
PHYSICAL REVIEW RESEARCH 6, 023114 (2024)

High fidelity control of a many-body Tonks-Girardeau gas with an effective mean-field approach
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Shortcuts to adiabaticity (STA) are powerful tools that can be used to control quantum systems with high fi-
delity. They work particularly well for single particle and noninteracting systems which can be described exactly
and which possess invariant or self-similar dynamics. However, finding an exact STA for strongly correlated
many-body systems can be difficult, as their complex dynamics may not be easily described, especially for
larger systems that do not possess self-similar solutions. Here, we design STAs for one-dimensional bosonic gas
in the Tonks-Girardeau limit by using a mean-field approach that succinctly captures the strong interaction effects
through a quintic nonlinear term in the Schrödinger equation. We show that for the case of the harmonic oscillator
with a time-dependent trap frequency the mean-field approach works exactly and recovers the well-known STA
from literature. To highlight the robustness of our approach we also show that it works effectively for anharmonic
potentials, achieving higher fidelities than other typical control techniques.

DOI: 10.1103/PhysRevResearch.6.023114

I. INTRODUCTION

The experimental control available to prepare, manipu-
late, and measure ultracold atomic systems has pushed these
systems to the forefront of being simulators for quantum
many-body physics [1,2]. Since their first realization in 1995,
atomic Bose-Einstein condensates (BECs) have become one
of the best testbeds available to explore and scrutinize many
aspects of quantum physics. The precise control over larger
numbers of degrees of freedom have allowed the investigation
of quantum phase transitions, the simulation of condensed
matter systems, the study of many-body quantum interference,
and the control over atom-photon interactions, among many
others [3,4].

The main difficulty in developing full control over the
dynamics of interacting quantum many-body systems is that
their high spectral density makes it hard to experimentally
isolate specific states. To do this with high fidelity, one usually
needs to resort to techniques that rely on adiabatic evolution
and which therefore do not provide the system enough en-
ergy to make unwanted transitions. However, this leads to
additional challenges in real-time applications since the time
consuming nature of adiabatic evolution can lead to additional
noise and decoherence in the system. This intersection be-
tween the need for practicality and the desire for high fidelity
gave rise to the area of shortcuts to adiabaticity (STA) [5,6].
STA techniques manipulate the evolution of a physical system
by driving the dynamics in the direction of the target state

*muhammad.hasan@oist.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

in a rapid nonadiabatic manner, while still achieving high
fidelities. They therefore provide an alternative to the time-
consuming adiabatic methods. Since their inception in 2009,
STAs have found countless applications in areas where fast
and robust quantum control is required [7], including quan-
tum thermodynamics, atom transport, and state preparation
[8–10]. The field is constantly evolving and recently enhanced
STA have been introduced and applied [11–13].

STAs have mostly been developed for single particle and
mean-field systems where scale invariance can be exploited,
and experiments involving BECs and ultracold Fermi gases
in harmonic traps have shown that STAs are technically fea-
sible using modern techniques [14–17]. However, outside of
these regimes practical STA protocols are rare, as controlling
the increased number of degrees of freedom in interacting
many-body systems can be a complex and difficult endeavour.
To design experimentally realizable control ramps for such
systems, one therefore has to resort to approximate STA tech-
niques, which can give high fidelity control via local potentials
over a wide range of interactions [18–22]. Developing suitable
STA techniques for many-body systems is therefore of signif-
icant interest, particularly in the strongly interacting regimes
where large classical and quantum correlations are present.

In this work we focus on the efficient control of a specific
quantum many-body system consisting of strongly interact-
ing bosons in the Tonks-Girardeau (TG) limit [23,24]. The
gas is confined to a one-dimensional geometry in a time-
dependent trapping potential, whose frequency is dynamically
changed to realize a fast compression of the system without
creating unwanted excitations. While such a system requires
a full quantum mechanical many-body treatment, we use a
mean-field model to describe some aspects of its dynamics
effectively [25]. We show that this approach allows us to
efficiently calculate STA pulses for systems with large particle
numbers and strong interactions, and characterize its effec-
tiveness compared to other commonly used control ramps
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through the many-body fidelity. Moreover, in the case of a
harmonic trapping potential we retrieve the well known (and
exact) STA pulse for noninteracting particles [6], while for
anharmonic traps our method exhibits high fidelity control
and robustness. The manuscript is organized as follows: in
Sec. II we outline the model of the TG gas and its mean-field
description. In Sec. III we derive STAs using the mean-field
solution for harmonic and anharmonic traps, and discuss their
results for different control parameters. Finally, in Sec. IV we
discuss potential applications for our approach and conclude.

