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In this paper we present a concrete example comparing the results predicted by non-Hermitian quantum
mechanics with those of a more comprehensive description that considers environment-induced fluctuations.
Our results highlight inaccuracies in the non-Hermitian model. Specifically, we investigate the non-Hermitian
skin effect and sensor in the Hatano-Nelson model, contrasting it with a more precise Lindblad description.
Our analysis reveals that these phenomena can undergo breakdown when environmental fluctuations come
to the forefront, resulting in a nonequilibrium phase transition from a localized skin phase to a delocalized
phase. Beyond this specific case study, we engage in a broader discussion regarding the interpretations and
implications of non-Hermitian quantum mechanics. This examination serves to broaden our understanding of
these phenomena and their potential consequences.
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I. INTRODUCTION

In recent years, the field of non-Hermitian (NH) quantum
mechanics (QM) has experienced a remarkable resurgence
[1]. This renaissance can be traced back to the intriguing
discovery that PT -symmetric Hamiltonians, not necessarily
Hermitian, can yield real spectra [2]. A pivotal moment in this
revival occurred with the introduction of biorthogonal QM [3],
which ignited debates about the fundamental nature of QM.
It challenged the long-held notion that observables must be
represented solely by Hermitian operators [4].

The focus of NH QM has evolved to explore novel
phenomena that emerge when we relax the constraints of
Hermiticity and unitarity. One of the most extensively studied
phenomena is the NH skin effect [5–7], which renders extreme
sensitivity to nonlocal perturbations; the size of the shifts
of the eigenvalues scale exponentially with the extent of the
perturbation [8–10]. For certain NH local Hamiltonians with
open boundary conditions, all left/right eigenvectors |φL,R

n 〉
localize to one of the edges, offering intriguing possibilities
for detection of weak signals [10,11].

NH QM often serves as an effective description of open
quantum systems, typically arising from the interaction with
an external environment. However, this approach raises ques-
tions about the treatment of fluctuations and the potential
violation of well-established quantum theorems [14–18].

This paper adopts a different perspective by employing the
Lindblad master equation (LME) as a foundational framework
to analyze quantum systems exposed to losses. Unlike NH
QM, we do not neglect fluctuations, thus avoiding concerns
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related to quantum jumps. We also explore the implications
and interpretations of NH theories in greater detail. Our study
focuses on a specific example, where fluctuations qualitatively
alter the physics of the system. We investigate a LME that re-
duces to the Hatano-Nelson (HN) model [19] in the absence of
quantum jumps, revealing a breakdown of the NH skin effect
in favor of a delocalized phase. We discuss how such nonequi-
librium criticality relates to earlier models in the context of
optical bistability [20,21]. Our findings offer a perspective
that complements existing research [22–30], especially by
identifying a phenomenon of fluctuation-induced criticality
which qualitatively alters the physical properties. Providing a
more detailed understanding of the role of fluctuations in NH
QM will help shed light on the applicabilities of the theory in
the quantum regime.

The paper is structured as follows: In the next section, we
provide an in-depth discussion of nonunitary time evolution,
with a particular focus on its description within the LME.
We emphasize the importance of CPTP (completely positive,
trace-preserving) maps and use them to argue why eigenvec-
tors of a Liouvillian should not be considered as physical
states. In Sec. III we introduce the model system, the HN
model in Sec. III A, and its LME realization in Sec. III B.
Our main findings are presented in Sec. IV, beginning with
an exploration of the NH skin effect in Sec. IV A and then a
discussion of how this translates to applications in sensing in
Sec. IV B. We conclude with a discussion in Sec. V. Addition-
ally, we include two Appendixes. The first provides general
comments on open quantum systems (Appendix A), and in
the second we demonstrate how our results for the HN model
also apply to the NH SSH model (Appendix B).

II. NONUNITARY QUANTUM EVOLUTION

In this section, our primary aim is not to present new
findings but rather to provide context by discussing general
aspects of quantum state evolution. We specifically focus on
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the evolution generated by the LME. It is important to note
that the Liouvillian, which is responsible for governing time
evolution within the LME framework, is not represented by
an observable. This distinction leads to significant differences
compared to Hamiltonian systems. For instance, the eigen-
vectors of the Liouvillian do not typically represent physical
states. With this in mind, using the term “NH Hamiltonian”
as the generator of time-evolution for open quantum systems
is misleading. The risk is that one borrows, without deeper re-
flections, the terminology of traditional (Hermitian) QM, such
as eigenstates and energies. Having addressed these formal
issues, the subsequent section will explore a concrete example
as we apply our knowledge to the NH model.

A. The Lindblad master equation

In Appendix A we provide a more detailed description
of open quantum systems. In this section, we will simply
state that our system, denoted as S , is weakly coupled to its
surrounding environment. This inevitably implies that the evo-
lution of the system alone cannot be described solely through
unitary time evolution. However, we can still assume that the
state ρ̂(t ), which characterizes the physical properties of the
system, adheres to the following physical state conditions:

(i) Tr[ρ̂(t )] = 1, Normalization,

(ii) ρ̂(t ) = ρ̂†(t ), Hermiticity,

(iii) 〈ψ |ρ̂(t )|ψ〉 � 0, Positivity. (1)

The first condition corresponds to standard normalization,
which preserves probabilities. The second condition ensures
that all eigenvalues of ρ̂(t ) are real, while the third condition,
that should hold for any normalized state |ψ〉, implies that
all eigenvalues are non-negative. These conditions are crucial
for maintaining the probability interpretation of quantum me-
chanics, e.g., avoiding negative probabilities. It is important
to note that these conditions must hold for all times, t . A map-
ping of physical states into new physical states, hence obeying
the above conditions, is referred to as a completely positive
trace-preserving map (CPTP) [31,32]. In classical systems
that emulate quantum dynamics (for example, after applying
the paraxial approximation to light propagation in nonlinear
media), deviations from the first condition are analogous to
the loss or gain of particles or intensity, leading to a departure
from the probabilistic nature.

Lindblad posed the question [33]: What is the most gen-
eral differential equation describing the time evolution of a
quantum state, ensuring that the evolved state ρ̂(t ) remains a
valid density operator at all times? The most general form of
such a dynamical CPTP map (on a differential structure) can
be expressed in the Lindblad form [34]

∂

∂t
ρ̂ = L̂[ρ̂] = i[ρ̂, Ĥ ] + D̂[ρ̂]

= i[ρ̂, Ĥ ] +
∑

k

γk (2L̂k ρ̂L̂†
k − L̂†

k L̂k ρ̂ − ρ̂L̂†
k L̂k ). (2)

Here we introduce the Liouvillian operator L̂, and the dissipa-
tor operator D̂ accounts for the influence of the environment.
The γk � 0 values represent the “decay rates” for channel

k, and the L̂k’s are the Lindblad jump operators [35]. We
note that the non-negativity of the decay rates reflects the
Markovianity of the LME. The above LME can be put on the
form

∂

∂t
ρ̂ = L̂c[ρ̂] ≡ i(ρ̂Ĥeff − Ĥ†

eff ρ̂ ) + Ĵc[ρ̂], (3)

with the effective NH “Hamiltonian” defined as

Ĥeff = Ĥ + i
∑

k

γkL̂†
k L̂k (4)

and the jump super-operator

Ĵc[ρ̂] = 2c
∑

n

γnL̂nρ̂L̂†
n . (5)

Please note that we use “Hamiltonian” in quotation marks be-
cause, in general, it does not correspond to a traditional phys-
ical Hamiltonian. Specifically, when using “Hamiltonian”
we refer to Eq. (4). The subscript 0 � c � 1 parametrizes
the master equation, where c = 1 reproduces the correct
LME (2), and for c = 0, the evolution is governed by the
NH “Hamiltonian” Ĥeff . We will exclusively focus on time-
independent jump operators. It is worth mentioning that a
microscopic derivation of the LME (2) typically relies on
three approximations [13,35]: the Markovian, Born, and sec-
ular approximations. The properties of the environment and
the system-environment Hamiltonian determine the dissipator
D̂[ρ̂], including the rates γk and the jump operators L̂k . Im-
portantly, in especially cold atom and optical systems, it is
feasible, to a high degree, to engineer both the system and its
coupling to the environment to achieve desired Liouvillians
[36]. In the following section, we provide explicit suggestions
on how to utilize relaxation to implement a HN-like model
characterized by unbalanced left/right hopping in a 1D tight-
binding lattice.

