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Suppression of polaron self-localization by correlations
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We investigate self-localization of a polaron in a homogeneous Bose-Einstein condensate in one dimension.
This effect, where an impurity is trapped by the deformation that it causes in the surrounding Bose gas, has been
first predicted by mean-field calculations, but has not been seen in experiments. We study the system in one
dimension, where, according to the mean-field approximation, the self-localization effect is particularly robust
and present for arbitrarily weak impurity-boson interactions. We address the question whether self-localization
is a real effect by developing a variational method which incorporates impurity-boson correlations nonperturba-
tively and solving the resulting inhomogeneous correlated polaron equations. We find that correlations inhibit
self-localization except for very strongly repulsive or attractive impurity-boson interactions. Our prediction for
the critical interaction strength for self-localization agrees with a sharp drop of the inverse effective mass found
in quantum Monte Carlo simulations of polarons in one dimension.
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I. INTRODUCTION

The original Bose polaron problem concerns an electron in
a solid which is dressed by small distortions of the crystal
lattice and was modelled by Fröhlich [1]. Another type of
polaron is formed by an electron or impurity atom in su-
perfluid 4He. This problem has long been studied [2] and
later extended to molecular impurities and impurity aggre-
gates in 4He, which lead to a new type of low-temperature
spectroscopy of molecules [3,4]. More recently, polarons of
mobile impurities have been experimentally realized in ultra-
cold Bose gases [5–7].

For electrons in ionic solids [8] and in superfluid 4He
[9] a mechanism for self-localization, or self-trapping, was
proposed [10]. Self-localization implies that, even in the ab-
sence of an external trap potential, the impurity probability
density ρ(r0) is not uniform but trapped by the distortion of
the density of phonons or He atoms created by the impurity
itself. In Refs. [11,12] based on the mean-field (MF) approach
self-localization has also been predicted for polarons in a
Bose-Einstein condensate. According to Cuccietti et al. [11]
a polaron in a three-dimensional homogeneous Bose gas self-
localizes above a critical impurity-boson interaction strength,
while below it the polaron ground state is homogeneous. This
would imply a phase transition to a translation symmetry-
breaking ground state. Subsequently, other works have also
predicted this effect, e.g., for neutral polarons, again using
the MF approximation [13–17], including finite temperature
calculations (using time-dependent Hartree-Fock-Bogoliubov
[18] and Balian-Vénéroni variational principle [19]), and also
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with other methods such as path integrals [20,21]. Also ionic
polarons [22] and angular polarons [23] have been predicted
to self localize. However, other works have not seen evi-
dence of self-localization in three dimensions [24–26], nor
has it been observed experimentally. This raises the question
whether self-localization is a methodological artifact or a real
effect.

In one dimension the MF approximation predicts a
self-trapped polaron regardless of the strength of the impurity-
boson interaction [14]. Exact quantum Monte Carlo simu-
lations [27] indeed predict an essentially divergent polaron
effective mass above a certain impurity-boson interaction
strength, i.e., the polaron becomes immobile, which would
be consistent with self-localization for strong interactions.
Conversely, Ref. [28] found a finite effective mass for at-
tractive impurity-boson interaction, using the same Monte
Carlo method for similar boson-boson interaction strengths
but smaller mass ratio. Indirect measurements of Bose
polarons in one dimension gave an even lower effective
mass [5].

The goal of this work is to check if the self-localized
ground state predicted by the MF approximation is a real
effect or an artifact of the uncorrelated Hartree ansatz of MF.
To check this, we take a crucial step beyond the Hartree
ansatz by incorporating impurity-boson correlations in a non-
perturbative way, while treating the weakly interacting Bose
background still in the MF approximation, thus omitting
boson-boson correlations. We note that the perturbative treat-
ment of correlations (then usually referred to as quantum
fluctuations) has been shown to lead to corrections to the
density ρ(x0) of a self-localized impurity in one dimen-
sion [13] but still preserves self-localization. In this work
we show that with a nonperturbative treatment of impurity-
boson correlations impurity self-localization happens only
for very strongly attractive or repulsive impurity-boson
interactions.
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II. THEORY AND METHOD

The Hamiltonian of one impurity and N bosons in one
dimension is given by

H = − h̄2

2M

∂2

∂x2
0

− h̄2

2m

N∑
i=1

∂2

∂x2
i

+
N∑

i=1

U (x0 − xi )

+ λBB

∑
i< j

δ(xi − x j ) (1)

consisting of the kinetic energy of the impurity, the kinetic
energy of the bosons, the impurity-boson interaction, and
the boson-boson interaction. The boson-boson interaction is
modeled by a contact potential with strength λBB, which is re-
lated to the scattering length aBB by λBB = −2h̄2

aBBm [29,30]. The
impurity-boson interaction is modeled by a finite range poten-
tial, for which we choose a Gaussian, U (x) = U0

2σ 2
U

exp[− x2

σ 2
U

],
characterized by the strength and width parameters U0 and σU .

