrum of the SSH model with
alternating loss, for OBC in the topological regime, with t2/t1 = 2. The system consists of 40 lattice sites. The energies are shown in the
complex plane, for different values of γ /t1. (c) Time evolution of the eigenstates of the Hamiltonian given by Eq. (5). The two edge modes,
for t2/t1 = 2 and γ /t1 = 2, are depicted at t = 0 (top) and at t = 10 (bottom) for 20 lattice sites. One observes that after some time, the left
edge mode has disappeared, giving rise to a monomode. The time is measured in units of (h̄/t1) (d) 1D SSH lattice with only one lossy site.
(e) Spectrum of the SSH model with only one lossy site, for OBC in the topological regime, with t2/t1 = 2. The system consists of 40 lattice
sites. The energies are shown in the complex plane, for different values of γ /t1. (f) Zoom in of panel (e). Part of the spectrum is cropped out,
to show the behavior of the imaginary part of the bulk.

Figs. 6–12.1 The Hamiltonian of this system is given by

H = −
N∑

n=1

[(t1a†
nbn + t2b†

nan+1 + H.c.) + 2iγ a†
nan], (1)

where N is the number of unit cells, and t1, t2 denote, re-
spectively, the inter- and the intra-cell hopping parameter. For
simplicity, we assume them to be real. The operators an (a†

n)
annihilate (create) a particle in sublattice A at site n (similarly
for B). The corresponding dispersion relation for periodic
boundary conditions (PBC) is given by

ε(k) = −iγ +
√

−γ 2 + t2
1 + t2

2 + 2t1t2 cos(ka), (2)

where the lattice parameter is denoted by a. We note that
the spectrum of the system is similar to the one with open
boundary conditions (OBC). This spectrum is also like the
one of a chain with alternating gain and loss, shifted down
on the imaginary axis by γ (see Appendix A). The Hermitian
SSH model (γ = 0) has a topological phase for |t2| > |t1|. In

1An additional model of losses over even sites of a Hermitian SSH
where an edge state is present together with the appearance of bulk
skin effect is presented in Ref. [37].

the case of OBC, this manifests itself in a pair of zero-energy
edge modes. Surprisingly, when γ is taken to be finite, the
edge modes persist, even if the symmetry protecting them has
been broken. In addition, one of the zero modes acquires a
negative imaginary energy, while the other one remains at zero
energy. This occurs because we have introduced loss only on
one of the two sublattices. Each edge mode has support on one
sublattice, thus exhibiting different energies. This behavior is
illustrated in Fig. 2(b).

The Hamiltonian directly encodes the information about
the time-evolution of the eigenstates through

|ψ (t )〉 = U |ψ (0)〉 = e− i
h̄ Ht |ψ (0)〉. (3)

Therefore, the amplitude of states with a negative (positive)
imaginary energy will decrease (increase) over time. Since
only one mode of the system has a nonnegative imaginary
energy, see Fig. 2(b), all but one of the states decays over
time. This is illustrated in Fig. 2(c), where the time-evolution
operator is applied to the two edge states of the system. It
is clear that only the right edge mode, the one which has
support on the sublattice without loss, will endure. Therefore,
this system reveals the existence of a topological monomode.

The monomode can nevertheless be realized in a more
straightforward way. Instead of including losses in every unit
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cell, it is sufficient to insert loss only on a single site in the
chain, as is depicted in Fig. 2(d). The difference is that it will
take longer for the bulk and the corresponding edge mode to
decay. In addition, this decay time becomes size dependent. A
second, more practical, constraint is that the lossy site should
be ‘relatively’ close to the decaying edge mode, for the decay
to occur more rapidly. Since the left (right) edge mode has
support on the A (B) sublattice, inserting the loss on the B
(A) sublattice near the left (right) edge will give the right
(left) edge mode a very long lifetime. In this case, it would
be difficult to observe the dynamically generated monomode.
However, if we insert the loss on a site on sublattice A in the
second unit cell, corresponding to the Hamiltonian

H = −
N∑

n=1

[t1a†
nbn + t2b†

nan+1 + H.c.] − iγ a†
2a2, (4)

then the left edge state will decay relatively fast. Neverthe-
less, some bulk states may take some time to decay. For a
sufficiently long time, the left edge state and the bulk states
belonging to the A sublattice will always decay. This also
becomes evident by analyzing the spectrum in the complex
plane, shown in Fig. 2(e). All the bulk modes have acquired a
small negative imaginary energy, see Fig. 2(f) for a zoom in.
PT -symmetry, therefore, does not play a role in generating
the topological monomode, since the SSH model with only
one lossy site is no longer (passive) PT -symmetric, as shown
by its spectrum. The monomode is thus more fundamental and
not simply a consequence of PT -symmetry.

The monomode concept is not only applicable to the
SSH model, but also to other models, even ones that are
not in the Altland-Zirnbauer classification [38,39]. We make
this explicit by considering higher-order topological (HOT)
[8,40,41] models. Now, we focus on the 2D SSH model,

H = −
∑
〈r,r′〉

[t1a†
rbr + t2b†

rar′ + H.c.], (5)

which is a HOT metal [34,42,43]. In the above equation, r and
r′ denote first-neighbouring unit cells in a square lattice. Al-
though the 2D SSH model presents bulk states at zero energy,
they do not hybridize with the robust symmetry-protected
corner modes for large system sizes. The four corner modes
are protected by C4v and chiral symmetry, such that we can use
again a similar insight to add loss in some of the sublattices
and design only two or one corner state, depending on the loss
distribution.

