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Minimizing readout-induced noise for early fault-tolerant quantum computers
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Quantum error correcting code can diagnose potential errors and correct them based on measured outcomes
by leveraging syndrome measurement. However, mid-circuit measurement has been technically challenging for
early fault-tolerant quantum computers and the readout-induced noise acts as a main contributor to the logical
infidelity. We present a different method for syndrome extraction, namely generalized syndrome measurement,
that requires only a single-shot measurement on a single ancilla, while the canonical syndrome measurement
requires multiple measurements to extract the eigenvalue for each stabilizer generator. As such, we can detect the
error in the logical state with minimized readout-induced noise. By adopting our method as a precheck routine
for quantum error correcting cycles, we can significantly reduce the readout overhead, the idling time, and
the logical error rate during syndrome measurement. We numerically analyze the performance of our protocol
using Iceberg code and Steane code under realistic noise parameters based on superconducting hardware and
demonstrate the advantage of our protocol in the near-term scenario. As mid-circuit measurements are still
error-prone for near-term quantum hardware, our method could boost the applications of early fault-tolerant
quantum computing.
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I. INTRODUCTION

Recent experimental progress has demonstrated power-
ful and scalable quantum computers with different hardware
like superconducting qubits [1–7], neutral atoms [8–14], and
trapped ions [15–17]. To release the full quantum power, prac-
tical quantum hardware needs to overcome various kinds of
noise and neutralize their effect on the quantum states storing
information. Quantum error correcting (QEC) codes provide
a general framework to tackle noise by encoding a logical
qubit into multiple physical qubits [18,19]. The extra Hilbert
space allows the detection and correction of quantum errors,
providing the possibility for large-scale quantum computing.

To diagnose physical errors in QEC codes, syndrome mea-
surement (SM) is required to gain the necessary information
for identifying both the location and type of errors. Let us
consider a stabilizer code Q, which has a k-element stabilizer
generator set {Si}. For each Si, canonical syndrome measure-
ment requires preparation of an ancilla state in |+〉, followed
by applying a Pauli Si gate controlled by the ancilla and
final measurement of the ancilla in the X basis [Fig. 1(a)].
However, as mid-circuit readouts have been extremely er-
ror prone for near-term quantum hardware, readout-induced
noise significantly affects the fidelity of the logical state
after the syndrome measurement. For superconducting qubits,
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the state-of-the-art readout duration ranges from hundreds
of nanoseconds to several microseconds while the coherence
time for scalable near-term hardware is tens of microseconds
[4,5]. When the ancilla qubit is being measured out, all data
qubits are idling and therefore suffer from decoherence noise.
Besides, the state-of-the-art readout assignment error is on
the scale of 0.01, which cannot be mitigated if no repeated
readouts are performed. For neutral atom arrays, on-site mid-
circuit readouts are practically challenging and the ancilla
qubit to be measured must be moved to a separate zone by
coherent transportation to avoid unintended interaction on
other physical qubits [8,13,14], which adds time overhead and
might be susceptible to unexpected errors.

Exploiting redundant ancilla qubits and measuring differ-
ent stabilizers in parallel may alleviate the readout-induced
decoherence, but it poses a stricter requirement for qubit
control and connectivity and may bring further space over-
head for near-term quantum hardware. The direct readout
error, e.g. assignment error and crosstalk, is still present
even if every stabilizer is measured simultaneously with sep-
arate ancilla qubits. Therefore, we consider it favorable to
reduce the number of readouts for better performance on
early fault-tolerant quantum computers. Notably, there have
been studies regarding measurement-free QEC protocols that
could achieve fault-tolerant quantum computing without an-
cilla readout [20–23]. However, these protocols require the
ability to reset the qubits, which is generally as noisy as read-
out in the near-term quantum hardware [13,24,25]. Therefore,
it in principle just transfers the overhead from readout to
resetting and only works for limited quantum hardware where
resetting is much less error-prone than readout.

In this paper, we propose a different method to ex-
tract syndrome information, namely generalized syndrome
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FIG. 1. (a) Circuit scheme for canonical syndrome measurement (SM). A total number of k (the number of stabilizer generators in the
code) readouts are required to diagnose the error syndrome and apply proper correcting operations. While the ancilla qubit is being measured,
all data qubits are subjected to decoherence due to idling. (b) Circuit scheme for (one-shot) generalized syndrome measurement (GSM). Only
a single readout is needed to extract the partial information and detect the error, and the readout-induced idling error is minimized. (c) QEC
cycle with generalized syndrome measurement. We divide the cycle into two stages: detection and correction. We first use the GSM method to
check whether an error has occurred or not. If no error is detected, we skip the correction stage while ensuring that the logical state is in the
codespace. If an error is detected, we follow the GSM routine by the canonical SM, extracting the full syndrome information and correcting
the detected error. (d) A two-stabilizer code example illustrates the difference between the SM method and the GSM method. The value within
the box denotes the measured eigenvalue for Si (SM) or the codespace projector P̄ (GSM).

