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The resistivity of two-dimensional (2D) metals generally exhibits insensitivity to electron-electron scattering.
However, it is worth noting that Galilean invariance may not hold true in systems characterized by a spectrum
containing multiple electronic branches or in scenarios involving electron-hole plasma. In the context of this
paper, we focus on 2D electrons confined within a triple quantum well (TQW) based on HgTe. This system
displays a coexistence of energy bands featuring both linear and paraboliclike spectra at low energy and,
therefore, lacks the Galilean invariance. This paper employs a combined theoretical and experimental approach
to investigate the transport properties of this two-component system across various regimes. By manipulating
carrier density and temperature, we tune our system from a fully degenerate regime, where resistance follows a
temperature-dependent behavior proportional to T 2 to a regime where both types of electrons adhere to Boltz-
mann statistics. In the nondegenerate regime, electron interactions lead to resistance that is weakly dependent
on temperature. Notably, our experimental observations closely align with the theoretical predictions derived
in this paper. In this paper, we establish the HgTe-based TQW as a promising platform for exploring different
interaction-dominant scenarios for the massless-massive Dirac system.
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I. INTRODUCTION

The impact of electron-electron scattering on the transport
characteristics of various two-dimensional (2D) conductors,
which do not adhere to Galilean invariance, has garnered
significant attention over the years [1]. These studies typ-
ically focus on systems that involve two distinct types of
charge carriers, characterized by differing charges or effective
masses. The presence of two different charge carriers within
the system, each with distinct mass, poses a challenge to
the traditional concept of Galilean invariance. Consequently,
the direct proportionality between the net current and the
total particle momentum is no longer upheld [2–6]. Explor-
ing the unique scenarios of strong friction between electrons
and holes, particularly in degenerate 2D semimetals, has led
to the observation of resistivity proportional to T 2 [7,8].
These phenomena have been validated in various experimen-
tal settings, most notably in HgTe quantum wells. Moreover,
investigations into the nondegenerate regime have ventured

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

into systems like single-layer and bilayer graphene, where
thermally excited electron-hole pairs play a crucial role [9].
Recent advancements have also revealed electron-hole friction
behavior in bilayer graphene systems, showcasing resistivity
scaling as T 2 with spatially separated electrons and holes [10].

In a system comprising two subbands with significantly
differing masses, it can be anticipated that the resistivity will
exhibit a pronounced increase with rising temperature. This
increase occurs due to the relationship between the resistivity
limits at high and low temperatures, which is proportional
to the effective mass ratio, as described in Ref. [1]. In such
systems, the dominance of interactions in the transport pro-
cess surpasses the Drude resistivity resulting from impurity
or phonon scattering. The behavior of transport governed by
interactions at elevated temperatures is characterized by the
principles of hydrodynamics and is often referred to as elec-
tronic fluid behavior.

Another crucial question pertains to the investigation of
interparticle collisions and hydrodynamic conductivity within
a highly adjustable system. This system can be finetuned,
transitioning from a nondegenerate Boltzmann regime to a
degenerate Fermi-liquid regime.

As the understanding of electron hydrodynamics continues
to unfold, it holds the promise of shedding light on the in-
tricate interplay between particle-particle interactions, sample
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geometry, and the distinct propertiesof charge carriers. This
realm not only presents fundamental scientific inquiries but
also offers potential applications in future electronic devices
and technologies.

Previously, we offered a system that serves as a useful
platform for studying transport dominated by interaction in
2D conductors [11]. This system is a 6.3 nm HgTe quan-
tum well, representing the spectrum as a single-valley Dirac
cone near the zero-energy state. However, it is important to
note that, below theDirac zero-hole valleys with a minimum
at a nonzero wave vector [11–16]. Consequently, when the
chemical potential in the valence band reaches this lateral
heavy-hole band, the Dirac holes experience strong scattering
by heavy holes, and such scattering violations of Galilean
invariance lead to a strong T 2 dependence of resistance. An
interesting and important aspect of physics is explored in
such conductors when heavy particles are partially degener-
ate: Dirac holes follow Fermi statistics, while heavy holes
adhere to Boltzmann statistics. It is worth noting, however,
that this system does not allow for a complete study of the
transition from fully degenerate to nondegenerate regimes for
all subsystems [11].