III. COMPARISON BETWEEN THEORY AND
EXPERIMENTS

A. Experimental setup

To experimentally validate the existence of monomodes, a
photonic waveguide lattice was built. Although the theoretical
model is quantum, it can be experimentally simulated using
classical light. In this experimental setup, the propagation of
the light is determined by the paraxial equation [27]

i
∂

∂z
�(x, y, z)

=
(

− 1

2k0

(
∂2

∂x2
+ ∂2

∂y2

)
− k0�n(x, y)

n0

)
�(x, y, z). (6)

Here, � acts as the wave function for the electric field,
k0 = n0ω/c, with ω the light frequency, and n0 the refractive
index, and �n is the change in refractive index. The paraxial
equation has a similar structure to the Schrödinger equation.
This system can be used to model the tight-binding Hamil-
tonian, where the hopping terms depend on the distance di

between the waveguides, ti ≈ e−di/ξ . ξ depends on the pa-
rameters of the experiment, such as the wavelength of the
light. We achieve the desired loss in the system by introduc-
ing a certain concentration of microscopic scattering points
along the waveguides through the dwelling process. The direct
laser-writing technology provided us with the ability to freely
tune both the dwelling time and the separation between the
individual scattering points, allowing for the implementation
of a wide range of artificial losses. Importantly, this process
neither compromises the real part of the refractive index
nor introduces directionality into the system. In addition, it
offered us precise control over the amount and distribution
of loss in the waveguide lattice, enabling us to design and
fabricate the lattice with the desired characteristics. To achieve
this, a coherent light beam from a tunable laser (Cameleon
Ultra II, Coherent) was launched into a glass sample using a
100× objective with a numerical aperture (NA) of 0.9. This
configuration allows for individual excitation of each waveg-
uide composing the structure. The output light of the glass
sample was collected using a 20× objective, and the image
profile of each individual waveguide forming the topological
structure was captured using a CCD camera.

The topological photonic 3D waveguide lattice structures
(2D spatial, 1D time) were fabricated using a pulsed fem-
tosecond (fs) laser (BlueCut fs laser from Menlo Systems).
The fs laser produced light pulses centered at a wavelength
of 1030 nm, with a duration of 350 fs, and a repetition rate
of 1 MHz. The waveguides were written in a Corning EA-
GLE2000 alumino-borosilicate glass sample with dimensions
of L = 50,W = 25, and h = 1.1 mm.

To inscribe the waveguide structures, pulses of 210 nJ
were focused using a 50× objective of 0.55 NA. The waveg-
uides were written at depths between 70 to 175 µm under
the surface, according to the designed structure, while the
sample was translated at a constant speed of 30 mm/s by a
high-precision three-axis translation stage (A3200, Aerotech
Inc.). The fabricated waveguides supported a Gaussian sin-
gle mode at 780 nm, with a mode field diameter (1/e2)
of approximately 6–8 µm. The mechanism of ultrafast laser
pulses-material interaction gave a refractive index increase of
about 2 × 10−4. The propagation losses were estimated to be
around 0.3 dB/cm, and the birefringence was in the order of
7 × 10−5.

B. 1D SSH model

To illustrate our findings, we now perform a set of eight
experiments using waveguides for the 1D model. The first
experiment (i) realizes an equally spaced tight-binding chain
where the distance between the waveguides was set to d1 =
d2 = 10 µm. The next four experiments realize a dimerized
chain with d1 = 12 µm and d2 = 10 µm (or viceversa) in the
(ii) trivial limit, (iii) topological limit without loss, and (iv,
v) topological limit with loss. This yields a ratio of t2/t1 ≈ 2
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FIG. 3. Experimental realization of the monomode in 1D SSH chains. Yellow circles signal the point at which light was injected. The white
dashed circles are the predictions of the tight-binding simulations. Their radius is proportional to the relative intensity. The lowest row of each
subfigure is a schematic description of the lattice structure. Here, the red dot signals a lossy waveguide. The distance between waveguides
has been exaggerated to allow for a prompt distinction between the trivial and topological regimes. (a) Tight-binding chain (black dots) with
t1 = t2, dispersing into the bulk. (b) Trivial SSH chain with t2/t1 = 0.5, dispersing into the bulk. (c) Topological SSH chain without loss with
t2/t1 = 2. Localised edge modes can be clearly observed. (d) By adding loss (γ /t1 = 0.5) at the red-dot site near the left edge, one of the edge
modes disappears, revealing the monomode. (e) When the loss is applied far away from the left edge, the corresponding edge mode does not
decay within the experimental time scale. (f) The inclusion of a topological defect into the system (t2/t1 = 3.2) does not affect the left edge
mode, but leads to an additional mode pinned on the defect. (g) The introduction of loss on the red-dot site near the defect destroys the mode at
the defect and leads to a monomode at the edge. (h) If instead the loss is engineered on the red-dot site near the left edge, then the edge mode
is destroyed, and a monomode occurs at the topological defect. For a separate visualization of numerical and experimental results, see Fig. 13
in Appendix C.

for the topological case. The last three experiments (vi-viii)
realize topological defects. In this case, there is an edge mode
at the end of the chain and one at the defect. Here, distances
of d1 = 11 µm and d2 = 7 µm were used, giving a ratio of
t2/t1 ≈ 3.2. The loss for the fourth and fifth experiment was
engineered by making scattering points 0.2 mm apart in the
waveguide, by waiting 0.5 s with the laser. For the last three
(topological defect) experiments, the loss was engineered by
adding 50 cuts of 350 µm along the waveguide. To ensure that
the edge states would not hybridise before the measurement,
a system size of 10 unit cells was chosen.

Figure 3 shows the experimental results, along with the
theoretical predictions. Yellow circles are included to indicate
the point of injection of light. White, dashed, circles represent
the results of the tight-binding simulations. The radius of the
circles is proportional to the relative intensity. In Appendix C,
we provide a side-by-side comparison between numerical and
experimental results. In the uniform 1D chain and in the trivial

phase of the SSH model, the light disperses into the bulk
[Figs. 3(a) and 3(b), respectively]. In the topological phase
without loss, there are two edge modes [Fig. 3(c)]. However,
when we add loss on the A sublattice near the left edge [see
red dot in Fig. 3(d)], we only observe one edge mode on the
right-hand side (B sublattice). When the loss is placed on the
A sublattice but far away from the left edge [Fig. 3(e)], the
left edge mode does not feel it immediately, and does not
decay within the time scale of the experiment. This is in agree-
ment with the theoretical predictions, represented by the white
dashed circles (see Appendix C for a stand-alone figure of the
theoretical predictions). The selective elimination of one of
the sublattices due to a single loss also occurs when there is
an inhomogeneous hopping in the lattice. To show that, we
create a chain with half of the dimerization corresponding to a
topological phase, while the other half corresponds to a trivial
phase. The site between the two chains is a kink, a kind of
topological defect that can host fractionalized excitations in
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(a) (b) (c)

