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Sliding dynamics for bubble phases on periodic modulated substrates
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We analyze a bubble-forming system composed of particles with competing long-range repulsive and short-
range attractive interactions driven over a quasi-one-dimensional periodic substrate. We find various pinned
and sliding phases as a function of substrate strength and drive amplitude. When the substrate is weak, a
pinned bubble phase appears that depins elastically into a sliding bubble lattice. For stronger substrates, we find
anisotropic bubbles, disordered bubbles, and stripe phases. Plastic depinning occurs via the hopping of individual
particles from one bubble to the next in a pinned bubble lattice, and as the drive increases, there is a transition
to a state where all of the bubbles are moving but are continuously shedding and absorbing individual particles.
This is followed at high drives by a moving bubble lattice in which the particles can no longer escape their
individual bubbles. The transition between the plastic and elastic sliding phases can be detected via signatures in
the velocity-force curves, differential conductivity, and noise. When the bubbles shrink due to an increase in the
attractive interaction term, they fit better inside the pinning troughs and become more strongly pinned, leading
to a reentrant pinning phase. For weaker attractive terms, the size of the bubbles becomes greater than the width
of the pinning troughs and the depinning becomes elastic with a reduced depinning threshold.
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I. INTRODUCTION

There are a variety of particle systems that can form
bubble phases exhibiting two length scales, with the shorter
scale determined by the average spacing between particles
that are confined inside an individual bubble, and the larger
scale arising from the assembly of the bubbles themselves
into an ordered lattice. Bubble lattices typically appear when
there is a competition between attractive and repulsive in-
teractions, such as short-range attraction and longer-range
repulsion [1–9]. The bubbles can distort and break up into
smaller bubbles as a function of temperature or as a result of
interacting with quenched disorder [2]. Bubble phases known
as mesophases arise in colloidal systems that have multiple
length scales, such as multistep repulsive interactions [10–13].
Bubble phases can also appear in superconducting systems
for vortices with competing interactions [14–20], as well as
for magnetic skyrmion-superconducting vortex hybrids [21].
Bubbles containing two or more particles can form when
charge ordering occurs in two-dimensional election systems
[22–27]. In a system with competing interactions, the bubbles
are often only one of several types of possible phases, includ-
ing crystals, stripes, and void lattices, that arise as a function
of particle density or the ratio of the repulsive and attractive
interaction terms [7,11,13,28–30]. The bubble phases occur
for lower densities or stronger attractive interaction terms.
There are also a variety of bubblelike systems where the
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bubble textures can distort or the shape can change, including
emulsions and magnetic textures such as skyrmions [31].

Bubble lattices can interact with a substrate, which for
soft matter systems could be created using optical trap arrays
[32–37] or patterned surfaces [38]. In solid-state systems,
ordered substrates can be made using various nanostructur-
ing techniques. One of the simplest substrate geometries
is a periodic quasi-one-dimensional (q1D) arrangement of
troughs, which can induce the formation of various crys-
talline, smectic, and disordered phases for purely repulsive
colloidal particles as a function of the trough strength and
the ratio of the number of particles to the number of troughs
[39–46]. Different kinds of vortex patterns and depinning
phenomena have been studied in superconducting systems for
vortices interacting with periodic q1D substrates [47–49]. Far
less is known about what happens when bubble- or pattern-
forming systems with competing interactions are coupled to
a periodic substrate, and the depinning or sliding dynamics
under a drive have received even less study. McDermott et al.
[50] considered a pattern-forming system with competing re-
pulsion and attraction on periodic q1D substrates, and found
that for a parameter regime where the system forms a stripe
phase in the absence of the substrate, several stripe and mod-
ulated stripe phases as well as kinks appear as a function of
substrate strength or substrate lattice spacing.

Here, we examine the statics and dynamics of particles
with competing long-range repulsion and short-range attrac-
tion interacting with a periodic q1D substrate in the limit
where the system forms a bubble phase in the absence of
a substrate. For weak substrates, a triangular bubble lattice
appears that becomes increasingly anisotropic as the sub-
strate strength increases. When an external drive is applied
to the system, the depinning transition can be elastic, where
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each bubble retains its original set of particles, or plastic,
where the bubble lattice remains pinned but individual par-
ticles hop from one bubble to the next. At higher drives, a
bubble-shedding phase can appear in which all of the bubbles
are moving but a portion of the particles can break away
from one moving bubble and become attached to a different
moving bubble, while a dynamic reordering transition into
a moving elastic bubble lattice occurs for sufficiently large
driving forces. In the plastic flow regime, we find a phase
that we term a sliding bubble track phase, in which stripes
of particles remain pinned to the substrate and form tracks
along which the bubbles travel. We show that the nature of
the depinning transition and the net velocity depend strongly
on whether an individual bubble can fit into a single substrate
trough, and demonstrate that smaller bubbles are more easily
pinned. This leads to the emergence of reentrant pinning as a
function of bubble size, where for constant applied drive the
bubbles repin as they become smaller. Bubbles that are larger
than the width of the substrate troughs can slide easily in an
elastic phase. Our results should be relevant to a variety of
bubble-forming systems on q1D substrates, including electron
bubbles, colloidal particles, and magnetic skyrmions.