In this paper, we present an experimental situation that
enables such an investigation. We have introduced the
HgTe-based triple quantum well (TQW) as a convenient
system featuring two subbands with both massless and
massive Dirac fermions, specifically electrons. This stands
in stark contrast with the singular HgTe well explored in a
prior study [11], where the interaction between Dirac and
heavy holes resulted in significant scattering. A TQW affords
us the opportunity to investigate hydrodynamic conductivity
across various regimes, including the strongly degenerate
Fermi and nondegenerate Boltzmann regimes. Therefore,
we illustrate that regardless of the sign, spectrum type, and
other characteristicsof the carriers, including the confinement
features of the multilayer system, electron-electron collisions
exhibit unified properties and can emerge as the dominant
mechanism in ultraclean systems. Consequently, TQWs
emerge as a promising platform for exploring phenomena
resulting from interactions. Notable instances encompass
the violation of the Wiedemann-Franz law, as reported in
Ref. [17], the prediction of giant magnetoresistance in Ref.
[18], and quantum critical conductivity, detailed in Ref. [19],
among other significant theoretical predictions.

II. ELECTRON SPECTRUM IN A TRIPLE-WELL SYSTEM

HgTe-based quantum wells have garnered significant in-
terest due to their capability to create unconventional 2D
systems, such as 2D topological insulators [20–23]. Addi-
tionally, the behaviorof the spectrum is primarily determined
by the thicknessof the well, leading to various phases char-
acterized by insulating gaps, gapless regions, and inverted
subbands [24–27]. Doublequantum wells (DQWs) and TQWs
are multilayer systems comprising two or three quantum wells
separated by a tunneling-transparent barrier. Theoretical in-
vestigations [28–30] haveproposed that the phase states within
these structures are significantly altered when compared with
the single quantum well scenario, which is supported by ex-
perimental evidence [31,32]. This alteration leads to a more

FIG. 1. (a) The conduction and valence band edges of the triple
quantum well are schematically shown. The widths d of the HgTe
wells and the thickness db of the Hg1−xCdxTe barriers (x = 0.3) are
indicated. (b) The band structure of the triple HgTe well at E > 0 is
calculated using the tight-binding model described in the text. The
black and blue lines represent dispersion curves for massless and
massive Dirac fermions. (c) The density of carriers is shown as a
function of the chemical potential. ne and nd represent the densities
of massive and massless electrons, Ns is the total density. An arrow
indicates the beginning of the E+ subband populations. (d) The
resistance of the 6.4 nm sample is plotted as a function of carrier
density at T = 4.2 K.

complex phase landscape due to the additional degrees of free-
dom introduced by the increased number of 2D subbands and
the hybridization induced by tunneling between them. Here,
we illustrate that a HgTe-based TQW serves as a valuable
platform for studying the influence of dominant interactions
on transport behavior, primarily due to the unique characteris-
tics of its spectrum.

Figure 1(a) depicts the band structure of HgTe TQWs with
a thickness of db = 3 nm and a well width of d = 6.7 nm. The
schematic representation displays the conduction and valence
band edges of the TQW.

In Ref. [30], the authors haveconsidered the confinement
characteristics of the subbands within HgTe/CdTe TQWs,
along with their corresponding topological properties and
edge state attributes. To accomplish this, they employ an
effective 2D Hamiltonian for the HgTe-based triple-well
system.

For single HgTe quantum wells, this is achieved by pro-
jecting the Hamiltonian onto its eigenstates at kII = 0, leading
to the well-established Bernevig-Hughes-Zhang (BHZ) model
[26,27]. In contrast, for HgTe DQWs, two intriguing ap-
proaches are explored. First, like the derivation of the BHZ
Hamiltonian, the authors of Ref. [28] haveprojected the over-
all Hamiltonian onto the eigenstates at kII = 0 for the DQWs.

Alternatively, in Ref. [29], the authors haveprojected the
total DQW Hamiltonian onto the subbands of the individual
wells (left and right) and introduce tunneling parameters to
account for the coupling between neighboring quantum wells.

In Ref. [30], the authors haveinvestigated the phase
diagram of the HgTe triple well and transformed the

023121-2



INTERACTION-CONTROLLED TRANSPORT IN A … PHYSICAL REVIEW RESEARCH 6, 023121 (2024)

three-dimensional (3D) Kane Hamiltonian into an effective
2D 3BHZ model. This transformation enabled them to explore
the edge state characteristics in each topological phase.

These findings reveal the existence of gapless phases,
attributed to the slight hybridization of H-like states from
different quantum wells. In these gapless phases, one or two
pairs of edge states are present within the bulk. However,
there is also a phase where all E-like and H-like subbands are
inverted, leading to the formation of three sets of edge states
within a bulk gap.