measurement (GSM), that requires only single measurement
on a single ancilla regardless of the number of stabilizer
generators. As such, our protocol would minimize the time
of readout for syndrome check. Specifically, we check the
encoded states by directly measuring the eigenvalue of the
codespace projector instead of the eigenvalue of each stabi-
lizer generator, which allows us to check whether an error
occurred or not at a single-shot readout overhead. Further, we
propose to exploit the GSM method as a precheck routine for
canonical syndrome measurement in QEC cycles, which may
render the following canonical routine unnecessary depending
on the GSM readout outcome. As a result, our method can
reduce the average number of readouts for quantum error cor-
rection, given that the input logical state only suffers from low
level of noise. We numerically demonstrate the performance
of our protocol with Iceberg code [26] and Steane code [27],
and show that our method outperforms the canonical method
in the practical noisy scenario. As long as mid-circuit readouts
are still a main infidelity source for quantum hardware, we
believe our method can reduce the impact of readout-induced
noise and enhance the performance of quantum applications
in early fault-tolerant quantum computing.

II. PROTOCOL DESCRIPTION

We first introduce the idea of the GSM method. For a QEC
code Q with stabilizer generator {Si}(i = 1, 2, ..., k), each

stabilizer generator Si has an associate projector Pi = (I +
Si )/2. We can define the codespace projector of Q,

P̄ =
k∏

i=1

Pi = 1

2k

k∏

i=1

(I + Si ). (1)

Instead of measuring each stabilizer individually, we aim to
detect whether a given state is in the codespace or not by
measuring the eigenvalue of P̄ using controlled unitary gates
eiπ P̄. As shown in Fig. 1(b), we start with the noisy input
logical state |ψ〉 and an ancilla initiated at |+〉a,

1√
2

(|0〉a|ψ〉 + |1〉a|ψ〉). (2)

Next, we apply a control-eiπ P̄ gate triggered by the ancilla
state |1〉a, and the premeasurement state becomes

1√
2

(|0〉a|ψ〉 + |1〉aeiπ P̄|ψ〉). (3)

Rewriting the ancilla state in the X basis, we have

(|+〉a(I − P̄)|ψ〉 + |−〉aP̄|ψ〉), (4)

where we used the fact that P̄2 = P̄ and eiβP̄ = I + (eiβ − 1)P̄
for any angle β. If we measure the ancilla qubit to be |−〉a,
the logical state will be projected to the state proportional to
P̄|ψ〉, which lies in the codespace of Q, and we assure there is
no detectable error within the ability of code Q. Otherwise, the
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postmeasurement state lies outside of the codespace, implying
that at least one detectable error has occurred in the logical
state.

Compared with the GSM method, the canonical SM
method projects the input state to the codespace (+1
eigenspace of all Si) by measuring the ancilla qubits sequen-
tially. As each stabilizer Si requires an ancilla readout, at
least k readouts are required to tell whether the state is in
the codespace or not and the readout-induced idling time will
be ktm given tm is the time for a physical readout. The direct
readout errors, like assignment errors and crosstalk errors,
may also affect the fidelity of the logical state by k times. In
the GSM method, we require only a single measurement to
extract partial syndrome information and diagnose if an error
exists, at the cost of losing the specific information of which
kind of error exists. Therefore, the GSM method can take the
place of the SM method for quantum error detection (QED),
where we postselect logical states based on readout outcomes.
Figure 1(d) provides an illustrative example of a code con-
taining two stabilizer generators. For the purpose of QEC, the
GSM method cannot completely replace the canonical SM
method as all syndrome information is necessary. However,
the GSM method can still bring benefits for QEC cycles: In a
fault-tolerant quantum computing regime, The logical error
rate of the input state is generally very low to ensure that
we are under the noise threshold where logical qubits would
outperform physical qubits. Therefore, the main purpose of a
QEC cycle is to assure that no error has occurred in the input
logical state, rather than revealing the specific information
about the presented errors. Based on this assumption, we can
integrate the GSM method in QEC cycles in an adaptive way
and divide a cycle into two stages as presented in Fig. 1(c):
In the first stage, we detect if there is an error in the logical
state using the GSM method. If no error is detected (in a
more probable case), we assure the logical state is in the
codespace, skip the next stage, and finish this QEC cycle. If
at least an error is indeed detected (in a less probable case),
we follow up with the canonical SM method to extract the
full syndrome information and correct all detected errors. As
long as the input state has sufficiently high fidelity, we can
lower the average time of ancilla readouts by introducing the
GSM method in such a combined way. For example, if the
input state (encoded in a k-stabilizer code) is the ideal state
with 99% probability or a fully erroneous state with 1% prob-
ability, the average readout-induced idling time for a noiseless
QEC cycle with the GSM method can be approximated by
[0.99 · 1 + 0.01 · (1 + k)]tm = (1 + 0.01k)tm, which is much
shorter than the time ktm for the canonical method even if
k = 2.