II. SYSTEM

The quantum many-body system we consider is an ultra-
cold gas of neutral bosonic atoms of mass m, which is strongly
confined in two spatial directions such that it can be effectively
described as a one-dimensional system. In the remaining di-
rection the atoms are trapped in a potential V (x, t ), which
can be modulated in time. Since the scattering processes at
low temperatures can be described by pointlike interactions
of strength g [26], the many-body Schrödinger equation can
be written as

ih̄
∂

∂t
�(x, t ) =

⎡
⎣−

N∑
j=1

h̄2

2m

∂2

∂x2
j

+ V (x j, t )

+ g
∑
k> j

δ(xk − x j )

⎤
⎦�(x, t ). (1)

Here x = {x1, x2, . . . , xN } are the coordinates of the N bosons.
In the TG limit of infinite repulsive interactions, g → ∞, the
system can be famously mapped onto a system of noninter-
acting fermions, for which the many-body wavefunction can
be written in terms of single-particle states as �F (x, t ) =
det[ϕn(x j, t )] [23]. From this the bosonic many-body wave-
function can be obtained via �(x, t ) = A(x)�F (x, t ), where
A(x) = ∏

k> j sgn(xk − x j ) is the unit antisymmetric function.
The description of the dynamics of the system can therefore
be reduced to N single particle Schrödinger equations of
the form

ih̄
∂ϕ j

∂t
=

[
− h̄2

2m

∂2

∂x2
j

+ V (x j, t )

]
ϕ j . (2)

Since this mapping from a strongly interacting gas to a col-
lection of noninteracting single particles often makes the
simulation of the dynamical processes easier, it also seems
an enticing approach to construct shortcuts to adiabaticity for
this many-body system, since many methods for constructing
STAs for single particle states exist [27]. However, for a
many-body Fermi gas in an anharmonic potential, each par-
ticle sees a different local spectral density and therefore they
need to be optimized separately [18,28]. If one requires that
the STA needs to be driven by a change in a global potential,
one has to either average over all single particle STAs [29]
or pick an optimal individual STA [28]. While both can be
effective, neither of these is perfect for the whole system.

In this work we propose a different approach by approx-
imating the exact many-body TG system using a nonlinear
mean-field (MF) description for the gas wave-function. It has

FIG. 1. (a) Densities from the exact solution of the nonlin-
ear Eq. (3) (dotted yellow, MF), for the corresponding TG gas
from Eq. (2) (gray, TG), and from the Thomas-Fermi approxima-
tion to Eq. (3) (black, TF). All are for N = 10 atoms trapped in a
harmonic potential (see Sec. III for scaling). The density of the TG
gas displays Friedel oscillations, but otherwise aligns well with the
density obtained from the MF Eq. (3). (b) The shape of the ramp in
Eq. (6) as a function of the scaled time for two overall times (purple,
solid and dotted) and the reference case [b̈ = 0 in Eq. (6), green,
REF]for a trap compression of ω2

f = 10ω2
0.

been shown that the density distribution of the TG gas can be
well approximated using a quintic mean-field equation of the
form [25]

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
+ V (x, t ) + h̄2π2

2m
|ψ |4

]
ψ, (3)

with N = ∫ |ψ |2dx. Here the strong interactions between the
bosonic atoms are described by the quintic nonlinear term, and
the resulting density distribution ρMF = |ψ |2 closely matches
the one of a corresponding TG gas, ρTG = ∑N

j=1 |ϕ j |2 [see
Fig. 1(a)]. In the following, we will derive a shortcut for the
nonlinear system given by Eq. (3) and demonstrate its applica-
bility to the many-body TG gas described by Eq. (1). Except
for a class of scale invariant systems [5,30–33], it is difficult
to find exact STAs for nonlinear systems. However, effec-
tive approximate methods have been devised [6,34,35] and
successfully experimentally implemented [36–38]. Our STA
will in general also be approximate, as the MF equation does
not fully capture the intricacies of the full many-body state,
exemplified by the lack of Friedel oscillations in Fig. 1(a).
However, we will show that our approach is amenable to
arbitrary trapping potentials, and can become exact in certain
limits.