Moreover, for a triple well with a well width of
d = 6.7 nm, the subbands E01 and H01 exhibit significant hy-
bridization, resulting in nearly negligible mass for a linear
Dirac subband. Meanwhile, the second subband maintains
a k-parabolic spectrum with massive Dirac fermions at low
energies. This effect has been substantiated through the mea-
surement of Schubnikov–de Haas oscillations [30].

To obtain the analytical expression for the triple-energy
Hamiltonian is

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 Ak 0 0 0 0
Ak 0 t 0 0 0
0 t 0 Ak 0 t
0 0 Ak 0 0 0
0 0 0 0 0 Ak
0 0 t 0 Ak 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

where k is the 2D momentum operator, A = h̄vF ≈ 470 meV
nm, vF is the Fermi velocity of the single HgTe well, and the
in-plane nearest-neighbor hopping is t ≈ 24 meV.

One can see that the Hamiltonianin Eq.(1) leads to a com-
bination of two linear bands and four massive bands:

Es = ±[
t2 + v2

F k2 + s
√

t4 + 2t2v2
F k2

]1/2
,

s = ±1

E0 = ±vF k. (2)

In Fig. 1(b), we present the electronic segment of the
spectrum. The Dirac-like spectrum is represented by the blue
lines, whereas the massive Dirac subbands are denoted by the
black and red lines. It is worth noting that the simplified tight-
binding model provides a good fit for the electronic branches,
consistent with those obtained using the Kane model [30].
However, there is a notable difference for the hole segments of
the spectrum. Therefore, in this paper, we concentrate solely
on the electronic spectrum.

It is noteworthy that, in symmetric HgTe TQWs, the tran-
sition from a gapless to a gapped phase can be achieved by
disrupting the inversion symmetry of the wells through the
application of a transverse electric field, either from asym-
metric doping or external gate bias [29,31]. This process can
induce a small gap in the energy spectrum, reminiscent of
phenomena seen in bilayer and trilayer graphene. The ability
to manipulate this gap with an external field is fascinating,
offering avenues to modulate edge state transport within HgTe
double- and triple-well configurations. As we will show in the
next paragraph, we detected a minimal gap in our structures,
indicated by activation resistance behavior, on the order of
∼1 meV. However, it is critical to underline that this gap,
while present, is minuscule relative to other system param-

eters and does not notably affect the spectrum as outlined
by Eq. (1). Our investigation primarily concentrated on the
conduction band, which is essentially unaffected by such a
negligible gap.

Due to the Dirac-like nature of the Hamiltonian, the be-
havior of the density of states significantly deviates from that
of conventional 2D systems. In the spectrum of subbands
denoted by Es, we observe a nearly parabolic shape, with
particles exhibiting significant mass only in the vicinity of
k ≈ 0. As energy levels increase, the spectrum also transitions
to a linear regime. This leads to a linear dependence of the
density of states on energy and a nonmonotonic change in the
chemical potential with respect to gate voltage.

In Fig. 1(c), the density of 2D carriers, distributed across
different subbands, is depicted as a function of the chemical
potential μ. Notably, it is evident that the density of carriers
in the massive Dirac branch surpasses that of the massless
carriers. Furthermore, beyond an energy threshold of 35 meV,
the second subband of the massive Dirac fermions starts to
become occupied.

The presence of various electronic branches leads to the
breakdown of Galilean invariance and a noteworthy increase
in the impact of scattering between these branches on elec-
tronic transport.

III. EXPERIMENTAL RESULTS

We fabricated TQWs using HgTe/CdxHg1−xTe material
with a [013] surface orientation. The wells had equal widths,
with d0 measuring 6.7 nm and a barrier thickness of t set at
3 nm. The layer thickness was monitored during molecular
beam epitaxy (MBE) growth via ellipsometry, achieving an
accuracy within ±0.3 nm.

The devices employed in this paper were multiterminal
bars featuring three consecutive segments, each 3.2 µm wide,
with varying lengths of 2, 8, and 32 µm. These devices were
equipped with nine contacts. The contacts were created by
indium bonding to the surface of the contact pads, which were
precisely defined using lithography. Given the relatively low-
growth temperature (∼180 ◦C), the temperature during the
contact fabrication process remained low as well. Indium dif-
fused vertically downward on each contact pad, establishing
an ohmic connection across all three quantum wells, with con-
tact resistance falling within the 10–50 k� range. Throughout
the AC measurements, we consistently verified that the re-
active component of impedance did not exceed 5% of the
total impedance, confirming the effectiveness of the ohmic
contacts. Furthermore, the current-voltage (I-V) characteris-
tics exhibited ohmic behavior at low voltages. A 200 nm
SiO2 dielectric layer was deposited onto the sample surface,
subsequently covered by a TiAu gate. The density variation
with gate voltage was estimated to be ∼0.9 × 1011 cm−2/V,
derived from the dielectric thickness and Hall measurements,
as previously reported in studies employing similar devices.
Two samples, denoted as A and B, were studied. The samples
were created from a uniform substrate and were subject to
identical growth conditions. It is important to emphasize that
these samples are of mesoscopic dimensions and, as such, are
expected to display all characteristics inherent to mesoscopic
physics.
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TABLE I. Some of the typical parameters of the electron system
in HgTe TQW at T = 4.2 K.