The MF approach is usually derived in a variational formu-
lation, with the Hartree ansatz wave function for one impurity
in a bath of N bosons:

�MF = η(x0)
N∏

i=1

ψ (xi ). (2)

This wave function does not account for the correlations
caused by the interactions, e.g., the decrease of the prob-
ability |�(x0, . . . , xi, . . . )|2 if a boson at xi is close to a
repulsive impurity at x0. The optimization of �MF leads
to one-body equations with effective potentials, the “mean
fields.” The uncorrelated MF ansatz (2) can be expected to
be a poor approximation of the true many-body wave func-
tion if impurity-boson interactions are strong (but our results
show it is a poor approximation for weak interaction as well).
Therefore, we generalize the ansatz by replacing the boson
one-body functions ψ (xi ) with impurity-boson pair correla-
tion functions f (x0, xi ):

� = 1


N/2
η(x0)

N∏
i=1

f (x0, xi ), (3)

where it turns out to be convenient to introduce a pref-
actor including the normalization volume 
. This is a
Jastrow-Feenberg ansatz wave function [31] but limited to
impurity-boson correlations. We refer to it as the inhomoge-
neous correlated polaron (inh-CP) ansatz.

If the ground state is assumed homogeneous, i.e., trans-
lationally invariant like the Hamiltonian, the ansatz (3)

simplifies to

�hom = 1


(N+1)/2

N∏
i=1

fhom(x0 − xi ), (4)

which was studied by Gross [32]. Of course, we cannot make
this assumption of translational invariance if we want to study
the possible symmetry breaking by self-localization of the
impurity. But the homogeneous correlated polaron (hom-CP)
ansatz (4) will still be useful: if self-localization is indeed
energetically favorable, the energy difference between the inh-
CP and the hom-CP result is the energy gained by forming a
self-localized ground state.

Our ansatz (3) includes impurity-boson correlations but
still treats the (weakly interacting) Bose background in the
MF approximation, as it does not include boson-boson corre-
lations. Since we take only one step beyond the MF approach,
this allows for a comprehensible comparison between our
method and the MF approach. Impurities immersed in a
strongly interacting Bose liquid like 4He, however, require the
inclusion of boson-boson correlations. Optimizing such a full
Jastrow-Feenberg ansatz leads to the hypernetted-chain Euler-
Lagrange method [33,34]. The method and its time-dependent
generalization have been used extensively to study impurities
in 4He [35–38].

Before deriving equations for η(x0) and f (x0, xi ) from
the Ritz variational principle, we need an expression for the
energy functional E = 〈�|H |�〉, where we assume normal-
ization of the wave function, 〈�|�〉 = 1. The four terms in
the Hamiltonian (1) lead to the following four terms in E :

E = h̄2

2M

∫
dx

(
∂�

∂x0

)2

+ N
h̄2

2m

∫
dx

(
∂�

∂x1

)2

+ N
∫

dx �2 U (x0 − x1)

+ N (N − 1)

2

∫
dx �2 λBB δ(x1 − x2), (5)

where dx = dx0 dx1 . . . dxN , and � is the correlated polaron
ansatz (3). Owing to the star-shaped correlation structure,
where the impurity is correlated with all bosons but the bosons
are not correlated between themselves, most of the N + 1 inte-
grals in E factorize and yield

∫
dx′

1 f (x0, x′
1)2. We abbreviate

this partially integrated correlation function

f̄ (x0) ≡ 
−1
∫

dx′
1 f (x0, x′

1)2. (6)

We obtain the energy functional

E = h̄2

2M

{∫
dx0

(
∂η(x0)

∂x0

)2

f̄ (x0)N − N




∫
dx0 dx1 η(x0)2 f̄ (x0)N−1 f (x0, x1)

∂2 f (x0, x1)

∂x2
0

− N (N − 1)


2

∫
dx0 η(x0)2 f̄ (x0)N−2

[∫
dx1 f (x0, x1)

∂ f (x0, x1)

∂x0

]2
}

+ h̄2

2m

N




∫
dx0 dx1 η(x0)2 f̄ (x0)N−1

(
∂ f (x0, x1)

∂x1

)2

+ N




∫
dx0 dx1 η(x0)2 f̄ (x0)N−1 f (x0, x1)2 U (x0, x1)

+ λBB

2

N (N − 1)


2

∫
dx0 dx1 η(x0)2 f̄ (x0)N−2 f (x0, x1)4. (7)
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In a study of self-localization, we are primarily interested
in the impurity density ρI(x0). Without an external trapping
potential, the impurity density is constant in the absence of
self-localization, ρI(x0) = 1



, while in the presence of self-

localization ρI(x0) peaks at a random location x̄0
1 and falls

to zero away from x̄0. Similarly, the density of the Bose gas
ρB(x1) is constant in the first case, ρB(x1) = N



, while it has

a valley/peak for repulsive/attractive impurity-boson interac-
tion in the latter case. For the correlated polaron ansatz (3),
the impurity density is given by

ρI(x0) =
∫

dx1 . . . dxN |�|2 = η(x0)2 f̄ (x0)N , (8)

and the boson density is given by

ρB(x1) = N
∫

dx0 dx2 . . . dxN |�|2

= N




∫
dx0 η(x0)2 f̄ (x0)N−1 f (x0, x1)2, (9)

where normalization of the wave function was assumed.
According to the Ritz variational principle the optimal

η(x0) and f (x0, x1) are obtained from minimizing the energy

(7), i.e., setting its functional derivatives with respect to η(x0)
and f (x0, x1) to zero. To ensure normalization of the wave
function we introduce a Lagrange multiplier λ. Hence, we
need to optimize the Lagrangian

