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Progress in fault-tolerant quantum computation (FTQC) has driven the pursuit of practical applications with
early fault-tolerant quantum computers (EFTQC). These devices, limited in their qubit counts and fault-tolerance
capabilities, require algorithms that can accommodate some degrees of error, which are known as EFTQC
algorithms. To predict the onset of early quantum advantage, a comprehensive methodology is needed to develop
and analyze EFTQC algorithms, drawing insights from both the methodologies of noisy intermediate-scale
quantum and traditional FTQC. To address this need, we propose such a methodology for modeling algorithm
performance on EFTQC devices under varying degrees of error. As a case study, we apply our methodology
to analyze the performance of randomized Fourier estimation (RFE) [Kshirsagar, Katabarwa, and Johnson,
arXiv:2209.11322], an EFTQC algorithm for phase estimation. We investigate the runtime performance and the
fault-tolerant overhead of RFE in comparison to the traditional quantum phase estimation algorithm. Our analysis
reveals that RFE achieves significant savings in physical qubit counts while having a much higher runtime upper
bound. We anticipate even greater physical qubit savings when considering more realistic assumptions about the
performance of EFTQC devices. By providing insights into the performance trade-offs and resource requirements
of EFTQC algorithms, our work contributes to the development of practical and efficient quantum computing
solutions on the path to quantum advantage.
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I. INTRODUCTION

Despite significant experimental and theoretical progress
[1,2], noisy intermediate-scale quantum (NISQ) devices have
yet to exhibit the capacity to solve practical real-world
problems with valuable outcomes. A promising avenue to-
wards achieving practical quantum advantage lies in the
development of architectures that can support large-scale
fault-tolerant quantum computations (FTQC) [3]. By incor-
porating robust fault-tolerance capabilities, we can suppress
errors in our computations to an arbitrary extent. However,
this comes at the cost of resources that far exceed the capabil-
ities of present-day devices by several orders of magnitude.
Projections by researchers indicate that millions to billions
of physical qubits would be required to outperform classical
computers in tasks such as factoring and ground-state energy
estimation [4–6].

There exists a substantial discrepancy between the capa-
bilities of today’s quantum devices and the projected resource
requirements for practical large-scale fault-tolerant architec-
tures. This discrepancy motivates the question: How will
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the intermediate generation of devices, positioned between
NISQ and FTQC, deliver practical advantage? Such devices
have recently been referred to as early fault-tolerant quantum
computers (EFTQC) [7–9]. Notably, EFTQC devices would
possess a limited number of physical qubits, thus imposing
constraints on the distance of the error-correcting codes they
can support. These deviate from the conventional assumptions
of fault-tolerant quantum computing, where such resources
are presumed to be. infinitely scalable.

A recent thrust in the field of quantum computing has been
the development of EFTQC algorithms tailored to address the
above limitations of EFTQC devices [7,8,10–22]. So far, two
key considerations are central to the pursuit of practical value
using EFTQC algorithms. The first is developing quantum
algorithms that reduce the number of qubits and operations
per circuit, often at the expense of increased circuit runs and
consequently extending the runtime [7,11,13,14,18,19]. The
second is designing quantum algorithms such that they are
robust against gate and measurement errors [10–12,21,22].
These recent advancements showcase the potential applica-
tions of EFTQC devices, further motivating our previously
posed question. An essential next step is to develop method-
ologies for assessing the performance of these algorithms,
enabling a deeper understanding of how intermediate devices
between NISQ and FTQC can be leveraged to attain practical
value.

In this work, we conduct an analytical case study, first to
our best knowledge, that links logical circuit error models
to the performance of a variant of the EFTQC algorithm
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mentioned above, the robust Fourier estimation (RFE) algo-
rithm [10]. Specifically, we develop such a methodology to
achieve the following:

(i) A proof that quantifies the performance of the RFE
algorithm that interpolates between using a single oracle call
(suited for the high-noise NISQ setting) and using many or-
acle calls per circuit (suited for the low-noise FTQC setting)
(see Sec. V A)

(ii) A numerical demonstration of the suitability of this
algorithm for EFTQC devices in that it can reduce by an order
of magnitude the number of physical qubits required for large
instances of phase estimation at the cost of an increase in
runtime by several orders of magnitude (see Sec. V B).

To establish these results, we introduce a modularized
methodology designed to assess the impact of generic circuit-
level errors on a broad class of quantum algorithms. As a
case study, we demonstrate the effectiveness of our method-
ology on the RFE algorithm, which shares a similar structure
with other EFTQC-suited algorithms, such as those used for
ground-state energy estimation [13,15,16,19] and property
estimation [14]. The key feature common to these algo-
rithms is the utilization of signals derived from Hadamard
test outcomes, which makes our methodology applicable and
adaptable to various cases within the EFTQC framework.

Our objective is to gain a comprehensive understanding
of how errors impact the RFE algorithm. By doing so, we
aim to leverage this understanding and extend it to algorithms
designed for tasks beyond phase estimation. While previous
studies have investigated the resilience of algorithms for quan-
tum phase estimation [23], we choose to analyze the RFE
algorithm for two key reasons. First, while sharing a similar
structure to many of the above-mentioned EFTQC algorithms,
the RFE algorithm is analytically tractable, making it an ideal
candidate for our study. Second, its ability to smoothly inter-
polate between the high- to low-noise settings makes it well
suited for the EFTQC regime.

The paper is organized as follows. We begin in Sec. II by
introducing the RFE algorithm and our modifications to the
algorithm for the purpose of this study. In Sec. III, we outline
the framework of our methodology, which we apply to analyze
the runtime performance of the RFE algorithm. Specifically in
Sec. IV, we develop a chain of noise models from physical
errors to algorithmic errors and study the impact of these
errors on the performance of RFE in Sec. V A. Based on
these results, we provide a fault-tolerant resource estimation,
comparing RFE to the traditional quantum phase estimation
algorithm in Sec. V B. Finally, in Sec. VI, we conclude by
highlighting our key results and provide an outlook of this
work.

II. RANDOMIZED FOURIER ESTIMATION

In this section, we introduce a variant of the RFE algorithm
proposed in Ref. [10]. The RFE algorithm is used to solve the
task of phase estimation, in which the goal is to estimate the
phase angle θ defined by U |ψ〉 = eiθ |ψ〉, assuming the ability
to prepare the eigenstate |ψ〉 and to implement controlled-
unitaries, c-U . The traditional approach to this problem is
the quantum phase estimation (QPE) algorithm [24], which
achieves the optimal performance asymptotically. However,

FIG. 1. Diagram of the circuits used in the RFE algorithm. The
parameter k is uniformly randomly chosen among {0, . . . , K − 1} for
each iteration. A key feature of the algorithm is that the parameter
K controls the maximal circuit depth and is set to accommodate
different degrees of error in the c-U operation: High error implies
small K (low depth) and many repetitions, while low error warrants
the use of large K (high depth) and fewer repetitions. The boxed-up
elements in blue can be collectively interpreted as a measurement
with respect to the observable σφ = cos(φ)σx − sin(φ)σy, where σx

and σy are the conventional Pauli operators and S(φ) = [1 0
0 exp(iφ)].

the realization of the QPE algorithm requires multiple ancil-
lary qubits and many high-fidelity quantum operations, both
of which may be prohibitively costly given hardware con-
straints in the early fault-tolerant regime.

Given these constraints, alternative schemes for phase
estimation have been proposed for near-term to early fault-
tolerant devices [13,15,25,26]. In our study, we focus on the
RFE algorithm [10], the performance of which can be analyt-
ically studied. Specifically, we will analyze a variant of the
original RFE algorithm with slight modifications to simplify
our analysis, as introduced later in this section. As the modifi-
cations made do not fundamentally change the mechanism of
the algorithm, we will henceforth refer to the modified version
of the algorithm as “RFE” throughout the paper.

The basic intuition behind this algorithm is summarized
as follows. Each measurement outcome z = ±1 is generated
from a sampled parameterized Hadamard test circuit in Fig. 1
with k ∈ {0, . . . , K − 1}, where K sets the maximal circuit
depth, and φ ∈ [0, 2π ]. The expected outcome of the mea-
surement 〈σφ〉 = cos(φ)〈σx〉 − sin(φ)〈σy〉 = cos(kθ + φ) is
an oscillatory function of k and θ and becomes the desired
signal eikθ when averaged over a uniform distribution of φ

between 0 and 2π , i.e., 1
2π

∫ 2π

0 2 cos(kθ + φ)e−iφdφ = eikθ .
To estimate the θ encoded in the frequency of the signal,

we can construct from each outcome z an unbiased estimate
f̂ j of the expected discrete Fourier transform f j of signal g(k):
= eikθ . In the Fourier domain j ∈ {0, . . . , J − 1}, the estimate
is expressed as

f̂ j (k, φ, z) = 2ze−i2πk j/J e−iφ. (1)

Given enough samples, we expect the magnitude of the av-
eraged f̂ j to peak at a frequency close to θ . In the noiseless
case, this peak will occur within the Fourier resolution 2π/J
from the true θ , where we later set the parameter J such that
the Fourier resolution matches the desired accuracy of the
algorithm ε.