Sample d (nm) VCNP (V) ρmax(h/e2) μe (V/cm2s)

A 6.7 −3.6 0.22 33.600
B 6.7 −6.7 0.2 39.600

Figure 1(d) illustrates the variation of resistivity with
charge density for sample A at a temperature of 4.2 K. The
resistance shows a prominent peak centered at the charge
neutrality point(CNP), which corresponds to the zero-energy
point. This behavior is a characteristic feature of both gapless
and gapped HgTe single-well devices [16,31]. The maxi-
mum electron density corresponds to a Fermi energy value
of ∼150 meV, as depicted in Fig. 1(c). As the chemical
potential approaches the range of 30–40 meV, the second
subband associated with massive Dirac fermions begins to be
occupied. This is evident from a small feature in the resistivity,
as indicated by the arrow in Fig. 1(d). Table I presents the key
parameters of the gapless HgT quantum well employed in this
paper. These parameters include the well width (d), the gate
voltage associated with the Dirac point position (VCNP), the
resistivity (ρ value) at the CNP, and the electron mobility (μe)
calculated as 1/ρNs, where the total electron density (Ns) is
set at 2 × 1011 cm−2.

Figure 2 illustrates the variation in resistance with respect
to gate voltage across a wide range of temperatures. The plot
reveals a notable increase in resistance as temperature rises,
with one notable exception: In the voltage region close to
the CNP (−3V < Vg − VCNP < 0V ), the resistance exhibits
insulating behavior characterized by a very slight activation
gap in the range of 0.5–0.8 meV. The reduction in resistance
as temperature increases can be attributed to potential fluctua-
tions, which may lead to the creation of small semimetallic
insulating regions or residual gaps. It is important to ac-
knowledge that even a small gap has the potential to alter
the energy spectrum described by Eq. (2). However, for the
sake of simplicity, we have omitted such modifications in our
straightforward model.

FIG. 2. Resistance as a function of the gate voltage at different
temperatures for two HgTe triple quantum wells.

FIG. 3. Excess resistivity �ρ(T ) = ρ(T ) − ρ(T = 4.2 K) as a
function of the temperature for various densities for samples (a) A
and (b) B. The red lines show T 2 dependence. The values of the
densities are given in 1011 cm−2.

To further investigate the temperature-dependent behavior
of resistance (or resistivity), we calculate the excess resistiv-
ity, denoted as �ρ(T ) = ρ(T ) − ρ(T = 4.2 K).

Subsequently, in Fig. 3, we present the excess resistivity
for different electron densities across a broad temperature
range, for samples A and B. It is evident that the temperature
dependence evolves, adhering closely to a T 2 relationship at
high electron densities, while exhibiting weak temperature
dependence near the CNP. It is noteworthy that, in the inter-
mediate density regime, the temperature dependence displays
a somewhat more complex behavior. At low temperatures,
the dependence in sample A resembles a quadratic func-
tion, whereas at higher temperatures, the power becomes
significantly more pronounced. In contrast, for sample B, the
temperature dependence remains quadratic at high temper-
atures, but the power is diminished at lower temperatures.
At low densities, sample A exhibits an almost plateaulike
behavior at high temperatures, while sample B demonstrates
an increase in excess resistivity. We believe that sample B
displays greater levels of disorder and inhomogeneity and that
contributions from regions of higher density become critical
at elevated temperatures. At high densities, the experimental
curve follows a quadratic dependence with a difference in
the order of amplitude for both samples. In the following
discussion, we focus on the high-density dependencies for a
comparison with theoretical predictions.

Figures 4 anpoints at low temperatures exhibit dispersion
due to their limited precision. In sample B, we also observed
a more rapid growth of excess resistivity with increasing tem-
perature, which deviated from the T 2 trend, possibly owing
to the broadening of the distribution function. We will delve
further into the Boltzmann statistical regime in the subsequent
section.