L = E + λ

{
1 −

∫
dx0 η(x0)2 f̄ (x0)N

}
. (10)

The inh-CP equations for the general inhomogeneous case are
the coupled Euler-Lagrange equations, formally written as

δL

δη(x0)
= 0, (11)

δL

δ f (x0, x1)
= 0. (12)

Their explicit form is derived in Appendix A, where we show
that in the thermodynamic limit N → ∞ and 
 → ∞ with
ρ = N



fixed, we obtain a one-body equation for the square

root of the impurity density g(x0) = √
ρI(x0) and a two-body

equation for f̃ (x0, x1) ≡ g(x0) f (x0, x1):

μI g(x0) = − h̄2

2M

∂2g(x0)

∂x2
0

+ Vg(x0) g(x0), (13)

μB f̃ (x0, x1) = − h̄2

2M

∂2 f̃ (x0, x1)

∂x0
2

− h̄2

2m

∂2 f̃ (x0, x1)

∂x1
2

+ Vf (x0, x1) f̃ (x0, x1) (14)

with the impurity and boson chemical potential μI and μB and the effective one-body and two-body potentials

Vg(x0) = h̄2

2M
ρ

∫
dx′

1

(
∂ f (x0, x′

1)

∂x0

)2

+ h̄2

2m
ρ

∫
dx′

1

(
∂ f (x0, x′

1)

∂x′
1

)2

+ ρ

∫
dx′

1 f (x0, x′
1)2 U (x0, x′

1)

+ λBB
ρ2

2

∫
dx′

1 ( f (x0, x′
1)4 − 2 f (x0, x′

1)2 + 1), (15)

Vf (x0, x1) = h̄2

2M

1

g(x0)

∂2g(x0)

∂x2
0

+ U (x0, x1) + λBBρ
f̃ (x0, x1)2

g(x0)2
. (16)

We have cast the two coupled inh-CP equations into the
form of a one- and a two-body nonlinear Schrödinger equa-
tion, respectively, with effective potentials (15) and (16) that
depend on g(x0) and f̃ (x0, x1) itself. Similarly to other non-
linear Schrödinger equations [39], Eqs. (13) and (14) can
be solved self-consistently by imaginary time propagation,
where we always start the propagation with self-localized trial
states, for example, the MF ground state. Details are given in
Appendix B.

III. RESULTS

We present results for the Bose polaron ground state in one
dimension for three levels of approximation:

1For numerical reasons, the impurity self-localizes at x̄0 = 0 if at
all.

(a) Solving the full inh-CP equations (13) and (14), de-
rived in this work and based on the ansatz (3)

(b) Solving the special case of the hom-CP equation, de-
rived in Ref. [32], based on the ansatz (4), that precludes
self-localization

(c) Solving the MF equations, based on the ansatz (2),
which according to Ref. [14] always result in self-localization
in one dimension.

In all three types of calculations, we use the same Gaus-
sian interaction model. Following Bruderer et al. [14], we
measure length in units of the healing length ξ = h̄/

√
λBBρm

and energy in units of E0 = λBBρ. This leaves us with three
dimensionless essential parameters characterizing the Bose
polaron system (1): the mass ratio α = m/M, the relative
interaction strength β = λIB/λBB, and a density parameter
γ = 1/(ρξ ). λIB is obtained from the scattering length aIB via
λIB = −h̄/aIB(1/M + 1/m), and the scattering length aIB is
obtained from the parameters U0 and σU the Gaussian model
interaction using the results of Ref. [40]. We have confirmed
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FIG. 1. Impurity density ρI(x0 ) (top panels) and boson density
ρB(x1) (bottom panels) are shown as functions of β. Correlated
polaron results are depicted on the positive side of the coordinate axis
x0 or x1, and the MF results are depicted on the negative side. The left
and right panels show results for attractive and repulsive impurity-
boson interactions, respectively. A constant ρI(x0) and ρB(x1) means
there is no self-localization for the corresponding value of β. All
results are for γ = 0.5.

the universality of the interaction model, i.e., that our results
depend only on λIB and not on the parameters U0 and σU if σU

is chosen very small. Too small values for σU would require
a very fine discretization and correspondingly high numerical
effort. Therefore, we choose σU = 0.1, where results differ
only insignificantly from the universal limit.

We compare results obtained with the inh-CP and the
hom-CP equations to ensure numerical consistency, and also
to calculate the formation energy (called binding energy
in Ref. [11]) gained from self-localization if we do find
self-localized polarons. But the main goal of this work is
to compare the inh-CP results and MF results, i.e., results
with and without including correlations, to see whether self-
localization still occurs when impurity-boson correlations are
included in the variational ansatz. We note that both solving
the hom-CP equation and solving the MF equations is numer-
ically straightforward and fast since all quantities depend on a
single coordinate, unlike f (x0, x1) in the inh-CP ansatz (3).

In this work we restrict ourselves to equal impurity and
boson mass, i.e., α = 1. The parameter γ is related to the
gas parameter, ρ|aBB| = 2/γ 2. A small parameter γ signi-
fies weak boson-boson interactions (i.e., large |aBB|) and/or
high density, while γ → ∞ is the strongly correlated Tonks-
Girardeau limit [41]. We study two cases, γ = 0.2 and γ =
0.5, which both correspond to a weakly interacting Bose gas,
where it may be justified to neglect boson-boson correlations
as done in the ansatz (3). We vary the relative impurity-boson
interaction strength β over a wide range from strongly attrac-
tive to strongly repulsive.

