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We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions.
The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global
optimization with linear scaling in the number of variational parameters. Instead of fixing a variational ansatz
at the beginning of the simulation, the circuit is grown systematically during the time evolution. Moreover, the
adaptive step does not require auxiliary qubits and the gate search can be performed in parallel on different
quantum devices. We apply the algorithm, named adaptive pVQD, to the simulation of driven spin models and
fermionic systems, where it shows an advantage when compared to both Trotterized circuits and nonadaptive
variational methods. Finally, we use the shallower circuits prepared using the adaptive pVQD algorithm to obtain
more accurate measurements of physical properties of quantum systems on hardware.
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I. INTRODUCTION

Simulation of static and dynamic properties of quantum
systems is a notoriously hard task for classical computers.
While analytical solutions are available only for specific
cases, the amount of time and computing resources required in
general by exact numerical methods is exponential in the sys-
tem size, making the calculations quickly unfeasible. While
several approximated many-body numerical techniques have
been proposed [1–4], the accurate description of important
physical and chemical phenomena is a very active research
problem [5–8].

In recent years, quantum computers have seen significant
developments [9–11], opening potential opportunities for sci-
entific discoveries. Hardware capabilities continue to advance
steadily, and we can already create and manipulate complex
many-body quantum systems [12–17]. However, large-scale
fault-tolerant quantum computers remain far in the future, and
contemporary devices show limitations in connectivity, size,
and coherence times.

Accounting for these constraints, variational quantum al-
gorithms (VQAs) have emerged as the leading strategy to take
advantage of near-term quantum devices [18–21]. In this class
of algorithms, the solution of a given problem (e.g., finding the
ground state of a physical system) is encoded in a quantum
circuit that depends on some parameters optimized with the
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aid of a classical device. VQAs have not only been proposed
for quantum simulations but also for a variety of different
applications, such as machine learning [22,23], combinatorial
optimization [24,25], quantum error correction [26,27], and
circuit compilation [28–32]. Variational schemes have also
been introduced in quantum dynamics [33–44] as a more
efficient alternative to Trotterization [45–49]. The accuracy of
a variational quantum simulation is then tied to the ability of
a parameterized circuit to describe time-evolved wave func-
tions. Even if the initial wave function is well described by
the chosen parameterized circuit, the complexity of the time-
evolved wave functions varies with time and the chosen circuit
may fail to describe them. The choice of the parameterized
circuit is therefore crucial and it remains an open problem in
variational simulations of quantum dynamics.

Adaptive schemes have been proposed in the context of
variational ground-state search [50–53], especially to avoid
committing to a particular parameterized circuit. The key idea
is to construct the parameterized circuit during optimization.
By systematically appending specific quantum gates to the
parameterized circuit, adaptive methods have been shown
to surpass standard approaches in the number of operations
required and in the accuracy of the final results. Moreover,
adaptive methods provide flexible circuits suited for dynamics
simulations [35,54]. However, including an adaptive step for
dynamics usually requires measurements of additional quan-
tities, that might be difficult to perform, or auxiliary qubits.

In this paper, we introduce an adaptive variational al-
gorithm for real-time evolution based on the projected-
variational quantum dynamics (pVQD) algorithm [39],
denoted “adaptive pVQD”. The method inherits all the prop-
erties of the original pVQD algorithm and integrates the
adaptive modification of the parameterized circuit without
requiring auxiliary qubits. The structure of this paper is as
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follows: in Sec. II we present the algorithm and describe how
the adaptive routine is performed; in Sec. III we apply the
method to study a time-dependent and a fermionic system,
benchmarking the method against Trotter evolution and the
original pVQD algorithm; Sec. IV concludes the paper with
some considerations and outlooks on the proposed method.

II. METHOD

Consider a physical system governed by a Hamiltonian
H . For clarity of exposition, we focus on time-independent
Hamiltonians. However, this is not a requirement of the al-
gorithm, as we explicitly show in Sec. III. To simulate the
dynamics of quantum systems on a quantum computer, we
have to prepare the time-evolved wave function |�(t )〉 =
U (t )|ψ0〉, where |ψ0〉 = C0|0〉⊗N is the initial state, N indi-
cates the number of qubits representing the physical system
and U (t ) is the unitary time-evolution operator.

The goal of variational algorithms for dynamics is to
approximate |�(t )〉 using parameterized states of the form
|ψ (θ(t ))〉 = C(θ(t ))|ψ0〉, where θ(t ) ∈ Rp is the vector of
the p real parameters at time t . Different strategies have
been proposed to prepare the variational approximation
[33,34,36–39,41]. In particular, our adaptive scheme builds
upon the projected-variational quantum dynamics algorithm
(pVQD) [39].

A. Projected-variational quantum dynamics

The pVQD algorithm approximates the time evolution of a
quantum system until t f by discretizing it into Nt small time
steps �t . Given the variational state at time t , |ψ (θ(t ))〉, we
perform the small step time evolution and prepare the evolved
state |φ(t + �t )〉 = U (�t )|ψ (θ(t ))〉.