This peak frequency is then used as an estimate of θ , de-
noted θ̂ . Figure 2(a) shows the real and imaginary components
of the signal g(k) as a function of k. The magnitude of the
Fourier transformed signal | f j | is then plotted in Fig. 2(b) as a
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FIG. 2. (a) Real and imaginary components of the expected
(noiseless) signal Re[g(k)] = cos(kθ ) and Im[g(k)] = sin(kθ ) as a
function of the circuit depth k. (b) The magnitude of the expected
Fourier transformed signal | f j |. The green shaded region shows the
acceptable range of values for θ̂ , and the red dashed vertical line
shows the true peak at index � = θJ

2π
. The solid line represents the

analytical functional forms where k and j are treated as continuous
variables for easier visualization. The discrete values of g(k) and | f j |
are marked with dots. The two green dots in (b) correspond to j =
�Jθ/2π� and �Jθ/2π�, which we refer to as “adjacent frequencies.”

function of j, where the peak occurs at an index near θJ/2π

corresponding to the true frequency θ .
The algorithm that we introduce here differs from that of

Ref. [10] in two regards. First, rather than taking samples cor-

responding to the real and imaginary parts of g(k) separately
by setting φ = 0 or π/2, φ is chosen uniformly randomly such
that we can construct an unbiased estimator for g(k) with a
single shot. This simplifies the algorithm analysis without any
changes in its performance.

Second, the more substantial change is introduced to ac-
commodate a more realistic noise model as developed in
Sec. IV. This noise model results in an exponential attenuation
(as a function of k) of the outcome probabilities, converging
towards a uniform two-outcome distribution at large k, simi-
larly to that of an unbiased coin toss. By appropriately setting
the maximal value of k, i.e., K , we can minimize the impact
of this attenuation on our estimated θ̂ from the signal.

In Ref. [10], the parameter K was used to set both the max-
imum value of k and the Fourier basis resolution 2π/K . This
can be an issue in the case when the attenuation is strong and
high accuracy is required: Measurement outcomes for large
k are uninformative because they are drawn from a nearly
uniform distribution. To address this issue, we allow these two
values to differ; K still labels the maximum value of k, while
a new parameter J is used to set the Fourier resolution. Then,
the high accuracy and high noise case is accommodated by
setting J large and K small.

We now elaborate on why our algorithm works in the noise-
less limit, which will provide intuition for its performance in
the noisy case. One can calculate the probability of measuring
the outcome z in the Hadamard circuit of Fig. 1 as

P(z|k, φ; θ ) = 1
2 [1 + z · cos(kθ + φ)], (2)

which is an oscillatory function of k with frequency θ .
The two classically sampled variables are drawn uniformly:
P(k) = 1/K and P(φ) = 1/2π , where the former distribution
is discrete while the latter is continuous. Using these distribu-
tions, the expected value of our constructed estimator (1) is
calculated to be

E[ f̂ j (k, φ, z)] =
K−1∑
k=0

∫
dφ

∑
z=±1

P(k)P(φ)P(z|k, φ; θ ) f̂ j (k, φ, z) = 1

K

1 − aK

1 − a
, (3)

where a := eiθ−i(2π j/J ). For j ∈ R+, the expectation (3) is
maximized at j = θJ/2π , whereas for j ∈ Z+, i.e., in a
discrete Fourier transform setting, and assuming K � J , the
expectation achieves its maximum magnitude at �θJ/2π� or
�θJ/2π� (or precisely at θJ/2π if θJ/2π ∈ {0, . . . , J − 1}).
Consequently, by setting J = 2π/ε we can then guarantee
that the maximum of the expected discrete Fourier transform
occurs at a frequency that is less than ε away from the true θ .
The maximal circuit depth K will be chosen according to the
target accuracy ε and a parameter λ [introduced in Eq. (12)]
that characterizes the error strength in the c-U operation.
Qualitatively, K is chosen to monotonically increase with 1/ε

and 1/λ, which is described in further details in Sec. V A.
Our algorithm estimates the value of θ by using an average

over multiple Fourier signal estimates (1). With M estimates

f̂ (n)
j generated independently, their average will concentrate

about the expected value f j := E[ f̂ j (k, φ, z)] (3), and a corre-
sponding estimate of θ is given by

θ̂ = 2π

J
arg max j

[∣∣∣∣∣ 1

M

M∑
n=1

f̂ (n)
j

∣∣∣∣∣
]
. (4)

This concentration will be addressed quantitatively in
Sec. V A. The algorithm succeeds, i.e., yields an estimate
such that |θ̂ − θ | � ε, if one of the “adjacent” frequencies
(�θJ/2π� or �θJ/2π�) achieves the largest magnitude among
all Fourier estimates f̂ j = 1

M

∑M
n=1 f̂ (n)

j . In expectation, one of
these “adjacent” frequencies [shown as the two green dots in
Fig. 2(b)] will achieve the largest magnitude, with a finite gap
between it and the magnitudes of the nonadjacent frequencies
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FIG. 3. Framework of our methodology.

(points that fall outside of the green shaded region). Hence,
with sufficiently many samples M, the probability of failure
of the algorithm can be made less than any finite failure
probability δ.

III. FRAMEWORK

In this section we outline our proposed methodology for
connecting the logical error model of an arbitrary quantum
circuit to the success probability of a quantum algorithm, with
the special case analysis of the RFE algorithm introduced in
the last section as an example.

Our methodology, depicted in the flowchat of Fig. 3, can
be summarized as follows. We begin by modeling the effect
of error on an algorithmic level from physical to logical-level
error models proposed in Sec. IV. Specifically, in Sec. IV A,
we establish a fault-tolerant overhead model that relates phys-
ical error rate pphys to logical error rate plogical for a surface
code of distance d . We then propose a generic N-qubit logical
Pauli error channel in Sec. IV B and statistically quantify its
impact on an N-qubit quantum circuit of depth D. To achieve
this, we assume that a random N-qubit Pauli error occurs after
each layer of unitaries in our circuit such that the resulting
state is a mixture of random states drawn from a unitary
2-design. By computing the expected value and variance of
measurement outcomes based on this probability distribution,
we gain insights into their statistical properties, which allow
us to develop an algorithmic noise model in Sec. IV C.

In Sec. V, we investigate the performance of RFE under the
algorithmic noise model proposed in Sec. IV C, namely, the
exponential decay noise. In Sec. V A, we give an upper bound
on the algorithm runtime performance and analyze its scaling
with respect to the desired degree of accuracy ε in the presence
of various strength of decay λ. Finally, in Sec. V B, we provide
a resource estimation of the RFE algorithm as compared to the
standard QPE algorithm based on our original fault-tolerant
overhead model proposed in Sec. IV A.

IV. NOISE MODELING

A. Fault-tolerant overhead model

We begin by establishing the connection between physical
and logical error rates. Currently, physical error rates range
from 10−3 to 10−4, which are too large for reliable implemen-
tations of the RFE algorithm. To overcome this, we analyze
the performance of our algorithm using lower logical error
rates achievable through fault-tolerant computational proto-
cols. Implementation errors at the circuit (logical) level arise
from approximations in the operations (e.g., gate synthesis
[27]) and uncorrected errors in the fault-tolerant protocols
[28] (including magic state distillation and quantum error

correction). The failure probabilities in both of these cases
can be systematically reduced by paying a cost in the number
of physical qubits and the number of physical operations.
Also, compiling abstract quantum operations to a logical
architecture layout using techniques such as lattice surgery
incur additional qubit costs [29–31]. These costs increase the
memory and time resources of the quantum computation. In
our analysis we will assume (1) that the overhead due to ap-
proximations in the operations has already been accounted for
in the logical level gate counts, (2) that the logical qubit and
gate overheads of magic state distillation are also accounted
for in the logical level counts, and (3) that a single code
distance d can sufficiently model the relationship between
error reduction and quantum error correction overhead costs
(noting that magic state factories and data qubits might use
different code distances in practice). Reasonable deviations
from these approximations would lead to slight changes in
the quantitative results but would not alter the qualitative
conclusions regarding the resource reduction afforded by the
RFE algorithm.