A. Density and localization length

In Fig. 1 we show the impurity density ρI(x0) (top panels)
and the boson density ρB(x1) (bottom panels) for attractive

FIG. 2. Localization length σ of a polaron is plotted as a function
of β for γ = 0.2 (top panel) and 0.5 (bottom panel). The filled and
open symbols are the correlated and MF results, respectively, the
latter agreeing with Ref. [14]. The shaded area indicates the range
of β where no self-localization occurs according to our correlated
results.

impurity-boson interactions, −10 � β < 0, (left panels) and
repulsive interaction 0 < β � 50 (right panels). We show
only half of the densities since they are assumed to be
symmetric. The darker lines (positive coordinates) are the
solutions of the inh-CP equations, while the lighter lines
(negative coordinates) are the solutions of the MF equations,
calculated also in Ref. [14]. All calculations in Fig. 1 are done
for γ = 0.5.

The comparison in Fig. 1 demonstrates that incorporating
the impurity-boson correlations strongly reduces the tendency
towards self-localization. The MF approximation predicts that
the polaron self-localizes for all values of β, where ρI(x0)
and ρB(x1) becomes narrower for larger |β| [14]. Conversely,
the ground state of the correlated polaron is qualitatively and
quantitatively quite different: for a wide β range the polaron
does not self-localize at all, thus ρI(x0) and ρB(x1) are simply
constant. It may come as a surprise that especially for weak
interactions the MF approximation gives a wrong result re-
garding the question of self-localization, which demonstrates
that in one dimension correlations should never be neglected.
Only for sufficiently strong attraction or repulsion, the cor-
related polaron self-localizes, but both ρI(x0) and ρB(x1) are
significantly broader than in the MF approximation.

A localized polaron can be characterized by a localization
length σ , e.g., by fitting a Gaussian exp[−x2

0/(2σ 2)]/(σ
√

2π )
to the impurity densities ρI(x0) shown in Fig. 1. σ → ∞
means the polaron delocalizes. In Fig. 2 we show the local-
ization length σ of the correlated polaron (filled squares) and
the corresponding σ mf of the MF polaron (open squares) as
functions of the relative interaction strength β for γ = 0.2
(top) and γ = 0.5 (bottom). Since in all our calculations,
including the MF calculations, we use a Gaussian interaction
of finite width σU = 0.1 instead of a contact potential, our
results for σ mf deviate slightly from Ref. [14], at most by
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TABLE I. The critical relative interaction strengths βcr,1/2 for self-
localization, obtained from solving the inh-CP equations. We also
tabulate the results expressed in alternative dimensionless units (see
text) for better comparison with Ref. [27].

γ βcr,1 βcr,2 γP ηcr,2 ηcr,2

0.2 −9.6 16.8 0.04 −0.38 0.67
0.5 −6.2 23.3 0.25 −1.55 5.82

10%. Since the MF approximation predicts unconditional self-
localization in one dimension, σ mf is finite for all β 	= 0. For
the correlated polaron, we get a large range of β where the
polaron is delocalized, indicated by the gray area. Therefore,
not only is σ significantly larger than σ mf, but it diverges at
a critical attractive and repulsive relative interaction strength
βcr,1 and βcr,2, respectively, the value of which depends on
γ . Since a large σ requires a large computational domain,
approaching the critical β becomes numerically expensive,
and we estimate it by fitting to a1|β − βcr,1|c1 for the attractive
side and a2|1 − βcr,1/β|c2 for the repulsive side (where σ

seems to saturate at a finite value for large β). The estimates
are tabulated in Table I. The Bose polaron in one dimension
was studied with diffusion Monte Carlo simulations [27,28].
The trial wave functions used in that work are translationally
invariant, which may mask a self-localization effect. Nonethe-
less, a relatively sharp increase of the polaron effective mass
to a very large value was observed on both the attractive
and repulsive side. Parisi et al. [27] considered equal masses
for impurity and bosons, which allows comparison with the
present work. They use the parameters γP = γ 2 and η = βγ 2

to characterize boson density/interactions and impurity-boson
interactions, respectively. For better comparison Table I pro-
vides the critical interaction strength also in terms of γP

and η. The closest values of γP compared to our values are
γ

(MC)
P = 0.02 and 0.2. Figure 4 in Ref. [27] shows that for

γ
(MC)
P = 0.02 the inverse effective mass essentially vanishes

for η ≈ −1 and for η ≈ 1 for attractive and repulsive interac-
tions, respectively; for γ

(MC)
P = 0.2 the corresponding values

are η ≈ −2 and η ≈ 10, but the statistical fluctuations and
the logarithmic scale make it hard to give precise numbers.
Considering this uncertainty and our slightly different values
for γP, our prediction for the critical interaction strength for a
self-localized polaron ground state is consistent with that for
an essentially infinite effective mass obtained with diffusion
Monte Carlo.

B. Chemical potential

Solving the correlated polaron equations (13) and (14)
yields not only g(x0) and f̃ (x0, x1) but also the impurity and
boson chemical potentials μI and μB. For the latter we obtain
the trivial result μB/E0 = 1, i.e., the MF approximation of the
pure Bose gas, which is not altered by a single impurity in the
thermodynamic limit. Slight numerical deviations from unity
provide a measure of finite size effects.