III. DESIGN AND IMPLEMENTATION OF SHORTCUTS

A. Harmonic oscillator

In the following we will focus on power-law potentials of
the form V (x, t ) = 1

2 mω2(t )(x2 + γ x4), where γ is the an-
harmonicity factor and ω(t ) corresponds to a time-dependent
trapping frequency and m is the mass of the particles. Our
initial state is the groundstate of the trapping potential with
frequency ω(0) = ω0 and we want to design ω(t ) such that
at the end of the driving the state is in the groundstate of a
trapping potential with frequency ω(t f ) = ω f . Here we scale
all the energies in terms of the harmonic oscillator energy
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h̄ω0 and all lengths in terms of a0 =
√

h̄
mω0

, where ω0 is the
trapping frequency at t = 0. This leads to the anharmonicity
factor γ being scaled in units of a2

0 and the time dependent
trapping frequency in terms of ω0. First we investigate the
harmonic oscillator (γ = 0) which is oft studied in the STA
literature due to its analytical tractability and experimental
relevance [22,34,35,39–42]. To derive the STA for Eq. (3) we
adopt a scaling ansatz for the wavefunction of the form [5]

ψ (x, t ) = 1√
b(t )

e−iβ(t )e−iα(t )x2
φ

(
x

b(t )
, t

)
, (4)

where α(t ) is a chirp, β(t ) is a global phase, and b(t ) ∈ R is
the dynamical scaling parameter describing the width of the
state [43–45]. Inserting this ansatz into the mean-field Eq. (3)
and making the scaling transformation y = x

b(t ) , we get

i
∂φ

∂t
= − 1

2b2

∂2φ

∂y2
+

[
1

2
ω2(t ) − α̇ + 2α2

]
y2b2φ + π2

2b2
|φ|4φ

+
[

iḃ

2b
− β̇ + iα

]
φ +

[
2iα + iḃ

b

]
y
∂φ

∂y
, (5)

where the dots represent the time derivative. We set the
chirp α = − 1

2
ḃ
b so that the last term in Eq. (5) vanishes.

We then demand that 1
2 [ω2(t ) − α̇ + 2α2] = ω2

0
2b4 so that the

equation resembles a harmonic oscillator with stationary trap-
ping frequency ω0. Substituting the expression for α gives
the equation that establishes the relation between b and the
trapping frequency ω(t ) as

ω2(t ) = ω2
0

b4
− b̈

b
. (6)

If we substitute ω(t ) into Eq. (5) we get

i
∂φ

∂t
= − 1

2b2

∂2φ

∂y2
+ ω2

0

2b4
y2b2φ + π2

2b2
|φ|4φ. (7)

Performing a transformation in t such that τ = ∫ t
0

dt
b2 results

now in the rescaled Schrödinger equation for a harmonic
oscillator with stationary trapping frequency,

i
∂�

∂τ
=

[
−1

2

∂2

∂y2
+ 1

2
ω2

0y2 + π2

2
|�|4

]
�, (8)

where �(y, τ ) = φ(y, t ).
It is worth noting that Eq. (6) is the well-known Ermakov

equation of motion which is synonymous with describing
the integrable dynamics of the harmonic oscillator [5]. The
Ermakov equation also appears in single particle and many-
body scale invariant systems, of which the noninteracting
Fermi gas and TG gas are examples [33,46,47]. It is also
interesting to note that in the case of changing the trapping
strength of a harmonic oscillator in one dimension within the
nonlinear framework of the Gross-Pitaevskii equation, where
the nonlinearity is quadratic, g|ψ |2, the ansatz (4) works only
approximately, unless the interaction strength is rescaled in
time by b(t ) [5]. However, in the case of a quintic nonlin-
earity, the ansatz (4) works exactly, which should translate
into the ability of Eq. (3) to exactly describe the nonequilib-
rium dynamics of many-body quantum states in the strongly

FIG. 2. (a) Density overlap O of the TG gas (solid) and obtained
from the mean-field approach (dotted) as a function of final time
t f for compressing a harmonic trap (γ = 0) with ω2

f = 10ω2
0 using

the STA [Eq. (6), purple] and reference ramps [b̈(t ) = 0 in Eq. (6),
green], for N = 10 particles. (b) Many-body fidelity F as a function
of t f for the same parameters.

interacting limit as first shown in Ref. [48] for a harmonic trap
of fixed frequency.