B. Some general properties of the Lindblad master equation

An eigenvector, denoted as ρ̂ j and its corresponding eigen-
value, μ j , of the LME are defined by the equation [37–39]

L̂[ρ̂ j] = μ j ρ̂ j . (6)

In principle, we should refer to ρ̂ j as an “eigenmatrix,” but
for simplicity, we will continue to use the term “eigenvector.”
This choice is justified since the LME (2) can be vectorized as

d

dt
|ρ〉〉 = L̂v|ρ〉〉 (7)

with the vectorized Liouvillian, L̂v , defined as

L̂v = −i(Ĥ ⊗ I − I ⊗ ĤT )

+
∑

k

γk
[
2L̂k ⊗ L̂†T

k − L̂†
k L̂k ⊗ I − I ⊗ (L̂†

k L̂k )T
]
. (8)

Now, given a finite Hilbert space dimension D(H) = N , ρ̂ is
represented as an N2-component vector, |ρ〉〉, rather than an
N × N matrix [40]. The vector |ρ〉〉 resides in a Liouville space
L, which is the direct product of two Hilbert spaces, such that
the dimension of the Liouville space is D(L) = N2.
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For the numerical computations presented in Sec. IV, we
utilize the vectorized version of the LME. We select an ap-
propriate (Fock) basis and express the operators Ĥ and L̂k

as matrices, which are employed to construct the Liouvil-
lian matrix L̂v . Subsequently, we numerically diagonalize it
to determine the Liouvillian spectrum μ j and correspond-
ing eigenvectors |ρ j〉〉 ↔ ρ̂ j (including the steady state). The
steady state of Eq. (6) complies with L̂[ρ̂ss] = 0. It is im-
portant to note that the vector components of |ρ〉〉 do not
represent probability amplitudes. For the scalar product, we
have 〈〈ρ|�〉〉 = Tr[ρ̂�̂].

The uniqueness of the steady state ρ̂ss has been exten-
sively discussed in previous works, starting with studies
by Spohn and continued by others; refer, for example, to
Refs. [37]. For LMEs possessing symmetries, multiple steady
states can arise, leading to nontrivial situations reminiscent
of spontaneous symmetry breaking, akin to continuous phase
transitions in closed systems [38,39]. We will return to this in
the next section when analyzing a LME extension of the HN
model.

The LME is a dynamical CPTP map, i.e., dN/dt = 0
where N = Tr[ρ̂(t )], and 〈ψ |ρ̂(t )|ψ〉 � 0 for any state |ψ〉.
However, it is important to note that as soon as the pre-
viously introduced parameter c �= 1, the CPTP property is
generally lost. Specifically, in the NH limit with c = 0, even
when the spectrum is purely real it is only under very special
circumstances (the initial state is an eigenvector of the NH
Hamiltonian) that the evolution remains trace-preserving due
to the distinct left and right eigenvectors. A significant con-
sequence of the CPTP property of the LME can be directly
inferred [23,41]. First, we observe that an eigenvector evolves
as

ρ̂ j (t ) = eμ j t ρ̂ j, (9)

and thus, its trace

Nj (t ) = Tr[ρ̂ j (t )] = eμ j t Tr[ρ̂ j]. (10)

However, since dN (t )/dt = 0, we must have Tr[ρ̂ j] = 0
whenever μ j �= 0. In other words, every eigenvector, apart
from the steady states, is traceless. According to (1), this leads
to the crucial result:

Every eigenvector ρ̂ j of some Lindblad Liouvillian L̂, apart for
its steady state(s), are unphysical.

For classical systems, it is well established that only the
steady state of a master equation can exclusively consist
of non-negative entries. In contrast, all other eigenvectors
possess at least one entry that is negative, rendering them
unsuitable for representing physical states, as these entries
correspond to probabilities [42]. The result stated above par-
allels this observation, but now applies to quantum systems.
Consequently, this motivates us to express the following:

As with a master equation, the eigenvectors and eigenvalues of
L̂c should not, in the general case, be interpreted as represent-
ing physical states and observable quantities, respectively.

This assertion is not confined solely to the LME case
(c = 1), as we contend (as elaborated below) that the evolu-
tion generated by Ĥeff should not be regarded as Hamiltonian
time evolution. When one unravels the Lindblad master equa-

tion in quantum trajectories [43], the NH (renormalized) time
evolution arises through postselection [23,44]. Thus, in this
case, while it may seem as if Ĥeff generates the time evolution,
one should not forget that it is actually only true due to the
postselection constraint.

In both classical and quantum scenarios, the eigenvectors
still constitute a complete set, apart at exceptional points,
meaning that any other state can be expressed as a linear
combination of them, ρ̂ = ∑

j p j ρ̂ j , using coefficients p j .
Thus, the time-evolved state can be expressed as

ρ̂(t ) = ρ̂ss +
∑

j

p je
μ j t ρ̂ j, (11)

where it is implied that the sum excludes eigenvectors with
μ j = 0. To ensure CPTP behavior, the eigenvalues must sat-
isfy Re(μ j ) � 0 [35,45,46]. Consequently, all states ρ̂ j with a
nonzero real part Re(μ j ) are exponentially suppressed as time
progresses. The Liouvillian gap, defined as [46]

�L = min
j

|Re(μ j )|, (12)

can be regarded as providing an initial estimate for the re-
laxation time scale towards the steady state (although the
scenario can be more intricate [47]).

In the context of quantum phase transitions, in the thermo-
dynamic limit, the ground state exhibits nonanalytic behavior
at the critical point, and additionally, the spectrum necessarily
becomes gapless at this juncture. Analogously, the steady state
ρ̂ss may display similar nonanalytic behavior, accompanied
by the vanishing of the Liouvillian gap [46,48]. It is impor-
tant to note that the steady state does not decay, although
under certain conditions [49], Re(μ j ) may equal 0 while
Im(μ j ) �= 0, potentially resulting in nonstationary states.
However, this requires that the eigenvalues μ j must appear
in complex conjugate pairs if they possess a nonvanishing
imaginary part.

C. The limit c = 0 and the emergence of NH QM

Returning to Eq. (3), if we put the last term to zero (i.e.
c = 0) the evolution is governed by the NH “Hamiltonian”
Ĥeff of Eq. (4). In this case, let us assume that we know the
right eigenvectors

Ĥ†
eff

∣∣ϕR
l

〉 = νl

∣∣ϕR
l

〉
. (13)

That is, the left eigenvectors obey

Ĥeff

∣∣ϕL
l

〉 = ν∗
l

∣∣ϕL
l

〉
. (14)

The eigenvalues and eigenvectors of L̂c=0 become

μ0
j = i(ν∗

l − νk ), ρ̂0
j = ∣∣ϕR

k

〉〈
ϕR

l

∣∣. (15)

Here the superscript 0 denotes the case c = 0, and j replaces
the double indices (l, k). As mentioned earlier, if the Hilbert
space dimension is finite, D(H) = N , the Liouville space di-
mension is N2, as seen in Eq. (15) since 1 � k, l � N implies
1 � j � N2. Thus, we have far more eigenvectors/values of
the Liouvillian L̂c=0 than for the NH “Hamiltonian” Ĥeff .

We can parametrize the eigenvectors of L̂c with the number
c (i.e., ρ̂c

j ), such that ρ̂c=0
j reproduces the eigenvectors in (15),

while ρ̂c=1
j provides those of Eq. (6). For finite dimensional

Hilbert spaces we expect the vectors ρ̂c
j and eigenvalues μc

j to
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be analytic in c, with the exceptions at possible exceptional
points [50]. Letting c = 0, if νl is real, it follows that the
vectors ρ̂0

j = |ϕR
l 〉〈ϕR

l | are steady states and also physical.
However, if Im(ν j ) �= 0, these eigenvectors ρ̂0

j = |ϕR
l 〉〈ϕR

l | are
no longer steady states since their norms are not preserved.

Let us provide some context for the discussion above.
As mentioned in the introduction, NH QM challenges
well-established physical concepts. Furthermore, an ongoing
debate surrounds the clear interpretation of the theory emerg-
ing from NH QM, particularly with regard to which states
should be employed to describe time evolution [24,51].

One approach to circumvent potential issues, such as
violating the no-signaling theorem (i.e., faster-than-light in-
formation transfer), is the introduction of biorthogonal QM
[3,52]. This approach hinges on the biorthogonality property,
which allows for the construction of mutually orthogonal left
|ϕL

j 〉 and right |ϕR
j 〉 eigenvectors, such that 〈ϕL

l |ϕR
j 〉 = δl j .

For example, this property leads to the modified resolution
of identity, which becomes I = ∑

j |φR
j 〉〈φL

j |. Additionally,
the spectral resolution of an operator can be expressed as
Ô = ∑

j o j |φR
j 〉〈φL

j |, where o j and |φR
j 〉 (〈φL

j |) represent the
eigenvalue and right (left) eigenvectors of the operator, re-
spectively. In the biorthogonal framework, assuming an initial
state |ψ (0)〉, the state at a later time is described by two
vectors: |ψL,R(t )〉, referred to as the “left” and the “right”
evolved state. Expectations of observables Ô should also be
evaluated according to this “state,” given by

O|ψL,R〉(t ) = 〈ψL(t )|Ô|ψR(t )〉 = Tr[Ôρ̂(t )], (16)

with ρ̂(t ) = |ψR(t )〉〈ψL(t )|.
This can be extended further; the expectation of an oper-

ator for the jth eigenvector becomes O j = 〈ϕL
j |Ô|ϕR

j 〉. When
applied to the position operator n̂n = |n〉〈n| (where |n〉 repre-
sents the particle localized to site n) of the HN model, one
finds that the “biorthogonal” eigenvectors are not localized at
the edges but instead are delocalized within the bulk [53] [see
Eq. (24) below for the eigenvectors].