Notably, the idea of adaptive syndrome measurement has
already been used for Shor-style error correction [28,29], but
we are using it here in a different way: The first measurement
is for the whole codespace projector, and the following mea-
surements are for each stabilizer generator. Our method could
also be further made in Shor-style fault-tolerant way (see Ap-
pendix F). As mid-circuit readouts are still very error prone for
current large-scale quantum hardware, we expect our method
could significantly reduce the noise originating from readouts
and benefit early fault-tolerant quantum applications.

In addition to the one-shot GSM method shown in Fig. 1(b)
where we just use one ancilla readout, one can also use a
few more ancilla readouts (but still less than the canonical
SM method) for a more reduced gate complexity and relaxed
connectivity requirement. This trade-off can be achieved by
splitting the codespace projector P̄ into several subprojectors
{P̄1, P̄2, ..., P̄m}(m < k) such that

P̄ =
m∏

i=1

P̄i (5)

and

P̄i =
∏

{ j}i

Pj, (6)

where { j}i is an index set associated with each subprojec-
tor and

⋃m
i=1{ j}i = {x ∈ Z|0 � x � k}. By measuring these

subprojectors P̄i separately, we can achieve an m-shot GSM
protocol where the total readout time is still less than the
canonical SM method. For example, a four-stabilizer code
(e.g. the five-qubit [[5, 1, 3]] code) with S1, S2, S3, S4 can
exploit a two-shot GSM by splitting the general projector into
two subprojectors, one containing S1 and S2 while the other
containing S3 and S4. We give a more detailed explanation in
the Appendix B.

III. GATE IMPLEMENTATION OF eiπP̄

In the GSM method, we demand the implementation for
the controlled projector gates eiπ P̄, which is a highly nonlocal
unitary and requires to be decomposed into elementary gates
to be implemented in near-term quantum hardware. Here, we
provide two different methods of implementation.

In the first method of decomposition, we expand the ex-
pression of P̄ in Eq. (1) into a sum of stabilizer operators Mi,

P̄ = 1

2k

k∏

i=1

(I + Si ) = 1

K

K∑

i=1

Mi, (7)

where K = 2k for simplicity. As Si commutes with each other,
Mi is also commutable with each other. Thus, an eiπ P̄ gate can
be written as

eiπ P̄ =
K∏

i=1

eiπMi/K =
K∏

i=1

Mi(π/K ), (8)

where Mi(θ ) = eiθMi are multi-qubit Pauli phase gates
with angle θ . The controlled projector gates are therefore
rearranged in the gate sequences as shown in Fig. 2(b). As the
identity gate I is also among Mi, there are K − 1 nontrivial
gates that need to be implemented in practice. This kind
of implementation is particularly suitable for systems with
globally tunable Hamiltonian, like trapped ions [31] or neutral
atoms [32], but can also be decomposed into local Clifford and
single-qubit phase gates [33]. Notably, although the number
of multi-qubit Pauli gates grows exponentially with k, the
total physical Hamiltonian evolution time is bounded as the
rotation angle for each Mi also decays exponentially with k.
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FIG. 2. Gate Implementation of eiπ P̄. (a) Sandwich implementa-
tion. UP̄ is the circuit decoding the code with projector P̄ back to
the trivial code state, and there is a multi-qubit control phase gate
sandwiched in the middle between UP̄ and its conjugate U ∗

P̄ . (b) The
eiπ P̄ can also be implemented by a sequence of control multi-qubit
Pauli rotation gates.

In the second method, we can construct the controlled
eiπ P̄ using a multi-qubit control phase gate sandwiched by a
Clifford unitary UP̄ and its conjugate as shown in Fig. 2(a).
The unitary UP̄ always exists as any [[n, k, d]] stabilizer codes
can be encoded by a Clifford unitary from the trivial code state

|ψ〉data ⊗ |1〉k+1 ⊗ ... ⊗ |1〉n, (9)

where Zk+1, ..., Zn is the stabilizer generator of the trivial code
[34]. Therefore, only logical states in the codespace will be
decoded into the trivial code state with all nondata qubits
remaining in the |1〉. A multi-qubit control phase gate will
therefore gain the necessary information to detect if the logical

state has left the codespace. For arbitrary stabilizer codes, the
general decomposition of UP̄ can be found by Gottesman’s
algorithm [35].