To find the exact form of ω(t ) by inverse engineering
requires one to choose a suitable ansatz for the scaling factor
b(t ). A common and convenient choice is a polynomial of
the form b(t ) = �5

i=0ait i, with the boundary conditions at the
beginning (t = 0) and at the end of the STA (t = t f ) given by
b(0) = 1, b(t f ) = ( ω0

ω f
)

1
2 , and ḃ(0) = ḃ(t f ) = b̈(0) = b̈(t f ) =

0. The shape of the resulting STA is strongly dependent on the
ramp duration t f [see Fig. 1(b)], with larger modulations of the
trap strength required to drive the system to the target state for
t f smaller than the characteristic timescale of the trap 1/ω f .
Meanwhile, when the system is driven slowly, such that t f ≫
1/ω f , the STA ramp approaches the adiabatic limit defined by
b̈ = 0, in which it is simply described by ω2(t ) = ω2

0/b4. In
what follows we will use this as a convenient reference ramp
(REF) to compare to the STAs derived for arbitrary t f .

To confirm the effectiveness of the STA to drive quantum
many-body dynamics, we apply it to the many-body TG state
described by Eq. (1) and its effective mean-field description
in Eq. (3). To quantify the success of the driving protocol we
calculate the overlap between the density of the state at the end
of the shortcut, ρ(x, t f ), and that of the target state, ρT (x), as

O(t f ) =
∣∣∣∣
∫ ∞

−∞

√
ρ(x, t f )ρT (x)dx

∣∣∣∣
2

, (9)

which takes the value of O(t f ) = 1 when the target state is
reached exactly.

The density overlap is shown in Fig. 2(a), where one can
see that values of exactly O(t f ) = 1 can be obtained for both
the TG gas and its mean-field description, confirming that the
STA derived above works perfectly for both the nonlinear and
many-body systems. In comparison, using the reference ramp
gives density overlaps smaller than unity, which shows that the
target state is not reached (except at the so-called magic times,
where the final state is dynamically unstable). We also note
that the density overlap of the mean-field description closely
matches that of the TG gas even when using the reference
ramp, and only shows slight deviations when both systems
are driven far from equilibrium, i.e., when O(t f ) � 1. This
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highlights the ability of the mean-field model to accurately
describe the many-body density dynamics.

While the density overlap is a useful metric to compare the
mean-field and TG dynamics, deeper insights can be obtained
by considering the many-body fidelity which describes the
overlap of the full many-body states

F (t f ) =
∣∣∣∣
∫ ∞

−∞
�(x, t f )�T (x)dx

∣∣∣∣
2

. (10)

This will, in particular, give information about the appearance
of the orthogonality catastrophe, which can be detrimental
to quantum control of large systems [29]. The quantity in
Eq. (10) can only be calculated for the many-body TG model
and can be conveniently computed by taking advantage of the
Fermi-Bose mapping theorem and the decomposition of the
many-body dynamics in terms of single particle states as

F (t f ) = |det[A(t f )]|2, (11)

where the matrix elements Al,m(t f ) are given by

Al,m(t f ) =
∫ ∞

−∞
ϕ∗

l (x, t f )ϕT
m (x) dx, (12)

with ϕl (x, t f ) being the single particle states at the end of the
STA and ϕT

m (x) the target single particle states.
The many-body fidelity for the STA and the reference ramp

is shown in Fig. 2(b) as a function of t f . Echoing the density
overlap we find that F (t f ) = 1 for all ramp times when using
the STA, as it perfectly drives each of the N single particle
states to their respective target states without any loss in fi-
delity. Again, this is to be expected as the STA ramp for the
harmonic oscillator is exact and independent of the number
of particles [28,32,49]. In comparison, the many-body fidelity
of the reference ramp shows that the final state is orthogonal
to the target state for ramp times t f < 1 which is in stark
contrast to the density overlap in Fig. 2(a). This highlights that
care must be taken when quantifying the adiabaticity of driven
quantum systems by considering the density alone, especially
for many-body states. In what follows we will therefore only
focus on the many-body fidelity to quantify the effectiveness
of the STA protocols.