Of course, if the generator of time evolution is a Hermitian
Hamiltonian, this reproduces standard quantum mechanics
since 〈ψL| will equal the right bra vector 〈ψR|. However,
while the biorthogonal approach seems to resolve some issues,
it comes with caveats. First, we note that 〈ϕL

l |ϕR
j 〉 = δl j does

not set the norm of the left/right eigenvectors independently
of each other. In fact, this results in a family of scalar prod-
ucts parametrized by a metric η [52,54]. Thus, an ambiguity,
similar to a gauge freedom, arises. It has been argued that for
a given Hamiltonian, there is a preferable metric to be used,
which, however, implies that the metric, and thereby the scalar
product, changes when, for example, you add one particle or
site (modifying the Hilbert space dimension) to your system
[3,54].

Second, the fact that a physical state must be ascribed both
a bra and ket vector is nonintuitive using common knowledge,
and we have not even addressed mixed states. Now, it has been
argued that the biorthogonal scalar product is not the one to be
used in order to describe the time evolution of actual physical
systems [24,51]. This aligns with our description. If we take
the LME as our starting point and think that we can, at least
in theory, connect it to NH QM by “turning off” the jump

terms, we should not end up with the biorthogonal left/right
formalism, but rather with a right/right (or left/left) density
operator [55]. In the postselection approach, it is yet again
the right/right state (complemented with renormalization) that
describes the system.

It turns out that the spectral properties (15) of the NH
Hamiltonian Ĥeff can capture the full Liouvillian spectrum.
To be more precise, under specific conditions, the spectrum
of L̂c=0 can be directly mapped to the spectrum of L̂c=1 [56].
This mapping becomes feasible when the system Hamiltonian
supports particle conservation, as indicated by [N̂, Ĥ ] = 0,
and every jump operator adheres [L̂k, N̂] = L̂k . This situation
is relevant in the context of spontaneous decay [35]. It is worth
noting that our Lindblad representation of the HN model, as
presented in the following section, does not satisfy this second
condition, and therefore, we cannot utilize such a property.

Another interesting scenario arises when the Liouvillian
has a quadratic dependence on the creation/annihilation op-
erators â†

k/âk [57]. Similar to quadratic Hamiltonians, the
quadratic form of the Liouvillian can be employed for di-
agonalization through a generalized Bogoliubov–de Gennes
approach. This method has been recently applied in the in-
vestigation of the skin effect in Liouvillians [27]. However,
it is important to note that the physical realization of the HN
model we have in mind, as described in Sec. III B, does not
fall within this class of solvable models.

III. MODEL SYSTEM: LIOUVILLIAN
FOR THE HATANO-NELSON MODEL

A. The Hatano-Nelson model

A fundamental model often used in the study of NH QM is
the one proposed by Hatano and Nelson. This model describes
a single particle within a one-dimensional tight-binding lattice
of N sites, where the hopping between sites is unbalanced
in the left and right directions [19,58]. For open bound-
ary conditions (BCs), the model is represented by the (NH)
Hamiltonian as

ĤHN =
N−1∑
n=1

[(1 − δ)â†
nân+1 + (1 + δ)â†

n+1ân]. (17)

Here ân (â†
n) represent the annihilation (creation) operators

for a particle at site n, satisfying the single particle constraint
〈N̂〉 = ∑N

n=1〈â†
nân〉 ≡ ∑N

n=1〈n̂n〉 = 1. The parameter δ varies
between 0 and 1 and indicates the degree of asymmetry in the
hopping to the left and right.

For a single particle, the model can also be expressed using
bracket notation, for example, â†

n+1ân ↔ |n + 1〉〈n|, and so
forth, where |n〉 represents the number state of the particle
localized at the nth site. The model is typically presented
in dimensionless units, scaled with respect to the symmetric
hopping amplitude. It can be convenient to decompose the
Hamiltonian into “real” and “imaginary” parts as

ĤHN = ĤR + iδĤI , (18)

where

ĤR =
N−1∑
n=1

(â†
nân+1 + â†

n+1ân) (19)
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and

ĤI = i
N−1∑
n=1

(â†
nân+1 − â†

n+1ân). (20)

Both ĤR and ĤI are Hermitian. Notably, in the case of open
boundary conditions, the commutator [ĤR, ĤI ] vanishes, ex-
cept for the first and last diagonal elements.

For future reference, it is informative to introduce the
ladder operators, denoted as Ê =∑

n â†
nân+1 =∑

n |n〉〈n + 1|
and its Hermitian conjugate Ê†. These operators satisfy
the following relationships: Ê |n〉 = |n − 1〉 and Ê†|n〉 = |n +
1〉 (it should be noted that for a finite lattice, Ê |1〉 = 0
and Ê†|N〉 = 0). When combined with the operator Ê0 =∑

n n|n〉〈n|, which obeys the relation Ê0|n〉 = n|n〉, these three
operators collectively constitute what is known as the Eu-
clidean algebra [59]

[Ê , Ê0] = −Ê , [Ê†, Ê0] = Ê†, [Ê , Ê†] = 0. (21)

Alternatively, we can introduce the “position” and “momen-
tum” operators Êx = Ê + Ê† and Êp = i(Ê − Ê†), and the
“Hamiltonian” reads ĤHN = Êx + iδÊp.

For periodic BC, the real and imaginary parts commute and
the eigenvectors are delocalized bulk states. For open BC the
spectrum reads [8,60]

ν j = 2
√

1 − δ2 cos( jπ/(N + 1)), (22)

while for periodic BC one has

ν j = 2[cos(2π j/N ) − iδ sin(2π j/N )], (23)

where j = 1, 2, . . . , N . Consequently, the spectrum is purely
real for open boundary conditions. However, the right and left
eigenvectors are not orthogonal, which leads to nonunitary
time evolution. All right eigenvectors, while not normalized,
are exponentially localized towards the right edge and can be
represented in terms of the number states as

∣∣ϕR
j

〉 =
N∑

n=1

(
1 + δ

1 − δ

)n

sin

(
n jπ

N + 1

)
|n〉. (24)

The left eigenvectors can be obtained by substituting δ with
−δ. By using this substitution, we find that the biorthogo-
nal QM provides the eigenvector site occupations Pj (n) =
〈ϕL

j |n̂n|ϕR
j 〉 ∝ sin2( n jπ

N+1 ). The bulk nature of these states,
when combining left and right eigenvectors, was previously
observed by Hatano and Nelson [58].

B. Lindblad implementation of the Hatano-Nelson model

Our objective is to construct jump operators L̂k , which
enable the NH “Hamiltonian” in Eq. (4) to match the HN
Hamiltonian (17). Once these operators are identified, we
propose a physical system where this can be implemented.
By separating the real and imaginary components of both
equations, we should obtain the following relationships:

ĤR = Ĥ (25)

and

δĤI = −
∑

k

γkL̂†
k L̂k . (26)

The first equation implies that our Hamiltonian should resem-
ble a simple N-site tight-binding chain. The second identity
is more complex, as the spectrum of ĤI is not strictly non-
negative, while L̂†

k L̂k is positive semidefinite (recall γk � 0).
Nonetheless, we can resolve this issue by shifting the entire
spectrum of the NH “Hamiltonian” by an imaginary constant
of 2iδ [24]. It is worth noting that the decomposition into
jump operators is not unique; instead, there are numerous
possible combinations. To illustrate this, the right-hand side of

Eq. (26) can be compactly expressed as −L̂
†
�L̂, where L̂ =

(L̂1, L2, . . . )t is a column vector containing all jump operators
[for a finite dimension D(H) = N , the number of independent
jump operators can be limited to N2 − 1], and � is a diagonal
matrix with γk along its diagonal. It is evident that this term
remains invariant under some unitary transformation Û , i.e.,
L̂′ = Û L̂ and �′ = Û�Û −1. The specific choice should be
determined by the physical system in question. Two cases, in
particular, come to mind:

(1) Local decay channels. At each site n, we can associate
a jump operator L̂n. When this operator acts on the state |n〉,
there is a non-negligible probability for the particle to tran-
sition to |n + 1〉. A straightforward approach might be to set
L̂n = ânâ†

n+1. However, this does not suffice, as L̂†
nL̂n results

in n̂n, which cannot be used to construct the desired effective
NH “Hamiltonian.” Instead, we should employ the following
expression:

L̂n = iânâ†
n+1 + n̂n, (27)

ensuring that the application of the jump operator to |n〉 leaves
the state in a superposition of |n〉 and |n + 1〉.

(2) Collective decay channels. If the jump operator does
not “keep track” of the particle’s position, we say that the
jump occurs independently of the particle’s position. In this
case, we sum the local jump operators into a single one,

L̂c = i
N−1∑
n=1

ânâ†
n+1 +

N∑
n=1

n̂n ≡ iÊ† + I, (28)

where Ê† was defined above Eq. (21).
The two scenarios described above result in different phys-

ical realizations. Unraveling the LME in terms of stochastic
“quantum trajectories” [43] provides a physical picture of the
system’s evolution. In summary, when we possess complete
knowledge about the environment, the system should evolve
deterministically with the NH “Hamiltonian” (4). However,
this evolution is occasionally interrupted by quantum jumps,
whose effects are described by the application of jump op-
erators to the state. This process involves the instantaneous
renormalization of the state under nonunitary time evolution.