II. SIMULATION

We examine a two-dimensional (2D) system of N particles
whose pairwise interactions have a long-range repulsive term
and a short-range attractive term. The sample is of size L × L
with L = 36 and has periodic boundary conditions in the x and
y directions. The particle density is ρ = N/L2. The particles
interact with a periodic q1D substrate and are subjected to a
dc driving force. The following overdamped equation governs
the dynamics of particle i:

η
dRi

dt
= −

N∑

j �=i

∇V (Ri j ) + Fs
i + FD, (1)

where the damping term η is set to η = 1.0.
The particle-particle interaction potential is given by

V (Ri j ) = 1

Ri j
− B exp(−κRi j ), (2)

where Ri j = |Ri − R j | and the location of particle i( j) is Ri( j).
The first term is a long-range Coulomb repulsion that will
favor formation of a triangular lattice of particles in the ab-
sence of a substrate. For computational efficiency, we treat the
long-range Coulomb interaction with a Lekner summation, as
in previous work [2,50]. The second term is a short-range
attraction that falls off exponentially. At very short range,
the repulsive Coulomb interaction becomes dominant again,
which prevents the particles from collapsing onto a point. In
previous work [2,3,7,50,51], it was shown that particles with
the interaction potential in Eq. (2) can form crystal, stripe,
bubble, and void lattice states depending on the values of ρ,
B, and κ . Here we fix κ = 1.0 and focus on a particle density
of ρ = 0.44. In the absence of a substrate, this system forms
a crystal for B < 2.0, a stripe state for 2.0 < B < 2.25, and
bubbles for B > 2.25. Adding a substrate and/or changing the
particle density will modify the values of B for which these
phases appear.
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FIG. 1. The particle positions (red circles) and the q1D substrate
potential (green shading) for a bubble-forming system at a particle
density of ρ = 0.44 with a substrate lattice constant of ap = 4.5 for
Fp = 2.0 and FD = 0.0. (a) A stripe state at B = 2.25. (b) A bubble
phase at B = 2.85. (c) More compact bubbles at B = 6.0. (d) The
B = 2.85 sample from (b) at ρ = 1.38, where larger bubbles appear.

The particles interact with a q1D substrate with Np minima.
The substrate force is given by

Fi
s = Fp cos(2πxi/ap), (3)

where xi is the x position of particle i and the spacing between
substrate minima is ap = L/Np. Here we focus on substrates
with Np = 8.0, corresponding to ap = 4.5.

We obtain the initial particle configuration by performing
simulated annealing, where the particles are placed in an ini-
tial lattice, subjected to a high temperature, and then slowly
cooled. The thermal forces are represented by Langevin kicks,
and after the simulated annealing is complete, the temperature
is set to zero. After the system has been initialized, we apply a
driving force of FD = FDx̂ to all of the particles and measure
the time-averaged particle velocity in the direction of drive,
〈V 〉 = ∑N

i vi · x̂. We typically wait 105 or more time steps
until the system has reached a steady state before taking data,
and we average the velocity over a similar time frame. Due to
the long-range interactions, the system can exhibit transient
dynamics over relatively long time scales.

III. RESULTS

In Figs. 1(a)–1(c), we illustrate the particle positions and
substrate potential for a system with Fp = 2.0, ρ = 0.44, and
ap = 4.5 at FD = 0.0. For B = 2.25 in Fig. 1(a), the particles
form stripes that are aligned with the substrate. In Fig. 1(b)
at B = 2.85, bubbles appear that have an anisotropic shape
due to the confinement from the substrate. At B = 6.0 in
Fig. 1(c), the bubbles are much smaller and can fit better into
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FIG. 2. (a) The average velocity per particle 〈V 〉 vs FD for the
system in Fig. 1(b) with ap = 4.5, ρ = 0.44, B = 2.85, and Fp =
2.0, where the depinning is elastic. (b) The corresponding d〈V 〉/dFD

vs FD curve. (c) 〈V 〉 vs FD for the same system but with Fp = 5.0,
where the depinning is plastic. (d) The corresponding d〈V 〉/dFD vs
FD curve indicates that there is a two-step depinning process.

the sinusoidal substrate minima. Figure 1(d) shows the bubble
phase sample with B = 2.85 from Fig. 1(b) at a higher particle
density of ρ = 1.38, where the bubbles are more compact and
each contains a larger number of particles.