In order to quantify the reduction in error rates from the
physical to logical level, we adopt the model proposed in
Ref. [6]. This reduction in error rate comes at the cost of an
increase in time and number of physical qubits; equivalently,
these resources can be thought of as convertible into error rate
reduction. The quality of this conversion is governed by the
ability of the particular architecture to maintain low physical
gate error rates at scale. A model for this conversion as a
function of resource overhead d is expressed as

plogical = Ae−Bd , (5)

where the parameters A and B depend on the physical error
rates [6]. The typical values for these parameters in the case
of high (moderate) physical error rates are A = 0.5(0.4) and
B = 1.6(1.1) [6]. Alternative values of these parameters for
other approaches can be found in Table V in Ref. [32]. The
overhead parameter d can be thought of as the code distance in
the context of a surface code [33]. In this model, the physical
qubit overhead is approximately 2d2. In our subsequent anal-
ysis, we approximate the logical error model as a composition
of single-qubit depolarizing errors (13), where plogical (5) rep-
resents the depolarizing rate. Based on these relationships, we
can estimate the optimal performance of the RFE algorithm
for given architecture parameters A and B, as we will elaborate
in Sec. V A.

B. Logical gate error model

We consider a generic N-qubit Pauli error channel in order
to study the impact of logical errors on the RFE algorithm.
A generic N-qubit Pauli error channel acting on an N-qubit
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FIG. 4. Abstract circuit diagram of unitaries U1, . . . ,UD inter-
laced with applications of a generic N-qubit Pauli error channel �

in an N-qubit D-layer random quantum circuit.

density matrix ρ can be expressed by the following Kraus
decomposition:

�(ρ) =
4N −1∑
j=0

p jA jρA†
j , (6)

where Aj ∈ {I, X,Y, Z}⊗N and p j is the probability of error
Aj occurring. We note that here we have assumed the most
generic Pauli error channel for our logical errors to follow the
convention of most error-correction literature, which can later
be modified into different desirable error channels based on
the set of {p j} of our choosing. Given a quantum circuit that
implements the ideal unitary U = UD · · ·U2U1 of depth D, we
assume that the Pauli error � interleaves the layers of unitary
U1 through UD, where Ui(ρ) := UiρU †

i is the superoperator
describing the action of the unitary Ui on the density operator
ρ. The overall noisy circuit is illustrated in Fig. 4. The out-
come state ρ f on applying this noisy circuit to the initial state
ρi is given by

ρ f = � ◦ UD ◦ · · · ◦ � ◦ U1(ρi )

=
4N −1∑
jD=0

· · ·
4N −1∑
j1=0

p jD · · · p j1 (AjDUD · · · Aj1U1)ρi

× (U †
1 A†

j1
· · ·U †

DA†
jD

). (7)

After obtaining the noisy output quantum state (7), we now
focus on the various statistical properties of the final measure-
ment with respect to an N-qubit Pauli observable. Here we
introduce the notion of a “trajectory state,” defined as |ψj〉 ≡
|ψ j1... jD〉 := AjDUD . . . Aj1U1|0N 〉, where j is the index tuple
that includes all of j1, . . . , jD. Each of these trajectory states
|ψj〉 corresponds to one combination of errors occurring on ρi

among the 4ND possibilities with probability pj = p j1 . . . p jD .
Expressing the expectation of an observable P with respect to
the state ρ f in Eq. (7) in terms of these trajectory states, we
get

〈P〉 = Tr[� ◦ UD ◦ · · · ◦ � ◦ U1(ρi )P], (8)

= p0Tr[|ψ0〉〈ψ0|P] +
4ND−1∑

j=1

pjTr[|ψj〉〈ψj|P], (9)

where |ψ0〉 = UD . . .U1|0N 〉 is the ideal state on which no
error has occurred. To provide a tractable analysis of 〈P〉,
we propose the unitary 2-design model. Though different in
their applications, other works that consider 2-designs include
[34–36]. Under this approximation, we replace each of the
noisy trajectory states |ψj〉 with a randomly sampled state
from a spherical 2-design [37] (i.e., any distribution over
pure states whose first and second moments match those of
the Haar distribution of unitaries over N-qubits applied to a
reference state). This assumption establishes the statistics of
〈P〉, allowing us to compute its mean and variance as

E[〈P〉] = p0〈ψ0|P|ψ0〉 and (10)

Var[〈P〉] = 1

2N + 1

4ND−1∑
j=1

p2
j , (11)

respectively. By our assumption, each of these noisy trajec-
tories shares the same mean. Consequently, as an increasing
number of trajectories are averaged over to form the sec-
ond term in Eq. (10), their collective average will converge
towards this mean. A detailed calculation of the above quan-
tities is provided in Appendix A. We also point out that the
unitary 2-design model proposed here to establish Eq. (10)
and (11) assumes that the noisy trajectory states to be drawn
uniformly randomly from all possible states, which is a strong
assumption for errors happening in a worst-case scenario.
An improved version of the model would likely benefit from
system-specific knowledge of noises in the early fault-tolerant
devices and their corresponding distributions of noisy trajec-
tory states, which warrants further investigation.

Last, we briefly mention the potential impact of state
preparation errors on our analysis. Small amounts of error
in the initial state will not significantly affect the results of
our paper. However, larger amounts of error can have a more
pronounced effect. For example, if the initial state is not
perfectly prepared in the ground state, then the peak in Fig. 2
will be suppressed in height and additional peaks may appear,
each with a height proportional to the overlap between the
imperfect initial state |ψ̃〉 and other eigenstates |ψ〉 of U ,
i.e., |〈ψ̃ |ψ〉|2 < 1. To avoid overcomplicating the analysis, we
choose to omit the consideration of state preparation errors
in our noise modeling. We further note that a recent study
[20] investigates the performance of a similar-spirited EFTQC
algorithm for phase estimation as RFE under the effect of
imperfect state preparation. Combining our work with the
analysis of Ref. [20] would provide additional insights into
the interplay between different error sources in the early fault-
tolerant regime.

C. Logical gate error model to algorithmic noise model

Based on the statistics of 〈P〉 from Equations (10) and
(11), we propose an algorithmic noise model that captures
the effect of noise as a combination of exponential decay and
random fluctuations on our algorithm. The exponential decay
term stems from the p0 term in the mean of 〈P〉, whereas the
random fluctuation is related to the variance of 〈P〉. For the
RFE algorithm, the impact of error is to alter the probability
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(2) of the measurement outcome z as

Pr(z|k, φ; θ ) = 1
2 [1 + ze−λk cos(kθ − φ) + ηk,φ], (12)

where we introduce ηk,φ to represent a noise bias, i.e., random
fluctuations, and λ to parametrize an exponential attenuation
of outcome probability with respect to circuit depth k. Letting
ηk,φ and λ vary arbitrarily, this “algorithmic” noise model
is completely general and the algorithm would clearly not
succeed in all settings. The key to establishing a reasonable
algorithm performance is to limit, at least statistically, the
magnitude of ηk,φ under different strengths of λ, as we elabo-
rate later in this subsection.

We now analyze how RFE works in a noisy setting under
our proposed algorithmic noise model (12). Given, for exam-
ple, a single-qubit depolarizing error channel

D(ρ) = (1 − r)ρ + r

3
(XρX + Y ρY + ZρZ ), (13)

the N-qubit composite error channel is given by

�(ρ) = D⊗N (ρ), (14)

a special case of the N-qubit Pauli error channel from Eq. (6).
On applying the operation c-U , where U is assumed to have
D layers, k repetitions in the Hadamard test circuit, the prob-
ability of the signal remaining noiseless at the end is

ptotal = pk
0 = (1 − r)NDk, (15)

which decreases as a function of c-U depth number k. From
Eq. (10), we learn that the expected value of the quantum
expectation value 〈P〉 decays with the total probability ptotal

after k iterates. This corresponds to a decay in the signal, i.e.,

e−λ = (1 − r)ND, (16)

which makes the exponential decay parameter λ that we in-
troduced in Eq. (12) to be λ = − ln[(1 − r)ND]. Similarly, we
can substitute r from Eq. (13) into the variance expression
Var[〈P〉] from Eq. (11)

Var[〈P〉] = 1

2N + 1
{[(1 − r)2 + 3(r/3)2]NDk − (1 − r)2NDk}.

(17)

We note that Var[〈P〉] here establishes the expected deviation
β j on our signal f j in our algorithmic error model to be
discussed next.