B. Anharmonic traps

Next we explore the effects of an anharmonicity, γ > 0,
in the trapping potential. In general to derive an STA for
anharmonic traps, the scaling approach used previously can
not be employed. This is due to the breaking of many-body
scale invariance in the system which, as a consequence, re-
quires individual equations of motion for each single particle
state ϕn(x, t ) [28]. This makes it exceedingly difficult to find
an exact STA using local potentials only. We are therefore
restricted to using approximate STA techniques to control
the system with high fidelity, such as variational approaches
[44,50,51]. These STAs rely on minimizing the action on the
quantum state by solving the Euler-Lagrange equations. Like
in the scaling approach we will design the STA based on the
mean-field approximation for the TG gas in Eq. (3), which has

the following Lagrangian density:

L =
∫ ∞

−∞
dx

[
i

2
(ψψ̇∗ − ψ∗ψ̇ ) + 1

2

∣∣∣∣ d

dx
ψ

∣∣∣∣
2

+ 1

2
ω2(t )(x2 + γ x4)|ψ |2 + π2

6
|ψ |6

]
, (13)

with the last term describing the interaction. The variational
approach is strongly dependent on the ansatz for the time
evolved state ψ (x, t ) and, inspired by its success, we choose
the same form as for the scaling approach given in Eq. (4)
which, again, depends on the scaling parameter b(t ). Applying
a change of variables x = yb(t ) and dropping the explicit no-
tation of the time-dependence of the Lagrangian parameters,
the Lagrangian itself then becomes

L = − β̇N − b2α̇W + 1

2

[
F

b2
+ 4α2b2W

]
+ 1

2
ω2(t )b2W

+ 1

2
ω2(t )γ b4J + π2

6b2
K, (14)

where N = ∫ ∞
−∞ dy |φ(y)|2, W = ∫ ∞

−∞ dy y2|φ(y)|2,

F = ∫ ∞
−∞ dy ( dφ(y)

dy )
2
, J = ∫ ∞

−∞ dy y4|φ(y)|2, and K =∫ ∞
−∞ dy |φ(y)|6. The Euler-Lagrange equations

∂L
∂s

− d

dt

(
∂L
∂ ṡ

)
= 0, (15)

for s = α, b, and β can then be straightforwardly calculated,
and for the variational parameter describing the phase, β, we
simply obtain particle number conservation. The other two
give

4α2b − 2α̇b − b̈ = 0, (16)

4bW

(
α2 − α̇

2

)
− 1

b3

(
F + π2K

3

)

+ bω2(t )(W + 2γ b2J ) = 0. (17)

Solving these for ω2(t ) gives the expression for the ramp as

ω2(t ) = 1

b4[W + 2b2γ J]

[(
F + π2

3
K

)
− b̈b3W

]
, (18)

where W , F , J , and K are obtained by integrating the ansatz
wavefunction φ(y). The boundary conditions on the scaling
factor b are chosen to be the same as before except for b(0) ≡
b0 and b(t f ) ≡ b f which are found by solving the polynomial
equations

2γ Jb6
0 + W b4

0 − F

ω2
0

− π2K

3ω2
0

= 0, (19)

2γ Jb6
f + W b4

f − F

ω2
f

− π2K

3ω2
f

= 0. (20)

The choice of the functional form of φ(y) is crucial for
constructing an accurate STA, and a common choice in har-
monic and anharmonic traps is a Gaussian (G) ansatz φG(y) =√

N ( 2
π

)
1
4 e−y2

. This is known to well approximate the density
for weakly interacting Bose gases [52] and also to signifi-
cantly simplify the calculations. However, it does not capture
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FIG. 3. Integrals W, K, F, and J for anharmonicity factor γ =
0.25 as a function of N for (a) the Gaussian ansatz and (b) the
Thomas-Fermi ansatz. (c) The integrals as a function of γ for N = 30
particles using the Thomas-Fermi ansatz. Note that the units for each
curve are different and given in the text.

the broadening of the wavefunction due to the hardcore inter-
actions in the TG limit. To more accurately describe this, a
better choice is to use the Thomas-Fermi (TF) approximation
of Eq. (3), φTF(y) = ( 2μ−(y2+γ y4 )

π2 )
1
4 , where μ is the chemical

potential. This choice is further motivated by the fact that
Eq. (18) reduces to the harmonic oscillator STA Eq. (6) when
γ = 0. The integral constants in that case are then given by
W = N2

2
√

2
, K = 3N2

π2
√

2
, and F = − 1

2
√

2
. In the limit N → ∞,

the F
W term vanishes and the STA in Eq. (6) is recovered,

showing that the variational approach becomes exact in the
harmonic trap.