The new variational state |ψ (θ(t + �t ))〉 is prepared by
finding the change of the parameters dθ∗ ∈ Rp such that

dθ∗ = arg max
dθ∈Rp

|〈ψ (θ(t ) + dθ)|φ(t + �t )〉|2 (1)

and imposing |ψ (θ(t + �t ))〉 = |ψ (θ(t ) + dθ∗)〉. It has been
shown that, in the infinitesimal time step limit �t → 0, the
parameters update coincides with the one obtained using the
McLachlan’s variational principle [39]. From now on, we will
indicate θ(t ) as θ to simplify the notation, implying that the
parameters we are referring to are the ones assigned to the
ansatz at time t , except when explicitly indicated.

In order to execute the algorithm on a quantum device, the
overlap optimization is performed minimizing with respect to
dθ the infidelity

I (dθ,�t ) = 1 − F (dθ,�t ), (2)

where the fidelity is defined as

F (dθ,�t ) = |〈ψ (θ + dθ)|UTS(�t )|ψ (θ)〉|2, (3)

and UTS(�t ) is the Trotter-Suzuki approximation of the
time-evolution operator [45,46]. In this paper, we use first-
and second-order decomposition for spin systems and the
Fermi-Hubbard model, respectively, but higher orders can be
considered. Given the variational unitary C(θ) as a quantum
circuit, the infidelity in Eq. (2) and its gradient can be com-
puted efficiently on a quantum device [39].

The minimization of the infidelity is then performed in a
gradient descent scheme

dθnew = dθold − η∇dθI (dθ,�t ), (4)

where η ∈ R+ is the learning rate. This optimization goes
on until a pre-determined convergence criteria is met. More
details about the minimization routine used in this paper can
be found in Appendix A. The procedure is repeated Nt times
until the simulation reaches t f . A sketch of the algorithm can
be found in the upper box of Fig. 1, and a more detailed
explanation in [39].

B. Adaptive step

The complexity of the wave function changes during the
time evolution of the system. The variational circuit C(θ)
might therefore not be expressive enough to accurately de-
scribe the time step evolution by only shifting the variational
parameters. In this case, the parameter optimization fails and
a bias is introduced in the representation of the wave function.
In contrast to variational preparation of ground states, in the
study of dynamics, this error propagates to the subsequent
time steps, leading to poor accuracy on the final results. This
is a shortcoming of any nonadaptive variational approach to
dynamics, including the pVQD algorithm.

We aim to overcome this limitation by introducing the
adaptive projected-variational quantum dynamics algorithm
(adaptive pVQD). The method builds upon the original pVQD
algorithm, by supplementing it with an adaptive step, which
incrementally extends the variational ansatz. This is done
by drawing new gates from a predefined pool of operators.
However, the introduction of the adaptive step always requires
an overhead in the number of circuits to be prepared and
measured [35,54]. If this overhead is too high, it might hinder
the application of the method, even if it is preferable from the
perspective of circuit expressivity.

In the following, we show how the adaptive pVQD
algorithm introduces the adaptive step in variational quantum
dynamics while significantly reducing the overhead compared
to other adaptive methods.

First, we consider a variational ansatz of the form

|ψ (θ, A)〉 = C(θ, A)|ψ0〉 =
∏

i

e−iθiAi |ψ0〉, (5)

where each variational gate e−iθiAi with parameter θi ∈ θ is
associated to a Hermitian generator Ai ∈ A.

The parameterized state is now specified not only by the
set of parameters {θ}, but also from the set of operators {A}.
However, for simplicity of notation, we will continue to adopt
the notation |ψ (θ)〉 ≡ |ψ (θ, A)〉 and C(θ) ≡ C(θ, A). We note
that the original pVQD scheme [39] consists of fixing the set
of operators A at the beginning of the simulation and keeping
it constant until the final time t f . Here, instead, we start with
the initial state |ψ0〉 represented by an empty set of operators.

When the circuit does not contain any parameter, or |ψ (θ)〉
is not expressive enough to accurately describe the time step
evolution by only shifting the variational parameters, new
gates are added to it. The set of operators A from which we
will draw the generators Ak to add to {A} is defined as the
operator pool. In Sec. II C, two types of operation pools will
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FIG. 1. Flowchart of the time evolution of the “adaptive pVQD” algorithm. Starting with a parameter-free circuit, we discretize the time
evolution into multiple time steps. At each time step we optimize the parameters to approximate the real-time evolution of the quantum
system. To simplify the notation, we define C̃(θ) = C(θ)C0. If the optimization does not converge to the required accuracy, or the ansatz does
not contain any parameter, then rotations {RA∗

i
} with associated the generators {A∗

i } are appended to the circuit according to the adaptive step
procedure described in Sec. II B. The algorithm stops once the final time t f is reached.

be introduced. Here, we describe how to determine from a
given pool the best gate to grow the quantum circuit and how
to add it. As first proposed in [50], we look for the operator
whose gate maximizes the derivative of the cost function with
respect to its parameter. This is achieved by iterating over
all the operators in the pool, a step that can be performed in
parallel even on different quantum devices.