FIG. 4. Experimental realization of bi- and monomodes in the 2D SSH model. Yellow circles signal the point at which light was injected.
For numerical predictions, see Appendix C. Top row shows the loss locations in the lattice (red dots) and the bottom row the experiments. Each
quarter of the bottom images is one experimental realization, with light injected into the indicated corner (yellow circles). (a) In the absence
of loss, there are four distinct corner modes. (b) Loss is implemented on two sublattices. This breaks the C4v symmetry of the system into C2v

and leads to bimodes. (c) By adding loss on three sublattices, the C2v symmetry is broken and the monomode emerges.

electron systems [44]. When the system hosts a topological
defect in the center of the chain, there is an edge mode on
the left edge of the chain, as well as a mode pinned on the
defect [Fig. 3(f)]. By putting loss on the B sublattice near
the defect, the mode pinned on the defect can be destroyed,
while leaving the left edge mode intact [Fig. 3(g)]. Similarly,
the loss can be placed on the A sublattice near the left edge,
thus removing the edge mode, but leaving the monomode on
the defect [Fig. 3(h)]. The existence of the topological mode at
a defect is also understood in the framework of Jackiw-Rebbi
theory [45] using that the mass profile in the low-energy Dirac
Hamiltonian changes sign across the defect, as discussed in
Sec. IV B.

C. 2D SSH model

For the 2D model, three experiments were realized. The
distance between the waveguides was set to d1 = 11 µm and
d2 = 7 µm, which yields a ratio of t2/t1 ≈ 3.2. The loss was
engineered by adding 100 cuts of 70 µm along the waveguide.
A system of 5 by 5 unit cells was used.

Figure 4 shows the results of the experiment for the 2D
model. Yellow circles are included to signal the point of injec-
tion of light. In the lossless case, the system hosts four corner
modes [Fig. 4(a)]. By adding loss to two sublattices, the C4

symmetry is reduced to C2v and two of the corresponding cor-
ner modes are destroyed, leaving bimodes [Fig. 4(b)]. Adding
loss to one more sublattice breaks the C2v symmetry further

and reveals a monomode in the 2D SSH model [Fig. 4(c)].
Notice that it is not possible to create a monomode by only
applying loss on a single lattice site for this model. The 2D
SSH model has four distinct sublattices, so three lossy sites
at different sublattices are required to obtain a monomode.
This is in full agreement with the theoretical predictions (see
Appendix C).

IV. TOPOLOGICAL ANALYSIS

To characterize the topology of this model, we first con-
sider how the addition of loss in the SSH chain changes its
symmetries. Even though sublattice symmetry is broken by
the presence of onsite loss, (non-Hermitian) chiral symmetry

 : 
H
 = −H† is still present for alternating loss. In gen-
eral, models that have this symmetry are of the form

H (k) =
(

iP(k) Q(k)
Q†(k) iR(k)

)
, (7)

where P(k) and R(k) are Hermitian matrices and Q is non-
Hermitian in general. Notice that the constraint that a chiral
Hermitian Hamiltonian should be block off-diagonal is re-
laxed when considering non-Hermitian Hamiltonians.

For the NH SSH model with onsite loss on one sublattice,
we have 
 = σz. As a result of the chiral symmetry, it is
possible to characterize the phases of the non-Hermitian SSH
model in terms of a topological invariant. The calculation
of this invariant is based on defining a Hermitian ancestor
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FIG. 5. Spectrum of the effective Hamiltonian for the 1D and 2D models. (a) Trivial phase for a 1D NH SSH model with staggered loss;
(b) topological phase. The linearly dispersing topological modes in the gap are shown in red. (c) Spectrum of the 2D NH SSH model with
the loss configuration sketched in Fig. 4(b) in the trivial phase and (d) in the topological phase. (e) Spectrum of the 2D SSH model with the
loss configuration sketched in Fig. 4(c) in the trivial phase and (f) in the topological phase. All spectra in the trivial phase are calculated for
(t2/t1 = 0.5), and in the topological phase, for (t2/t1 = 2). Modes with an absolute value of the wavefunction larger than 0.8 at the ends (for
1D) and corners (for 2D) of the lattice are plotted in red; other modes are plotted in blue. We used 10-unit cells in each direction for this
simulation.

Hamiltonian following Refs. [17,46,47],

H eff(η) = 
(ηI − iH ), (8)

where I is the 2D identity matrix. Notice that η acts as an extra
(continuum) momentum for the Hamiltonian, which makes
that this effective Hermitian Hamiltonian has always a higher
dimension than the corresponding non-Hermitian one.

The Bloch Hamiltonian for the NH SSH model with loss
on the A sublattice is given by

HNH−SSH (k) =
( −iγ t1 + t2eik

t1 + t2e−ik 0

)
. (9)

From Eq. (8), we then obtain the following effective Hermi-
tian Hamiltonian:

H eff(k, η) =
(

η − γ −i(t1 + t2eik )
i(t1 + t2e−ik ) −η

)
. (10)

A. Chern number

The effective Hamiltonian H eff for the non-Hermitian SSH
model given by Eq. (9) corresponds to a Chern insulator,
such that we can associate a Chern number to it. This model
fully captures the trivial and topological phases of the non-
Hermitian SSH model with loss in only one sublattice, which
is corroborated by the spectra shown in Figs. 5(a) and 5(b),
respectively. For the trivial phase, Fig. 5(a), the model exhibits
a completely gapped energy spectrum, whereas for the topo-
logical phase, Fig. 5(b), two linearly dispersing midgap states
arise. These are chiral edge states, present in the topological
phase of a Chern Insulator. Using the effective Hermitian

Hamiltonian, we can also calculate the Berry curvature and the
Chern number, which is quantized as long as the Hamiltonian
is periodic in both k and η. However, here the Hamiltonian
is periodic in the wave number k, but anti-periodic in η:
H eff(k, η → −∞) = −H eff(k, η → ∞). To circumvent this
problem, we perform the following, unitary transformation to
obtain the compactified effective Hamiltonian