The impurity chemical potential μI provides nontrivial in-
formation. According to the Ritz variational principle, better
variational wave functions yield lower energies, closer to the

FIG. 3. Impurity chemical potential μI (filled squares) from the
solution of the inhomogeneous correlated polaron equations is plot-
ted as a function of β for γ = 0.2 (top panels) and 0.5 (bottom
panels), together with the MF prediction μmf

I (open squares) and the
homogeneous correlated polaron prediction μhom

I (stars). Left and
right panels show attractive and repulsive impurity-boson interac-
tions, respectively.

exact ground-state energy. This is also true for μI, because it
is obtained by subtracting the constant E0,N from the ground-
state energy; see Appendix A. Hence, the chemical potential
of the correlated impurity must be lower than that of the MF
impurity, μI < μmf

I . In Fig. 3 we show μI and μmf
I as functions

of β for γ = 0.2 (top panels) and 0.5 (bottom panels). For
all cases, μmf

I is higher than μI, as it should be. Furthermore,
we expect μI < 0 for β < 0 and vice versa, which is indeed
the case for both μI and μmf

I . For attractive impurity-boson
interactions, shown in the left panels, μI shows no sign of
saturating to a finite value when β is decreased to stronger
attraction; in fact, the slope steepens. For repulsive interac-
tions (right panels), μI does saturate with increasing β. This is
consistent with the behavior of the localization length shown
in Fig. 2 for negative and positive β.

FIG. 4. Formation energy Eb = μI − μhom
I is plotted as a func-

tion of β, split into attractive and repulsive interaction (left and right
panel). self-localization happens only if Eb < 0.
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FIG. 5. Optimal pair correlation f (x0, x1) obtained from solving
the inhomogeneous correlated polaron equations. For β = −10 (left
panel) the polaron ground state is self localized, and for β = −5
(right panel) the ground state is homogeneous. The values at the
upper left and lower right corners of the computational domain are a
result of the periodic boundary conditions.

The comparison between μI and μmf
I serves mainly as a

check that we did not converge to an unphysical local energy
minimum. More interesting is the comparison of the chemical
potentials obtained from the inhomogeneous and the homoge-
neous polaron equations, μI and μhom

I , respectively, because
the difference is the formation energy of self-localization,
Eb = μI − μhom

I , i.e., the energy gained by localization. μhom
I

is shown in Fig. 3 together with μI and μmf
I , but the difference

between μI and μhom
I is barely visible. In Fig. 4 we show the

formation energy Eb, which is about two orders of magnitude
smaller than μI, and its determination without numerical bias
is challenging. We note that the smallness of Eb relative to
μI would render its calculation by Monte Carlo simulation a
formidable task.

If μI = μhom
I , thus Eb = 0, no energy is gained from self-

localization, which therefore does not happen. Indeed, in these
cases the inh-CP solver converges to a constant polaron den-
sity, ρI = 1/
, with the same correlation function f (x0, x1) as
that of the hom-CP solution, f hom(x0 − x1). If μI < μhom

I , thus
Eb < 0, self-localization lowers the ground state with respect
to a homogenous ground state. The critical relative interaction
strength βcr,1 and βcr,2 discussed above is just the point where
Eb becomes 0.

We illustrate the difference between a homogeneous pair
correlation f hom(x0 − x1) of a delocalized ground state and the
inhomogeneous pair correlation f (x0, x1) of a self-localized
ground state in Fig. 5 for γ = 0.5. The left panel shows
f (x0, x1) for β = −10 (localized), which has only inversion
symmetry. The right panel shows f (x0, x1) = f hom(x0 − x1)
for β = −5 (homogeneous), which has translation symmetry
with respect to the center of mass (x0 + x1)/2.

IV. CONCLUSIONS

We revisited the self-localization problem of an impurity
in a Bose gas, where the mean-field (MF) approximation
predicted self-localized polaron ground states in three di-
mensions [11] and later in two and one dimension [14];
in particular, in one dimension self-localization was pre-
dicted to happen for any strength of the impurity-boson
interaction, quantified by the parameter β. Extending the
MF method using the Bogoliubov method to account for
quantum fluctuations has proven useful in many instances

(dipolar interactions [42], self-bound Bose mixtures [43]),
but is still only a perturbative expansion. In our work, we
incorporate optimized, inhomogeneous impurity-boson corre-
lations in a nonperturbative way and derive inhomogeneous
correlated polaron (inh-CP) equations, which we solve numer-
ically for the 1D case. The results of this improved variational
ansatz for the ground-state wave function shows that the MF
approach is not sufficient to study polaron physics in one
dimension. Impurity-boson correlations suppress the tendency
towards self-localization significantly, which happens only for
strongly attractive or repulsive impurity-boson interactions.
Despite being variational, our results are consistent with the
sharp increase of the effective mass of the polaron at a similar
critical impurity-boson interaction strength predicted by exact
diffusion Monte Carlo simulations [27].