For ground-state methods, the cost function is the energy of
the system, and the gradient is obtained by measuring the ex-
pectation value of the commutator between the trial operator
and the Hamiltonian [50,55]. We must ensure that it is possible
to apply a similar procedure when dynamics is considered. In
the adaptive scheme proposed in [35], this step requires an
additional measurement of the variance of the Hamiltonian
with respect to the nonadaptive case. In the method presented
here, the procedure changes depending on where the new gate
is added. For instance, if the new gate is placed at the end
of the circuit, the derivative with respect of the shift of the
new parameter can be computed using the parameter shift rule
[56], similarly as the minimization routine (see Appendix A
for more details). If instead the new gate is placed at the
beginning of the circuit, the number of circuits required can
be reduced even more. Indeed, in this case the gradient of the
fidelity with respect to the shift dθa of parameter θa associated
with a trial operator Aa has the form

∂F
∂dθa

= 〈φ(θ,�t )|e−idθaAa [P0, iAa]eidθaAa |φ(θ,�t )〉, (6)

where we define the projector P0 = |ψ0〉〈ψ0| and the state
|φ(θ,�t )〉 = U †(θ)UTS(�t )|ψ (θ)〉 (see Appendix B for the
full derivation). Hence measuring the derivative of the fidelity

corresponds to measuring the Hermitian operator [P0, iAa]
with respect to the state eidθaAa |φ(θ,�t )〉. This reduces the
number of circuits to evaluate to one per operator, compared
to two for the parameter-shift rule. In both cases, to ensure
continuity of time evolution, we initially set θa, dθa = 0. In
this paper, we chose to add the new gates at the end and
evaluate the derivative using the parameter-shift rule. Both
procedures are parallelizable on multiple devices and do not
require auxiliary qubits. A sketch of the adaptive step is shown
in Fig. 1.

The adaptive step has been lately extended and optimized
[51,53,55], with new protocols that greatly reduce the compu-
tational resources required with respect to the first proposal.
In particular, we adopt the scheme presented in [53], which
increases the depth of the parameterized circuit |ψ (θ)〉 by 1
at every adaptive step, when no specific connectivity of the
device is assumed. While the infidelity defined in Eq. (2)
remains above a fixed threshold ε, additional adaptive steps
are performed. For a detailed description, see Appendix C.

C. Operator pool

The choice of the operator pool is a key ingredient in the
success and efficiency of adaptive variational algorithms. As
an example, one could define a pool of operator that is able to
prepare every state in the N-qubits Hilbert space, also called
a complete pool of operators. However, finding such a pool is
not only computationally intensive, but also not guaranteed to
be the best choice, given the local nature of the updates to the
ansatz. For these reasons, many different strategies have been
proposed, such as the creation of a minimally complete pool
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[51,57], the inclusion of symmetries directly in the operator
pool [58], or the extension of a complete pool acting on a
subsystem of the studied model [52].

In the study of dynamics, we can refer to the Trotterization
of the time-evolution operator to select the pool. In particu-
lar, we consider local (L) and nonlocal (NL) operator pools,
respectively, given by

AL = {Xi,Yi, Zi, XiXj,YiYj, ZiZ j}〈i j〉
i, j∈[0,N−1], (7)

ANL = {Xi,Yi, Zi, XiXj,YiYj, ZiZ j}i, j∈[0,N−1], (8)

where Xi,Yi, and Zi are the Pauli gates acting on site i, and
〈i j〉 indicates nearest-neighbor sites. Once a physical system
is mapped to a qubit system, we consider as local the gates
that act on qubits that are neighbors in the indexing convention
given by the mapping. This is not a requirement of the method.
The local pool could alternatively be defined as the set of
operators that are local in a given topology. A nonlocal pool,
instead, contains operators that might act also on qubits that
are not neighbors in the indexing convention. These nonlocal
operators could be a product of the mapping, or introduced
to improve the results. Indeed, given that AL ⊆ ANL, where
the equality holds for devices with all-to-all connectivity, we
expect that ANL will generate more flexible parameterized
states. However, not only the choice of ANL leads to a mea-
surement overhead, but the nonlocal nature of this pool may
add long-range controlled-NOT (CNOT) gates to the circuit,
according to the device connectivity. In Sec. III, we report
the comparison of the two pools in the study of a fermionic
system.

III. RESULTS

We apply the adaptive pVQD method to the study of the
1D Heisenberg XYZ model with an external driving field and
the Fermi-Hubbard model. Both have nontrivial dynamics and
open the pVQD method to the study of time-dependent and
fermionic systems. In both cases, open boundary conditions
were imposed.