H eff
cp (k, η) = RηH eff(k, η)R†

η, (11)

with

Rη = exp

[
i
π

4
(1 + tanh η)

(
0 1
1 0

)]
. (12)

Since the transformation that we performed is unitary, the
spectra of H eff

cp (k, η) and H eff(k, η) are equivalent.
The Chern number for H eff

cp (k, η) is now obtained through

C = 1

2π

∫ ∞

−∞
dη

∫ 2π

0
dk �k,η, (13)

with the Berry curvature �k,η given by

�k,η = 2
∑

n�nF ,m>nF

Im

〈
ψn

k,η

∣∣ ∂kH eff
cp

∣∣ψm
k,η

〉 〈
ψm

k,η

∣∣ ∂ηH eff
cp

∣∣ψn
k,η

〉
(
E (n)

k,η
− E (m)

k,η

)2 .

(14)
Here, E (i)

k,η
and |ψ i

k,η〉 are the eigenvalues and normalized
eigenstates of the ith band of H eff

cp , and nF is the number of
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occupied bands. It turns out that calculating the Chern number is easier for the non-Hermitian SSH model with staggered loss.
In this case, the eigenvalues of H eff

cp are given by

E±
k,η = γ ±

√
t2
1 + t2

2 + η2 + 2t1t2 cos k, (15)

while the eigenvectors are given by

|ψ±
k,η〉 = N±,k

(
±i

√
t2
1 +t2

2 +η2+2t1t2 cos k∓(t1+t2 cos k) cos( π
2 tanh η)∓η sin( π

2 tanh η)
−η cos( π

2 tanh η)+it2 sin k+(t1+t2 cos k) sin( π
2 tanh η)

1

)
, (16)

where N±,k is a normalization factor.
We observe that the Berry curvature in Eq. (14) is indepen-

dent of γ . Moreover, we obtain

C =
{

0 |t1| > |t2|
1 |t1| < |t2| . (17)

Notice that this bulk invariant was computed for the system
with alternating loss because it is a translation invariant ver-
sion of the model with a single lossy site. Both exhibit the
same topological properties since they belong to the same
symmetry class. The nontrivial Chern number marks the topo-
logical character of the chiral edge states present in H eff. It
labels the topology of both edge modes, although only the
monomode survives for long time.

B. Jackiw-Rebbi

The methodology of the effective Hamiltonian can also be
used to investigate both a topological defect in the 1D SSH
model and corner modes in the 2D SSH model. We performed
calculations using the Jackiw-Rebbi method [40,45]. This
method is based on the derivation of a low-energy effective
Dirac Hamiltonian for the system. In this description, the
topology of the system is determined by the spatial structure
of the mass term. A change in the mass term from the topo-
logical to the trivial phase yields localized zero-energy states.

Writing the effective Hamiltonian [Eq. (10)] in terms of
Pauli matrices σi,

H eff(k, η) =
(

η − γ

2

)
σz − γ

2
I + [t1 + t2 cos(k)]σy

+ t2 sin(k)σx, (18)

one observes that the gap closing occurs for t1 = t2, k = ±π ,
and η = γ /2. Close to the phase transition and in the vicinity
of the gap closing point, we can perform a low-energy descrip-
tion of this model

H eff(p, η) =
(

η − γ

2

)
σz + t2Mσy − t2 pσx + O(p2), (19)

where p = k − π , the mass term M = (t1 − t2)/t2, and we
changed the energy reference to neglect the term proportional
to the identity. The quadratic term can be added to fix the
boundary conditions. The gap closing then occurs for p = 0
and M = 0, and the sign of the mass term determines whether
the system is trivial (M > 0) or topological (M < 0). Associ-
ated with this low-energy model, there is a continuum model

H eff(x, η) =
(

η − γ

2

)
σz + t2Mσy + it2∂xσx, (20)

since the momentum is the derivative p = −i∂x along the
coordinate x of the lattice.

Using the continuum Hamiltonian, a change in the hopping
parameters along the lattice is translated into a spatially de-
pendent mass term M(x). A topological defect is a domain
wall between a topological (M < 0) and a trivial (M > 0)
lattice, so we can model it by a profile of mass that changes
sign across the boundary and vanishes at the defect. Therefore,
for at least one value of η, there will be a localized zero-energy
solution of the Hamiltonian

H eff

(
x,−γ

2

)
�DW(x) = [t2M(x)σy + it2∂xσx]�DW(x)

= 0 = [M(x)I + ∂xσz]�DW(x).

Notice that we multiplied the matrix applied on �DW(x) by σy

and divided by t2 to obtain the last equality.
�DW(x) may be expressed in terms of the eigenstates of σz,

χ+ = (1 0) and χ− = (0 1),

�DW(x) =
∑

σ=±1

cσψσ
DW(x)χσ , (21)

where ∑
σ

|cσ |2 = 1,

∫ ∞

−∞
dx

∣∣ψσ
DW(x)

∣∣2 = 1. (22)

We can obtain a differential equation for ψσ
DW(x) in terms of

the eigenvalues σ of σz,

[M(x) + σ∂x]ψσ
DW(x) = 0, (23)

such that

ψσ
DW(x) = N exp −σ

∫ x

−∞
M(x′)dx′, (24)

where N is a normalization factor. For a system with the
topological phase on the left and the trivial phase on the
right of the domain wall, we obtain localized solutions just
for σ = 1; therefore, c− = 0 and c+ = 1. Notice that at the
domain wall, the Hamiltonian as a function of η is given by

HDW(η) = 〈�DW|H eff|�DW〉 = η − γ

2
, (25)

which exhibits a linear dispersion. Moreover, there is a local-
ized solution only at the boundary between the trivial (M > 0)
and topological (M < 0) phases, which characterizes this de-
fect as a topological defect.