In practice, “keeping track” of the environment involves
monitoring any photons spontaneously emitted by the system.
If a photon is detected, we can infer that the system has
undergone a stochastic jump. This provides a distinct physical
differentiation between the two scenarios. In the latter situ-
ation, the emitted photon does not yield information about
the particle’s position. In contrast, in the former scenario, a
recorded photon not only signifies that a jump has occurred
but also reveals the particle’s location, effectively collapsing
the wave function within the lattice. For a more in-depth
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exploration of the independent vs collective jump operators
we refer the reader to [61].

As a result, it becomes evident that we can anticipate dif-
ferent behaviors under the evolution driven by the different
Lindblad operators. For the remainder of our discussion, we
will focus on the collective decay channel. However, for a
finite lattice comprising N sites, we should note that the jump
operator L̂c of Eq. (28) is insufficient. We need to supplement
it with an additional dephasing operator L̂1 = â†

1â1 for the first
site. With this consideration in mind we have

L̂†
c L̂c + L̂†

1 L̂1 = ĤI + 2I, (29)

and by further identifying γc = γ1 ≡ γ = −δ we have our
LME corresponding to the HN model

∂

∂t
ρ̂ = i[ρ̂, Ĥ ] + γ (2L̂cρ̂L̂†

c − L̂†
c L̂cρ̂ − ρ̂L̂†

c L̂c)

+ γ (2L̂1ρ̂L̂†
1 − L̂†

1 L̂1ρ̂ − ρ̂L̂†
1L̂1), (30)

where the Hamiltonian Ĥ identifies the real part (18) of the
HN Hamiltonian.

Let us present a brief overview of how this model could be
implemented within a cold atom setup [62]. A similar concept
was recently proposed using motional sidebands in a trapped
ion setup [63], and one could envision other setups like circuit
QED [64]. Our discussion centers on an atom that possesses
two internal hyperfine levels: |g〉 (ground) and |e〉 (excited).
This atom is confined within a one-dimensional lattice. Under
the usual approximations, which include tight-binding and
single-band assumptions, we implement a resonant classical
drive between the two internal atomic states. This leads to the
following second-quantized lattice Hamiltonian

Ĥ = −tg
∑

n

(â†
nân+1 + H.c.) − te

∑
n

(b̂†
nb̂n+1 + H.c.)

+ g
∑

n

(b̂†
nân + H.c.). (31)

Here tg and te represent the tunneling rates of the two atomic
species, and ân (â†

n) and b̂n (b̂†
n) correspond to the single-site

annihilation (creation) operators. The parameter g signifies
the effective Rabi coupling. Notably, the driving mechanism
couples atomic internal states within a single site. This implies
a smooth laser profile and a sufficiently deep lattice. For sim-
plicity, we can assume |te| � |tg| to suppress lattice dynamics
of the excited states. We normalize energies in terms of the
tunneling rate tg, setting tg = 1 from this point forward. If the
|e〉 level rapidly relaxes to the ground state |g〉, adiabatic elim-
ination is applicable [65]. Following the regular approach,
we commence with the above Hamiltonian, complemented
by a bath of oscillators representing the modes of the elec-
tromagnetic field, inducing electric dipole couplings between
the two atomic levels [66]. The master equation arises from
eliminating all but the motional degrees of freedom for the |g〉
atoms. In this derivation, we employ standard approximations,
including Born, Markov, and secular approximations [35].
This is justified in cold atom experiments where the loss rates
are orders of magnitude smaller than other typical frequencies
in the optical regime [67]. Note, in addition, that the Rabi
coupling g, set by the classical drive, cannot be too large in

FIG. 1. Implementation of the HN model as an open quantum
system. In this schematic representation, atomic lattice sites are
depicted as black and red dots, signifying two distinct internal hy-
perfine levels |g〉 and |e〉. These atoms are confined within an optical
lattice, which is state-dependent. The lattice is designed so that the
two internal states experience slight shifts concerning each other.
Additionally, the excited atomic state |e〉 is inherently unstable and
quickly relaxes (with an atomic rate γa) back to the stable atomic
state |g〉. As a result of this shift in the respective potential minima
and the relaxation process, an effective drift occurs in the lattice,
moving in the right direction. Specifically, when an atom in the
excited state |e〉 at site n, it relaxes back to the ground state |g〉 at
either the site n or n + 1, while relaxation to other sites is negligible.

order to derive the desired LME. More precisely, under strong
coupling a microscopic derivation would render more compli-
cated Lindblad jump operators [68]. Under these assumptions,
one then finds a master equation on the Lindblad form, where
the jump operators are determined by the specific coupling
schemes. The validity of these approximations has been fur-
ther tested in numerous experiments; see, for example, [69].

The physical setup we have in mind is depicted in Fig. 1;
the Rabi drive excites the internal state of the atom, but before
completing any Rabi cycle, the atom relaxes back to its inter-
nal ground state |g〉. This relaxation may also alter the external
state of the atom by decaying to a neighboring lattice site.
The amplitude for this significantly depends on the involved
Franck-Condon factors, which are proportional to the overlaps
between Wannier functions of the two species |g〉 and |e〉. The
alignment of the two lattices and their lattice depths should
ensure that a Wannier function localized to the nth site of
the “red” lattice primarily overlaps with Wannier functions
at the nth and n + 1-th lattice sites of the “black” lattice.
In this scenario, and under the assumption of precise phase
alignment between the two decay channels [see Eq. (28)]
[67], we achieve the desired LME. In particular, the decay
rate γ can be controlled by drive amplitude g. As mentioned,
the distinction between local or collective jump operators has
been discussed in [61]. Without introducing more involved
laser driving, for example, by single-site addressing, the jump
operators may not exactly be any of those in Eq. (27) or (28),
but be somewhere between local and collective. However,
there is a more direct way to realize the collective jump oper-
ator, namely, to consider an ancilla system comprising a lossy
cavity mode [70,71]. The cavity mode couples identically to
the atom, irrespective of its position in the optical lattice, and
the leakage of photons induces a collective jump operator, as
discussed in [71]. Alternatively, collectiveness could also be
achieved by letting the bath be formed by the phonon modes
of a trapped atomic Bose-Einstein condensate surrounding the
optical lattice [72].
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IV. CASE STUDIES

In the section we consider two phenomena within the HN
model: the skin effect [5–7] and NH sensors [10,29,73]. The
aim is to compare and contrast outcomes obtained using either
the HN model of Eq. (17) or the full LME (30).

A. Skin effect

While the phenomenon was initially discovered by Hatano
and Nelson in the 1990s [19,58], the term “non-Hermitian skin
effect” was coined by Yau and Wang more than two decades
later when they conducted a more in-depth and comprehensive
study [5]. When considering a NH lattice “Hamiltonian” with
open boundary conditions, the skin effect is characterized by
the eigenvectors becoming localized at the edges. This has
a profound consequence: the system becomes exponentially
sensitive to nonlocal perturbations [58]. This sensitivity can
be demonstrated by extending standard perturbation theory to
NH models [10]. Hence, NH edge localization and exponen-
tial sensitivity are two sides of the same coin. We will revisit
the latter concept in Sec. IV B.

To characterize edge localization, we consider a lattice
with N = 2n − 1 (where n is a positive integer) sites and
introduce the matrix Ŝ = diag(−n:n) along with the scaled
position expectation ξ defined as

ξ = 1

n
Tr[ρ̂ssŜ]. (32)

If ξ = ±1, the state ρ̂ is maximally localized at one of
the edges, whereas ξ = 0 indicates that the state is centered
within the lattice. The uncertainty �ξ =

√
〈Ŝ2〉 − 〈Ŝ〉2 deter-

mines the degree of localization of the state. Therefore, when
�ξ is of the order of N , the state becomes delocalized over
the entire lattice. The purity of the state is quantified by

P = Tr
[
ρ̂2

ss

]
. (33)

Notably, in the context of NH QM, the (normalized) eigenvec-
tors are pure, and their normalization ensures that PNH = 1.

In the thermodynamic limit of an infinite lattice, where
[L̂c, L̂†

c ] = 0, the steady state of the LME simplifies
to the maximally mixed state, ρ̂ss ∝ I [39]. However, for a
finite lattice, nontrivial steady states can emerge, particularly
those localized at the edges. When comparing this with the
HN model, the question arises regarding which state serves as
the counterpart of the steady state in the HN model.