We next focus on the depinning of the bubble phase for
B � 2.25 by measuring the average velocity as a function of
external drive for fixed ρ = 0.44 and B = 2.85. In Fig. 2(a),
we plot the velocity-force curve for the system in Fig. 1(b).
Near FD = 0.85, the bubbles depin elastically, with all of the
particles remaining in their original bubble both during the
depinning process and at higher drives. Figure 2(b) shows that
the corresponding d〈V 〉/dFD versus FD curve has a sharp peak
near depinning, while at higher drives the velocity-force curve
becomes linear and 〈V 〉 ∝ FD. In systems that depin elasti-
cally, there is generally only a single peak in the differential
velocity-force curves [52]. When we increase the substrate
strength, we see a transition to plastic flow where the motion
above depinning consists of individual particles hopping from
one pinned bubble to the next, followed at higher drives by
a state where moving bubbles shed and reabsorb individual
particles as they travel through the system. In Figs. 2(c),
2(d) we plot the velocity-force and differential velocity-force
curves for the same system from Fig. 2(a) but at Fp = 5.0,
where the depinning is plastic. Here, there are two peaks in the
differential velocity-force curve, and the velocity-force curve
does not exhibit linear behavior until FD > 8.5.

In Fig. 3(a), we show the particle locations and trajectories
for the system in Figs. 2(c), 2(d) at FD = 3.75, just above
the first peak in the d〈V 〉/dFD curve. The system forms a
rectangular lattice of pinned bubbles, and individual particles
are able to hop from one bubble to the next. As FD increases,
the number of particles participating in this hopping process
increases until FD/Fp > 1.0, at which point all of the particles
are able to move at the same time. When this happens, the
bubble structure is partially broken up, as shown in Fig. 3(b) at
FD/Fp = 1.1. The second peak in the d〈V 〉/FD curve thus cor-
responds to the drive at which all of the particles become able
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FIG. 3. The particle positions (red circles), trajectories (lines),
and q1D substrate potential (green shading) for the system in
Figs. 2(c), 2(d) with ap = 4.5, ρ = 0.44, B = 2.85, and Fp = 5.0.
(a) At FD = 3.75 or FD/Fp = 0.75, the bubbles are pinned, but in-
dividual particles are hopping from one bubble to the next. (b) At
FD/Fp = 1.1, all of the particles are moving but the bubble structure
is disordered. For clarity, the trajectory lines are not shown. (c) At
FD/Fp = 1.4, organized bubbles reform but can shed and reabsorb
individual particles, which are able to use the shedding mechanism
to jump from one bubble to another. (d) At FD/Fp = 2.2, the bubbles
are fully formed and there is no shedding. For clarity, the trajectory
lines are not shown. Videos of the motion in each panel appear in
the Supplemental Material [53].

to flow simultaneously. As FD further increases, the bubble
structure reassembles, as shown in Fig. 3(c) at FD/Fp = 1.4,
and each bubble can shed individual particles that proceed to
jump from one moving bubble to another, where the particles
are reabsorbed. In general, the individual particles move more
slowly than the bubbles. For FD > 1.7, the system forms a
bubble lattice where the hopping process no longer occurs
and all particles remain trapped within individual bubbles,
as shown in Fig. 3(d) at FD/Fc = 2.2. The bubble lattice
formation occurs at the same drive that marks the transition
to linear behavior of the velocity-force curve. In the moving
bubble phase, the individual bubbles are anisotropic and are
elongated in the driving direction.