A. Driven Heisenberg model

Given an open chain of L spins, the driven Heisenberg
XYZ Hamiltonian can be written as

H (t ) =
L−2∑
i=0

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1) + D(t ) (9)

where Jx, Jy, and Jz are coupling parameters and D(t ) is the
time-dependent driving term. Many different driving terms
can be applied to the system. Among those we choose

D(t ) =
L−1∑
i=0

(−1)i sin(ωt )Zi, (10)

where ω is the driving frequency.
First, we investigate the performance of the adaptive pVQD

algorithm with a local pool on a perfect simulator and com-
pare to Trotterized circuits and the original implementation of
pVQD. We consider Jx = 1, Jy = 0.8, Jz = 0.6, an antiferro-
magnetic initial state |ψ0〉 = |01010101〉 and a final evolution

FIG. 2. Dynamics of the driven Heisenberg XYZ model studied
with the adaptive pVQD algorithm with local pool (L), compared to
standard Trotter evolution, pVQD and pVQD with block extensions.
The plot shows the results for an open chain of L = 8 spins with
Jx = 1, Jy = 0.8, and Jz = 0.6. The top and middle panels show the
measurements of a single spin observable and a correlator, respec-
tively. The bottom panel shows the number of CNOTs in the circuit
describing the time-evolved wave function. The simulation started
in the antiferromagnetic state |ψ0〉 = |01010101〉, and the infidelity
threshold was set to ε = 10−4 for all the variational methods.

time t f = 2. In the classic version of the pVQD algorithm,
we have to choose an ansatz for the time evolved wave func-
tion. We consider a circuit equivalent to a Trotter step where
all the rotations are defined by variational parameters. The
Trotter step circuit implementation for this model is shown in
Appendix E. Both the Trotter and the pVQD full circuits are
then obtained repeating this structure nTS times. In particular,
we fix nTS = 10 for the Trotter circuit and nTS = 3 for the
pVQD ansatz.

After running the algorithms, we compare the different
circuits obtained and use them to measure expectation values
of single- and two-spin observables. The results are shown
in Fig. 2. The Trotter circuit lags behind variational methods
both in terms of accuracy and resource required. The pVQD
method instead achieves accurate results up until Jt = 1.0,
where the associated circuit becomes shallower than the one
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of adaptive pVQD. From that time step onwards, the fixed rep-
resentation power is the main source of error in the variational
results.

In order to show the flexibility of the adaptive pVQD, we
implement a naive modification of the pVQD algorithm that
we indicate as pVQD with block extensions. In this case,
a new step of the Trotterized variational ansatz is added to
the circuit once the optimization procedure does not reach
the desired accuracy. While this approach does improve the
performance of the pVQD algorithm, we remark that it is not
general, as it depends on the ansatz structure we have chosen.
Furthermore, we can see from the bottom panel of Fig. 2
that the adaptive pVQD method always produces shallower
circuits, with resources tailored to the needs of the specific
time step.

Then, we extend the study to systems with different sizes.
To this end, we define the integrated exact infidelity

�ex
I (t f ) =

∫ t f

0

(
1 − |〈�(t )|ψ (θ)〉|2)dt (11)

with respect to the exact wave function |�(t )〉 computed on a
classical device. We again fix a final evolution time t f = 2 and
evaluate �ex

I (t f ) for each method for systems of L ∈ [3, 11]
spins. In particular, we consider a Trotter circuit with a fixed
depth of nTS = 10 and one with fixed Trotter step size dt =
Jxt f /nTS = 0.05—the same we use in the Trotter step of the
pVQD algorithm. The results are shown in Fig. 3, together
with the circuit depth at the end of the time evolution.

We note that the depth of the adaptive pVQD circuits
increases with the system size and converges to the Trotter
circuit with fixed depth, while having a lower integrated exact
infidelity. We highlight that Fig. 3 only indicates the depth
of the final circuit. In the case of adaptive pVQD, this corre-
sponds to the deepest circuit prepared. The Trotterized circuits
with a fixed Trotter step size yield the lowest values for �ex

I ,
but nTS = 40 Trotter steps are required to evolve the system
to t f = 2, resulting in circuits almost one order of magni-
tude deeper than any other. We performed multiple pVQD
simulations with different variational ansätze equivalent to
nTS = 1, 2, 3, 8 Trotter steps. We note that the integrated ex-
act infidelities of pVQD with nTS = 1, 2, 3 all have a steep
transition when the number of gates becomes smaller than the
adaptive circuit. As mentioned above, these transitions are a
result of the limited representation power of the ansatz. The
adaptive scheme, on the contrary, is able to efficiently increase
its expressivity. Although the standard pVQD calculation with
nTS = 8 never undergoes this transition and �ex

I is always
lower than the one of the adaptive approach, we emphasize
that the entire time evolution is performed with a deeper cir-
cuit. Finally, a plateau in the final circuit depth of the adaptive
circuits can be seen for L > 8. This is similar to what was
observed in [35], where the system size at which the number
of gates required saturates depends on the evolution time.