The distinct resistance dependence of T 2 serves as an
unambiguous indicator of electron-electron scattering, as op-
posed to phonon scattering, which would lead to a linear,
rather than quadratic, temperature dependence, as discussed
in Ref. [33]. While it is a well-established fact that electron-
electron interactions do not influence the resistivity of a
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FIG. 4. Excess resistivity �ρ(T ) = ρ(T ) − ρ(T = 4.2 K) as a
function of the temperature for two different densities for sample
A. The total density is (a) Ns = 5 × 1011 cm−2and (b) Ns = 4.1 ×
1011 cm−2. Circles represent the experimental data, and the red lines
represent the theory of interparticle scattering between the fully
degenerate massless and massive electrons.

Galilean-invariant Fermi liquid, there are specific scenarios
where a conductivity proportional to T −2 can be observed,
as detailed in Ref. [1]. Such scenarios include the presence
of spin-orbit interactions or the involvement of multiple sub-
bands, as discussed in Refs. [1–5,34].

Notably, Fig. 2 reveals an extraordinary observation: The
resistivity ratio between high and low temperatures ρ(T =
70 K)/ρ(T = 4.2 K), surpasses the 4–5 limit, signifying that
�ρ is significantly greater than ρ(T = 4.2 K) at elevated

temperatures. This striking departure from more conventional
scenarios, where resistance is predominantly influenced by
disorder or phonon scattering, underscores the critical role
of particle-particle collisions in this context. These collisions
have a pronounced impact, far exceeding that of impurity-
related scattering. This observation validates the HgTe-based
triple well as a promising experimental platform for in-
vestigating transport phenomena dominated by interactions,
opening the door to the exploration of nontrivial effects,
such as violations of the Wiedemann-Franz law [17], anoma-
lous Coulomb drag [35], and many others (for areview, see
Ref. [36]).

IV. COMPARISON OF THEORY WITH EXPERIMENT

In the following discussion, we examine a straightforward
hydrodynamic model with two subbands, wherein electron-
electron scattering is characterized by a concept of mutual
friction. The conductivity is determined through an equa-
tion of motion for the electron featuring Dirac dispersion and
massive electrons:

−vd − ve

τde
− vd

τd
+ qE

md
= 0, (3)

−ve − vd

τed
− ve

τe
+ qE

me
= 0, (4)

where variables vd and ve are drift velocities of the mass-
less (Dirac) and massive electrons. The solutions of these
equations have been performed elsewhere [8,10,11]. The
expression for conductivity can be obtained with some modi-
fications, and it is given by

σ = q2
nd ne

[
τd

(
τe + τint

)(
2 + nd

ne

) + τe(τd + τint )
ne
nd

+ τint
( me

md
τd − md

me
τe

)]
mene(τd + τint ) + md nd (τe + τint )

. (5)

We introduce the following variables: ne and nd , rep-
resenting the densities of massive and massless electrons,
respectively, and τe and τd as their respective scattering times,
due to impurities and static defects. Furthermore, we define Ns

as the total electron density. In addition, q is the elementary
charge, me = h̄2k dk

dEs
is the heavy electron effective mass,

md = μ/v2
F is the Dirac electron effective mass, τed (de) is

the collision time with theheavy (Dirac) electron per Dirac
(heavy) electron. We also introduce 1/τint = 1/τde + 1/τed .
The equation, considering the constraint that interactions be-
tween massive and massless Dirac electrons conserve the
overall momentum density, is nd mdτde = nemeτed . Hence, the
term in Eq. (5) that remains temperatureindependent is antic-
ipated to be primarily governed by interface roughness and
impurity scattering, as discussed in Ref. [33]. Conversely,
the temperature-dependent component of resistivity can be
attributed to electron-electron (e-e) friction within the non-
Galilean-invariant massive-massless Dirac liquid.