IV. ERROR DETECTION WITH ICEBERG CODE

[[2m + 2, 2m, 2]] Iceberg code is named by its planar
connectivity requirement [Fig. 3(a)] and has stabilizer gen-
erators {X ⊗2m+2, Z⊗2m+2}. Although this kind of distance-2
codes cannot correct any errors but only detect a single error,
the large encoding rate and loose connectivity requirements
render great practical interest in near-term algorithm appli-
cation [26,36,37]. To demonstrate the performance of the
GSM method, we numerically simulate the state in density
matrix formalism using qiskit.quantum_info [38]. We take the
noise parameters from the latest Sycamore processor [4] (with
tunable couplers) and the ibm_brisbane processor [30] (with
fixed-frequency couplers). We consider initialization noise,
gate noise, idling decoherence, and readout assignment error.
Particularly, we model the two-qubit gate noise as a combi-
nation of a depolarizing channel and an idling decoherence
channel with duration equal to the gate time to fully reflect
the effect of gate time on the performance. We discuss our
simulation in more details in the Appendix A. Although we
only simulate the case when m = 1 and m = 2, we expect
larger Iceberg code should exhibit similar numerical behavior
as the number of stabilizer generators does not increase with
the code size.

We first use noisy gates to prepare the physical qubits in
the GHZ state

1
2 (|0〉⊗2m+2 + |1〉⊗2m+2), (10)

which is the logical |+〉⊗2 for [[4, 2, 2]] code and |+〉⊗4 for
[[6, 4, 2]] code up to local transversal Hadamard. Next, we
apply a varying period of idling noise on every physical qubit
to mimic realistic noise. We then separately use the canonical
SM or the GSM method to detect the error and post-select

FIG. 3. (a) Planar connectivity structure of Iceberg codes. All physical qubits are placed in an iceberg-like shape and the bottom/up qubit is
connected to every other qubit. (b) The [[4, 2, 2]] code with the required ancilla connectivity for GSM. (c) Decomposed circuit for GSM on the
[[4, 2, 2]] code. (d) Numerical simulation of four-qubit and six-qubit Iceberg code, with noise parameters of Sycamore [4] and ibm_brisbane
processor [30]. The dashed curve indicates error rate when the gate control is perfect and all gate noise is gate-induced idling noise.
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FIG. 4. (a) Planar connectivity structure of Steane code for the GSM method. On each color plaquette, the ancilla qubit is only required to
connect two neighboring physical qubits on the edge. (b) Circuit scheme for three-shot GSM on Steane code. The check on each plaquette is
performed sequentially but the ancilla qubits are measured in the same time. (c) Detailed implementation for plaquette check. (d) Logical error
rate under idling noise after performing QEC cycle with (without) GSM and the corresponding number of average readout required. The inset
figure is the logical error rate after just performing postselection with quantum error detection (y axis label in the unit of 0.001).

the state without triggered syndrome. We adopt the sandwich
implementation of the control projector gate and the decom-
posed circuit for the four-qubit code is shown in Fig. 3(c),
which requires the implementation of physical CCZ gates or
further decomposition. This implementation suits better for
quantum hardware with less flexible qubit connectivity. The
general implementation of the GSM method on the Iceberg
code is discussed in Appendix E. We plot the logical error rate
against the idling time in Fig. 3(d) as well as the raw physical
state prepared in |+〉⊗2m under idling noise for reference. We
also plot the logical error rate when the gate noise is fully
dominated by gate-induced decoherence as the dashed curve
with the same colors.

For all four simulations shown in Fig. 3(d), the GSM
method outperforms the canonical SM method by a significant
gap. The amount of error rate improvement for the GSM
method is barely affected by the idling time applied to the
input logical state. In the case of state-of-the-art quantum
hardware, the canonical SM method does not even have a
better performance than the unencoded physical state, i.e.,
in a regime where the logical error rate is lower than the
raw error rate. Nevertheless, the GSM method can achieve
break even and outperform the unencoded physical state after
a certain idling time. The advantage of GSM is even larger
when the control is perfect and gate noise is fully domi-
nated by the gate-induced decoherence. As the gate control
techniques are consistently improving while the gate time is
limited by physical constraints in many hardware implemen-
tations, such as the state leakage in superconducting qubits
[1] or the operating laser power [13] for neutral atoms, we
anticipate the gate noise in the future quantum hardware to be
more dominated by gate-induced decoherence and our proto-
col could therefore bring further advantage over the canonical
protocol.