A complete study of a quantum algorithm would require
to run it on actual quantum hardware. Indeed, the adaptive
method is able to produce circuits that are orders of magni-
tude shallower than Trotterization while keeping the accuracy
comparable to it. However, it is crucial to fist assess the
error rate of current hardware and determine how it affects
the optimization of the variational parameters. To this end,

FIG. 3. Adaptive pVQD algorithm with local pool compared to
standard Trotter evolution and pVQD for the driven Heisenberg XYZ
model. We use the same settings as indicated in Fig. 2 for multiple
systems of size L ∈ [3, 11]. The top panel shows the integrated exact
infidelity of pVQD and Trotterization over an entire time evolution
with final time t f = 2 as a function of the system size. The bottom
panel shows the circuit depth at the end of the time evolution.

we perform classical density matrix simulations with noise
models imported from the IBM Brisbane superconducting
device [59]. More details about the noise model can be found
in Appendix F. From these noise simulations, to have qual-
itatively good results, we would need error rates on single-
and two-qubit gates that are one order of magnitude lower
than what we currently experience on these devices. Nonethe-
less, circuits produced with the adaptive pVQD scheme can
already be used to improve the measurement of observables at
long times on current quantum devices, which are otherwise
limited by the depth of the Trotterization. For this reason, we
first run the adaptive pVQD algorithm on the simulator, and
then use the resulting sets of variational parameters to prepare
quantum circuits on hardware for a system of L = 4 spins.
In Fig. 4, we compare observables measured both on those
variational wave functions and on Trotterized circuits with a
fixed Trotter step size of dt = 0.2.
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FIG. 4. Observables measured with the IBM Manila device for
the driven Heisenberg XYZ model on an open chain with four
sites, Jx = 1, Jy = 0.8, Jz = 0.6 and an antiferromagnetic initial state
|ψ0〉 = |0101〉. The Trotter simulation is performed with a fixed Trot-
ter step size of dt = 0.2. The adaptive pVQD circuits |ψ (θ)〉 were
obtained with a noiseless simulation that used a local operator pool.
The shaded areas correspond to 50 noisy simulations using the noise
model of IBM Manila. Each data point and error bar correspond to
the mean and the standard deviation, respectively, of 50 experiments
performed on hardware. Zero-noise extrapolation was applied to both
noisy simulations and hardware experiments. Idle qubits were also
dynamically decoupled from the active ones.

In this experiment, the final Trotter circuit has 180 CNOTs.
This circuit is beyond what is currently accessible on quantum
devices, so that the expectation value of the correlator settles
close to 0 for Jxt > 0.8. On the other hand, the adaptive pVQD
parameterized circuit |ψ (θ)〉 has 28 CNOTs at the end of
the evolution. This improvement in the number of gates is
crucial for the application of error mitigation techniques, es-
pecially at longer times. In particular, zero-noise extrapolation
(ZNE [33,60]) was applied both on the noisy simulations and
hardware experiments. We choose a quadratic fit on values
obtained with noise scaling factors [1, 2, 3]. Moreover, when
running our algorithm on hardware, we dynamically decouple
the idle qubits from the active ones using the standard proce-
dure available in Qiskit [61]. We expect that more advanced

noise mitigation techniques, such as the one presented in [62],
will improve the results on the Trotter circuit. However, this
is also true for the variational circuit prepared by the adaptive
pVQD.

B. Fermi-Hubbard model

The Hamiltonian of the Fermi-Hubbard model on a Lx × Ly

rectangular lattice is given by

H = −J
∑
〈i j〉,σ

(c†
iσ c jσ + c†

jσ ciσ ) + U
LxLy−1∑

i=0

ni↑ni↓, (12)

where c†
iσ (ciσ ) is the creation (annihilation) fermionic opera-

tor of spin σ ∈ {↑,↓} at site i, niσ = c†
iσ ciσ counts the number

of fermions with spin σ at site i and 〈i j〉 denotes nearest-
neighbor sites on the lattice. The first term in the Hamiltonian
accounts for the hopping between nearest-neighbor lattice
sites, while the second term describes the on-site interactions.

There are several ways to encode fermionic Hamiltonians
into qubit operators [63–69]. In this paper, we consider the
Jordan-Wigner mapping [63] to encode each fermionic mode
into a qubit. Since every lattice site can host two modes (↑, ↓),
N = 2LxLy qubits are required to simulate the Fermi-Hubbard
model on a Lx × Ly grid. Before performing a fermionic en-
coding, we eliminate the spin index via ci↑ → ci and ci↓ →
ci+N/2 (and analogously for the number operator niσ ). We then
map each fermionic operator into a spin operator,

ci → Z⊗i ⊗ σ+ ⊗ I⊗N−i−1, (13)

c†
i → Z⊗i ⊗ σ− ⊗ I⊗N−i−1, (14)

where σ± = (X ± iY )/2. The local occupation number can
then be identified with the local spin number according to ni ∈
{0, 1} 
→ Zi ∈ {↑,↓}. More details on the fermionic indexing
convention and the Trotter step implementation can be found
in Appendix E.