The same method can be used to show the topological
characteristic of the corner modes in the 2D SSH model.
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Even though this model does not present a gapped bulk spec-
trum, zero energy modes localized in the corner only appear
at the HOT phase. We start by extending the method from
Refs. [46,47] to non-Hermitian 2D systems. For the 2D SSH
model, it takes the form (Appendix B 1)

H eff(k, η) = 
(ηI ⊗ I − iHNH-2D-SSH(k)), (26)

where now the chiral symmetry is 
 ≡ σz ⊗ I since we are
dealing with a four orbital model. Although there is no longer
a Chern number associated with this model, it is still useful
to analyze the topological properties of boundary states (Ap-
pendix B 2). We obtain the low-energy Hamiltonian

H eff(p, η) = Hd (η) + t2Mxσy ⊗ I − t2 pxσx ⊗ σz

+ t2Myσy ⊗ σx + t2 pyσy ⊗ σy, (27)

with px = kx − π and py = ky − π . Again, the topological
phase is characterized by the mass terms Mx/y. To model the
different boundaries, we set t1 to be different across x and y
and define Mx/y = (t x/y

1 − t2)/t2. The HOT phase is marked
by negative Mx and My, while we model the exterior of the
lattice by a trivial insulator with positive Mx/y. By performing
a calculation analogous to the one done for the topological
defect, we show in the SM that one obtains localized states
at the corners only when there is this change of sign for the
mass term, indicating the topological aspect of these zero-
energy boundary modes. These modes also appear as linearly
dispersing edge modes for the effective Hamiltonian of Eq. (8)
as shown in Figs. 5(c)–5(f). For the loss configuration of
Fig. 4(b), the spectrum [Fig. 5(c)] of the trivial phase does
not display modes localized in the corners, while the one for
the topological phase does [Fig. 5(d)]. The same holds for the
loss configuration of Fig. 4(c); see Figs. 5(e) and 5(f).

V. CONCLUSIONS AND OUTLOOK

We have theoretically and experimentally shown the morph
of non-Hermitian symmetries through the engineering of loss.
By introducing losses on a selected sublattice and sufficiently
close to the corresponding edge, one of the topological edge
modes decays over time. We have realized these monomodes
experimentally in a photonic lattice. Moreover, we confirmed
the robustness of the monomodes against perturbations. It is
remarkable that a generalized topological invariant protecting
the corner mode remains valid in this non-Hermitian setup.

The monomode concept is related to an intriguing prop-
erty experimentally demonstrated here, in which one can add
an NH term that breaks the original Hermitian symmetry of
the model but preserves a generalized NH symmetry. In this
work, this NH perturbation is staggered loss, which explicitly
breaks the Hermitian sublattice symmetry of the SSH model
while preserving NH chiral symmetry. We have shown that
the topology of this model can be understood in terms of
an effective Hermitian Hamiltonian in higher dimension. Al-
though this is constructed explicitly here for chiral symmetry,
we speculate that this method can be extended to other sym-
metries.

The implications of our results are multifold. We have
identified an extremely simple model, capable of reveal-
ing monomodes. Since those cannot recombine with their

corresponding partner, those monomodes would be ideal
candidates for transmitting information based on topologi-
cal states. Here, we have the additional advantage that this
mode will not hybridize, and hence it exhibits further ro-
bustness with respect to its Hermitian counterpart. In this
context, it is important to note that the phenomena explored
in this work generalizes, mutatis mutandis, to quantum mas-
ter equations [48,49]. A natural extension of this work is to
explore Z2 topological classes and investigate whether the
engineered loss in another inner degrees of freedom (like spin
or particle/hole) can lead to the morphing of symmetries.
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APPENDIX A: GAIN AND LOSS SYSTEMS

Here, we investigate different loss configurations in the
SSH model. In this case, the non-Hermiticty will be caused
by gain and/or loss on the sites. We will start by looking at
the dimer with both gain and loss, followed by the SSH model
with gain and loss. Henceforth, we will study a system with
only loss.

1. Broken PT -symmetry

The systems discussed here can exhibit PT -symmetry,
depending on the system size and choice of parameters. PT -
symmetry is the invariance of a system to combined parity
(x → −x) and time inversion (t → −t) transformations. To
illustrate how this works, we will discuss a very small and
simple system showing both a PT -conserved phase and a
spontaneously broken phase. We note that the same reasoning
works for larger lattices. The system consists of two sites,
with gain iγ , loss −iγ , and hopping t1 between the sites. The
Hamiltonian reads

H = c†

(−iγ −t1
−t1 iγ

)
c, (A1)

where c (c†) are vectors of annihilation (creation) operators.
The Hamiltonian of Eq. (A1) is clearly non-Hermitian and
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FIG. 6. SSH chain with alternating gain and loss.

PT -symmetric. Its eigenvectors and eigenvalues are given by

φ± =
(

−−iγ±
√

t2
1 −γ 2

t1
1

)
and ε± = ±

√
t2
1 − γ 2. (A2)

There is an exceptional point at γ = t1 because at this
point both eigenvalues are 0 and both eigenvectors are φ =
(i 1)T . For γ < t1, the spectrum has fully real eigenvalues,
but for γ > t1 it has fully imaginary eigenvalues, in conju-
gated pairs. This suggests the PT -symmetry is broken for
γ > t1, which can be proven considering the eigenvectors of
the system. For γ < t1, we have

PT φ± = P
(

− iγ±
√

t2
1 −γ 2

t1
1

)
=

(
1

− iγ±
√

t2
1 −γ 2

t1

)
. (A3)

Now, we multiply the resulting vector by a constant to obtain

PT φ± =
(− t1

iγ±
√

t2
1 −γ 2

1

)
=

(
−−iγ±

√
t2
1 −γ 2

t1
1

)
= φ±, (A4)

so the eigenvectors are indeed PT -symmetric. When γ > t1,
the eigenvectors are equal to

φ± =
(

−−iγ±i
√

γ 2−t2
1

t1
1

)
, (A5)

and when we now apply the PT operators to it, we obtain

PT
(

−−iγ±i
√

γ 2−t2
1

t1
1

)

= P
(

− iγ∓i
√

γ 2−t2
1

t1
1

)
=

(
1

− iγ∓i
√

γ 2−t2
1

t1

)

→ PT φ± =
(− t1

iγ∓i
√

γ 2−t2
1

1

)
�= φ±. (A6)

We indeed find that the eigenvectors are no longer PT -
symmetric if γ > t1 and thus, the eigenvalues become
complex. However, when the system size increases, this
PT -symmetric region decreases in size, such that the PT -
symmetric phase is absent in the thermodynamic limit.