In the case of the MF approximation, it is straightfor-
ward to see why it might predict a spurious self-localization
even for weak interactions: without correlations, i.e., using
a Hartree ansatz (2), a localized impurity density and ac-
cordingly an inhomogeneous Bose density “mimic” the effect
of a correlations as the most optimal solution of the Ritz
variational problem. For example, for repulsive interactions
the Bose density is suppressed around the localized impurity,
lowering the total energy of a Hartree ansatz. Instead, in a
correlated many-body wave function like (3), repulsion causes
a correlation hole in the pair distribution function, which
does not require self-localization of the polaron. Our method
predicts self-localization only for strong impurity-boson inter-
actions, but this is not a rigorous proof that such a breaking of
the translational invariance of the Hamiltonian (1) is a real
effect rather than a variational artifact. Further refinements
beyond the variational wave function (3), such as boson-boson
correlations or three body impurity-boson-boson correlations,
may push the transition to self-localization to even stronger
interactions. However, the above-mentioned consistency with
exact Monte Carlo results lends credibility to the correlated
polaron ansatz (3) in the regime of weak boson-boson interac-
tions that we studied in this work.

Experimental observation of a possibly self-localized po-
laron is challenging. The smallness of the formation energy
Eb would require a low temperature, depending on the mag-
nitude of |β|, where strongly attractive interactions, β < 0,
are clearly favorable according to our results. Diffusion Monte
Carlo simulations would in principle allow us to calculate Eb

from the difference of the ground-state energies obtained from
homogeneous and self-localized polaron trial wave functions,
respectively, the latter coming, e.g., from our inh-CP solution.
However, the smallness of Eb again makes this a challenging
task.

In higher dimensions, there is no evidence of a sharp in-
crease of the effective mass of a polaron three dimensions,
according to quantum Monte Carlo simulations [25], but the
MF approach [11] does predict self-localization. Correlations
tend to be less important in higher dimensions, and the MF
approach usually becomes a better approximation. It will
be interesting to see if there is a parameter regime where
the correlated polaron ansatz (3) is self localized in more
than one dimension. Furthermore, the inh-CP method can be
generalized to time-dependent problems, similarly to the time-
dependent hypernetted-chain Euler-Lagrange method [44].
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This allows us to calculate the effective mass for a di-
rect comparison with exact Monte Carlo results or one of
the many other methods used for the 1D polaron problem
[45,46], but also to study nonequilibrium dynamics of po-
larons after a quench [47,48], such as an interaction quench
of β.

Our results pertain only to neutral atomic impurities. For
dipolar and especially ionic impurities, which interact via
long-ranged attractive potentials with the surrounding Bose
gas due to induced dipoles, the situation may be different.
Ions in Bose-Einstein condensates can dress themselves with
a substantial cloud of bosons [49], making ionic polarons a
more likely candidate for self-localization.
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APPENDIX A: DERIVATION OF THE INHOMOGENEOUS
CORRELATED POLARON EQUATIONS

From the energy (7) and the resulting Lagrangian
(10) we derive the inh-CP equations (13) and (14). The
first Euler-Lagrange equation (11) becomes, after dividing
by 2 f̄ (x0)N ,

λ η(x0) = − h̄2

2M

{
∂2η(x0)

∂x2
0

+ 2
N




∂η(x0)

∂x0

1

f̄ (x0)

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

+ N




η(x0)

f̄ (x0)

∫
dx′

1 f (x0, x′
1)

∂2 f (x0, x′
1)

∂x2
0

+ N (N − 1)


2

η(x0)

f̄ (x0)2

[∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

]2
}

+ h̄2

2m

N




η(x0)

f̄ (x0)

∫
dx′

1

(
∂ f (x0, x′

1)

∂x′
1

)2

+ N




η(x0)

f̄ (x0)

∫
dx′

1 f (x0, x′
1)2 U (x0, x′

1)

+ λBB

2

N (N − 1)


2

η(x0)

f̄ (x0)2

∫
dx′

1 f (x0, x′
1)4. (A1)

Note that, when we multiply this equation by η(x0) f̄ (x0)N and integrate over x0, we obtain λ = E , i.e., the Lagrange multiplier
is indeed the energy.

Using (7) and (10), the second Euler-Lagrange equation (11) becomes, after dividing by 2N



f̄ (x0)N−1,

E η(x0)2 f (x0, x1) = − h̄2

2M

{
η(x0)

∂2η(x0)

∂x2
0

f (x0, x1) + η(x0)2 ∂2 f (x0, x1)

∂x2
0

+ 2
N − 1




η(x0)

f̄ (x0)−1

∂η(x0)

∂x0
f (x0, x1)

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

+ N − 1




η(x0)2

f̄ (x0)
f (x0, x1)

∫
dx′

1 f (x0, x′
1)

∂2 f (x0, x′
1)

∂x2
0

+ (N − 1)(N − 2)


2

η(x0)2

f̄ (x0)2
f (x0, x1)

[∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

]2

+ 2 η(x0)
∂η(x0)

∂x0

∂ f (x0, x1)

∂x0

+ 2
N − 1




η(x0)2

f̄ (x0)

∂ f (x0, x1)

∂x0

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

}

− h̄2

2m

{
η(x0)2 ∂2 f (x0, x1)

∂x2
1

− N − 1




η(x0)2

f̄ (x0)
f (x0, x1)

∫
dx′

1

(
∂ f (x0, x′

1)

∂x′
1

)2
}

+ η(x0)2 f (x0, x1)U (x0, x1) + η(x0)2

f̄ (x0)
f (x0, x1)

∫
dx′

1 f (x0, x′
1)2 U (x0, x′

1)