Given that the mapping requires an ordering of the
fermionic modes, operators that are local in space might gen-
erate very long Pauli strings. For example, considering the
snake-like pattern described in Appendix E, vertical hopping
terms generate strings of Pauli Z with sizes up to 2Lx − 2.
This represents a bottleneck in studying fermionic systems on
current quantum devices. We want to test the adaptive pVQD
method on systems that show this type of long range terms. By
restricting the operator pool, we investigate the possibility of
describing time-evolved wave functions of the Hubbard model
using only local gates. We perform noiseless simulations of
a 2 × 2 square lattice, which can also be regarded as a 1D
chain with periodic boundary conditions, comparing local and
nonlocal operator pools. In particular, we study a hopping
quench from an antiferromagnetic initial state at half-filling.
We measure the expectation values of a local density operator
and a density correlator and count the number of CNOTs
in the circuits. We use a fixed-depth Trotter simulation and
pVQD with block extension scheme as a benchmark. The
results are shown in Fig. 5.

We do not restrict ourselves to specific quantum hardware
to keep the comparison as general as possible. Instead, we
count the number of CNOTs in a circuit by transpiling it into
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FIG. 5. Adaptive pVQD schemes for the Fermi-Hubbard model
on a 2 × 2 open square lattice, also seen as a four-sites chain with pe-
riodic boundary conditions, (8 qubits) with U/J = 0.8. Local (L) and
nonlocal (NL) operator pools are used to perform noiseless simula-
tions and the results are compared to a Trotter evolution with nTS = 5
Trotter steps and pVQD with block extensions. The system starts
in the half-filled antiferromagnetic state |ψ0〉 = |n0↑n1↑n2↑ · · · 〉 =
|10100101〉. We fixed the infidelity threshold to ε = 10−4. The top
and middle panels show the expectation values of an on-site number
density operator and a number density correlator over time. The
bottom panel shows the number of CNOTs in the circuit describing
the time-evolved wave function.

an abstract device with all-to-all connectivity that is able to
perform arbitrary single-qubit rotations and CNOTs. The local
and nonlocal pool variants show different behavior over time
in the count of CNOTs. We note that the nonlocal variant
always requires fewer CNOTs than its local counterpart. How-
ever, some CNOTs are long range, and their implementation
on an actual device can be challenging on hardware with
fixed topology and limited connectivity. In contrast, the circuit
structure produced by the local pool variant is already suited
for current hardware implementation. More details about the
adaptive pVQD output circuits can be found in Appendix D.
Moreover, the plot highlights another limitation of the naive
pVQD with block extensions approach. Indeed, it not only

always prepares more expensive circuits than the nonlocal
adaptive pVQD, but it has a similar CNOT count as the
local variant while being restricted to use long-range gates (as
defined in the Trotter step).

IV. CONCLUSIONS

We presented an adaptive version of pVQD, called adap-
tive pVQD, to simulate the real-time evolution of quantum
systems. This algorithm importantly circumvents the need to
choose a fixed ansatz from the beginning of the time evolution.
The parameterized quantum circuits are grown adaptively to
be both problem and hardware-tailored. This is obtained with
a measurement overhead required to determine the best gates
among those included in the operator pool.

However, the gate search can be operated in parallel and, in
our scheme, it does not involve circuits with auxiliary qubits.
This makes the adaptive pVQD algorithm more hardware
efficient than standard methods, as exemplified in this paper
with the driven Heisenberg model on the IBM quantum hard-
ware. Finally, we have simulated the dynamics of the Hubbard
model with only local gates, using the adaptive procedure to
mitigate one of the bottlenecks that current quantum devices
face in studying fermionic systems. Given the ease of intro-
duction to the standard pVQD algorithm and its benefits, we
believe that the adaptive procedure described here can be of
great use in the simulation of dynamics both for current and
future quantum devices.

The code used to run the simulations is open source
and can be found at [70]. It was written in Python using
Qiskit [61]. Exact classical simulations were performed using
Qutip [71].
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APPENDIX A: MINIMIZATION ROUTINE

Here we present additional details on the minimization rou-
tine that we applied throughout the simulations we presented
in the main text. In particular, we follow a gradient-based
approach, with gradient computed using the parameter-shift
rule. Gradient-based and nongradient-based optimization al-
gorithms for dynamics were previously used for instance in
[39,40], for both ideal and noisy quantum simulations. The
parameter-shift rule readily applies here since every Pauli
string Ai is involutive, i.e., A2

i = I [56]. For a fixed set of
operators {A}, the gradient of the infidelity was thus computed
via the parameter-shift rule,

∂I
∂dθi

= I (θ + dθ + sei ) − I (θ + dθ − sei )

2 sin s
, (A1)
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where ei is the standard unit vector, and we fixed s = π/2.
The gradient was then fed to the Adam optimizer [72], imple-
mented with the default hyperparameters and a learning rate
α = 0.005. The shift parameters dθ∗ were thus obtained using
Adam.