2. Alternating gain and loss

We now consider a reciprocal SSH chain with alternating
gain and loss on the sites [17,36], a system that has been
extensively discussed in the literature; see Fig. 6. The reason
why these imaginary contributions on the site lead to gain
or loss can be understood straightforwardly by looking at the
time propagator,

U (t ) = e− i
h̄ Ĥt , (A7)

where t is time. By acting with this operator on an eigenstate
of H, |ψn〉, the state will evolve in time according to its
eigenvalue

U (t ) |ψ〉 = e− i
h̄ εnt |ψn〉 . (A8)

When there are losses at the sites, the eigenvalues acquire a
negative imaginary contribution. This will cause an exponen-
tial decay of the state, meaning loss. In the same way, positive
imaginary contributions to the eigenvalues signify gain. The
matrix Hamiltonian of this system is given by

H = c†

⎛
⎜⎜⎜⎜⎜⎝

−γ i −t1 0 · · · b
−t1 γ i −t2

0 −t2 −γ i
...

...
. . .

b · · · γ i

⎞
⎟⎟⎟⎟⎟⎠c, (A9)

where b is −t2 or zero for periodic (PBC) or open boundary
conditions (OBC), respectively. After diagonalizing the ma-
trix we get

ε(k) = ±
√

−γ 2 + t2
1 + t2

2 + 2t1t2 cos(ka). (A10)

We can now study this system in the topological and trivial
regime.

a. Trivial phase

In the trivial regime of the SSH model, |t1/t2| � 1, the
system has a fully real spectrum for |γ | � |t1 − t2| because the
eigenvectors of the Hamiltonian remain PT -symmetric. This
can be seen in Figs. 7(a) and 7(b), where the imaginary part is
zero for |γ | < |t1 − t2| (|t1 − t2| = 0.5 as t1 = 1 and t2 = 0.5).
In this regime, the system also has a (real) band gap. The
system opens up a line gap for |γ | > |t1 + t2|. A line gap is
present when one can draw a line between two segments of the
spectrum. This is different to a point gap, where the spectrum
is encircling a point. Different representations of the spectrum
can be seen in Figs. 7(a)–7(c). In the case of OBC, the spectra
of the system will not change much besides finite-size effects,
being equal to the PBC one in the thermodynamic limit.

b. Topological phase

The topological regime of the SSH model exists when
|t2/t1| > 1. In this section, we will specifically consider the
case when t2 = 2t1. For PBC, the system behaves in the
same way as in the trivial regime. PT -symmetry is conserved
for |γ | � |t1 − t2| and the system opens up a line gap for
|γ | > |t1 + t2|. Different representations of the spectrum can
be seen in Figs. 8(a)–8(c). The topological regime of the SSH
model is more interesting in the OBC case, in which there are
topologically protected midgap states. In this non-Hermitian
SSH model, these edge modes will no longer have zero en-
ergy. In Fig. 8(b), the spectra in the imaginary plane is given
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(a)

(b)

(c)

FIG. 7. Spectrum of the SSH model with alternating gain and loss for PBC and OBC in the trivial regime t2 = t1/2. A system size of 20
unit cells was used. (a) As a function of ka for different values of γ . (b) In the complex plane for different values of γ . The blue full circles
results correspond to PBC, and the red empty circles to OBC. (c) As a function of γ /t1.

for specific parameters. The zero energy modes have each
acquired an imaginary energy. One mode acquired +iγ , while
the other got −iγ . These zero modes are also clearly visible
in Fig. 8(c), where they are the cause of the PT -symmetry
breaking for all values |γ | > 0.

3. Alternating loss

Up until this point, we have been considering systems with
gain as well as loss. In an experimental setting, gain would
be more difficult to engineer than loss. To adapt the theory to
this, we can transform the system of Eq. (A9) to a system with
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(a)

(b)

(c)

FIG. 8. Spectrum of the SSH model with alternating gain and loss for PBC and OBC in the topological regime t2 = 2t1. A system size of
20 unit cells was used. (a) As a function of ka for different values of γ . (b) In the complex plane for different values of γ . The blue line results
correspond to PBC, and the red line to OBC. (c) As a function of γ /t1.
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FIG. 9. SSH chain with alternating loss.

only loss, by simply subtracting iγ1 from it. This results in

H = c†

⎛
⎜⎜⎜⎜⎜⎝

−2γ i −t1 0 · · · b
−t1 0 −t2

0 −t2 −2γ i
...

...
. . .

b · · · 0

⎞
⎟⎟⎟⎟⎟⎠c, (A11)

where b is −t2 (0) for PBC (OBC). This model is illustrated in
Fig. 9. This results in a spectrum very similar to the spectrum
of Eq. (A10), except that it has an imaginary offset

ε(k) = ±
√

−γ 2 + t2
1 + t2

2 + 2t1t2 cos(ka) − iγ . (A12)

This system can once again be studied in the trivial and topo-
logical regime.

a. Trivial phase

This system is clearly very similar to the system with
alternating gain and loss, as can also be seen from Figs. 10(a)–
10(c). Figures 10(a) and 10(b) are just shifted down on the
imaginary axis proportional to γ , while Fig. 10(c) shows how
the spectrum depends on γ . Due to this imaginary offset,
the system no longer has a PT -symmetric phase, but rather
presents passive PT -symmetry. Similarly to the system with
alternating gain and loss, the behavior of the spectrum does
not change much for different boundary conditions.

b. Topological phase

Like in the trivial case, the spectrum is very similar to the
alternating gain and loss Hamiltonian, but just shifted down
on the imaginary axis, as can be seen in Figs. 11(a)–11(c).
Again, there is no PT -symmetric region due to the imaginary
offset. The OBC case is discussed in detail in the main text.