The nonlinear velocity-force curve and the double peak
feature in the differential velocity-force curve is a general
feature of systems that exhibit plastic depinning [52]. In
Figs. 4(a), 4(b) we plot the velocity-force and differential
velocity-force curves for the system from Fig. 2 but at Fp =
4.0, while Figs. 4(c), 4(d) show 〈V 〉 versus FD and d〈V 〉/FD

versus FD for the same system at Fp = 6.0, where the multiple
peak feature in d〈V 〉/FD is even more pronounced. From
the images and the features in the transport curves, we can
identify four dynamical phases that appear as a function of
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FIG. 4. (a) 〈V 〉 vs FD for the system from Fig. 2 with ap = 4.5,
ρ = 0.44, and B = 2.85 but at Fp = 4.0. (b) The corresponding
d〈V 〉/dFD vs FD curve showing a multiple step depinning process.
(c) 〈V 〉 vs FD for the same system but with Fp = 6.0. (d) The corre-
sponding d〈V 〉/dFD vs FD curve.

applied drive and substrate strength. These are: a pinned bub-
ble phase where the velocity is zero; an intrabubble hopping
phase where the bubbles are pinned but individual particles
can hop from one bubble to the next; a disordered moving
partial bubble phase where all of the particles are moving but
the bubble structure has been disrupted by a shedding and re-
absorption process; and a high drive elastically moving bubble
lattice.

In Fig. 5(a), we show the depinning threshold Fc versus
pinning strength Fp for the system in Figs. 2 and 4, while
Fig. 5(b) shows the corresponding dFc/dFp versus Fp curve.
The depinning is elastic for Fp < 2.25 and plastic for Fp �
2.25. The elastic-to-plastic transition is marked by a jump
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FIG. 5. (a) The depinning force Fc vs Fp for the system in Figs. 2
and 4 with ap = 4.5, ρ = 0.44, and B = 2.85. (b) The corresponding
dFc/dFp vs Fp curve. The peak corresponds to the transition from
elastic depinning to plastic depinning with increasing Fp.
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FIG. 6. Dynamic phase diagram as a function of FD vs FP for the
system from Fig. 4 with ap = 4.5, ρ = 0.44, and B = 2.85, where
we highlight the moving bubble lattice (MB) phase, an intrabubble
hopping (IBH) phase, a moving partial bubble (MPB) phase, and a
pinned bubble (PB) phase.

up in the depinning force and a peak in dFc/dFp. A sharp
increase in the depinning threshold at the transition from
elastic-to-plastic behavior has been well studied in other sys-
tems with random or periodic substrates that exhibit depinning
phenomena [52]. Additionally, for Fp � 2.25, we find that the
depinning threshold increases linearly according to Fc ≈ Fp,
as expected for plastic depinning [52].

From the particle structures and the features in the transport
curves, we can construct a dynamical phase diagram high-
lighting the different dynamical regimes, as shown in Fig. 6 as
a function of FD versus Fp for the system from Figs. 2 and 4.
For Fp < 2.25, there is an elastic depinning transition directly
from a pinned bubble (PB) lattice to a moving bubble (MB)
lattice, while for Fp � 2.25, an initial depinning transition
takes the system into the intrabubble hopping (IBH) phase,
a second depinning transition results in the appearance of the
disordered moving partial bubble (MPB) phase, and at higher
drives a dynamic reordering transition occurs into the moving
bubble (MB) lattice. Dynamical ordering at high drives in
systems with plastic depinning transitions has been observed
in systems with both random and ordered substrates [52].

IV. EFFECT OF BUBBLE SIZE ON DYNAMICS

We next consider the effect of changing the strength B of
the attractive interaction term. For larger B, the bubbles shrink
in size and become more rigid, as shown in Fig. 1(c). We note
that individual bubbles can capture an increased number of
particles even as the bubble radius decreases with increasing
B; however, because the Coulomb interaction becomes dom-
inant again at small length scales, the particles are unable
to assemble into a single large bubble but instead form a
collection of bubbles.

We first consider the case for Fp = 2.0, where the depin-
ning transition is elastic. In Fig. 7, we plot 〈V 〉 versus B in
a sample with ρ = 0.44 and Fp = 0.1 at FD = 0.875, 1.0,
1.125, 1.25, 1.375, 1.5, 1.625, 1.75, 1.875, 2.0, and 2.25.
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FIG. 7. 〈V 〉 vs B for a system with ap = 4.5, ρ = 0.44, and Fp =
0.1 at FD = 0.875, 1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75, 1.875,
2.0, and 2.25, from bottom to top. Here, 〈V 〉 is nonmonotonic, and
there is a reentrant pinning transition at higher B.

When FD < 1.375, the velocity drops to zero for low values
of B. In this low-B pinned state, a strongly pinned stripe
phase appears, and the depinning and sliding dynamics of this
stripe phase will be described in a separate paper. For each
value of FD, 〈V 〉 has a nonmonotonic dependence on B, with
a maximum appearing near B = 3.0 followed by a velocity
decrease. When FD < 1.875, at higher B the velocity drops
completely to zero, indicating that the bubbles have become
pinned. This result indicates that there can be both a low-B
pinned state and a high-B reentrant pinned state.