Two stopping criteria for the optimizer were used: (1) the
�∞ norm of the gradient of the infidelity is below a toler-
ance and (2) a maximum number of iterations is reached.
Alternatively, as mentioned in [39], an optimization threshold
independent from �t can be used if the cost function I is
replaced with I/�t2.

APPENDIX B: GRADIENT OF THE FIDELITY

In this Appendix, we derive the expression for the gradient
of the adaptive step presented in Eq. (6). Given the quantum
circuit U (θ) that prepares the state |ψ (θ)〉 = U (θ)|ψ0〉, we
want to add the gate e−idθaAa to it, defining the new state
|ψ (θ + dθ)〉 = U (θ) e−idθaAa |ψ0〉. To obtain the gradient of
the fidelity with respect to this added parameter dθa, it is
convenient to first rewrite the fidelity given in Eq. (3) as
follows:

F (dθ,�t ) = |〈ψ (θ + dθ)|UTS(�t )|ψ (θ)〉|2

= |〈ψ0|eidθaAaU †(θ)UTS(�t )U (θ)|ψ0〉|2

= 〈ψ0|eidθaAaU †(θ)UTS(�t )U (θ)|ψ0〉
∗ 〈ψ0|U †(θ)U †

TS(�t )U (θ)e−idθaAa |ψ0〉
= 〈ψ0|U †(θ)U †

TS(�t )U (θ)e−idθaAa |ψ0〉
∗ 〈ψ0|eidθaAaU †(θ)UTS(�t )U (θ)|ψ0〉

= 〈φ(θ,�t )|e−idθaAa P0eidθaAa |φ(θ,�t )〉, (B1)

where we defined |φ(θ,�t )〉 = U †(θ)UTS(�t )U (θ)|ψ0〉 and
the projector P0 = |ψ0〉〈ψ0|. One can then readily differenti-
ate with respect to dθa to obtain

∂F
∂dθa

= 〈φ(θ,�t )|e−idθaAa [P0, iAa]eidθaAa |φ(θ,�t )〉, (B2)

which precisely corresponds to Eq. (6).

APPENDIX C: ADAPTIVE STEP IMPLEMENTATION

In this Appendix, we illustrate the adaptive procedure used
in our simulations, based on what was initially proposed in
[53]. The overall procedure can be divided in the following
steps:

(1) Compute the gradient of the infidelity for each operator
in the pool. To process the pool A, the gate e−iθaAa associated
to each trial operator Aa ∈ A is appended one at a time to
the current parameterized circuit {θ, A}, resulting in the trial
circuit {(θ, 0), (A, Aa)}. For the trajectory in parameter space
to remain continuous, the new parameter θa and its shift dθa

are set to 0. The gradient of the infidelity with respect to the
new parameter is computed for each trial circuit using the
parameter-shift rule, given explicitly in Eq. (A1).

(2) Pick the operator in the pool that maximizes the gra-
dient. Update the parameters and operators to θ → (θ, 0) and
A → (A, A∗), where A∗ is the operator Aa that maximizes the
infidelity gradient.

FIG. 6. Variational circuit obtained at Jxt = 2 in the simulation
shown in Fig. 3, using the adaptive pVQD algorithm and local oper-
ator pool.

(3) Remove the operators in the pool that act on qubit(s)
already acted on. Given that the operator A∗ obtained in Step
(2) acts on the qubits indices α, the subset of the operator pool
that also acts on at least one index in α, namely

Aα = {Aa|Aa ∈ A acts on β,β ∩ α �= ∅} (C1)

should be removed from the current operator pool. Hence the
pool can be updated as follows: A → A \ Aα.

(4) Go back to Step (2) until the operator pool is empty.
(5) Return the new circuit. The new parameterized

circuit is characterized by θ → (θ, 0, · · · , 0) and A →
(A, A∗

0, A∗
1, · · · , A∗

k ), assuming that k new operators were
added.

As stated in the main text, this procedure guarantees that
the depth of the parameterized circuit |ψ (θ)〉 is increased by
1 in each adaptive step [53]. We note that this remains true
even when no device connectivity is assumed. Indeed, the
procedure guarantees that the operators added have disjoint
support, which increases the depth only by 1. However, a
depth increment larger than 1 might occur after the circuit is
transpiled to a specific hardware with limited connectivity.