An insightful analysis would involve examining the limits
of T = 0 and T = ∞, especially in cases where the effective
masses differ significantly. The effective scattering timeof
the Dirac hole can be approximated using the relation md =

μ/v2
F ≈ 0.006m0, with μ ≈ 16 meV. At T → 0, both bands

contribute to the total conductivity dominated by the Dirac
holes:

σ (T = 0) = q2ndv
2τd

μ
= q2ndτd

md
. (6)

At T = ∞, the conductivity becomes temperature inde-
pendent and saturates at a value approximately determined by
the conductivity of the heavy:

σ (T = ∞) = q2(nd + ne)2τe

mene
. (7)

In our case, ne � nd , the ratio of the resistivities at both
temperature limits is determined by

ρ(T = ∞)

ρ(T = 0)
= mendτd

md neτe
. (8)

When neτe ∼ ndτd , the ratio of the resistivities at these tem-
perature extremes is predominantly influenced by the effective
mass ratio (for Fermi energy EF = 5 meV) [1]:

ρ(T = ∞)

ρ(T = 0)
≈ me

md
≈ 4.4. (9)
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FIG. 5. Excess resistivity �ρ(T ) = ρ(T ) − ρ(T = 4.2 K) as a
function of the temperature for two different densities for sample
B. The total density is (a) Ns = 4.2 × 1011 cm−2and (b) Ns =3.3 ×
1011 cm−2. Circles represents the experimental data, and the red
lines represent the theory of interparticle scattering between the fully
degenerate massless and massive electrons.

Hence, it is reasonable to anticipate that, in the optimal system
where electron-electron interactions govern transport, there
will be energy branches characterized by distinct effective
masses. The gapless HgTe system stands out as a highly
promising platform for conducting this type of research.

In a regime of full degeneracy, where both types of
electrons adhere to Fermi statistics, an expression for particle-
particle collisions has been derived, with slight modifications
to account for the difference in their energy spectra [11]:

1

τde
= α

me(kT )2U 2
0

3π h̄5vvF
≡ 1

τ0
∼ T 2, (10)

1

τed
= 1

τ0

μ

mev
2
F

nd

ne
∼ T 2, (11)

where U0 = 2πe2

εqs
, qs = me2

εh̄2 , ε is the dielectric constant of the
material, v is Fermi velocity of the massive particle, andpref-
actor α represents a numerical coefficient that varies based on
the specifics of the Coulomb interactions. Note that 1/τed 	
1/τde, and conventional T 2 behavior for 1/τint ∼ 1/τde, char-
acteristic of a particle with parabolic dispersion, becomes
evident.

Remember that, in the case of finite temperature, the elec-
tron density can be found from the equation:

nd,e =
∫ ∞

0
Dd,e

ε

[
1 + exp

(
ε − μ

kT

)]−1

dε, (12)

where Dd,e
ε is the density of the states of the Dirac and

massive electrons, respectively. It is essential to emphasize
that, even though the density in each subband strongly re-
lies on the temperature at high T or in the nondegenerate
regime, the total density is constrained by the gate voltage,
expressed as ne + nd = Ns ∼ Vg. As a result, the chemical
potential can be parametrically determined. To compare with
the theoretical framework, we performed a fitting analysis on
the temperature-dependent data, as illustrated in Figs. 4 and 5.

TABLE II. Fitting parameters in Eqs. (5) and (10) for 2 samples.

Sample EF Ns τe τd ne nd α

1011 10−13 10−13 1011 1011

(meV) (cm−2) (s) (s) (cm−2) (cm−2)

A 33.8 5 0.31 4.7 3.3 1.7 0.5
A 30.4 4.2 0.3 4.6 2.8 1.3 0.7
B 30.7 4.2 0.29 4.3 2.8 1.3 0.17
B 26.5 3.3 0.41 5 2.3 1 0.2

This analysis involved a single adjustable parameter denoted
as α, which accounts for the interaction strength between the
Dirac and massive holes, as outlined in Eqs. (5)–(11). The
scattering parameters, referred to as τe(d ), play a predominant
role in determining resistivity at lower temperatures. Impor-
tantly, varying these parameters within a reasonable range
does not impact the friction coefficient, which is the primary
driver of temperature-dependent resistivity. In Figs. 4 and 5,
we present the theoretical dependencies of resistivity excess
for various total density values. Notably, the experimental data
closely align with the expected dependence �ρ(T ) ∼ T 2 for
the parameters specified in Table II.

It is evident that the prefactor α, introduced as an ad-
justable parameter reflecting the difference between the actual
Coulomb potential and the contact interaction potential, is
close to unity and exhibits a tendency to increase as the
particle density decreases. It is worth noting, however, that
the corresponding prefactor for sample B is smaller than that
of sample A. It is important to note that both samples exhibit a
resistivity pattern consistent with the T 2 law within one order
of magnitude.