V. ERROR CORRECTION WITH STEANE CODE

Although quantum error detection can bring benefits for
very near-term scenario, the postselection routine introduces
sampling overhead and quantum error correction is needed
from a scalable viewpoint. To demonstrate the advantage of
the GSM method for quantum error correction, we choose
the [[7, 1, 3]] Steane code to numerically compare the logical
performance of the GSM with canonical SM method. The
Steane code is the smallest two-dimensional color code that
is able to correct a single error, and has weight-four stabi-
lizer XXXX and ZZZZ on each of the three color plaquettes
shown in Fig. 4(a). Rather than using the one-shot GSM
method that projects the logical state onto the codespace with
a single readout, we choose to use the three-shot GSM to
alleviate the connectivity requirement for planar layout of
physical qubits. Specifically, we use three ancilla qubits, each
to measure the projector of stabilizer XXXX and ZZZZ on its
color plaquette. As all the three ancilla can be measured out
simultaneously, the three-shot GSM method can still reduce
the readout time as the canonical SM require two readouts on
each ancilla qubit. In principle, we can use the circuit imple-
mentation for four-qubit Iceberg code shown in Fig. 3(c) for
each plaquette check as the stabilizer set is the same. However,
we use an alternative implementation [Fig. 4(c)] here to avoid
the excessive connection on any single qubits such that each
physical qubit is connected to at most four other physical
qubits. In such a way, our GSM method should be exploited in
state-of-the-art superconducting hardware without any further
physical modification.

We use a projective noise parameter set for Steane code
simulation because the state-of-the-art quantum hardware is
still too noisy for logical qubits to outperform physical qubits
see Appendix C. We initialize the logical qubit in |∓〉 with
noisy circuits, apply idling noise to every physical qubit, and
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perform quantum error correction on the noisy logical state.
We compare the performance of the QEC cycle with GSM
[Fig. 1(c)] and without GSM [Fig. 1(a)], and plot the logical
error rate and the average number of readout in Fig. 4(d).
More simulation details can be found in the Method section as
well.

With the help of the GSM method, the logical error rate
after a QEC cycle is significantly reduced when the applied
idling noise is low. We attribute the advantage of GSM to the
reduced average time of readout: When there is little idling
noise, the input state is nearly perfect and the precheck routine
can assure the correctness of the input state with only a single-
shot readout, leading the average number of readout close
to one. In contrast, the canonical SM method always needs
to measure twice and the readouts itself introduce additional
noise to the logical state. When the idling noise increases and
the input state becomes noisier, the average time of readout
is increased as the GSM routine has more chance to detect
an error and trigger the following correction process. How-
ever, even when the average time of readout is the same for
QEC with or without GSM, we still see nonzero advantage in
the QEC process with GSM. We attribute this advantage to
the higher robustness of the GSM method on false-positive
readout assignment errors: When the logical state is in the
codespace but the readout outcome wrongly indicates there is
an error in the detection stage, the QEC cycle with the GSM
method will not be affected as the following correction routine
will not detect any error and assure that the logical state is in
the codespace.

VI. DISCUSSION

A natural question arise from our work is: Does there exist
a range where the GSM method does not bring advantage
on the logical fidelity? As the GSM method trades additional
gate overhead for reduced readout overhead, the ratio between
readout time and gate time can be used as the criterion. We nu-
merically study the effect of readout time and gate time on the
relative performance of the SM method and the GSM method
in the supplemental material in Appendix D and find out
the parameter of practical superconducting quantum hardware
falls in the regime where the GSM method is advantageous.
Therefore, unless there is a technical breakthrough that short-
ened the physical readout time drastically, we believe the
GSM method will bring practical advantage for near-term
quantum applications.

Besides using the GSM method as a precheck routine,
fault-tolerant quantum computing can also benefit from GSM
by exploit concatenated codes and treat detected physical
errors as logical erasure errors [39], which does not require
explicit quantum error correction in the inner code but only
need to correct logical erasure in the outer loss-tolerant codes
(see Appendix G). In such a case, our GSM method can be
exploited to improve the robustness against readout-induced
error.

Notably, as the eiπ P̄ gate used in the GSM method needs
to be decomposed into elementary gates, local errors might
propagate to other physical qubits and produce correlated
errors. However, as long as readout-induced idling error,
which is a global noise channel, still serves as the main noise

contributor in the near-term scenario, the correlated errors
would not weigh over the readout-induced errors and pose
a critical threat to the validness of our proposed method.
Moreover, we may also use the idea of Shor-style syndrome
measurement, which rely on pre-entangled ancilla qubits and
native multi-qubit Pauli gates to achieve gate-level fault toler-
ance at the cost of more ancilla qubits and time overhead (see
Appendix F).