The nonmonotonic behavior of the velocity and the reen-
trant pinning occur because of two effects: the ability of the
bubble to distort, and the change in size of the bubble. For B <

3.0, the bubbles are large but can partially distort to fit inside
the pinning troughs as elongated or anisotropic bubbles. As B
increases, the bubbles shrink but also become stiffer, and are
thus less able to accommodate anisotropic distortions. Near
B = 3.0, the bubbles become too round to elongate enough to
fit completely into an individual pinning trough, reducing the
effectiveness of the pinning. For B > 3.0, the bubbles remain
round, but the bubble radius decreases, as shown in Fig. 1(c).
These smaller bubbles can fit more easily into the pinning
troughs, increasing the effectiveness of the pinning, and the
system starts to act more like a lattice of point particles. Thus,
the smaller bubbles are better pinned even when the number of
particles in each individual bubble remains the same. In Fig. 8,
we plot a dynamic phase diagram as a function of FD versus B
showing the pinned bubbles and moving bubble lattice phases.
A dip in the transition point appears near B = 3.0, where
the pinning effectiveness of the substrate is the most greatly
reduced by the shape of the bubbles. For B � 2.25, the system
forms a moving stripe phase.

In Fig. 9 we plot 〈V 〉 versus B for the same system from
Fig. 7 but with Fp = 5.0 at FD = 3.5, 4.0, and 5.0. For this
system, the depinning is plastic for B < 3.25 and elastic for
B � 3.25. The velocities are lower within the plastic or IBH
regime and show a jump up at the entrance to the elas-
tic regime, with a peak velocity appearing near B = 3.25
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FIG. 8. Dynamic phase diagram as a function of FD vs B showing
the pinned bubble and moving bubble lattice regimes for the system
in Fig. 7 with ap = 4.5, ρ = 0.44, and Fp = 0.1. A dip appears near
B = 3.0 where the bubbles are less well pinned.

followed by a velocity drop at larger B as the bubble size
decreases. There is a reentrant pinning regime at high values
of B. The smaller bubbles are less likely to undergo plas-
tic deformations or permit bubble-to-bubble hopping because
the attractive interaction forces generate a greater barrier for
individual particles to jump out of a bubble. From the flow
patterns and the features in the transport curves, in Fig. 10 we
construct a dynamic phase diagram for the system in Fig. 9
as a function of FD versus B. The depinning force is lowest
near B = 3.5, close to the elastic to plastic transition, and the
drive that must be applied to the plastic phase in order to
dynamically reorder the system increases with decreasing B.
As B increases in the elastic regime, the depinning threshold
increases because the bubble size is diminishing.

Another way to characterize the plastic and elastic flow
regimes is to measure the power spectra of the velocity noise
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FIG. 9. 〈V 〉 vs B for the system from Fig. 7 with ap = 4.5 and
ρ = 0.44 at Fp = 5.0 for FD = 3.5, 4.0, and 5.0, from bottom to top.
The depinning is plastic for B < 3.25 and elastic for B � 3.25, and
there is a reentrant pinning regime at high B.
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FIG. 10. Dynamic phase diagram as a function of FD vs B for the
system in Fig. 9 with ap = 4.5, ρ = 0.44, and Fp = 5.0 showing the
pinned bubble (PB) phase, intrabubble hopping (IBH) phase, moving
partial bubble (MPB) phase, and elastic moving bubble (MB) phase.

fluctuations from time series data. In Fig. 11(a), we plot the
time-dependent velocity for the system in Figs. 9 and 10
at B = 2.75, which corresponds to the interbubble hopping
plastic flow phase where the velocity signal has no significant
features. We also plot V as a function of time for a sample
with B = 3.5 in the moving bubble phase, where there is a
strong periodic velocity signal consistent with the washboard
signature expected for an elastic solid moving over a peri-
odic potential. Figure 11(b) shows the power spectra S(ω) =
| ∑V (t )e−iωt |2 for the two velocity signals. In the intrabubble
hopping phase, there is 1/ f noise at lower frequencies, while
a strong narrow band noise signal appears for the moving
bubble phase. This indicates that moving bubbles should pro-
duce a washboard signal, while the intrabubble hopping flow
is more disordered. We find similar noise features for plastic
versus elastic flow for other parameters.