V. COMPARISON OF THE THEORY WITH EXPERIMENT
IN NONDEGENERATE REGIME

At low densities and moderately high temperatures,
both massive and massless Dirac electrons start adhering
to Boltzmann statistics. In this regime, an expression for
electron-electron collisions has been formulated, incorporat-
ing minor adjustments to accommodate variations in their
energy spectra:

1

τ ∗
de

= β

√
π

6

ne

(kT )3

vT m4
ev

5
F

h̄3 U 2
0 J1 ∼ T −1/2J1(T ), (13)

1

τ ∗
ed

= β

√
π

4

nd

(kT )2

vT m3
ev

3
F

h̄3 U 2
0 J2 ∼ T 1/2J2(T ), (14)

where U0 = 2πe2

εqT
, qT = 2πe2ne

ε(kT ) , ε is the dielectric constant
of the material, vF is theFermi velocity of massless Dirac

particles, andvT =
√

2kT
me

is velocity of massive particles. The

prefactor denoted by β corresponds to a numerical coeffi-
cient that depends on the details of the Coulomb interactions.
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FIG. 6. Temperature dependence of the relaxation rate for differ-
ent density ratios ne/nd . Solid lines are computed using Eqs. (13) and
(15) [1/τ ∗

de, dashes are computed using Eqs. (14) and (16) (1/τ ∗
ed )],

dot-dashes represent 1/τ ∗
int. Total density Ns = 3 × 1010 cm−2, (a) ra-

tio ne/nd = 0.5 (black lines) and (b) ne/nd = 1.5 (blue lines).

Integrals J1,2 are represented by the following expressions:

J1 =
∫ ∞

0
y2dy

∫ 1

−1

√
1 − x2exp

[
−mev

2
F

2kT

(
x + y

2

)2
]

dx, (15)

J2 =
∫ ∞

0
y2dy

∫ 1

−1

exp
[ − mev

2
F

2kT

(
x + y

2

)2]
√

1 − x2
dx. (16)

Figure 6 depicts the correlation between the relaxation
rates 1/τde and 1/τed and temperature, represented by the blue
and black lines. The computations employ Eqs. (13) and (14)
with the parameter β set to 1. Due to the integrals J1,2 behav-
ing approximately like power functions of T δ with δ ≈ 0.5,
the relaxation rates exhibit distinct temperature dependencies.
Specifically, the rate 1/τde is a weakly temperature-dependent
function, while the collision rate 1/τed follows a quasilinear
T dependence.

The relationship between rates 1/τde and 1/τed depends
on the ratio ne/nd and the temperature interval. Notably,
over a wide temperature range, the interaction rate maintains
the relationship 1/τde > 1/τed for ne/nd = 1.5. Moreover,
the relaxation rate 1/τde surpasses 1/τde at temperatures
exceeding 35 K for the inverse relation ne/nd = 1.5. It is
essential to note that interactions between massive and mass-
less Dirac electrons conserve the overall momentum density,
and the total relaxation rate involved in the transport coef-
ficient is given by 1/τ ∗

int = 1/τ ∗
de + 1/τ ∗

ed . The temperature
dependence of the relaxation rate 1/τ ∗

int(T ) describes an in-
termediate power with a temperature-dependent exponent
index.

In Fig. 1(c), the chemical potential exhibits a range of
variation from 1 to 3 meV for total electron densities in the
order of 1 × 1010 to 3 × 1010 cm−2. Within this density range,
we can assert that both massive and massless Dirac electrons
adhere to Boltzmann statistics for temperatures between 10
and 100 K.

Figures 7(a) and 7(b) illustrate the temperature dependence
of resistance in the vicinity of the CNP for low electron
densities. It is evident that resistance decreases as the
temperature increases near the CNP. This trend is at-

FIG. 7. (a) Resistivity ρ(T ) as a function of temperature for
different densities for sample A. The total density is Ns ≈ 0
(charge neutrality point, blue), Ns ≈ 3 × 1010 cm−2 (red), Ns ≈
6.1 × 1010 cm−2 (black), Ns ≈ 8 × 1010 cm−2 (cyan), and Ns ≈ 10 ×
1010 cm−2 (dark yellow). (b) Resistivity ρ(T ) as a function of tem-
perature for different densities for sample B. The total density is
Ns ≈ 0 (charge neutrality point, blue), Ns ≈ 3 × 1010 cm−2 (red),
Ns ≈ 6.1 × 1010 cm−2 (black), and Ns ≈ 8 × 1010 cm−2 (cyan).

tributed to the presence of a small gap in the spectrum,
approximately � ∼ 1 meV, leading to an activation law
R ∼ exp(�/2kT ) for the resistance, as indicated in Ref.
[30]. Additionally, this behavior is justified by the quanti-
zation of resistance and nonlocal resistance resulting from
the helical edge states, confirming the topological insulator
nature of the triple HgTe-based quantum well, as demon-
strated in our previous publications [30]. Furthermore, it
is crucial to note that, although the involvement of heli-
cal edge states is significant, especially when the chemical
potential resides within the gap, their contribution becomes
negligible when μ is shifted to the conductivity band, and
the edge states become heavily intertwined with the bulk
conductivity.