Although we only simulate the performance of the GSM
method using noise parameters from superconducting hard-
ware, the GSM method can generally be applied to various
kinds of quantum hardware where mid-circuit readouts are
error prone. For neutral atoms, state-of-the-art readout time
is on the scale of tens of milliseconds and the best reachable
coherence time is on the scale of seconds [8,40]. In particular,
mid-circuit measurements for neutral atoms rely on coher-
ently transporting the atoms to a separate area as shown in [8],
or need to shelve the data qubits to magnetic-sensitive states
with reduced coherence time [41]. Our protocol can therefore
be employed to provide advantages for scalable neutral atoms
quantum computers as well.
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APPENDIX A: SIMULATION DETAILS

All of our numerical results are obtained from simulation
using qiskit.quantum_info [38]. The quantum states are sim-
ulated in density matrix formalism and all error channels are
implemented as Kraus superoperators. All physical qubits are
prepared in (1 − εinit )|0〉〈0| + εinit|1〉〈1| where εinit is the ini-
tialization error. For single-qubit (1Q) gates, we only consider
the control error and model the noise by following a depolariz-
ing channel after the ideal gate operation. For two-qubit (2Q)
gates, we consider both the control error and the gate-induced
decoherence. We follow a two-qubit depolarizing channel af-
ter the ideal 2Q gate operation, and a global idling channel to
all physical qubits after a layer of 2Q gates. In such a way, we
ensure the total infidelity of a 2Q gate under control noise and
the idling noise equals to the median error rate reported in [4]
and [30]. For the Toffoli gate used in the GSM method, we
model the noise by follow a three-qubit depolarizing channel
with double error rate of 2Q gate and double gate-induced
idling duration. Although most large-scale quantum hardware
by far does not support native Toffoli gates and require further
decomposition into five two-qubit gates, we are taking an
optimistic consideration as native multi-qubit gates have been
demonstrated on various kinds of quantum hardware [13,42].
For noisy readout, we model it by inserting an idling channel
whose duration is equal to readout time before measurement.
We also considered the readout (assignment) error that read
|0〉 as |1〉 and vice versa. The specific noise parameters can be
found in Table I.
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TABLE I. Noise parameter for numerical simulation.

Sycamore ibm_brisbane Projective

T1(µs) 20 217 1000
T2(µs) 30 130 1000
readout time(ns) 660a 4000 200
1Q gate error 1e-3 2.2e-4 0
2Q gate time (ns) 34 600 20
2Q gate error 3e-3 7.5e-3 1e-4
initialize error 1e-2 1e-2 1e-3
readout error 2e-2 1e-2 1e-3

aIncluding time for qubit resetting.

For the Iceberg code simulation, we initialize the logical
state by preparing a multi-qubit GHZ state. We start with a
physical qubit in |+〉 and all others in |0〉 and apply CNOT
gates sequentially. The depth of initialization for four(six)-
qubit code is 2(3) and can be achieved with the iceberg-like
connectivity. We assume only one available ancilla, which
connects to every other physical qubit in the SM method but
only require connection to two physical qubits in the GSM
method. The gate depth of a cycle of the GSM method is
4(8) plus a Toffoli depth for the 4(6)-qubit Iceberg code.
Comparatively, the depth for the SM method is 8(12).

For the Steane code simulation, we prepare the logical state
by applying nine CZ gates (depth 3) on physical qubits all
prepared in |+〉 and Hadamard gates on four of them [8]. We
use three ancilla qubits, one for each color plaquette. In the
QEC cycle without the GSM method, we first perform the X
check on each plaquette, then the Z check on each plaque-
tte. In the QEC cycle with the GSM method, we apply the
partial projector gate on each ancilla sequentially [Fig. 4(b)]
before reading out all three ancilla qubits. The gate depth for
the GSM method is 12 plus 3 Toffoli depth. In contrast, the
canonical SM has 8 depth of 2Q gates.

APPENDIX B: m-SHOT GENERALIZED SYNDROME
MEASUREMENT WITH SUBPROJECTORS

In the main text, we introduced the generalized syndrome
measurement (GSM), which only requires a single readout
to detect the error. The GSM method requires the ability to
implement controlled projector gates eiπ P̄, which could bring
large computational overhead when decomposed into elemen-
tary gates and the connectivity requirement could be very
strict. Here we introduce the modified method by exploiting
a bit more ancilla qubits, which could help reach a smooth
trade-off between the gate complexity/connectivity and the
readout complexity in the GSM method.

For code Q with stabilizer generator {Si}, the general pro-
jector for one-shot GSM method is

P̄ =
k∏

i

Pi = 1

2k

k∏

i

(I + Si ) = 1

K

K∑

i

Mi. (B1)

As we showed in the main text, we can use a control-eiπ P̄ gate
and a single-shot measurement on the ancilla qubit to act the
projector on the noisy state nondeterministically. Instead of
using only one projector, we can group several subprojectors

FIG. 5. Circuit scheme for m-shot generalized syndrome
measurement.