4. Alternating loss 2D SSH

The SSH model can also be extended into two dimen-
sions. This model has the same basic behavior as the 1D
SSH model, exhibiting three phases: PT -symmetric phase,
PT -broken phase and a phase with an imaginary line gap.
In Fig. 12 we show the spectrum of the 2D SSH model
with no loss [Figs. 12(a), 12(d), and 12(g)] and with the loss
distribution yielding a bimode [Figs. 12(b), 12(e), and 12(h)]
and a monomode [Figs. 12(c), 12(f), and 12(i)]. Especially,
Fig. 12(c) makes it very clear that all the bulk modes are
destroyed in this loss configuration. For OBC, this would
leave only one edge state.

APPENDIX B: CALCULATIONS REGARDING THE
HERMITIAN ANCESTOR HAMILTONIAN

1. Effective Hamiltonian for the 2D SSH

The lossy 2D SSH model also has a Bloch Hamiltonian
with non-Hermitian CS,

HNH-2d-SSH(kx, ky) =
(

iP Q(kx, ky)
Q†(kx, ky) iR

)
, (B1)

with Q(k) = [t1 + t2 cos(kx )]I + it2 sin(kx )σz + [t1 +
t2 cos(ky)]σx − t2 sin(ky)σy using the choice of basis
from Ref. [42]. R = −γ I, P = 0, and R = −γ I,
P = −γ (I + σz )/2 for the loss configuration of Figs. 4(b)
and 4(c), respectively, of the main text.

We see that we can extend the method of Ref. [46] to
define an effective Hermitian Hamiltonian by adding a third
dimension to the problem

H eff(kx, ky, η) = 
[ηI − iHNH-2D-SSH(kx, ky)]

= Hd (η) + [t1 + t2 cos(kx )]σy ⊗ I

+ t2 sin(kx )σx ⊗ σz

+ [t1 + t2 cos(ky)]σy ⊗ σx

− t2 sin(ky)σy ⊗ σy, (B2)

where 
 = σz ⊗ I and the diagonal Hd part of the Hamil-
tonian is given by Hd = −γ /2 I ⊗ I + (η − γ /2) σz ⊗ I
and Hd = −3γ /4 I ⊗ I + (η + γ /4) σz ⊗ I − γ /4 I ⊗ σz −
γ /4 σz ⊗ σz for the loss configuration in Figs. 4(b) and 4(c)
of the main text, respectively. We show the dispersion relation
of both cases in Fig. 5 of the main text. The corner modes
of the 2D non-Hermitian model appear as linearly dispersing
modes for the effective Hamiltonian, although they are not the
only ones with this property because the bulk of this system is
not gapped.

2. Corner States of the Lossy 2D SSH Model

The Jackiw-Rebbi construction can be generalized to de-
scribe corner states in higher-order topological phases [40,50]
by considering a corner as an x-domain wall in the y-edge and
viceversa, and ensuring the compatibility of the two solutions.
To use the continuum Hamiltonian with a position-dependent
mass term, we consider that t1 can be different along x and
y. We see then that the gap closing is given by HD = 0,
t x
1 = t y

1 = t2, and kx = ky = π . Therefore, we again obtain a
low-energy continuum theory [Eq. (27) of the main text],

H eff(px, py, η) = Hd (η) + t2Mxσy ⊗ I − t2 pxσx ⊗ σz

+ t2Myσy ⊗ σx + t2 pyσy ⊗ σy, (B3)

where Mx/y ≡ (t x/y
1 − t2)/t2. The higher-order topological

phase is characterized by having both Mx and My negative,
while the trivial phase has both positive. An edge of the HOT
phase reproduces a domain wall between the HOT phase and
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(a)

(b)

(c)

FIG. 10. Spectrum of the SSH model with alternating loss for PBC and OBC in the trivial regime t2 = t1/2. A system size of 20 unit cells
was used. (a) As a function of ka for different values of γ . (b) In the complex plane for different values of γ . The blue full circles results
correspond to PBC, and the red empty circles to OBC. (c) As a function of γ /t1.

the vacuum (which is trivial). To show that these states are
topological, we focus on the upper right corner, which we lo-
cate at x = y = 0, but the entire discussion is easily extended
to the other three corners.

A zero-energy mode in the right x-edge should satisfy

(t2Mx(x)σy ⊗ I + it2∂xσx ⊗ σz )�x-edge(x)

= 0 = (Mx(x)I ⊗ I + ∂xσz ⊗ σz )�x-edge(x). (B4)
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(a)

(b)

(c)

FIG. 11. Spectrum of the SSH model with alternating loss for PBC and OBC in the topological regime t2 = 2t1. A system size of 20 unit
cells was used. (a) As a function of ka for different values of γ . (b) In the complex plane for different values of γ . The blue full circles results
correspond to PBC, and the red empty circles to OBC. (c) As a function of γ /t1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 12. Spectrum of the 2D SSH model, for t2/t1 = 3.2. (a)–(c) The spectrum in the complex plane for PBC. (d)–(f) Spectrum along the
points of high symmetry for PBC. (g)–(i) The spectrum in the complex plane for OBC. Panels (a), (d), (g) show the spectrum for the lossless
2D SSH model. Panels (b), (e), (h) show the spectrum for the system with loss along the diagonal of the unitcell (with γ /t1 = 5), yielding a
bimode: only two modes remain at zero energy. Panels (c), (f), (i) show the spectrum for the model with loss at three sites in the unit cell (with
γ /t1 = 5), yielding a monomode, as there is only one mode remaining at zero energy.