To further explore how the bubble size affects the pinning
effectiveness, we consider a substrate with a smaller lattice
constant at the same particle density and the same range of
B values. In Fig. 12 we plot 〈V 〉 versus B for a system with
ρ = 0.44, fixed FD = 0.5, and a substrate lattice constant of
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FIG. 11. Velocity time series V vs time for the system in Fig. 10
with ap = 4.5, ρ = 0.44, Fp = 5.0, and FD = 4.0 at B = 2.75 (red)
in the IBH or plastic flow phase and B = 3.5 (blue) in the moving
bubble lattice or MB phase. There is a strong time periodic signal
in the MB phase. (b) The corresponding power spectra S(ω) shows
strong peaks in the moving bubble phase.
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FIG. 12. 〈V 〉 vs B for a system with FD = 0.5, ρ = 0.44, and
a smaller pinning lattice constant of ap = 2.11 for Fp = 1.0, 2.0,
3.0, 4.0, 5.0, and 6.0, from top to bottom. At low B, the system
forms a pinned stripe phase as illustrated in Fig. 13(a) for B = 2.25
and Fp = 2.0. When the velocity becomes finite, the system depins
plastically into the sliding bubble track phase shown in Fig. 13(b) for
B = 2.5 and Fp = 2.0. At high velocities, the system forms a bubble
phase where the bubbles are close to twice the size of the pinning
lattice constant, as shown in Fig. 13(c) for B = 2.75 and Fp = 2.0.
For higher B, the system reenters a pinned state when the bubbles
become small enough to fit inside a single pinning trough, as shown
in Fig. 13(d) for B = 4.5 and Fp = 2.0.

ap = 2.11, half as large as what was used for the results
presented up to this point, at substrate strengths of Fp = 2.0,
3.0, 4.0, 5.0, and 6.0. For Fp = 2.0, the system is pinned
when B < 2.4375, and the particles form a 1D stripelike
pattern as shown in Fig. 13(a) for B = 2.25. A new plastic
flow state, distinct from that illustrated earlier, appears for
2.4375 < B < 2.6, where the system forms the sliding bubble
track phase illustrated in Fig. 13(b) at B = 2.5. Here, pinned
particles remain trapped in stripes that form tracks parallel to
the driving direction, and the bubbles travel along these pinned
tracks. For B � 2.6, the system forms a moving bubble lattice,
as shown in Fig. 13(c) at B = 2.75, where it can be seen
that when the bubbles form, they do not fit into the substrate
troughs. The transition to the moving bubble lattice occurs at
the large jump up in 〈V 〉 in Fig. 12. As Fp is varied, the same
phases appear for shifted values of B.

In general, the bubbles are less strongly pinned for the
smaller substrate lattice spacing because the size of the bub-
bles is larger than the width of the substrate troughs, causing
the bubbles to sit partially on the potential maxima separat-
ing adjacent pinning troughs. As B increases, the bubbles
shrink, and the velocity goes to zero when B becomes large
enough to permit each bubble to fit entirely within a single
substrate trough, as shown in Fig. 13(d) for B = 4.5. When
the driving force is fixed to FD = 0.5, the moving bubble
phase continues to flow as the pinning force increases up
until Fp = 6.0, when the bubbles become pinned. In Fig. 14,
we construct a dynamic phase diagram as a function of Fp

versus B for the system in Fig. 12, highlighting the regime
in which the moving bubble lattice can occur. For B < 3.0,
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FIG. 13. The particle positions (red circles) and q1D substrate
potential (green shading) for the system in Fig. 12 with ap = 2.11,
ρ = 0.44, Fp = 2.0, and FD = 0.5. (a) A pinned stripe phase at
B = 2.25. (b) A plastic sliding bubble track phase at B = 2.5. Pinned
particles form stripe tracks and the bubbles move along these stripe
tracks. (c) A moving bubble phase at B = 2.75 where the bubble
size is greater than the width of the substrate troughs. (d) A pinned
bubble lattice at B = 4.5 where the bubbles are small enough to fit
within individual pinning troughs. Videos of the motion in (b) and
(c) appear in the Supplemental Material [53].

the pinned phase consists of a strongly anisotropic bubble
or stripe arrangement, while for B > 3.0, the system forms
a pinned bubble lattice. We note that right along the boundary
between the pinned anisotropic bubble/stripe state and the

2 3 4 5 6
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p
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PAB/S

FIG. 14. Dynamic phase diagram as a function of Fp vs B for the
system in Fig. 12 with FD = 0.5, ρ = 0.44, and ap = 2.11 showing
the pinned anisotropic bubble/stripe phase (PAB/S), the moving
bubble lattice (MB), and the pinned bubble lattice (PB) that appears
for higher B.

x(a)

y
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y

FIG. 15. The particle positions (red circles) and q1D substrate
potential (green shading) for low particle density systems with Fp =
4.0, ap = 4.5, and B = 2.85 at FD = 0. (a) A dimer lattice at ρ =
0.0617. (b) A stripe bubble lattice at ρ = 0.126.

moving bubble state, the system is in the plastic sliding bubble
track phase, which is too narrow to highlight in the diagram.