One potential approach is to consider the right eigenvector
|ϕR

j 〉 with the largest imaginary part of its eigenvalue, i.e.,
max[Im(ν j )]. This vector would represent the steady state
of ĤHN, provided that we renormalize it under time evolu-
tion. For open boundary conditions, the spectrum is real, but
nevertheless, the meaning of the eigenvectors is still unclear.
However, from Eq. (24), we see that all eigenvectors are
exponentially localized to the boundary, and if we wish to
compare predictions resulting from the HN model with those
of the LME steady state, it actually does not qualitatively
matter which eigenvector we choose. We will consider the
eigenvector with the smallest eigenvalue, which corresponds
to the state |ϕR

N 〉 as defined in Eq. (24). If we think of the spec-
trum as energies of the system, this vector would represent

FIG. 2. In the upper plot (a) we display the scaled position (32)
for both the HN model (black), calculated as ξ = 〈ϕR

N |Ŝ|ϕR
N 〉/N , and

the full LME (red). The solid lines represent a lattice of length
N = 41, while the dashed lines represent N = 21. In the lower plot
(b), we illustrate the purity (33) of the steady state ρ̂ss (purple) and the
fidelity (34) between the HN “ground state” and the Lindblad steady
states (blue). The key observation is the appearance of a critical point
at γc = 1/2 in the LME, which is absent in the HN model. Below
the critical point, γ < γc, fluctuations become essential, leading
to the destabilization of the skin effect and system delocalization.
Above the critical point,γ > γc, the skin effect persists, even though
the fidelity is not very high.

the system ground state. The fidelity between this state and
the steady state of the LME is defined as

F = 〈
ϕR

N

∣∣ρ̂ss

∣∣ϕR
N

〉
. (34)

The spectrum and eigenvectors of the LME are determined
through exact diagonalization of the vectorized Liouvillian
(7). The numerical results for the three defined quantities are
presented in Fig. 2. In the upper plot (a), we display the
position (32) for both the LME and the HN model. We vary the
rate γ and consider two system sizes. In the lower plot (b), we
provide the purity (33) of the steady state and the fidelity (34).
There is a significant distinction between the two models. The
HN model exhibits edge localization, or the skin effect, for all
γ values, and for γ = 1, only the rightmost site is populated.

In contrast, the LME supports two different phases: a de-
localized phase for γ < γc = 1/2 and a localized phase for
γ > γc. In the localized phase, the state primarily occupies the
right edge, resembling a skin state, while in the delocalized
phase, the state spreads across the entire lattice. The purity,
as seen in Fig. 2(b), illustrates that the delocalized phase is
approximately a maximally mixed state. Although the states
ρ̂ss and |ϕR

N 〉 exhibit similar localization properties near γ = 1,
the fidelity reveals that they are, in fact, quite distinct.

Even though only the steady state represents a physical
state, we can still analyze the properties of the remaining
eigenvectors of the Liouvillian. Not shown here, but for γ >

γc, they tend to localize at the edge, while for γ < γc, they
become delocalized.

To provide insight into the critical properties of the
delocalized-to-localized phase transition, we plot the real part
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FIG. 3. Real part of the Liouvillian spectrum μ j (a) as a function
of γ for a fixed system size N = 41 (a). It is evident how the
Liouvillian gap, �L, opens up beyond γ = 1/2, while for γ < 1/2,
the numerical results indicates a gapless, continuous spectrum. The
lower plot (b) demonstrates the gap closing (�L → 0 as N → ∞)
at the critical point γ = 1/2. The straight line of 1/

√
�L as a

function of the system size N evidence the power-law scaling with an
exponent ν = 1/2 characteristic of a for a mean-field critical point.
For this plot we extracted the gap for every odd integer 9 � N � 61.

of the Liouvillian spectrum μ j in Fig. 3(a). It is evident that
the Liouvillian gap �L, as defined in Eq. (12), closes precisely
at the critical point γc. In this figure we consider a lattice with
N = 41 sites, resulting in a Liouvillian matrix of dimensions
1681 × 1681. In the thermodynamic limit, the real part of the
spectrum becomes gapless and continuous within the delocal-
ized phase.

For a critical model, the closure of the gap concerning the
system size typically follows universal scaling:

�L ∼ N−1/ν, (35)

where ν represents the correlation length critical exponent
[74]. Our numerical findings affirm that the exponent ν is 1/2,
see 3(b). This value corresponds to the exponent of a mean-
field critical model, suggesting that quantum fluctuations are
suppressed in comparison to fluctuations arising from the
environment.

Without second thoughts, it might appear counterintuitive
that the “fluctuation-induced breakdown” of the skin effect
occurs for weak couplings (γ ) rather than when the system is
strongly coupled to its environment. This can be understood
by considering the steady state, which describes the system
after an infinitely long time. In the delocalized phase, the sys-
tem is gapless, and the relaxation time diverges. Consequently,
there is more room for fluctuations to manifest compared to
the localized phase. This phenomenon resonates with what is

known in adiabatic quantum computing and quantum control
in atomic physics [75].

For reasons that will become clear, let us introduce a gener-
alized Fock space. The Liouvillian Fock states, denoted as |l〉〉
and residing in the Liouvillian space, can be identified through
vectorization as

|n〉〈m| → |N (n − 1) + m〉〉, (36)

such that 1 � l � N2. The vectorized LME is provided in (7),
and its formal solution is represented as

|ρ(t )〉〉 = exp(L̂vt )|ρ(0)〉〉. (37)

We can now extend the concept of Fock state lattices [76] to
Liouvillian Fock state lattices. The idea here is to envision the
Liouvillian matrix L̂v as describing hopping in a lattice, with
its sites representing the Fock states |l〉〉. In other words, the
components of the vector |ρ〉〉 correspond to the populations
at different lattice sites. Specifically, the diagonal elements εi,
defined as εi ≡ 〈〈l|L̂v|l〉〉, represent on-site “energies,” while
the off-diagonal elements 〈〈l|L̂v|k〉〉 characterize the tunnel-
ing amplitudes between sites l and k. Importantly, εl is real
and εl � 0, implying that the diagonal terms induce on-site
dissipation.

In the context of the problem at hand, it turns out that
the Liouvillian Fock state lattice takes the form of a square
lattice, as illustrated in Fig. 4. The thick dots represent the
lattice sites, and the arrows indicate the allowed tunnelings
between these sites. The color shading of the sites reflects the
magnitude of on-site dissipation, with a decreasing order from
black to gray to white.

Having identified the Fock state lattice, we make the
following observations. There is no asymmetry in the hori-
zontal/vertical tunnelings, as one might expect from an HN
model. However, there is diagonal tunneling that is nonzero
only in one direction. In addition to the imaginary on-
site terms, these diagonal directional tunneling terms imply
that the Liouvillian matrix becomes NH. Furthermore, these
diagonal processes result from quantum jumps, driven by fluc-
tuations, and consequently, they do not appear in the lattice
emerging from the HN model. More precisely, the corre-
sponding HN lattice is simply a two-dimensional version of
the HN model with imbalanced left/right tunnelings. Hence,
quantum jumps not only induce diagonal tunneling terms but
also alter the nearest-neighbor tunneling amplitudes, making
them balanced.

As previously mentioned, the on-site “energies” vary in
the lattice. For instance, at site l = N2 (corresponding to the
rightmost lattice site in the original 1D real space lattice), we
have εN2 = 0, indicating no local dissipation. In the Fock state
lattice, this corresponds to the site in the lower left corner
(white dot). Along the edges originating from the l = N2-site,
there is moderate dissipation (gray dots), while in the bulk, the
dissipation is most pronounced (black dots). Let us introduce
εb and εe for the bulk and edge on-site “energies” respectively
(the black and gray sites in the figure), and t0 and td for
the horizontal/vertical (nearest-neighbor) and diagonal (next-
nearest-neighbor) tunneling amplitudes respectively. These
lattice parameters are related to γ as shown in Table I. If there
were no tunnelings (t0 = td = 0), the system (ground/steady
state) would localize at the site represented by the white
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FIG. 4. Liouvillian Fock state lattice. Each lattice point repre-
sents a Liouvillian Fock state |l〉〉 ↔ |n〉〈m|, and the colors denote
the onsite (imaginary) “energy” with white (= 0) > gray > black.
Consequently, apart from the lower left corner site, the “population”
within the other sites decays are suppressed by dissipation. The
arrows describe the nonvanishing tunneling elements. If quantum
jumps, i.e., fluctuations, are disregarded, there would be no diagonal
tunneling (green arrows between next-nearest neighbors). The red
arrows alone do not have a preferred direction. The onsite dissipation
tend to localize the state to the lower left corner, while the tunneling
terms counteract the localization. For the HN model, one finds the
same square lattice, but there is no diagonal tunneling, and the
horizontal/vertical tunnelings are imbalanced with amplitudes 1 ± γ ,
as expected for the HN model.

dot. The tunneling terms tend to delocalize the steady state.
As γ increases, the dissipation-induced localization becomes
stronger, but at the same time, tunneling-induced delocaliza-
tion also strengthens. Before the critical point, γ < γc = 1/2,
the nearest-neighbor tunneling rates (2|t0|) are greater than εb,
causing the system to delocalize. Beyond the critical point,
γ > γc, where 2|t0| < εb, the edge skin mode wins. This
reasoning demonstrates how the transition can be understood
from the Liouvillian Fock state lattice.