Under the effects of random fluctuations and exponential
decay, we now arrive at a noisy expression of the expected
f̂ j (k, φ, z), similarly to the calculation in Eq. (3)

E[ f̂ j (k, φ, z)] = β j + 1

K

[
1 − eK (iθ−i2π j/J−λ)

1 − eiθ−i2π j/J−λ

]
, (18)

where β j = Ek[η j,k] is the expected deviation of our signal
related to the quantity Var[〈P〉]. We delay the detailed discus-
sion of the variance to Appendix A 2. There we numerically
show that the standard deviation of 〈P〉, σ〈P〉 := √

Var[〈P〉],
is negligible compared to the signal magnitude ∼1 for the
parameter settings of our interest in the EFTQC regime. This
means that the variance term drops out of our algorithmic error
model (12), leaving exponential decay on the ideal signal as
the sole source of error to be considered for the remaining

FIG. 5. Expected Re[g(k)] (a) and | f j | (b) under the exponential
decay noise with decay parameter λ = 0.01, 0.1, 0.5.

analysis. This result is indicative that our approach for model-
ing the noisy trajectory states with a unitary 2-design model is
indeed consistent with a global depolarizing noise, the effect
of which has been thoroughly studied in many EFTQC algo-
rithms [12,21,26]. Hence, we set the β j term to 0 for the rest
of the discussion.

The effect of exponential decay on the expected signal
from Eq. (18) is shown as a function of decay strength λ in
Fig. 5. We note that as λ increases, the signal g(k) decays
exponentially as a function of circuit depth k, which results
in a flatter spectrum in the expected Fourier signal amplitude
| f j |. This is problematic as the RFE algorithm relies on dis-
tinguishing the largest peak in the signal amplitude as our
predicted phase index. A flattened spectrum means that the
amplitude contrasts between neighboring peaks will decrease
and, as a result, more measurements are needed to overcome
shot noise in order to better discern the highest-amplitude
point in the spectrum.

V. RFE PERFORMANCE ANALYSIS AND DISCUSSION

A. Link to algorithm performance analysis

The goal of this section is to establish the connection be-
tween the algorithmic noise model proposed in the previous
section and the algorithm performance guarantee. As a re-
minder, the algorithm is said to succeed when the estimate θ̂ is
within ε of θ , see Fig. 2(b). Our analysis determines an upper
bound on the number of samples that are needed to ensure
success with probability greater than 1 − δ.

The estimated θ̂ is calculated based on the discrete fre-
quency point 2π j/J corresponding to the highest amplitude
of | f̂ j | [as in Eq. (4)]. As a reminder, the consideration of a
successful estimate of θ depends on whether θ is one of the
values of 2π j/J or not. In the case when θ falls onto one of the
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discrete frequency points, there are a total of three values of j
leading to successful estimates, i.e., j = Jθ/2π, Jθ/2π ± 1.
In the case when θ falls between two points in the discrete
frequency spectrum, as shown in Fig. 5(b), there are a total
of two neighboring points that constitute successful guesses,
namely �Jθ/2π� and �Jθ/2π�.

Let j∗ indicate the index of the “best estimate,” that is,
the integer closest to Jθ/2π . Any index j that is more than
1 away from Jθ/2π will not correspond to an ε-accurate
estimate according to our criteria for success. We refer to
such estimates as “bad estimates.” Hence, to guarantee that
the algorithm succeeds, it suffices that | f̂ j |2 < | f̂ j∗|2 for all j
with | j − Jθ/2π | > 1. In other words, this condition ensures
that no bad estimate has the largest | f j | so that the algorithm
picks one of the ε-accurate estimates. Note that this is not
a necessary condition; the algorithm could succeed even if
| f̂ j∗|2 were smaller than that of one of the bad estimates, as
long as the other (or one among the two others) ε-accurate
estimate had a magnitude larger than the rest.

The above algorithm success condition can be violated in
the presence of exponential decay noise, the effect of which
is shown in Fig. 5(b). The noise reduces contrast between
neighboring peaks, which can invalidate our success condition
if not enough measurement samples are collected to overcome
the uncertainty due to shot noise. One way to counteract this
deleterious effect is to perform extra measurements. Thus the
performance of our algorithm can be quantified by establish-
ing an upper bound on the number of measurements needed
to guarantee a certain success probability of the algorithm, for
various noise strengths and the desired accuracies. We point
interested readers to Appendix B for a proof of the algorithm
performance bound.

We now present the main result of our algorithm per-
formance analysis as follows. For target accuracy ε and
exponential decay parameter λ, a success probability greater
than 1 − δ can be ensured by using M samples satisfying

M � 8W (K (ε, λ), 2π/ε, λ) log(16π/δε), (19)

where W (K, J, λ) is a complicated function whose explicit
form is described in Eq. (B49) of Appendix B and K is chosen
as a function of ε and λ as described below. The algorithm
performance measured by the runtime upper bound in units
of c-U operations are plotted against 1/ε for various values
of λ in Fig. 6. In the low-noise regime, the runtime scales
as 1/ε, which resembles that of the original QPE algorithm
[24]. In the high-noise regime, the runtime scales as 1/ε2.
For a moderate amount of noise, the runtime performance of
the algorithm interpolates between the low- and high-noise
performance.

Due to the limited coherence time from the exponential
decay, we choose the maximal circuit depth K based on ε and
λ, given by K (ε, λ) = max{c� 1

c(aλ+εb/2π )�, 2}, where a, b, c ∈
R+. We note that here we set K to be tunable based on λ and
ε such that the runtime of the algorithm interpolates between
the Heisenberg-limit scaling [i.e., O(1/ε)] in the regime of
Jλ � 1 and the shot-noise-limit scaling [i.e., O(1/ε2)] in the
regime of Jλ � 1. For the specific functional form of K , we
employ the floor function and set c = 10 to bypass values of
K between 3 and 9, which were numerically found to be sub-

×

c
U

FIG. 6. This plot shows the runtime (measured in total number
of calls to the c-U operation) as a function of the target accuracy
inverse 1/ε in the presence of various exponential decay errors of
strength λ = 0.1, 0.01, 0.001, 0.0001, and 0.00001. As λ decreases,
the runtime transitions from a 1/ε2 scaling to a 1/ε scaling. The
upper and lower dotted lines show the O(1/ε2) and O(1/ε) scaling,
respectively.

optimal. The parameters a = 2 and b = 1.5 were then chosen
within this form to roughly minimize the runtime upper bound
over a range of values of J and λ. We note that since this
functional form of K is empirically derived to minimize the
runtime upper bound, in practice, a more rigorous treatment
for developing an optimal strategy for choosing K is necessary
in the future.

Our analysis of the algorithm in Appendix B differs from
that of Ref. [10] in two regards: (1) we separate the roles of
K and J enabling high-accuracy estimates in the high-noise
setting and (2) we take into consideration the correlation be-
tween the values of neighboring f̂ j , enabling a reduction in
sample complexity in the high-noise (low-K) setting. These
two features enable us to establish a unifying expression that
captures the performance of the algorithm in a wide variety
of scenarios, ranging from using (effectively) a Bernoulli es-
timation approach (i.e., K = 2) to a Heisenberg-limited phase
estimation approach [i.e., K = O(1/ε)]. A signature of the
switch in the algorithm’s strategy from the Bernoulli to the
Heisenberg approach to accommodate different scenarios of
error is marked by the cusp in the runtime upper bound of
RFE in Fig. 7.

Finally, we address the issue of determining the expo-
nential decay parameter λ. Our algorithm relies on some
knowledge of λ when setting the appropriate K (ε, λ). This
raises the question of whether it is necessary to accurately
determine λ and, if not, to what extent a discrepancy between
the presumed and actual values of λ would compromise the al-
gorithm’s performance. The precise level of accuracy required
to maintain the derived runtime remains an open question that
we defer to future investigation. Nonetheless, intuitively, we
anticipate that overestimating λ will result in using more sam-
ples than necessary, while underestimating λ will lead to using
fewer samples than required, thus slightly increasing the prob-
ability of failure. We further highlight that several established
benchmarking techniques, such as randomized benchmarking
[34] and cross-entropy benchmarking [38], can be utilized to
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×

FIG. 7. Comparison of runtime upper bounds (in units of er-
ror correction cycles) between RFE (red) and the traditional QPE
algorithm (blue) as a function of physical qubits available. These
upper bounds are proved in Appendices B and C, respectively. The
upper bound on the runtime of RFE may be higher than the standard
approach to QPE, RFE can be run using an order-of-magnitude fewer
physical qubits. The cusp occurring in the runtime upper bound of
RFE at ∼104 physical qubits marks the switch of the algorithm’s
strategy from using K = 2 to K > 2. In the regime of low physical
qubits, the runtime becomes extremely high due to the sampling
overhead that compensates for the high degree of error. The minimal
runtime for RFE occurs around 34 000 physical qubits, where the
increase in fault-tolerant runtime overhead is balanced with the de-
crease in number of c-U queries through the transition from O(1/ε2)
to O(1/ε) scaling (see Fig. 6). Note that the runtime of standard QPE
may be larger than presented; we have optimistically assumed that
a single sample of the QPE circuit suffices, though in practice one
might have to take several samples to ensure the failure rate is below
some tolerance.

estimate essential noise parameters like the depolarizing error
rate. These estimates can then be applied to determine the
value of λ using Eq. (16) in our methodology.