To further demonstrate that the larger bubbles are less well
pinned, we fix B = 2.85 while increasing the particle density
in order to produce large bubbles similar to those shown in
Fig. 1(d). In general, we find that smaller particle densities
result in higher effective pinning. In Figs. 15(a), 15(b) we
show the bubble configurations for a system with ap = 4.5
and Fp = 4.0 at lower particle densities, where we find a dimer
bubble state for ρ = 0.0617 and a latticelike arrangement of
1D stripes at ρ = 0.126. In general, the 1D-like structures are
more strongly pinned than the 2D bubble phases that form
at higher particle densities. In Fig. 16 we plot 〈V 〉 versus
ρ for a system with Fp = 4.0, ap = 4.5, and B = 2.85 at
FD = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0. When FD < 4.0 and
ρ < 0.75, the system is a pinned 1D bubble state similar to
those illustrated in Fig. 15. In general, the average particle
velocity increases with increasing ρ as the bubbles become
larger.

0 0.5 1 1.5
ρ

0

1
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3

4

5

<
V

>

FIG. 16. 〈V 〉 vs ρ for a system with Fp = 4.0, ap = 4.5, and B =
2.85 at FD = 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0, from bottom to top,
showing a general increase in the velocity with increasing ρ as the
bubbles grow in size. The system is more strongly pinned for the
lower densities, where 1D anisotropic structures appear.
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V. DISCUSSION

As we have shown, the bubble states exhibit distinct
phenomena beyond what appears for lattices of individual
particles depinning from periodic one-dimensional substrates.
The bubbles have both a finite size and internal degrees of
freedom that are lacking for individual pointlike particles.
For particle-based models of systems with purely repulsive
particle-particle interactions, such as superconducting vor-
tices or Wigner crystals, there can be either elastic flow where
all of the particles maintain their same neighbors, or plastic
flow in which certain particles remain pinned while other par-
ticles move past them. The bubble system exhibits an elastic
depinning transition similar to that found for the pointlike par-
ticle models, but also exhibits quite distinct plastic depinning
regimes in which the bubbles break apart either partially or
completely. Plastic flow for the bubble system can occur via
individual particles hopping from one bubble to the next or via
the motion of bubbles accompanied by shedding of individual
particles. These types of plastic flow do not occur for purely
repulsive pointlike particles, and the distinctive bubble plas-
tic flow phases produce measurable features in the transport
curves.

The size and flexibility of the bubbles also play an im-
portant role in the dynamical behavior. For example, we
demonstrate that softer bubbles are better pinned than stiff
bubbles since the soft bubbles can deform in order to take
greater advantage of the pinning energy. We also show that
the size of the bubbles matters, leading to a nonmonotonic
depinning threshold as a function of the strength of the at-
tractive term. In general, bubbles are less strongly pinned
than stripes as the attractive term becomes larger, since the
number of particles in the bubble increases with increasing
attraction and larger bubbles do not fit as well into the pinning
troughs. At the same time, the bubble radius decreases as the
attractive term increases, so that even though there may be a
greater number of particles in a bubble for large attraction, the
bubble size may decrease overall. These smaller-sized bubbles
are better pinned since they fit better into the bottom of the
pinning trough. This leads to the unexpected nonmonotonicity
of the depinning threshold, since the smaller bubbles are more
strongly pinned and produce a reentrant pinning effect for
increasing attraction. This holds true even for bubbles with
a larger number of particles.

A variety of systems could exhibit behavior similar to
that studied in this work. These include the bubble phases
that are expected to arise in electron liquid systems sub-
jected to a magnetic field and interacting with a periodic
one-dimensional potential. Here, the number of particles in
the bubble could be tuned by varying the magnetic field.
An example of a prediction from our work for this system
is that bubble phases should have a lower pinning threshold
than stripe states. Another possible realization is the vor-
tex bubble phases observed in low-κ superconductors near
an intermediate regime for samples in which the vortices
are coupled to a periodic q1D substrate. In this case, the
bubble size and particle number are also controlled by vary-
ing the magnetic field. Other possible realizations could be
achieved in soft matter systems, such as charged colloids
with some form of attraction that also interact with periodic
substrates.