P̄i such that their product is still P̄,

P̄ =
m∏

i

P̄i, (B2)

where

P̄i =
∏

{ j}i

Pj (B3)

and { j}i is an index set associated with each subprojector and⋃m
i=1{ j}i = {x ∈ Z|0 � x � k}. As we have m subprojectors,

we need m (1 � m � k) readouts for partial syndrome extrac-
tion here. We can use the circuit show in Fig. 5 to extract the
partial syndrome in a QEC cycle.

As a convenience choice, we can choose to group stabi-
lizers pairwise as {S2i−1, S2i}, which allows us to define the
two-element subprojectors P̄2

i ,

P̄2
i = P2i−1P2i = 1

4 (I + S2i−1)(I + S2i ), (B4)

and it is easy to see

P̄ =
k/2∏

i

P̄2
i . (B5)

In such a way, we can halve the amount of readouts while
the implementation of the projector gates eiπ P̄2

i is still not
too complicated. For instance, the [[5, 1, 3]] code has four
stabilizer generators

S1 = ZXXZI S2 = IZXXZ

S3 = ZIZXX S4 = XZIZX, (B6)

and we can just use a single readout to measure the projector

P̄ = 1
16 (I + ZXXZI )(I + IZXXZ )

× (I + ZIZXX )(I + XZIZX ). (B7)

This would require 18 two-qubit gates (depth 12) and a five-
qubit Toffoli gate in total to implement the projector gate.
Rather if we measure the following two subprojectors

P̄1 = 1
4 (I + ZXXZI )(I + IZXXZ )

P̄2 = 1
4 (I + ZIZXX )(I + XZIZX ), (B8)

we only need 12 two-qubit gates (depth 6) and a Toffoli gate
for each subprojector gate and the overall gate overhead is 24
two-qubit gates (depth 12) and two Toffoli gates.

Importantly, the partial syndrome information extracted
with the GSM method can be further used in the correction
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FIG. 6. Adoption of the GSM method on scalable two-dimensional color codes. (a) A QEC cycle with the GSM method. Yellow dashed
circles represent for the local GSM routine on each plaquette. When error rate is low, we will mostly end with just a single-shot readout time.
We follow with local stabilizer check when the location of error(s) is detected to correct the error(s), and the time consumed is two-shot readout
time. (b) A canonical QEC cycle without the GSM method. Whether an error is detected or not, the time required is always two-shot readout
time.

stage in the QEC cycle. We only need to perform canon-
ical syndrome measurement for stabilizers associated with
triggered subprojectors, and stabilizers associated with un-
triggered subprojectors does not need to be measured again.
Taking the two-shot GSM method on the [[5, 1, 3]] code as
an example: If only the second subprojector P̄2 is triggered,
we only need to perform canonical syndrome measurement
for stabilizer ZIZXX and XZIZX , and there is no need to
measure ZXXZI and IZXXZ again as we already assured that
the logical state is in the space of subprojector P̄1.

For another example, the two-dimensional color code [43]
has stabilizer {X ⊗n, Z⊗n} supported on each n-edge plaquette.
We can use a subprojector associated with each plaquette

P̄plaq = 1
4 (I + X ⊗n)(I + Z⊗n) (B9)

to extract partial syndrome information (Fig. 6). For this kind
of code, a QEC cycle with our GSM method only takes
a single readout cycle when no error occurs, and at most
two readout cycles in total when at least an error occurs.
To be compared with, a canonical QEC cycle without the
GSM method always takes two readout cycles. Therefore,
our GSM method can always reduce the time of readout for
two-dimensional color code, providing a scalable option for
fault-tolerant quantum computing.

In general, there is no restriction on how to group the
stabilizer generators into subprojectors, and the subprojectors
can be chosen to mostly suit the connectivity and practical
limitation of quantum hardware. The number of readouts can
be chosen smoothly from 1, corresponding to the one-shot
GSM method proposed in the main text with the largest gate
overhead (minimum readout overhead), to k, corresponding to

the canonical syndrome measurement with the minimum gate
overhead (largest readout overhead).

APPENDIX C: STEANE CODE SIMULATION WITH
STATE-OF-THE-ART NOISE PARAMETER

In the main text, we present numerical results for the GSM
method on the Steane code with projective noise parameters.
The main reason why we do not stick with state-of-the-art
noise parameter is the current superconducting quantum hard-
ware is still too noisy and not in the regime where logical
qubit would outperform physical qubit, as shown in Fig. 7.
The logical error rate after the encoding and decoding is much
larger than the physical error rate, which makes QEC not
really meaningful in such a regime. However, we still see
some advantage of the GSM method over the canonical SM
method when the input logical state does not suffer too long
idling time. As longer idling noise is applied to the logical
state, the average number of readout of a QEC cycle with the
GSM method increases over two (canonical SM method) and
the GSM method start to lose its advantage. As raw physical
qubits dominates over the logical qubits, this regime does not
post a critique to our proposed GSM method.