B. FT overhead estimation comparison

As an application of our established performance bound
in Eq. (19), in this section we provide a cost analysis of
implementing the RFE algorithm accounting for the error cor-
rection overhead. Specifically, we aim to compare the overall
runtime performance (measured in units of QEC cycles) of the
traditional QPE versus the RFE algorithm as a function of the
number of physical qubits required, which relates to distance
of the surface code d as described in Eq. (5).

In Fig. 7, we show this comparison for the case of a logical
c-U acting on 100 qubits with a unitary circuit depth 1000,
aiming for an accuracy of 0.1% and failure probability be-
low 1%. These order-of-magnitude parameters are chosen to
roughly correspond to the logical qubit and logical gate counts
involved in quantum computations that might outperform cor-
responding classical computations such as in Ref. [39]. One
notable characteristic of the traditional QPE algorithm is that
there is a minimal number of physical qubits or code distance
below which the desired algorithm success probability cannot
be achieved (refer to the detailed derivation in Appendix C).

Therefore, in order to implement the traditional QPE algo-
rithm reliably, a certain distance code or number of physical
qubits have to be attained. This is, however, not required by
the RFE algorithm. In principle, a higher runtime cost can
always be paid in exchange for fewer physical qubits or a
lower code distance in implementing the RFE algorithm. This
is particularly valuable in the EFTQC regime, where devices
have limited number of physical qubits, as depicted schemat-
ically in the green region of Fig. 7.

The RFE algorithm offers the advantage of requiring an
order-of-magnitude fewer qubits compared to the traditional
QPE algorithm. However, Fig. 7 also shows that the runtime
upper bound of RFE in the FTQC regime is approximately
four orders of magnitude larger than that of traditional QPE.
Nevertheless, we expect that the aforementioned upper bound
is conservative for two main reasons. First, the analysis in-
corporates several analytical bounds that result in a more
cautious choice of M than what is likely necessary (a well-
known phenomenon in algorithm analysis). We expect that
the empirical runtime would be significantly smaller than the
derived upper bounds and leave an investigation of this to
future work. Second, the algorithm itself can be optimized
to enhance performance. Examples of potential improvements
include (1) tailoring the distribution from which k is sampled
based on the noise characteristics of the device and (2) em-
ploying more sophisticated fitting strategies for extracting θ̂

from the Fourier transformed data. In addition, we note that
the runtime of the RFE algorithm in reality can be further
reduced via parallelization across multiple noisy-intermediate
scale devices, as opposed to FTQC algorithms which require
the execution of a long circuit on a fault-tolerant machine.

VI. CCONCLUSIONS AND OUTLOOK

In summary, we have developed a methodology for sys-
tematically analyzing the performance of a class of quantum
algorithms suited for early fault-tolerant quantum computers.
This is motivated by the need to understand the quantum
resources necessary for these algorithms to achieve quantum
advantage. Our approach can be extended to encompass var-
ious error models, fault-tolerant resource overhead models,
and a wide range of quantum algorithms. By offering a gen-
eralized framework, our methodology paves the way for a
comprehensive understanding of resource requirements and
performance trade-offs in the realm of early fault-tolerant
quantum computing.

As an application of our methodology, we analyzed the
performance of the recently proposed RFE algorithm [10].
Studying the circuit-level error under our proposed Haar tra-
jectory model, we found that the noise can be best described
by an exponential decay at the algorithmic level. We devel-
oped a variant of this algorithm that interpolates between low
depth and high depth (based on the strength of the exponential
decay) and analytically derived its runtime upper bound as
a function of target accuracy and failure rate. Studying the
algorithm under a continuum of noise strengths, we found
that the runtime upper bound interpolates between O(1/ε2)
(shot-noise limited scaling) and O(1/ε) (Heisenberg scaling)
in the high- to low-noise limits.
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Based on the runtime upper bound, we then carried out
a fault-tolerant overhead analysis, comparing RFE with the
traditional QPE in the problem instance of 100 logical qubits.
Our analysis showed that the RFE algorithm can be imple-
mented with an order-of-magnitude fewer physical qubits than
the traditional QPE algorithm, albeit with a substantial in-
crease in runtime. This trade-off allows for an earlier onset
of practical quantum advantage in the EFTQC regime, where
error correction remains expensive.

There are several crucial research directions that hold
promise for delivering quantum computation with practical
advantage:

First, it is imperative to develop more realistic circuit-level
error models. Our methodology relies on the assumption that
the sampled Haar trajectory states are derived from a unitary
2-design, or at the very least, their statistics can be well-
approximated by those of a 2-design. To better understand the
limitations of this model, further numerical investigations are
required. In future studies, it would be valuable to develop
an empirically derived model that captures the expected bias
and variance of various circuit-level errors. We anticipate that
the structure of the specific quantum circuits and error models
of interest will introduce nonuniformity in the distribution of
noisy trajectories. This nonuniformity could in principle shift
E[〈P〉] and increase Var[〈P〉], leading to a worse algorithm
performance than that predicted by the current analysis. By
addressing these aspects, future studies can provide more
realistic noise settings and evaluate the performance of RFE
under those settings.

Second, there is a need to develop fault-tolerant overhead
models specifically tailored for early fault-tolerant quantum
computers [9]. Recent work [40] has shown that small devia-
tions of fault-tolerant architectures from the ideal assumptions
can substantially impact the performance of quantum algo-
rithms. We anticipate that by including such realistic models
of fault-tolerant architectures into the methodology of this
work, the importance of robust quantum algorithms will be
increasingly apparent.

Third, as briefly mentioned in Sec. IV B, we have ex-
clusively considered circuit-level errors while neglecting the
effect of state preparation errors in our noise modeling. Ex-
tending our methodology to include state preparation errors
is a plausible avenue for further exploration and would likely
require an algorithm-specific analysis. We note that parallel to
our work, some related recent studies (e.g., Ref. [20]) provide
complementary insights by studying the impact of state prepa-
ration errors on the performance of a similar-spirited EFTQC
algorithm to RFE. A potential future direction is to study
the expected performance of these relatively shallow-circuit
algorithms under a mixture of the realistic error models, which
early fault-tolerant devices are known to suffer from.

Furthermore, it is crucial to extend our methodology to
analyze alternative EFTQC algorithms rather than RFE to-
wards solving practical problems. We have chosen to analyze
the RFE algorithm as a proof-of-principle case study to
demonstrate the viability of our methodology, for the RFE is
analytically tractable, which comes at the price of a potential
suboptimal performance. We note that, however, our method-
ology is readily applicable to more advanced versions of
EFTQC algorithms, such as the QCELS algorithm, a variant

of the phase estimation algorithm proposed in Ref. [19]. For
example, the noise modeling and FT overhead estimation de-
tailed in our paper can be directly transferable to the QCELS
robustness analysis similar to that outlined in Ref. [21]. In
addition, our noise modeling scheme allows for the substi-
tution of depolarizing errors with alternative structured noise
models, such as dephasing errors, with simple modifications
to the statistics of the error channels modeled in Sec. IV. We
expect that these alternative algorithms will also be found to
reduce quantum resources in the early fault-tolerant regime.

We envision that by extending our methodology to en-
compass existing algorithms and future developments in the
EFTQC regime, we can enable their comprehensive evalua-
tion and enhance the practical utilization of early fault-tolerant
quantum computers.
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APPENDIX A: STATISTICS OF QUANTUM
EXPECTATION VALUE

1. Expectation value E[〈P〉]

For a generic N-qubit Pauli operator P, the expected value
of the quantum expectation value 〈P〉 over all possible Haar
trajectory states sampled from a spherical 2-design is given
by

E[〈P〉] = p0E[Tr[P|ψ0〉〈ψ0|]] +
4ND−1∑

j=1

pjE[Tr[P|ψj〉〈ψj|]],

(A1)

= p0〈ψ0|P|ψ0〉

+
4ND−1∑

j=1

pj

(
1

|S2N |
∫

ψj∈S2N
Tr[P|ψj〉〈ψj|]dψj

)
,

(A2)

= p0〈ψ0|P|ψ0〉

+
4ND−1∑

j=1

pj

(
Tr

[
P

1

|S2N |
∫

ψj∈S2N
|ψj〉〈ψj|dψj

])
.