It is worth noting that similar delocalization-localization
transitions have been discussed in the past with a model de-

TABLE I. The parameters forming the Fock state lattice of Fig. 4:
green arrows, td ; red arrows, t0; black dots (bulk sites), εb; and gray
dots (edge sites), εe. Not shown are the upper and right edges, where
onsite “energies” are set to −3γ . For sufficiently large lattices, these
edge sites should not significantly impact the criticality.

Nearest-neighbor tunneling t0 = ±i(1 − γ )

Diagonal tunneling td = 2γ

Bulk “energy” εb = −2γ

Edge “energy” εe = −γ

scribed as

∂ρ̂

∂t
= i[ρ̂, Ŝx] + γ

S
(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ−). (38)

This model was introduced in the late 1970s to study quantum
optical bistability [20,77]. In this context, the Ŝ operators rep-
resent collective spin operators, and S is the total (conserved)
spin. The Hamiltonian can be seen as describing a classical
drive of the spin, while the Lindblad dissipation represents
spontaneous decay of the spin. One attractive aspect of this
model is that the steady state can be determined analytically
[21], and it exhibits a mean-field critical point at γc = 1/2,
where the system transitions from being magnetized (lo-
calized) to paramagnetic (delocalized) [71]. The transition
is continuous, without any apparent spontaneous symmetry
breaking, which has generated some debate [71]. Interest-
ingly, while there is no accompanying symmetry breaking of
the steady state criticality, the above model supports a time-
translational spontaneous symmetry breaking in the form of
a boundary time crystal [78]. In the time-crystal phase, the
system can display an oscillatory evolution, which persists
infinitely long in the thermodynamic limit.

To draw a connection to the model studied in this paper,
it is important to note that the Hamiltonian component Ŝx

tends to delocalize the state in the spin Fock basis (the |S, m〉-
eigenstates of Ŝz), while the dissipative part drives the state
toward the “edge” |S,−m〉. We have numerically solved the
LME using Ĥ = Êx and L̂ = Ê , with Êx and Ê being operators
from the Euclidean algebra (21). This resulted in a similar
phase transition as observed for the LME (30). Consequently,
we draw a comparison between two models: one supporting
an SU(2) algebra and the other an Euclidean algebra, both be-
ing otherwise equivalent. Of course, the spin operators come
with a square-root normalization factor when acting on the
Fock states, but this factor does not alter the Fock state lattice
geometry; it induces a strain in the lattice [76]. It is important
to mention that this connection is relevant only for a finite
lattice, as in the infinite case, all operators would mutually
commute, i.e., [Ê , Ê†] = [Ê , Êx] = [Ê†, Êx] = 0.

The critical behavior of the bistability model has been
extensively studied in Ref. [71]. It was argued that the crit-
ical behavior, devoid of symmetry breaking, arises from the
transition “softening” of a first-order transition into a contin-
uous one. In the current model, we appear to observe similar
universal behavior. Specifically, the transition is continuous,
the steady state remains unique throughout, and hence, there
is no apparent symmetry breaking occurring. It is worth noting
that quenched disorder can alter the nature of a transition
from first to second order in classical critical models [79].
Tricritical points provide another example where the order of
a transition changes, and in the Potts model, the transition
can shift from first to second order as a system parameter
varies [80]. Continuous phase transitions without symmetry
breaking can also occur in fermionic models when the Fermi
sea undergoes volume changes [81].

It remains unclear whether the mechanism underlying the
observed criticality in this open system [and in the bistability
model of Eq. (38)] differs in nature from those listed in the
references mentioned above. After all, we are dealing with an
open, non-Hamiltonian system. In Ref. [71] it was noted that
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the full Hamiltonian model, including the degrees of freedom
of the environment, exhibited a first-order phase transition,
and it was only in the limiting case of infinite separation in
timescales that the initially first-order, discontinuous phase
transition became continuous. Something similar might occur
in our system, such as starting from the Hamiltonian (31) and
coupling it to a bath of oscillators.

B. Non-Hermitian sensors

In recent years there have been several proposals on how
systems described by NH “Hamiltonians” can be leveraged
to enhance sensor performance. Various concepts for these
implementations have been explored, including harnessing
the nonanalyticity associated with exceptional points [73],
nonunitary evolution [29], and the phenomenon of exponen-
tial sensitivity [10]. Motivated in part by a recent experimental
demonstration [11], our focus will be on the latter aspect and
its application to the HN model.

We aim to address two key questions in this context: first,
what role do fluctuations play in the sensor setup, and second,
how does disorder impact the performance of the NH sensor?

1. Non-Hermitian sensor with fluctuations

Let us begin by summarizing the fundamental concept of
the NH sensor [10]. As previously mentioned, the skin effect
is directly linked to exponential sensitivity. To illustrate this,
let us consider the N-site open BC HN model. The spectrum
for this model was given in Eq. (22), and we observed how
it is real and symmetric around zero. This symmetry implies
that for an odd number of sites, there is a zero eigenvalue,
denoted as νz ≡ ν j = 0 for j = (N + 1)/2. Now, let us further
assume a very weak (real) coupling denoted as |ε| � 1, which
connects the first and last sites. This coupling represents a
nonlocal perturbation of the form

V̂ = ε(â†
1âN + H.c.). (39)

Our goal here is to determine the value of |ε|. When treating
V̂ as a perturbation, we find (for NH, perturbation theory
involves both left and right unperturbed states since they form
the orthogonal states used for the resolution of identity) that
the lowest-order corrections to the zeroth eigenvalue scale as
[10]

νz → νz = δν, δν ∼ εeαN . (40)

Here α depends on specific system details. Consequently, the
eigenvalue remains real but shifts away from zero. Notably,
this shift can be significant as long as N is sufficiently large.
Beyond a critical perturbation εc(N ) (which depends on the
system size and other system parameters), the scaling breaks
down, and the eigenvalue becomes complex. The numerical
results of the shift δν are presented in Fig. 5 as solid black
curves. In the figure, we display the logarithm for four differ-
ent δ’s. It is worth recalling that in the Lindblad realization of
the HN model, δ corresponds to the rate γ . As expected, the
anticipated linear dependence on N is demonstrated in all four
examples in the figure.

Experimentally, one typically does not extract δν, and
thereby ε, directly but instead finds it indirectly from some
other quantity. If the system is initially prepared in the zero

FIG. 5. Logarithm of the perturbative shift (40), shown as a func-
tion of the system size N for four different asymmetry parameters δ

(solid black lines). In all four examples, the perturbation strength
is ε = 10−10. The linearity of the curves clearly demonstrates the
exponential N dependence and the point at which the perturbation δν

transitions from being real to complex, indicated as a “knee” in the
curves. The dashed red line represents an example of the disordered
HN sensor (averaged over 5000 disorder realizations) with a disorder
strength W = 0.0005 (i.e., 0.05% of the tunneling rate). In the case
of disorder, the sensor must be of sufficient size for the perturbation
to outweigh the effects of random disorder. In practice, there exists a
window, as marked for the δ = 0.25 curve in the plot, within which
the sensor operates effectively (see also Fig. 7). For a sensor that is
too small, the perturbation is overshadowed by disorder, and for a
sensor that is too large, the perturbation becomes complex.

eigenvalue state |ϕR
z 〉 and evolves for a brief time t under the

perturbed Hamiltonian ĤHN + V̂ , resulting in the state |ψ〉,
then the decay of the return probability amplitude

A(N ) = ∣∣〈ϕL
z

∣∣ψ 〉∣∣ (41)

serves as a measure of the perturbation [11]. By expanding
A(N ) for short times and for a given perturbation strength
ε, due to the exponential sensitivity, the logarithm of A(N )
should approximate a linear relationship with the system size
N provided ε < εc(N ). We have numerically verified this, not
shown, by integrating the perturbed NH Hamiltonian and cal-
culated A(N ). We have noticed, however, that the exponential
N dependence of the return probability is lost for small system
sizes.

It is particularly noteworthy that for large δ values, the
exponential dependence as per Eq. (40) persists only for rela-
tively small system sizes. Conversely, this regime can extend
over significantly larger system sizes for small δ values. The
slope of the curves is determined by the parameter α in
Eq. (40), which is found to scale as α ∼ δ. This relationship
explains why rather large system sizes N are required to reach
the critical εc for small δ values. In practical implementations,
state tomography provides the time-evolved state |ψ (t )〉. With
prior knowledge of |ϕL

z 〉, it becomes possible to estimate the
decay of A(N ) and, consequently, δν. This approach has been
realized in classical light-pulses in waveguides, where fluc-
tuations likely play a less significant role (see discussions in
Sec. V) [11].