Beyond the CNP, we observe weakly temperature-
independent resistance, as depicted in Figs. 3(a) and 3(b)
and more comprehensively in Figs. 7(a) and 7(b). Notably, a
strong temperature dependence of resistance is discernible far
from the CNP, where the resistance increases by more than an
order of magnitude with rising temperature. This observation
underscores distinct transport regimes in the regions near and
far from the CNP—specifically, for low densities where a
nondegenerate system can be anticipated and at high densi-
ties where the system becomes degenerate across the entire
temperature range.

To assess the agreement of our results with theory in the
nondegenerate regime, we computed the resistivity using Eqs.
(5) and (13)–(16). Figure 8 illustrates these calculations for
a total density Ns = 3 × 1010 cm−2 and various density ratios
nd/ne(T = 4.2 K). Interestingly, there is a small (∼2%) re-
duction in resistance with increasing temperature. This finding
may seem surprising given the distinct growth observed in the
scattering time 1/τ ∗

int(T ) (see Fig. 6). It is essential to note,
however, that in the Boltzmann regime, several parameters are
expected to exhibit temperature dependence.

023121-7



A. D. LEVIN et al. PHYSICAL REVIEW RESEARCH 6, 023121 (2024)

FIG. 8. (a) The resistivity ratioρ(T )/ρ(T = 4.2 K) as a function
of temperature for different parameters calculated from Eqs. (5),
(13), and (14). Total density Ns = 3 × 1010 cm−2, the ratio τe/τd =
5, τd = 0.4 × 10−12 s, andthe ratio nd/ne(T = 4.2 K) = 1.5 (black),
1 (red), and 0.5 (blue). Parameter β = 1.

Primarily, the densities of massive and massless elec-
trons strongly depend on temperature in the nondegenerate
regime [see Eq. (12)]. Despite this, as previously men-
tioned, the total density remains fixed by the external gate
voltage, suggesting a substantial redistribution of charge car-
riers as temperature increases. Additionally, the effective
mass exhibits strong temperature dependence, significantly
contributing to the temperature-dependent resistivity. These
temperature-dependent parameters counterbalance the in-
crease in the relaxation rate 1/τ ∗

int(T ) and ultimately result in
only a weakly temperature-dependent resistance. This effect
bears some similarity to the situation in graphene, where the
nondegenerate limit has been explored in single-layer and
bilayer graphene, with electron-hole pairs being thermally
excited [9,37]. In these cases, the electron-hole collision rate
is expected to be proportional to T , leading to temperature-
independent conductivity.

It is important to acknowledge that our model, while infor-
mative, is overly simplistic for capturing the intricate details

observed in the experimental data presented in Figs. 7(a) and
7(b), particularly in terms of exact evolution of the resistance
with T. Achieving a more accurate agreement with the exper-
imental results, especially with Eq. (5), necessitates a precise
understanding of the behavior of the density of states within
the gap.

Additionally, our tight-binding model, though useful, is
too rudimentary to accurately characterize parameters in the
vicinity of the CNP, where potential disorder may also con-
tribute to smoothing effects. Consequently, it becomes evident
that the weak temperature dependence observed in the ex-
periments near the CNP aligns with our theoretical model
to a certain extent. However, it is crucial to recognize the
limitations of our model and acknowledge the need for more
sophisticated approaches to capture the nuances exhibited by
the experimental data.

VI. CONCLUSION

In summary, in this paper, we focused on the temperature-
dependent resistivity in a triple HgTe quantum well that
accommodates two branches of fermions, one with massive
and the other with massless Dirac characteristics. We ob-
served quadratic temperature dependencies resulting from
interactions between the Dirac fermions and massive electrons
in the fully degenerate regime. In contrast, when both type of
electrons adhered to Boltzmann statistics, resistivity remained
weakly temperature dependent.

Our findings validate that the presented model comprehen-
sively describes the conductivity of the TQW across a broad
spectrum of temperatures and carrier densities. In our ultra-
clean samples, electron-electron scattering takes precedence,
exerting a significantly more notable impact than impurity
scattering. It also demonstrates the unified nature of hydro-
dynamic transport across different systems, irrespective of the
sign and spectrum typeof the carriers.
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