(A3)

Here we have distributed the integral within the Tr operator
due to its linearity and arrived at the expression of an average
N-qubit Haar state

1

|S2N |
∫

ψj∈S2N
|ψj〉〈ψj|dψj = I/2N . (A4)

It follows that the expectation value is

E[〈P〉] = p0〈ψ0|P|ψ0〉 +
4ND−1∑

j=1

pjTr[PI/2N ], (A5)
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= p0〈ψ0|P|ψ0〉 +
4ND−1∑

j=1

pj/2N Tr[P], (A6)

= p0〈ψ0|P|ψ0〉. (A7)

2. Variance Var[〈P〉]

Similarly, we can compute the variance of 〈P〉
Var[〈P〉] = E[〈P〉2] − E[〈P〉]2 = E[〈P〉2] − p2

0〈ψ0|P|ψ0〉2,

(A8)

where

E[〈P〉2] =
4ND−1∑
i,j=0

pi pjE[Tr[P|ψi〉〈ψi|]Tr[P|ψj〉〈ψj|]] (A9)

=
4ND−1∑
i,j=0

pi pj

(
1

|S2N |2
∫

ψi∈S2N

∫
ψj∈S2N

Tr[P|ψi〉〈ψi|]

×Tr[P|ψj〉〈ψj|]dψidψj

)
. (A10)

We note that here the summation of cross-terms where i �= j
within Eq. (A10) evaluates to 0. Summing the rest of the terms
where i = j, excluding the noiseless term p2

0〈ψ0|P|ψ0〉2, we
get

Var[〈P〉] =
4ND−1∑
j=1

p2
jE[Tr[P|ψj〉〈ψj|]2], (A11)

=
4ND−1∑

j=1

p2
j

{
1

|S2N |
∫

ψj∈S2N
Tr[(P ⊗ P)|ψj〉〈ψj|

⊗|ψj〉〈ψj|]dψj

}
, (A12)

=
4ND−1∑

j=1

p2
j

{
Tr

[
(P ⊗ P)

1

|S2N |
∫

ψj∈S2N
|ψj〉〈ψj|

⊗|ψj〉〈ψj|dψj

]}
, (A13)

=
4ND−1∑

j=1

p2
j Tr

[
P ⊗ P

I ⊗ I + SWAP

2Tr[(I ⊗ I + SWAP)/2]

]
,

(A14)

=
4ND−1∑

j=1

p2
j Tr

[
P ⊗ P + (P ⊗ P)SWAP

Tr[I ⊗ I + SWAP]

]
, (A15)

=
4ND−1∑

j=1

p2
j

(
Tr

[
P ⊗ P

Tr[I ⊗ I + SWAP]

]

+Tr

[
(P ⊗ P)SWAP

Tr[I ⊗ I + SWAP]

])
, (A16)

=
4ND−1∑

j=1

p2
j

Tr[I ⊗ I + SWAP]
Tr[(P ⊗ P)SWAP],

(A17)

=
4ND−1∑

j=1

p2
j

Tr[I ⊗ I + SWAP]
Tr[P2], (A18)

= 2N

Tr[I ⊗ I + SWAP]

4ND−1∑
j=1

p2
j , (A19)

= 2N

Tr[I ⊗ I] + Tr[SWAP]

4ND−1∑
j=1

p2
j , (A20)

= 2N

22N + 2N

4ND−1∑
j=1

p2
j , (A21)

= 1

2N + 1

4ND−1∑
j=1

p2
j . (A22)

For the single-qubit depolarizing error channel proposed
in Eq. (13) with error probability r, the variance expression
becomes

Var[〈P〉] = 1

2N + 1

⎡
⎣
⎛
⎝4ND−1∑

j=0

p2
j

⎞
⎠ − p2

0

⎤
⎦, (A23)

= 1

2N + 1
{[(1 − r)2 + 3(r/3)2]NDk − (1 − r)2NDk}.

(A24)

Figure 8 illustrates the standard deviation of 〈P〉, σ〈P〉 :=√
Var[〈P〉] as a function of depths D × k and single-qubit

depolarizing rate r, considering number of logical qubits N =
1, 10, 100. We observe that σ〈P〉 remains relatively small over-
all for N = 100, while it is comparatively larger for N = 1 and
10. We note that σ〈P〉 is particularly large for low-depth and
high-error settings. In the extreme case of N = 1, σ〈P〉 reaches
a concerning high magnitude ∼10−2, which is too large to be
overlooked in our algorithmic error model.

Nonetheless, we opted to exclude the random fluctua-
tion term stemming from variance in our algorithmic error
model throughout our analysis. This decision aligns with
the objective of our study, which focuses on examining the
performance of devices in the early fault-tolerant regime.
Specifically, we are interested in the parameter regime charac-
terized by r = plogical � 10−2, N � 100, and D × k � 1000.
In this regime, the standard deviation σ〈P〉 remains sufficiently
small, justifying our assumption to omit it from the algorith-
mic error model. We point out that the performance of the
RFE algorithm under the NISQ setting, where plogical > 10−2,
N < 100, and D × k < 1000, falls outside the scope of our
study and merits further investigation.

APPENDIX B: ALGORITHM PERFORMANCE

In this section, we detail the analytical derivation of the
performance upper bound of the RFE algorithm in the pres-
ence of exponential decay noise with strength λ. Rather than
presenting these results in a theorem-proof format, we choose
a more narrative presentation to facilitate broader accessibil-
ity. Based on the success condition | f̂ j |2 < | f̂ j∗|2 for all j with
| j − �| > 1, where � = Jθ/2π , as discussed in Sec. V A, the
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FIG. 8. Standard deviation of 〈P〉 as a function of D × k and r is plotted on a log scale for N = 1, 10, 100.

algorithm failure probability can be upper bounded using the
union bound

Pr(fail) �
∑

| j−�|�1

Pr(fail j ), (B1)

� (J − 2) max
j

Pr(fail j ), (B2)

� J max
j

Pr(fail j ). (B3)

We will upper bound this worst-case failure probability using
Chebyshev’s inequality.

In previous analyses of the RFE algorithm [10], we had
analyzed the likelihood that every Fourier estimate f̂ j was
within some distance of its mean f j . This approach does not
capture the performance of the algorithm in the regime of
small K , as the correlation between Fourier estimates, f̂ j and
f̂ j′ , is largely overlooked. As a result, the success probability
bound becomes too loose to capture the actual performance
scaling of the algorithm.

To account for the correlation among the Fourier estimates,
we will consider a change of variables,

ĉ j, j∗ ≡ f̂ j + f̂ j∗ (B4)

d̂ j, j∗ ≡ f̂ j − f̂ j∗. (B5)

The motivation for this choice is the fact that d̂ j, j∗ captures
correlation between f̂ j and f̂ j∗ and therefore will have small
variance for nearby j, j∗ when K is small compared to J .
In contrast, ignoring the correlation between f̂ j and f̂ j∗ and
treating their variances separately, as was done in Ref. [10],
leads to an overestimation of the algorithm failure probability.
We will define the expectation values of these quantities to be

c j, j′ ≡ f j + f j′ (B6)

d j, j′ ≡ f j − f j′ . (B7)

The sufficient condition for success can be expressed as

Re(ĉ j, j∗d̂∗
j, j∗) < 0 for all j with | j − Jθ/2π | > 1 (B8)

using the following relationship:

| f̂ j |2 − | f̂ j∗|2 = Re[( f̂ j + f̂ j∗)( f̂ j − f̂ j∗)∗]

= Re(ĉ j, j∗d̂∗
j, j∗). (B9)

This condition also holds for c j, j∗ and d j, j∗, which are the
expected values of ĉ j, j∗ and d̂ j, j∗, respectively. It is the sta-

tistical fluctuations from the finite sampling that can cause the
condition to fail. As the number of samples is increased, the
estimates ĉ j, j∗ and d̂ j, j∗ will be expected to increasingly con-
centrate about their means. We can quantify this concentration
with the following version of the central limit theorem [41],

Pr

(∣∣∣∣∣ 1

M

M∑
i=1

q̂i − Eq̂

∣∣∣∣∣ > t

)
� 4 exp[Mt2/8Var(q̂)], (B10)

where q̂ is any continuous random complex variable. We use
the Chebyshev inequality to upper bound the likelihood that
the estimator deviates from its ideal expected value:

Pr(|ĉ − Eĉ| > χ ) � 4 exp[−Mχ2/8Var(ĉ)]

Pr(|d̂ − Ed̂| > η) � 4 exp[−Mη2/8Var(d̂ )], (B11)

where Var(ĉ) and Var(d̂ ) are the single sample variances of ĉ
and d̂ . Thus, we have two free parameters (χ and η) to choose
in a manner such that (1) |ĉ − Eĉ| � χ and |d̂ − Ed̂| � η im-
ply success (letting us upper bound the failure probability) and
(2) the number of samples does not become too high. While it
does not necessarily minimize the number of samples, we will
choose the value of χ such that the upper bounds in Eq. (B11)

become equal: χ = η

√
Var(ĉ)/Var(d̂ ).