+ λBB
N − 1




η(x0)2

f̄ (x0)
f (x0, x1)3 + λBB

2

(N − 1)(N − 2)


2

η(x0)2

f̄ (x0)2
f (x0, x1)

∫
dx′

1 f (x0, x′
1)4. (A2)
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We can simplify this lengthy equation by dividing by η(x0) and subtracting Eq. (A1) multiplied by f (x0, x1),

�E η(x0) f (x0, x1) = − h̄2

2M

[
2

∂η(x0)

∂x0

∂ f (x0, x1)

∂x0
+ 2

N − 1




η(x0)

f̄ (x0)

∂ f (x0, x1)

∂x0

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

+ η(x0)
∂2 f (x0, x1)

∂x2
0

]

− h̄2

2m
η(x0)

∂2 f (x0, x1)

∂x2
1

+ η(x0) U (x0, x1) f (x0, x1)

+ λBB
N − 1




η(x0)

f̄ (x0)
f (x0, x1)2 f (x0, x1), (A3)

where we abbreviate

�E ≡ − h̄2

2M

{
2




∂η(x0)

∂x0

1

f̄ (x0)

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0
+ 1




η(x0)

f̄ (x0)

∫
dx′

1 f (x0, x′
1)

∂2 f (x0, x′
1)

∂x2
0

+ 2
N − 1


2

η(x0)

f̄ (x0)2

[∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

]2
}

+ h̄2

2m

1




η(x0)

f̄ (x0)

∫
dx′

1

(
∂ f (x0, x′

1)

∂x′
1

)2

+ 1




η(x0)

f̄ (x0)

∫
dx′

1 f (x0, x′
1)2 U (x0, x′

1)

+ λBB
N − 1


2

η(x0)

f̄ (x0)2

∫
dx′

1 f (x0, x′
1)4. (A4)

By comparison with Eq. (A1), we see that �E is actually the difference between the energy E = E1,N of one impurity and N
bosons (see Eq. (7)) and the energy E1,N−1 of one impurity and N − 1 bosons [see Eq. (7) with N decremented by 1]. Thus �E
is the chemical potential μB of the Bose gas,

�E = E − E1,N−1 = μB. (A5)

In the thermodynamic limit of an impurity in an infinitely large bath of bosons we can simplify Eqs. (A1) and (A3) by letting
N → ∞ and 
 → ∞, with a constant boson density ρ = N



. This will provide a simple expression for f̄ (x0), Eq. (6). For large

separation between the impurity and a boson, |x0 − x1| → ∞, they are not correlated, f (x0, x1) → 1. h(x0, x1) ≡ f (x0, x1)2 − 1
provides a measure for the correlations in the sense that h → 0 means no correlations. We express f̄ (x0) in terms of h,

f̄ (x0) = 1




∫
dx1[1 + h(x0, x1)]

= 1 + 1




∫
dx1h(x0, x1) = 1 + ρ

N

∫
dx1h(x0, x1).

Clearly, f̄ (x0) → 1 in the thermodynamic limit N → ∞, but taken to the power of N , we obtain a nontrivial function

f̄ (x0)N =
[

1 + ρ

N

∫
dx1h(x0, x1)

]N

→ exp

[
ρ

∫
dx1h(x0, x1)

]
. (A6)

Most of the terms in Eqs. (A1) and (A3) are proportional to f̄ (x0)−1 or f̄ (x0)−2, and one might be tempted to use f̄ (x0) → 1
in all of them. However, the last term on the left side of Eq. (A1) requires closer attention. With N − 1 ≈ N this term can be
written as

λBB

2
ρ2 η(x0)

f̄ (x0)2

∫
dx′

1 f (x0, x′
1)4. (A7)
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Because of f (x0, x1) → 1 for |x0 − x1| → ∞, the integral scales with the volume 
, and we must include corrections to f̄ (x0)−2

of order 1/
. We expand f̄ (x0) = 
−1
∫

dx′
1 f (x0, x′

1)2 in powers of 
−1 and obtain to first order

f̄ (x0)−2 ≈ 1 − 2




∫
dx′

1

[
f (x0, x′

1)2 − 1
]
. (A8)

Thus, in the thermodynamic limit, the term (A7) becomes

λBB

2
ρ2 η(x0)

∫
dx′

1[ f (x0, x′
1)4 − 2 f (x0, x′

1)2 + 2], (A9)

and Eq. (A1) can be written

E η(x0) = − h̄2

2M

{
∂2η(x0)

∂x2
0

+ 2ρ
∂η(x0)

∂x0

∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0
+ ρ η(x0)

∫
dx′

1 f (x0, x′
1)

∂2 f (x0, x′
1)

∂x2
0

+ ρ2 η(x0)

[∫
dx′

1 f (x0, x′
1)

∂ f (x0, x′
1)

∂x0

]2
}

+ h̄2

2m
ρ η(x0)

∫
dx′

1

(
∂ f (x0, x′

1)

∂x′
1

)2

+ ρ η(x0)
∫

dx′
1 f (x0, x′

1)2 U (x0, x′
1)

+ λBB

2
ρ2 η(x0)

∫
dx′

1[ f (x0, x′
1)4 − 2 f (x0, x′

1)2 + 2]. (A10)

Both sides of this equation scale linearly with N . Therefore, before taking the thermodynamic limit, we subtract the MF
energy of N bosons without impurity E0,N = ρ2