APPENDIX D: ADAPTIVE PVQD OUTPUT CIRCUITS

We illustrate in Figs. 6 and 7 examples of parameter-
ized circuits obtained with the adaptive pVQD algorithm in

FIG. 7. Variational circuit obtained at Jt = 4 in the simulation
shown in Fig. 5, using the adaptive pVQD algorithm and local oper-
ator pool.
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FIG. 8. Implementation of an antiferromagnetic initial state and
a Trotter step for the driven Heisenberg model given in Eq. (9).

simulations shown in the main text. Each column of operators
in the circuits corresponds to an adaptive step.

APPENDIX E: TROTTER STEP CIRCUIT ENCODINGS

In this Appendix, we provide the circuits used to imple-
ment a single Trotter step of the driven Heisenberg model and
the Hubbard model. The Trotter step in the driven Heisenberg
model is implemented with a checkerboard pattern of the
two-qubit gates RXX , RYY , RZZ , with a layer of single-qubit
RZ at the end. We show a sketch in Fig. 8.

To realize the Trotter circuit for the Hubbard model, we
first have to establish an ordering of the lattice sites and the
fermionic modes. We number the sites using a snake-like
pattern and, as indicated in the main text, we eliminate the spin
index via ci↑ → ci and ci↓ → ci+N/2. Under this ordering, the
Jordan-Wigner transformation of the Hamiltonian terms reads

c†
i↑c j↑ + c†

j↑ci↑ 
→ 1

2

⎡
⎣Xi

j−1∏
k=i+1

ZkXj + Yi

j−1∏
k=i+1

ZkYj

⎤
⎦, (E1)

c†
i↓c j↓ + c†

j↓ci↓ 
→ 1

2

[
Xi+N/2

j−1∏
k=i+1

Zk+N/2Xj+N/2

+ Yi+N/2

j−1∏
k=i+1

Zk+N/2Yj+N/2

]
, (E2)

ni↑ni↓ 
→ 1

4
(I − Zi )(I − Zi+N/2), (E3)

where we assumed j > i without loss of generality. Given the
mapped Hamiltonian, the Trotter step cannot be implemented
only using RXX , RYY , RZZ and RZ gates. Indeed, the nonlo-
cality of the mapping requires some multiqubit rotation with
size up to 2Lx. The two multiqubit gates arising for N = 8 are
the rotations generated by the Pauli strings XZZX and Y ZZY ,
which can be decomposed as shown in [49]. Figure 9 presents
our implementation.

FIG. 9. (a) Gates used to define a Trotter step. (b) Quantum
circuit encoding the first-order Trotter step of the Hubbard model
with an half-filled antiferromagnetic initial state.

FIG. 10. Expectation value of the correlator Z0Z1 measured with
the IBM Brisbane noise model for the driven Heisenberg XYZ model
on an open chain with 4 sites, Jx = 1, Jy = 0.8, Jz = 0.6 and an an-
tiferromagnetic initial state |ψ0〉 = |0101〉. The whole optimization
is performed on the noisy simulator and every circuit is evaluated
nshot = 104 times. The simulations are performed using different
noise scaling factor γn. γn = 0 refers to an ideal quantum device with
only statistical shot noise.
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APPENDIX F: EFFECTS OF HARDWARE NOISE
ON VARIATIONAL OPTIMIZATION

In this Appendix, we analyze the effects of quantum hard-
ware noise on the accuracy of the adaptive pVQD. To assess
the possibility to run the adaptive pVQD algorithm on current
quantum devices, we perform classical simulations of the den-
sity matrix of the quantum circuits using a noise model. These
noise models can be obtained through the IBM Quantum
platform [73] and include several types of error that can occur
in a real device [59]. We note that even if accurate, the noise
models represent a best case scenario with respect to hardware
results. First, we import the noise model of IBM Brisbane, a
127-qubits superconducting quantum device, and we use it to
run the adaptive pVQD algorithm on the driven Heisenberg
model of Eq. (9) for L = 4. The results are shown in Fig. 10,
and they indicate that even if the circuits are shallower than
those obtained via Trotter decomposition, for Jxt > 0.5 they
are too deep to provide qualitatively good results. Therefore,

we introduce a noise scaling factor γn to rescale every error
rate inside the noise model. The noise scaling factor γn is
defined such that when γn = 1 the noise model is imported
without rescaling, while γn = 0 indicates an ideal quantum
device, where only shot noise affects the results. This factor
acts on all error present in the noise model: the depolarizing
channel, the preparation and measurement channels, thermal
decoherence, and the dephasing channel [59]. Each channel
can be rescaled independently, but for clarity of comparison
we decided to use a single, uniform scaling factor. The code to
implement the rescaled error models can be found on Github
[70]. From Fig. 10, we note that a superconducting quantum
device with error rates comparable to the model rescaled with
γn = 0.1 would yield results in qualitative agreement with
the exact solution. We conclude that current devices are still
not able to run this type of variational algorithms, but we
can use the circuits obtained in the classical simulations to
measure observables at longer times more accurately than the
Trotterization approach, as shown in the main text.
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