Next we aim to establish a sufficiently large value for

η, while still ensuring that |ĉ − Eĉ| � η

√
Var(ĉ)/Var(d̂ )

and |d̂ − Ed̂| � η imply success. This will be achieved
by recasting the success condition. Note that the condition
Re(ĉ j, j∗d̂∗

j, j∗) < 0 is independent of the magnitudes of ĉ j, j∗
and d̂∗

j, j∗; it only depends on the relative phase angle between
these two complex numbers. Thus, an equivalent condition for
algorithm success is that, for all j with | j − Jθ/2π | > 1, the
phase angle formed between complex values ĉ j, j∗ and d̂ j, j∗ is
not within [−π/2, π/2]. For the time being, we will ease the
notation by dropping the j, j∗ subscripts.

We use this phase-angle condition to establish a sufficient
condition for success in terms of the allowable sizes of de-
viations from the mean. The largest possible angle formed
between ĉ and c is given by sin(γ ) = |ĉ − c|/|c| and the
largest possible angle formed between d̂ and d is given by
sin(τ ) = |d̂ − d|/|d|. We also define the angle between c and
d according to |c||d| cos(α) = Re(cd∗). With these defini-
tions, the smallest possible phase angle formed between ĉ and
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d̂ is α − γ − τ , hence, the condition for success becomes

π/2 < α − γ − τ. (B12)

We use the bounds of x � arcsin x � πx/2 for 0 � x �
1 to establish a sufficient condition for success that is
amenable to using the Chebyshev inequality. First, we have
that γ + τ � π

2 (|ĉ − c|/|c| + |d̂ − d|/|d|). Next we have that
cos(α) = − sin(α − π/2), and so arcsin[−Re(cd∗)/|c||d|] =
α − π/2. Using the lower bound on arcsin, we then have
−Re(cd∗)/|c||d| � α − π/2. From the chain of inequalities

− Re(cd∗)/|c||d| < α − π/2 < γ

+ τ <
π

2
(|ĉ − c|/|c| + |d̂ − d|/|d|), (B13)

we can establish the following implication:

α − π/2 < γ + τ

⇒
−Re(cd∗)/|c||d| <

π

2
(|ĉ − c|/|c| + |d̂ − d|/|d|). (B14)

The contrapositive of this statement gives our sufficient con-
dition for algorithm success

−Re(cd∗) >
π

2
(|c||d̂ − d| + |d||ĉ − c|)

⇒
π/2 < α − γ − τ. (B15)

We can then set the maximal allowable value for η accord-

ing to Eq. (B15). Defining ρ =
√

Var(ĉ)/Var(d̂ ), this is

η = − 2

π

Re(cd∗)

|c| + |d|ρ

= 2

π

| f̂ j∗|2 − | f̂ j |2
|c| + |d|ρ . (B16)

Putting this all together, the probability of failure is upper
bounded by

Pr(fail) � J max
j

Pr(fail j ), (B17)

� J max
j

Pr(|ĉ − c| > χ or |d̂ − d| > η), (B18)

� J max
j

[Pr(|ĉ − c| > χ ) + Pr(|d̂ − d| > η)],

(B19)

� 8J exp[−Mη2
j′, j∗/8Var(d̂ j′, j∗)], (B20)

where we have reintroduced the indices j′, j∗ for clarity and
are using j′ to indicate the index that realizes the maximiza-
tion. Let W (K, J, λ) be a parameterized upper bound on the
quantity Var(d̂ j′, j∗)/η2

j′, j∗ that is independent of θ , j∗, and j′.
To ensure that P(fail) � δ, we can choose M to be a value
such that

8J exp
[ − Mη2

j′, j∗/8Var(d̂ j′, j∗)
]
� δ. (B21)

We can then solve for such a value of M as

− Mη2
j′, j∗/8Var(d̂ j′, j∗) � log (δ/8J ), (B22)

M � 8Var(d̂ j′, j∗)

η2
j′, j∗

log(8J/δ). (B23)

To achieve a high probability of success, it is also sufficient to
set M to be greater than a value that is larger than the right-
hand side above. Let W (K, J, λ) be a function satisfying

8W (K, J, λ) log(8J/δ) � 8Var(d̂ j′, j∗)

η2
j′, j∗

log(8J/δ). (B24)

Then, setting

M � 8W (K, J, λ) log(8J/δ) (B25)

is sufficient to ensure success with high probability. As de-
scribed in the main text, K and J are set as functions of λ and
ε, given by

J ← 2π/ε, (B26)

K ← max{�[(1/λ)−1 + (2π/ε)−1]−1�, 2}, (B27)

where we see that K is a harmonic average of J and 1/λ and
K � J . This will make the number of measurements M an
implicit function of ε and λ.

We now establish a function W that satisfies W � Var(d̂ )
η2 .

From Eq. (B16), we can establish the upper bound,√
Var(d̂ )

η
= π

2

σd̂ |c| + σĉ|d|
| f j∗|2 − | f j |2 , (B28)

� 2π
σd̂ + |d|

| f j∗|2 − | f j |2 , (B29)

where in the second line we have used the fact that both σĉ =√
Var(ĉ) and |c| are upper bounded by 4. This follows from

the fact that for a single sample estimate, ĉ has magnitude at
most 4 as it is the sum of two quantities that have magnitude
at most 2. Since Var(d̂ ) = E(|d̂|2) − d2 is positive, we have
that E(|d̂|2) � Var(d̂ ) and E(|d̂|2) � |d|2. This lets us further

upper bound
√

Var(d̂ )
η2 as

√
Var(d̂ )

η
� 4π

√
E(|d̂|2)

| f j∗|2 − | f j |2 . (B30)

Using ω = e−i2π/J , E(|d̂|2) is computed to be

E(|d̂|2) = 4E[|e−iφz(ω jk − ω j∗k )|2], (B31)

= 8{1 − ERe[ωk( j∗− j)]}, (B32)

= 8 − 4

K

[
1 − ωK ( j∗− j)

1 − ω j∗− j
+ 1 − ω−K ( j∗− j)

1 − ω− j∗+ j

]
,

(B33)

= 8 − 8 cos

[
π (K − 1)

j∗ − j

J

]
sin(πK j∗− j

J )

K sin(π j∗− j
J )

.

(B34)
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Defining x = π ( j∗ − j)/J , we establish a function upper
bounding the quantity above

E(|d̂|2) = 8

{
1−[cos(Kx) cos(x)+ sin(Kx) sin(x)]

sin(Kx)

K sin(x)

}
,

(B35)

= 8

[
1 − sin(2Kx)

2K tan(x)
− sin2(Kx)/K

]
, (B36)

� 8

[
1 − sin(2Kx)

2K tan(x)

]
, (B37)

� 8

[
1 − sin(2Kx)

2K tan(x)

]
, (B38)

� 32

3
{1 − exp[−4(Kx)2/7]}, (B39)

where the last inequality is established by using numerical
software and exploiting the fact that K � 2. Observe that
this function is monotonically increasing in x. We rewrite
x = (θ − 2π j/J )/2 − (θ − 2π j∗/J )/2. Using the fact that
|θ − 2π j∗/J| � π/J and that the above function is monotonic
in x, we obtain an upper bound by setting |x| = π/J + |θ −
2π j/J|/2,

E(|d̂|2) � 32

3

{
1 − exp

[
− 4K2

7
(π/J + |θ − 2π j/J|/2)2

]}

≡ Q(K, J; j). (B40)

Next we lower bound the denominator of Eq. (B30). From
Eq. (18), we calculate

| f j |2 = e−(K−1)λ

K2

{
cosh(Kλ) − cos[K (θ − 2π j/J )]

cosh(λ) − cos(θ − 2π j/J )

}
.

(B41)

Defining y∗ = θ − 2π j ∗ /J , we have that |y∗| � ε/2 = π/J .
Note that the above function, for j = j∗, is symmetric about
y∗ = 0 and thus depends only on |y∗|. Using the fact that
K � J , on the range 0 � |y∗| � π/J , the above function is
monotonically decreasing (as observed numerically). Thus,
it achieves its minimum at |y∗| = π/J . From this we lower
bound | f j∗|2 as

| f j∗|2 � e−(K−1)λ

K2

[
cosh(Kλ) − cos(πK/J )

cosh(λ) − cos(π/J )

]
≡ R(K, J, λ).