Writing �x-edge(x) in terms of the eigenstates χσ,σ ′
of σz ⊗ σz,

�x-edge(x) =
∑

σ,σ ′=±1

cσ,σ ′ψσ,σ ′
x-edge(x)χσ,σ ′

,

∑
σ,σ ′

|cσ,σ ′ |2 = 1,

∫ ∞

−∞
dx

∣∣ψσ
x-edge(x)

∣∣2 = 1, (B5)

χ+,+ =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, χ+,− =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠,

χ−,+ =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, χ−,− =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (B6)
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and using that the eigenvalues of σz ⊗ σz are σσ ′, we obtain
the equation for ψx-edge

(Mx(x) + σσ ′∂x )ψx-edge(x)

= 0 ⇒ ψx-edge(x) = N xe−σσ ′ ∫ x
−∞ Mx (x′ )dx′

. (B7)

Setting the edge at x = 0, we have a mass profile that has a
negative (positive) value for negative (positive) x. Therefore,
the solutions localized in the edge are given by σσ ′ = 1,
which is satisfied by σ = σ ′ = ±1. For convenience, we use
the subscript + (−) in the first (second) solution. The compo-
nents of the x-surface Hamiltonian are given by

[Hx-surface(py)]l,m = χ l†[t2Myσy ⊗ σx + t2 pyσy ⊗ σy]χm

= t2My(σy)lm + t2 py(σx )lm. (B8)

Considering now the corner as being a (y) domain wall for this
surface Hamiltonian, we look for a solution �corner(y) which
satisfies

(t2Myσy − it2∂yσx )�corner(y) = 0 = (MyI − ∂yσz )�corner(y).
(B9)

In terms of the spinors of the first solutions

�corner(y) =
∑
τ=±1

cτψ
τ
corner(y)χτ , (B10)

we obtain

(My(y) − τ∂y)ψτ
corner(y) = 0→ψτ

corner(y) = N yeτ
∫ y
−∞ My (y′ )dy′

.

(B11)

Therefore, we see that the localized solution is the one with
τ = −1, which corresponds to χ−. Accordingly, the wave-
function for the corner state is given by

�corner(x, y, η) = N xN ye− ∫ x
−∞ Mx (x′ )dx′

× e− ∫ y
−∞ My (y′ )dy′

ψ (η)

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. (B12)

We have then the corner Hamiltonian

H corner(η) = 〈�corner|H eff|�corner〉
= χ+†Hd (η)χ+ = −η + γ (B13)

for both loss configurations. The same construction can be
used to obtain the other corner modes, the only difference
being how Mx/y changes across the boundaries, which affects
both the spatial and spinorial forms of the corner states.

APPENDIX C: NUMERICAL PREDICTIONS

Figure 13 shows the experimental results (first column)
alongside the theoretical predictions for the 1D SSH experi-
ments (second column). These are the same numerical results
as represented in Fig. 3 by circles, but here they are shown
on a similar color scale to the experiments. Figure 14 displays
the time-evolution of the inserted light for the simple tight-
binding case [Fig. 14(a)], and the trivial SSH case [Fig. 14(b)].
Due to the paraxial equation, we can relate the length of the
waveguides to time. As light moves along the waveguide,
time can be promptly determined by the length divided by
the speed of light. Therefore, this spatial direction actually
corresponds to a time direction. The Texp can be calculated by
scaling the length of the waveguide by the hopping parameter
t1, yielding Texp = Lt1. This makes it clear that the theoretical
predictions for these two models rely heavily on the duration
of the experiment (length of the waveguide). Figure 15 shows
the theoretical results for the 2D SSH model. Here, a larger
system size was used than in the experiment. However, the
same behavior can be seen, with the realization of a bimode
and a monomode.

APPENDIX D: ADDITIONAL EXPERIMETAL DATA

Figures 16 and 17 show the full experimental data of the
1D chain experiments, obtained upon inserting light in each
waveguide.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 13. Numerical results of Fig. 3 of the main text, alongside the experimental data. The left column gives the experimental data, which
can also be seen in the main text. The right column shows the numerical results. Yellow circles signal the point at which light was injected.
(a) Tight-binding chain (black dots) with t1 = t2 dispersing into the bulk. (b) Trivial SSH chain with t1/t2 = 2 dispersing into the bulk.
(c) Topological SSH chain without loss with t2/t1 = 2. Localised edge modes can be clearly observed. (d) When we add loss (γ /t1 = 0.5) at
the red-dot site near the left edge, one of the edge modes disappears, revealing the monomode. (e) This is not the case when the loss is applied
far away from the left edge. In this case, the edge mode does not decay within the experimental time scale. (f) A topological defect is added to
the system (t2/t1 = 3.2). Now, there is a left edge mode, as well as a mode pinned on the defect. (g) Loss is placed on the red-dot site near the
defect. This destroys the mode at the defect, but leaves the monomode. (h) By placing the loss on the red-dot site near the left edge, the edge
mode gets destroyed, but not the defect mode.
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(a) (b)

FIG. 14. Numerical predictions of the time propagation of Figs. 3(a) and 3(b). (a) Time propagation of the tight-binding chain. Clearly, a
wave is propagating from its insertion point on the left, to the right. At around the time of the experiments, the wave hits the right edge of the
chain and reflects back. (b) Time propagation of the trivial SSH chain. We see a similar behavior as for panel (a).

(a) (b) (c)

FIG. 15. Numerical prediction of the bi- and monomodes in the 2D SSH model for 10×10 unit cells with t2/t1 = 3.2 and γ /t1 = 5. Yellow
circles indicate the point at which light was injected. The top row shows the loss locations in the lattice (red dots) and the bottom row the
predictions, for injecting into the four corners. (a) No loss, showing four distinct corner modes. (b) Loss on two sublattices. This breaks the C4v

symmetry of the system into C2v and leads to bimodes. (c) By adding loss on three sublattices, the C2v symmetry is broken and the monomode
emerges.
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(c) (d)

(a) (b)

FIG. 16. Experimental results for all insertion points. (a) Results of the tight-binding chain with no loss, from Fig. 3(a). (b) Results of the
topologically trivial chain with no loss, from Fig. 3(b). (c) Results of the topological chain with no loss, from Fig. 3(c). (d) Results of the
topological chain with loss, from Fig. 3(d).

023140-20



BREAKING AND RESURGENCE OF SYMMETRY … PHYSICAL REVIEW RESEARCH 6, 023140 (2024)

(c) (d)

(a) (b)

FIG. 17. Experimental results for all insertion points. (a) Results of the topological chain with loss on the “wrong” (far away) side of the
lattice, from Fig. 3(e). (b) Results of the topological defect chain with no loss, from Fig. 3(f). The position of the topological defect is indicated
by a dotted line. (c) Results of the topological defect chain with loss engineered in a way to destroy the defect mode, from Fig. 3(g). (d) Results
of the topological defect chain with loss designed to destroy the left edge mode, from Fig. 3(h).
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