In Fig. 3 we show the behavior of the integral values
appearing in the ramp expression (18) as a function of N for
the Gaussian [panel (a)] and Thomas-Fermi ansatz [panel (b)],
with a fixed anharmonicity strength γ = 0.25. The presence
of the anharmonic term does not affect the Gaussian ansatz
and therefore the terms W , F, and J are linear in N , while
the contribution from the interaction term scales as K ∝ N3.
On the contrary, the Thomas-Fermi ansatz is by construction
strongly dependent on the anharmonicity of the trap, which in
turn affects the scaling of these terms [see panels (b) and (c)].
It is immediately apparent that they differ from the harmonic
oscillator case (γ = 0) presented above, as W ∝ N1.745, K ∝
N2.285, F ∝ N0.49, and J ∝ N2.458 for an anharmonicity of
γ = 0.25. The resultant STA derived from the Thomas-Fermi
ansatz is therefore more amenable to changes in the trap
shape, which should allow for enhanced control of many-body
dynamics in different trapping potentials.

The many-body fidelity as a function of t f for a trap com-
pression of ω2

f = 10ω2
0 is shown in Fig. 4. The results are

shown for a system size of N = 30, for γ = 0.25 in panel (a)
and γ = 1.0 in panel (b). Here we compare fidelities from
STAs designed with both the Thomas-Fermi and Gaussian
ansatz, and also the reference ramp. Both STAs perform well
compared to the reference, which is not optimized for the
chosen t f . However, the STAs are not perfect as they rely on
approximations to the full many-body state and their fideli-
ties rapidly decrease for quick ramps t f < 1. Regardless, the
Thomas-Fermi STA clearly outperforms the other ramps for

FIG. 4. Many-body fidelity as a function of t f for ramps based on
Thomas-Fermi (blue, solid, T F ) and Gaussian (orange, dashed, G)
ansatz, and the reference ramp (green, dotted, REF ) for (a) γ = 0.25
and (b) γ = 1 for fixed N = 30 TG particles.

all driving times t f , suggesting it is an effective ansatz for the
TG gas.

As mentioned previously, the many-body fidelity allows
to explore the presence of orthogonality catastrophe (OC),
whereby the overlap between two states decreases with in-
creasing particle number 〈�|�〉 ∼ N−δ , with δ the strength
of the perturbation [53]. This has consequences for the ability
to control large systems [18], as the quantum speed limit can
vanish in the thermodynamic limit [29,54]. While exact STAs
allow to circumvent this, approximate STAs will nevertheless
be affected by the OC as the variational ansatz is not exact
and the effectiveness of the STAs will strongly depend on N .
In Fig. 5 we show the many-body fidelity as a function of N
for two ramps times, (a) t f = 1 and (b) t f = √

2. The OC is
clearly visible in the decay of F when considering the dy-
namics of the reference ramp which vanishes for N = 30 and
t f = 1. The approximate STAs perform better, arresting the
decay of the fidelity and reducing the effects of the OC, es-
pecially when using the Thomas-Fermi ansatz. Indeed, while
simplistic in description, the dependence of the Thomas-
Fermi ansatz on both the trap shape and particle number,
coupled with the mean-field approach presented in this work,
suggest that it can be a powerful tool for controlling strongly
interacting many-body states.

FIG. 5. The many-body fidelity of the TG gas as a function of
N for ramps based on the Thomas-Fermi (blue, solid, T F ), Gaussian
(orange, dashed, G) ansatz, and for the reference ramp (green, dotted,
REF ) at final time (a) t f = 1 and (b) t f = √

2 for fixed anharmonic-
ity γ = 0.25.
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IV. CONCLUSION

We have shown that the quintic mean-field description of
the TG gas can be used to design effective STAs for strongly
interacting many-body states. Applying this mean-field ap-
proach to the harmonic oscillator potential shows that our
chosen ansatz works exactly, resulting in the well-known STA
ramp from literature. To test the robustness of our approach
we have considered anharmonic potentials which require us-
ing a variational ansatz for the STA and which are therefore
no longer exact. While perfect fidelity cannot be preserved
for fast driving of the system, the use of the Thomas-Fermi
approximation for the TG density in the variational ansatz
allows to construct an efficient STA when compared to other
trial wavefunctions.

Computation of the STA using the mean-field description
offers practical advantages over using the full many-body
state, requiring less numerical resources and being applicable
to any trapping potential where the Thomas-Fermi profile
closely matches the systems density. This method could also

be extended to consider weakly interacting many-body states,
which can be approximated by the Gross-Pitaevskii equation,
while intermediate interaction regimes could be described by
a superposition ansatz combining both weakly and strongly
interacting regimes [20].
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