Now, turning our attention to the LME, we consider the
same type of perturbation (39). The exponential sensitivity in
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FIG. 6. The spectrum of the unperturbed (black dots) and per-
turbed Liouvillian (red dots) for the localized phase (a) and the
delocalized phase (b). In the delocalized phase of (a) with γ = 0.25,
it is challenging to distinguish between red and black dots. However,
in the localized phase (b) with γ = 0.75, there is a clear exponential
sensitivity. These results are based on a system size of N = 61 and a
perturbation strength of ε = 10−10.

this context is a consequence of the skin effect. As we have
discussed, the skin effect can be lost in the LME, leading to
the steady state becoming delocalized when γ < γc = 1/2.
Consequently, we expect that exponential sensitivity is present
only in the localized phase. Indeed, within this phase, the
eigenvectors of the Liouvillian become localized to the cor-
ner of the Liouvillian Fock state lattice [82]. In Fig. 6 we
provide two examples of the Liouvillian spectrum: one in the
delocalized phase [Fig. 6(a)] and the other in the localized
phase [Fig. 6(b)]. As anticipated, the exponential sensitivity
is no longer present when the system transitions into the
delocalized phase.

However, in the localized phase, the Liouvillian also ex-
hibits exponential sensitivity. This phenomenon has been
observed in the past in other LMEs supporting a skin effect
[25–27,41]. Nevertheless, the challenge remains to identify an
observable quantity that is exponentially sensitive and capable
of extracting information about the perturbation.

For the HN model, a natural choice is to consider the state
associated with the zero eigenvalue, |ϕR

z 〉〉. As we have seen,
this is due to the initial decay of its return probability ampli-
tude, which directly reflects the magnitude of the perturbation.
In the case of the full LME, the primary option would be the
steady state, denoted as ρ̂ (ε=0)

ss (where ε = 0 signifies the un-
perturbed state). We can analyze how this steady state evolves
under the perturbed Liouvillian. Alternatively, we could also
contemplate using the same initial state |ϕR

z 〉 as in the HN
model and explore the influence of fluctuations on the return
probability amplitude (41). Through numerical simulations,
we find no signs of exponential sensitivity in either of these
scenarios.

In the latter case, the decay of the return probability am-
plitude is predominantly driven by the relaxation towards the
system’s steady state, and it occurs on a timescale proportional
to the inverse Liouvillian gap (12). The perturbation-induced
decay happens on an entirely different timescale and gets
obscured by the relaxation of the steady state. Extending the
steady state relaxation time by moving closer to the critical
point does not result in a favorable situation, as it rapidly

suppresses exponential sensitivity when the system becomes
more delocalized. In our numerical experiments, we have not
identified a regime where the system effectively functions as
a sensor when initialized with the |ϕR

z 〉 state.
This same argument applies to initializing the system in the

unperturbed steady state, meaning that the relaxation of ρ̂ (ε=0)
ss

to the final perturbed steady state ρ̂ (ε)
ss dominates the evolution.

Importantly, this behavior does not exhibit a strong N de-
pendence. More precisely, we find that the return probability
amplitude A(N ) = Tr[ρ̂ (0)

ss ρ̂ (ε)
ss ] follows a linear N dependence

rather than an exponential one.
In summary, even though the spectrum of the Liouvillian

exhibits exponential sensitivity to nonlocal perturbations in
the localized phase, it is not evident how this can be effectively
harnessed for sensing purposes. Generalizing the concept of
the HN sensor does not appear to yield favorable results.
It remains uncertain whether there might be another experi-
mentally measurable quantity that could salvage the sensor’s
performance when accounting for fluctuations.

2. Non-Hermitian sensor with disorder

Another significant limitation of the NH sensor that we
need to address, which does not stem from environment-
induced fluctuations, pertains to disorder. Consider the
presence of local quenched disorder, which can arise in an
imperfect sensor, causing the actual Hamiltonian to take the
form

ĤdHN = ĤHN +
N∑

n=1

κnn̂n, (42)

where κn ∈ [−W,W ] represents a random onsite offset. Here
W denotes the disorder strength. We assume that W � 1,
which means it is orders of magnitude smaller than the tun-
neling rate, ensuring that the system is not localized on any
relevant length scales. However, it is important to note that
W can be larger than the perturbation strength that the sensor
is meant to measure. Therefore, a potential breakdown of the
sensor should not be attributed to hindrance in propagation
due to localization.

In Fig. 5 we present the sensor’s performance in the pres-
ence of quenched disorder, indicated by the red dashed line.
The disorder strength is approximately 0.05% of the tunneling
strength, and to reduce the scatter, we averaged over 1000
disorder realizations. Our findings reveal that below a certain
system size, denoted as Nl , the sensor primarily detects the
disorder, with the perturbation signal getting lost in the noise
generated by the disorder. However, beyond Nl , the perturba-
tion signal begins to dominate the disorder noise, due to its
exponential increase, and the disorder’s impact on the signal
diminishes significantly.

It is important to note that above a certain upper system
size, Nu, the perturbation signal no longer follows the expo-
nential form described in Eq. (40). Consequently, when given
a perturbation ε and a disorder strength W , there exists a
window of system sizes Nl < N < Nu within which the NH
sensor operates effectively. These windows, corresponding to
the same values of δ as seen in Fig. 5, are displayed in Fig. 7.

In summary, when δ is small, it implies the need for larger
sensor sizes N . In practice, achieving extremely large chains
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FIG. 7. Gray regions indicate the parameter regimes in the NW
plane (note the logarithmic scale of the disorder strength W ) where
the sensor can effectively operate. Above this region, the N de-
pendence of the perturbation is no longer exponential, and below,
disorder-induced noise dominates the detector signal. The perturba-
tion strength is kept the same as in Fig. 5, i.e., ε = 10−10.

may not be feasible, making it desirable to use a larger δ. Our
results are computed using the same methodology as for the
nondisordered sensor, involving the propagation of the initial
state and the analysis of the return probability amplitude’s de-
cay. We have also verified numerically that similar results can
be obtained by directly extracting δν from the full spectrum,
rather than indirectly calculating it from A(N ).

V. DISCUSSION AND CONCLUDING REMARKS

While NH Hamiltonians offer utility in modeling a quan-
tum system’s interaction with its environment, they can also
lead to complex, nonphysical outcomes. A significant chal-
lenge in this endeavor arises from the intricate entanglement
between the quantum system and its environment, resulting in
a mixed state representation rather than the pure state repre-
sentation ρ̂ = |ψ〉〈ψ |. However, it is worth noting that there
are scenarios in which the quantum system’s state remains
nearly pure. In such cases, relevant observables O = Tr[ρ̂Ô]
can be well described by a pure state. Many experimental
activities involve classical emulations of quantum systems,
where classical systems obey equations of motion similar, or
equivalent, to those found in quantum systems described by
NH Hamiltonians. While classical systems are not represented
by states in a Hilbert space, the fluctuation theorem extends to
both classical and quantum systems. In a strict sense, any open
system is subject to fluctuations from its environment, with
Brownian motion serving as a classic example. However, this
influence may be negligible for macroscopic objects. Classical
states, described as coherent states in the quantum realm, are
known to be robust against fluctuations, such as the state of
the electromagnetic field originating from a laser [83].

The role of fluctuations becomes a more intricate matter
when dealing with systems deep in the quantum regime. To
circumvent this issue, researchers have employed the concept
of postselection [44], where experiments are conducted under
full observation, and only the data from experimental runs
that do not undergo “quantum jumps,” such as spontaneous
photon emission, are considered [43]. However, this approach

often leads to a significantly reduced probability of successful
experimental runs over time, as they become exponentially
suppressed.

In this study, we explored the time evolution generated by
the Liouvillian without invoking measurement-induced pro-
jections or assuming a semiclassical regime. Specifically, we
focused on two well-studied phenomena within the frame-
work of NH QM: the skin effect and NH sensors.

While previous arguments suggested that both the skin
effect and NH sensors should persist when fluctuations are
taken into account [25,26,28], our study unveiled subtleties in
this context, leading to unique insights. Importantly, the Liou-
villian is not uniquely determined by a NH “Hamiltonian.”
This multiplicity is akin to the purification of mixed states
[31], where infinitely many different pure states can construct
a given mixed state. Consequently, there exist infinitely many
Liouvillians corresponding to equivalent NH “Hamiltonians,”
and these Liouvillians can exhibit qualitative differences.

In our study, we chose to investigate a Liouvillian repre-
sented by collective quantum jumps, as defined in Eq. (30).
We also considered an alternative model with local jump
operators, as defined in Eq. (27). Upon numerical analysis of
the latter model, we found that it lacks critical behavior: the
delocalized phase does not emerge in this case. This finding
implies that the collectiveness of quantum jumps is essential
for the appearance of a critical point. The criticality observed
in our model is an example of a driven-dissipative nonequilib-
rium phase transition [48]. This specific type of transition is
qualitatively different from phase transitions described by the
Ginzburg-Landau paradigm [74]. The transition is continuous
and lacks any apparent symmetry breaking, yet the critical
exponent for the correlation length aligns with the characteris-
tics of a mean-field transition. This observation resonates with
related models, such as the one represented in Eq. (38), which
has been explored in the context of optical bistability.

The existence of a delocalized phase signifies the break-
down of the NH skin effect. In this phase, the system exhibits
an extended steady state that approximately populates the
lattice sites uniformly. The coherences between the sites prac-
tically vanish, implying that the steady state approximates a
maximally mixed state or an infinite-temperature state. In the
case of periodic BC, the maximally mixed state is the exact
steady state, a concept that was briefly mentioned in a previ-
ous study [24], which investigated a quadratic Liouvillian.