There are many further directions to study in this sys-
tem. For example, the plastic flow we observe consists of
bubble-to-bubble hopping, so the bubbles have to break apart;
however, there could also be plastic flow states in which indi-
vidual bubbles remain intact, but some bubbles remain pinned
while others move, similar to the plastic flow observed in non-
bubble particlelike systems. We expect that this type of bubble
lattice plasticity could appear in systems where the pinning
substrate is more heterogeneous. We have only considered
external driving applied parallel to the substrate modulation
direction or x axis, but the drive could be applied at angles
with respect to the x axis, which would likely produce a
combination of sliding along the y direction and hopping
in the x direction. The depinning forces could also exhibit
commensuration effects based on how well the bubble size
matches the substrate lattice spacing, so that bubbles whose
radii are integer multiples of the substrate lattice constant are
more strongly pinned. We have only considered dc driving,
but if the dc drive were combined with ac driving, we would
expect additional Shapiro steplike phenomena to arise, espe-
cially in the sliding bubble lattice state where there is a strong
washboard frequency. Shapiro steps in the velocity-force
curve arise when an ac drive is superimposed on a dc drive in
such a way that the frequency of the ac drive matches the peri-
odic washboard velocity signals generated when the particles
move over a periodic substrate [54–59]. In the case considered
here, additional step features can appear due to the presence
of additional internal frequencies associated with the motion
of the particles composing an individual bubble. This could
produce additional steps in the velocity-force curves beyond
the steps associated solely with the washboard frequency. If
thermal effects were included, it is likely that the intrabubble
hopping phase would develop an extended range of creeplike
behavior, and all of the depinning thresholds would shift to
lower values. In this case, it would be interesting to compare
intrabubble creep with bubble lattice creep.

If the interaction potential of Eq. (2) were replaced by
a different form of interaction, we expect that many of our
results would remain robust, such as the dependence of the
depinning threshold on the bubble size and the observation of
particles hopping from bubble to bubble, but that some of the
phases we describe could appear in an expanded regime. For
example, in the case of colloidal systems where the long-range
interactions would be cut off due to screening, we think there
would be an enhancement of the regime in which particles
hop from one bubble to another since the longer-range barriers
to motion would be reduced. For a system with shorter-range
repulsion, if the bubble density is low, then a bubble lattice
structure may not occur but could be replaced by a more
disordered bubble state. For denser bubble arrays, however,
bubble lattices should appear even for shorter-range repulsive
interaction potentials.

VI. SUMMARY

We have investigated a pattern-forming system of particles
with competing long-range repulsion and short-range attrac-
tion driven over quasi-one-dimensional periodic substrates,
and have focused on the bubble regime. For a fixed driving
force, stripe states are strongly pinned because they can align
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with the pinning troughs. In the bubble phase, there can be
elastic depinning, where the moving bubbles maintain their
original complement of particles and the differential velocity
force curves show only a single peak, or plastic depinning,
where individual particles hop from one pinned bubble to an
adjacent pinned bubble. In the plastic depinning regime, the
differential velocity force curves exhibit two peaks, with the
second peak corresponding to the drive at which all of the
bubbles begin to flow but the motion remains plastic since
individual bubbles continuously shed and reabsorb particles.
At higher drives, the system can dynamically reorder into
a moving bubble lattice where no particle shedding occurs.
When the pinning substrate lattice constant is reduced, we also
find a plastic sliding bubble track phase in which a portion of
the particles form tracks consisting of pinned stripes oriented
with the driving direction, and the remaining particles form
bubbles that move over the tracks. The effectiveness of the
pinning, which is visible in both the depinning threshold
and the velocity of the moving bubbles, depends on the size
and flexibility of the individual bubbles. When the attractive
interaction term is weak and the bubbles are highly flexible,
the bubbles can distort anisotropically in order to fit between
the pinning troughs and become better pinned. Increasing the
attractive interaction term stiffens the bubbles, making them

more round in shape, but also shrinks their radius. The stiffer
bubbles cannot accommodate themselves to the shape of the
pinning troughs, but once the bubbles drop below the width of
the pinning troughs, they can be well pinned by the substrate.
This leads to a nonmonotonic dependence of the velocity on
the strength of the attractive interaction term, where there is a
pinned state for flexible bubbles that can distort into stripelike
shapes, as well as a reentrant pinned state that appears when
the size of an individual bubble decreases enough that it can
fit inside a pinning trough. Our results should be relevant
to a variety of bubble-forming systems, including electron
bubbles, colloidal particles, and magnetic skyrmions.
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