2 λBB
 multiplied by η(x0). With E ≡ E1,N we can then identify the impurity
chemical potential μI = E1,N − E0,N on the right-hand side of the resulting equation. Furthermore, we introduce the square root
g(x0) = √

ρI(x0) of the impurity density defined in Eq. (8), which in the thermodynamic limit becomes [see Eq. (A6)]

ρI(x0) = η(x0)2 f̄ (x0)N

= η(x0)2 exp

[
ρ

∫
dx′

1 h(x0, x′
1)

]
. (A11)

This permits to write the one-body inh-CP equation in the final form given in Eq. (13).
We use N − 1 ≈ N and f̄ (x0) → 1 also in the two-body equation (A3),

μB g(x0) f (x0, x1) = − h̄2

2M

1

g(x0)

∂

∂x0
g(x0)2 ∂ f (x0, x1)

∂x0
− h̄2

2m
g(x0)

∂2 f (x0, x1)

∂x1
2

+ g(x0) U (x0, x1) f (x0, x1) + λBBρ g(x0) f (x0, x1)2 f (x0, x1). (A12)

The final form (14) is obtained by defining f̃ (x0, x1) = g(x0) f (x0, x1).

APPENDIX B: SOLVING THE CORRELATED POLARON EQUATIONS

The correlated polaron equations (13) and (14) are coupled nonlinear integro-differential equations for which we seek the
solution of lowest energy, according to the Ritz variational principle. We need a robust numerical scheme to obtain these
solutions.

The one-body inh-CP equation (13) has already the convenient form of a nonlinear Schrödinger equation. But the calculation
of 1

g(x0 )
∂2g(x0 )

∂x2
0

in the effective potential (B2) in the two-body inh-CP equation (14) can be numerically challenging: if g(x0) is self

localized, it decays exponentially for large x0. We therefore replace 1
g(x0 )

∂2g(x0 )
∂x2

0
using the one-body equation (13) and obtain the

alternative two-body equation

(μB + μI ) f̃ (x0, x1) = − h̄2

2M

∂2 f̃ (x0, x1)

∂x0
2

− h̄2

2m

∂2 f̃ (x0, x1)

∂x1
2

+ Ṽf (x0, x1) f̃ (x0, x1), (B1)

with the effective two-body potential

Ṽf (x0, x1) = Vg(x0) + U (x0, x1) + λBB ρ
f̃ (x0, x1)2

g(x0)2
. (B2)
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Note that we still have to divide f̃ (x0, x1) by g(x0) for
the calculation of Vg(x0). This is the price for formulating
the two-body equation as nonlinear Schrödinger equation for
f̃ (x0, x1). This division by g(x0) can be problematic for
localized solutions g(x0) if we choose the computation domain
too large.

Equations (13) and (B1) are coupled nonlinear one- and
two-body Schrödinger equations with effective Hamiltonians
Hg = TI + Vg and Hf = TI + TB + Ṽf , containing the poten-
tials (15) and (B2), respectively. We obtain the ground state
by the imaginary time propagation. We initialize g and f
at imaginary time τ = 0 with localized states, e.g., a MF
solution, and then use small time steps �τ together with the
Trotter approximation [50] to calculate an approximation of
the ground state by performing a large number M of propaga-
tion steps until convergence is reached:

g(M�τ ) = (e−Vg/2 �τ e−TI �τ e−Vg/2 �τ )Mg(0), (B3)

f̃ (M�τ ) = (e−Ṽf /2 �τ e−(TI+TB ) �τ e−Ṽf /2 �τ )M f̃ (0). (B4)

Between time steps we have to normalize g(x0), which is
the square root of the impurity density,∫

dx0 g(x0)2 = 1. (B5)

Furthermore, in the thermodynamic limit the impurity and
bosons should be uncorrelated for large separation, i.e.,
f (x0, x1) → 1 for |x0 − x1| → ∞. In order to ensure this

property, we specifically require

f (x0 = 0, x1 → ∞) = 1. (B6)

In summary, we perform the following calculations for each
time step �τ of the imaginary time propagation:

(1) Calculate Vg (15) and Ṽf (B2)
(2) Multiply f by g to get f̃
(3) Multiply g by exp(−Vg/2 �τ )
(4) Calculate the Fourier transform of g, multiply g(k0) by

exp[−TI(k0)�τ ] and transform back
(5) Multiply g by exp(−Vg/2 �τ )
(6) Normalize g according to Eq. (B5)
(7) Multiply f̃ by exp(−Ṽf /2 �τ )
(8) Calculate the Fourier transform of f̃ , multiply

f̃ (k0, k1) by exp[−TI(k0)�τ − TB(k1)�τ ], and transform
back

(9) Multiply f̃ by exp(−Ṽf /2 �τ )
(10) Divide f̃ by g to get f
(11) Normalize f according to Eq. (B6).
In steps 4 and 8, TI(k0) = h̄2

2M k2
0 and TB(k1) = h̄2

2m k2
1 are the

Fourier transformed kinetic energies.
From the converged result, we calculate the impurity

chemical potential μI using the change in normalization by
imaginary time propagation: we propagate one time step with-
out normalizing g(x0) and obtain μI from

μI = − ln
[∫

dx0 g(x0)2
]

2�τ
. (B7)
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