It is essential to recognize that not only the steady state
becomes delocalized for γ < γc, but the other Liouvillian
eigenvectors ρ̂ j also undergo delocalization in this phase. This
delocalization affects the entire spectrum of the Liouvillian.

Indeed, the absence of a skin effect in the delocalized
phase results in the system’s lack of exponential sensitivity.
Consequently, it cannot be employed for sensing purposes in
this regime. However, when the losses are substantial, i.e.,
γ > γc, the Liouvillian does exhibit exponential sensitivity
once it enters the localized phase.

Nonetheless, despite the presence of exponential sensitiv-
ity in this regime, our exploration did not yield a suitable
measure that could effectively extract the quantity to be de-
tected. Attempts to directly generalize experiments like the
one reported in [11], which used classical light, were inef-
fective in the context of Liouvillian systems. This inefficacy
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is primarily due to the dominance of other mechanisms, such
as relaxation towards a steady state, during the early stages
of evolution. We also considered observing the long-term
evolution and the fidelities of the resulting steady states, but
these did not exhibit exponential sensitivity either.

While the specific observables explored in this study did
not yield the desired results, it remains a possibility that more
refined observables could be identified for use in Liouvillian-
based sensors. However, further investigation and research
would be required to identify and assess these potential ob-
servables effectively.

In our study, we have also demonstrated that disorder in-
troduces limitations to the applicability of NH sensors, even
without considering fluctuations. This finding underscores
the importance of the sensor’s size relative to the disorder
strength. The sensor must be sufficiently large such that the
signal strength exceeds a critical value and thereby overcome
the noise due to disorder.

While our analysis has been centered on the HN model, the
applicability of our results to other models remains an open
question. In Appendix B, however, we extend our findings
to the NH SSH chain and demonstrate that the qualitative
conclusions applies. Nevertheless, one can imagine the po-
tential for further research in other directions that addresses
slightly different questions, including topology, localization,
and the realm of many-body NH physics. We propose that
the introduction of the Liouvillian Fock state lattice, as il-
lustrated in Fig. 4, offers a promising tool for gaining fresh
insights. Particularly fascinating is the observation that, for
the 1D HN model, the dimension of the Liouvillian Fock state
lattice stands at 2D. This observation leads to the intriguing
speculation that, for a D-dimensional model coupled to an
environment, the relevant physics might manifest in D + 1
dimensions. Furthermore, the interplay of symmetries in NH
quantum mechanics compared to the full LME [38] remains
an open question, partially due to the complexity of relating
biorthogonal QM to real physical systems. These questions
are left unexplored for future studies.
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APPENDIX A: OPEN QUANTUM SYSTEMS

In this Appendix, we outline some general concepts related
to the dynamics of open quantum systems. The typical sce-
nario is illustrated in Fig. 8. In Fig. 8(a) we depict a small
system S interacting with a larger environment E . Informa-
tion is exchanged between these subsystems, with the rate
of exchange determined by the parameter γ . This exchange
includes processes such as particle or energy losses and deco-
herence. The combined system’s evolution is described by the
Schrödinger equation. For instance, an initial pure separable
state evolves as

|�(t )〉 = Û (t )|ψs(0)〉 ⊗ |ψE(0)〉. (A1)

FIG. 8. Description of the open system evolution. The
(sub)system S is represented by a state ρ̂s(t ), schematically depicted
in blue in (a). The system interacts weakly with an environment E
(light blue), allowing information within S to irreversibly dissipate
into E with a characteristic decay rate γ . In (b), the concept of
the CPTP dynamical map is presented. The full system comprises
S and E , and its state ρ̂(t ) undergoes unitary evolution under a
Hamiltonian Ĥ , as indicated by the upper horizontal double arrow.
The system state ρ̂s(t ) is derived by taking the partial trace of the
full state over the environment degrees of freedom, represented by
vertical downward arrows. The dynamical map ρ̂s(t ), shown as the
lower horizontal arrow, governs the evolution of the system state,
transforming ρ̂s(0) into ρ̂s(t ). While the full state evolution is unitary
and thus reversible, all other steps (partial traces and dynamical
map) are irreversible.

Here the time-evolution operator Û (t ) is generated from
the full Hamiltonian Ĥ = Ĥs + ĤE + ĤsE, where the first
two terms represent the system and environment sub-
Hamiltonians, and the last term accounts for their interaction.
The state of the system at time t is obtained by taking the
partial trace of the full state, as illustrated in Fig. 8(b).

As time progresses, the initially separable state of the sys-
tem environment becomes entangled. Given that the initial
state is pure, this entanglement between the system and the
environment is reflected in the system’s reduced state, ρ̂s(t ),
being mixed. For instance, the von Neumann entropy SvN =
−Tr[ρ̂(t ) ln ρ̂(t )] > 0 is used as a measure of the amount of
entanglement [33]. From this point forward, we will omit the
subscript “s” for the reduced density operator of the system.

In the Markovian approximation, as assumed for the LME
(2), this information flow out of the system is forever lost to
the environment [35]. Furthermore, in deriving equation (2),
we also assume the validity of the Born approximation, which
implies that, due to the substantial difference in system sizes,
the state of the environment is unaffected by the presence of
the small system [35].
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As previously mentioned, the loss of information can hap-
pen through either dissipation or decoherence. In the former,
we often think of particle losses, while in the latter, it typ-
ically results from uncontrolled energy shifts. Regardless of
the specific mechanism, both processes tend to cause the state
of the system to become mixed in most cases. This concept
is at the core of fluctuation-dissipation or quantum regression
theorems [12,13,35]. However, if one has complete access to
the environment, in principle, it is possible to extract all the
information about the system. In this scenario, the system’s
state can be ascribed a pure state. This would be the case of
postselection [44], briefly touched upon in the final Sec. V.

APPENDIX B: LIOUVILLIAN FOR
NON-HERMITIAN SSH MODEL

It is straightforward to generalize the HN to the Su-
Schrieffer-Heeger (SSH) model [84]. The Hamiltonian of the
hermitian SSH model is

ĤSSH = (1 − χ )
N−1∑
n=1

â†
nb̂n + (1 + χ )

N−1∑
n=1

â†
n+1b̂n + H.c.

(B1)
The parameter χ , which takes values in the interval [−1, 0],
dictates the relative strengths of consecutive tunneling am-
plitudes in the SSH model. For χ = 0, the model reverts to
the conventional tight-binding model. However, for χ �= 0,
the lattice exhibits a bipartite structure, with each unit cell
containing two distinct types of sites: the a sites and the b
sites. In cases with an odd number of sites, the SSH model
supports a zero-energy topological edge state, also known as
symmetry-protected state, which exhibit exponential localiza-
tion near the chain’s edge. The specific value of χ determines
the size of the energy gap that separates these edge states
from the remaining bulk states, as well as the amount of lo-
calization of the edge state. These edge states tend to be more
isolated from the rest, potentially enhancing their robustness
for various applications. Consequently, it is worthwhile to
investigate how the findings of the present paper extend to the
SSH model.

Transitioning to the SSH model from the tight-binding
Hamiltonian in Eq. (30) is straightforward. Explicitly, the HN
SSH Hamiltonian is [5]

ĤHN,SSH = (1 − χ )
N−1∑
n=1

[(1 + δ)â†
nb̂n + (1 − δ)b̂†

nân]

+ (1 + χ )
N−1∑
n=1

[(1 + δ)â†
n+1b̂n + (1 − δ)b̂†

nân+1],

(B2)

FIG. 9. Demonstration of the localized-delocalized transition for
the NH SSH model. In (a) we present the same information as
Fig. 2(a) for the HN model. For large γ values, the steady state
becomes localized at the edge of the chain, whereas for weak γ

values, it becomes delocalized over the entire lattice, as evident in
(b), which displays the width (B4). The dashed red curves correspond
to χ = 0.5, and the solid black curves to χ = 0.1. The dotted line
in (b) represents the width for a maximally delocalized state. It
is evident that the SSH parameter χ smooths the transitions, but
criticality appears to persist. This is further confirmed in (c) and
(d) for the real parts of the Liouvillian spectra.

and the collective jump operator (28) generalizes to

L̂c = i
N−1∑
n=1

â†
nb̂n + i

N−1∑
n=1

â†
n+1b̂n + I. (B3)

The results of numerical simulations are illustrated in Fig. 9,
displaying the spectra, scaled positions (32), and widths

�ξ =
√

〈Ŝ2〉 − 〈Ŝ〉2. (B4)

The plot clearly demonstrates that χ influences the transitions,
shifting them toward smaller values of γ , and the transition
itself becomes smoother. Nonetheless, based on the available
numerical data, it appears that the transition remains distinct
and is not merely a crossover. A noteworthy observation is
that, even when the steady state is not precisely centered
in the middle of the lattice, its width remains close to the
maximum. Importantly, it should be noted that the model
exhibits asymmetry concerning the sign of χ . This asymme-
try arises from the drift induced in the lattice by the jump
operators, and reversing the sign of χ results in a distinct
model.
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