(B42)

Last, we upper bound the square magnitude of the Fourier
coefficient of the nonadjacent frequencies, | f j |2, where
|Jθ/2π − j| � 1. To simplify the analysis, we define

m(x; K, λ) := e−(K−1)λ

K2

[
cosh(Kλ) − cos(x)

cosh(λ) − cos(x/K )

]
, (B43)

such that | f j |2 = m(K (θ − 2π j/J ); K, λ). We will establish
that

g(x; K, λ) =
(

1 − r

[
1 − tanh2

(
λ

2

)]

×
{

1 −
[
cos2

(πx

K

)] K2

4

})
m(0; K, λ)

is an upper bound of m(x; K, λ) when r = 0.89. Consider two
cases: (1) K = 2 and (2) K > 2. In the case of K = 2, through
use of trigonometric identities, it can be shown that g is an
exact expression for m when r = 1. By setting r = 0.89 < 1,
g can only increase given that r multiplies a positive-valued
function. Therefore, setting r = 0.89 leads to g being an upper
bound for m in the case of K = 2. In the case of K > 2, we

will establish that 1 − [cos2( πx
K )]

K2

4 is a lower bound of

1 − g(x; K, λ)

r[1 − tanh2(λ/2)]
. (B44)

First, we use the fact that the above function is monotonically
decreasing in λ > 0 and the fact that λ is upper bounded, to
set λ to this value and establish a new λ-independent function
of K and x that is a lower bound. Since, as set in the main
text, K = max{10� 1

10(2λ+3/2J )�, 2} � 1
2λ+3/2J � 1

2λ
, we have

λ � 1/2K . Since Eq. (B44) is monotonically decreasing in λ,
setting λ to its maximum value of 1/2K yields a lower bound
for Eq. (B44) (on the valid domain of λ) that is only a function
of K and x. It can then be numerically established that for all
integer K � 2, we have

1 − g(x; K, λ)

r[1 − tanh2(λ/2)]
� 1 − g(x; K, 1/2K )

r[1 − tanh2(1/4K )]

� 1 − cosK2/2 (πx/K ). (B45)

This gives us the desired functional upper bound on | f j |2 as

| f j |2 � e−(K−1)λ

K2

[
cosh(Kλ) − 1

cosh(λ) − 1

]

×
(

1 − 0.89

[
1 − tanh2

(
λ

2

)]

× {1 − cosK2/2 [(θ − 2π j/J )/2]}
)

≡ S(K, J, λ; j),

(B46)

and this function S(K, J, λ; j) decreases monotonically away
from j = Jθ/2π on the interval −J/2 � j − Jθ/2π � J/2,
which will be used later.

Putting the previous bounds together, we have that√
Var(d̂ )

η
� 4π

√
E(|d̂|2)

| f j∗|2 − | f j |2

� 4π

√
Q(K, J; j)

R(K, J, λ) − S(K, J, λ; j)
, (B47)

where Q, R, and S are defined in Eqs. (B40), (B42), and
(B46), respectively. This overall function is monotonically
decreasing in | j − Jθ/2π |, and thus setting this value to its
smallest allowed value of | j − Jθ/2π | = 1 (the nonadjacent
condition) leads to an upper bound that is independent of j∗
and j,

Var(d̂ )

η2
� 16π2 Q(K, J; Jθ/2π + 1)

[R(K, J, λ) − S(K, J, λ; Jθ/2π + 1)]2

≡ W (K, J, λ). (B48)
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From this we are able to establish the final bound on the suffi-
cient number of measurements to ensure an accurate estimate
with high probability,

M � 128π2 log(8J/δ)

× Q(K, J; Jθ/2π + 1)

[R(K, J, λ) − S(K, J, λ; Jθ/2π + 1)]2
, (B49)

where Q, R, and S are defined in Eqs. (B40), (B42), and
(B46), respectively. We note that, although θ appears in the
arguments of Q and S, this cancels with the θ in the definition,
making the overall expression independent of θ .

APPENDIX C: COMPARISON TO COST OF STANDARD
QUANTUM PHASE ESTIMATION

In this section, we analyze the cost of the standard QPE
algorithm as described in Ref. [42]. This allows us to com-
pare the fault-tolerant overhead associated with the traditional
approach to the frugal approach that we have taken using the
RFE algorithm.

Based on Ref. [42], the standard QPE algorithm can
achieve an ε-accurate estimation with probability greater
than 1 − δ′ by using n = �log2( 1

ε
)� + �log2( 1

2δ
+ 1

2 )� ancil-
lary qubits and performing 2n+1 − 1 c-U operations in the
circuit. We note that here we have ignored the cost of the
quantum Fourier transform operations, as in most cases it
is negligible compared to the rest of the circuit. While this
analysis assumes that the circuit is implemented perfectly, in
practice, there will be some implementation failure probabil-
ity.

The standard approach for analyzing the failure rate of
quantum algorithms is to upper bound the failure rate as

δ � δalg + δimp. (C1)

Here the implementation failure probability δimp accounts
for any uncorrected errors within the fault-tolerant proto-
cols, contributing to the overall algorithm failure probability
δ alongside the standard algorithm failure probability δalg.
This assumption holds reasonably well in terms of asymptotic
scaling, with the fault-tolerant overhead exhibiting a logarith-
mic dependency on the inverse failure rate. However, in the
context of early fault-tolerant systems where resources are
scarce, a more economical allocation of resources becomes
advantageous.

Given a target total failure rate of δ, the allocation of
the error budget between the algorithm failure and the im-
plementation failure becomes a crucial decision. Though not
optimal, a nearly optimal approach is to evenly distribute an
error budget of δ/2 to both failure modes. Consequently, this
establishes a lower bound on the required number of ancilla
qubits,

n �
⌈

log2

(
1

ε

)⌉
+
⌈

log2

(
1

δ
+ 1

2

)⌉
. (C2)

Similarly, the number of c-U operations in the circuit satisfies
the lower bound

#(c − U ) � 1

ε

(
1

δ
+ 1

2

)
− 1. (C3)

We will only slightly overcount resources by dropping the −1
above. In order to ensure that δimp � δ/2, each c-U compo-
nent must fail with a probability no greater than

δc−U � δ

2

1

2n+1 − 1
� δ

2
2−(n+1) = εδ2

1 + δ
. (C4)

We note that here the implementation error solely arises
from QEC failure. As a reminder, the logical error rate for
a surface code is assumed by the model plogical = Ae−Bd (as
discussed in Sec. IV A), where A and B are constants from
empirical observation of the surface code scaling and d is
the distance of the surface code. Assuming that each logical
c-U operation includes ∼ND physical operations, where N
is the number of qubits and D the circuit depth, the failure
probability of one logical c-U is then

δc−U � NDplogical. (C5)

To ensure that the c-U logical failure rate in Eq. (C5) is
bounded by the maximal acceptable failure probability as
required by the algorithm from Eq. (C4), we can therefore
bound the logical error rate plogical,

plogical �
εδ2

ND(1 + δ)
, (C6)

whereby we can then bound the minimal distance require to
reach the desired success probability δ for the traditional QPE
algorithm

d � 1

B
ln

[
NAD(1 + δ)

εδ2

]
. (C7)

In the case of a high physical error rate with A = 0.5
and B = 1.6, achieving a success probability of δ = 10−2 and
precision of ε = 10−3 for a QPE problem instance of N = 100
and D = 1000 requires a minimal distance of 18 with the tra-
ditional algorithm. This corresponds to approximately 64 800
physical qubits, currently surpasses the capabilities of both
NISQ and EFTQC devices.

To illustrate this, in Fig. 7, we compare the runtime, mea-
sured in the number of error correction cycles, between QPE
and RFE as a function of the required physical qubits 2Nd2.
It is important to note that while RFE has a higher runtime
upper bound, it offers a trade-off between runtime and the
required distance or number of physical qubits in the EFTQC
regime (as indicated by the shaded green region). This trade-
off becomes particularly valuable for upcoming devices that
can accommodate a few thousand qubits and support error-
correcting codes of moderate distances.

In practice, as mentioned in Sec. V B of the main text, the
actual runtime of RFE is expected to be significantly lower
than the calculated upper bound. Additionally, we note that the
runtime cost can be effectively reduced through paralleliza-
tion across multiple devices of smaller sizes, leveraging the
statistical nature of the RFE algorithm.
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