APPENDIX D: BENCHMARK THE ADVANTAGEOUS
REGIME OF THE GSM METHOD

To understand the advantageous regime of the GSM
method, we ramp both the readout time and the gate time for
both the Sycamore and the ibm_brisbane setting within a prac-
tical range that might be reached in the future, while keeping
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FIG. 7. Steane code simulation with state-of-the-art noise parameter.

other noise parameters fixed. We compare the performance for
both the GSM and the canonical SM method and plotted the
fidelity difference Fgsm − Fsm regarding the gate time and the
readout time. We simulated both the [[4, 2, 2]] code in Fig. 8
and the [[6, 4, 2]] code in Fig. 9 to explore the condition when
the GSM method is advantageous. The advantageous regime

for the GSM(SM) method is plotted with red(blue) area. From
the simulated results, we see the state-of-the-art parameter is
in a range where the GSM method will beat the canonical SM
method. Unless the readout duration is significantly reduced
in the scalable quantum hardware, we will still stay in the
advantageous regime for the GSM method.

FIG. 8. Fidelity difference Fgsm − Fsm with [[4, 2, 2]] code depending on various readout time and gate time when other noise parameters
are fixed. The yellow stars denote where the state-of-the-art operation time is.
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FIG. 9. Fidelity difference Fgsm − Fsm with [[6, 4, 2]] code depending on various readout time and gate time when other noise parameters
are fixed. The yellow stars denote where the state-of-the-art operation time is.

APPENDIX E: PROJECTOR GATE
IMPLEMENTATION FOR ICEBERG CODE

Although the implementation of the projector gate is not
unique, here we present an implementation for general Iceberg
code in Fig. 10. In such an implementation, the 2Q gate
depth is only 4m. Comparatively, the overall 2Q depth of the
canonical syndrome measurement is 4m + 4.

APPENDIX F: FAULT-TOLERANCE IN ANALOG WITH
SHOR-STYLE SYNDROME MEASUREMENT

In the long term, we have to consider the gate-level fault
tolerance of our method to avoid the impact of correlated
errors. To achieve this in our method, we require the quantum
hardware to be able to implement native multi-qubit (control)
Pauli phase gates and does not rely on decomposition into
elementary gates. It is reasonable to make such an assumption
as various quantum hardware has demonstrated potential for
native multi-qubit gates [12,42]. We also demand that the

FIG. 10. The projector gate implementation of for [[2m +
2, 2m, 2]] Iceberg code.

native global gates do not suffer from inner correlated errors.
As such, we only need to consider single Pauli errors induced
by the gate operations up to the main order.

By using the idea of Shor-style syndrome measurement,
i.e., preparing entangled ancilla states, we can achieve a fault-
tolerant circuit for our method. We plotted the GSM circuit for
[4, 2, 2] code as an example in Fig. 11. The entangled ancilla
states can prevent errors occurred in any single ancilla qubit.
For errors occurred after the multi-qubit Pauli gates, they will
either be detected by the following Pauli gates or commute
with the following Pauli gates and will not be propagated to
other qubits (Fig. 11).

Importantly, we note this fault tolerance cannot be achieved
if we decompose the gate into elementary gates (two-qubit
gates). That is because each Pauli phase gate is mediating
global interaction and an error occurred after a decomposed
gate could propagate to every qubit at the end of the Pauli
phase gate. In early fault-tolerant setting, this may not be a

FIG. 11. Generalized Syndrome Measurement in analog with
Shor-style syndrome measurement for [[4, 2, 2]] code. Ancilla qubits
(green) are prepared in the GHZ state (|000〉 + |111〉)/

√
2 and each

ancilla qubit controls a multi-qubit Pauli gate. An error occurred after
the gates will either be detected (left) or commute with the following
gates and will not propagate (right).
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FIG. 12. Scheme for concatenated codes with logical erasure
conversion. In such a scenario, the ability to detect the errors is
sufficient to correct physical errors.

severe problem if the gain from the reduced readout-induced
noise is good enough, as shown in our simulation results.

APPENDIX G: QUANTUM ERROR CORRECTION WITH
LOGICAL ERASURE CONVERSION

We can exploit the benefit of concatenated quantum codes
to correct the errors indirectly (Fig. 12). The idea is initially
proposed in [39] for cluster state generations. The inner codes
are set to be small-size quantum code used to detect the
physical errors, and the outer codes are used to correct the
loss (erasure) errors. Whenever we detect an error in the inner
level, we actively treat it as a logical erasure error in the
outer level. As outer codes are loss tolerant, we can restore
the logical information in the presence of logical erasures and
thus correct the physical errors indirectly. We do not need the
syndrome information and correct the Pauli errors directly,
and the GSM method can help reduce the readout-induced
infidelity in such a scenario.
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