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The in-in formalism and its influence functional generalization are widely used to describe the out-of-
equilibrium dynamics of unitary and open quantum systems, respectively. In this paper, we build on these
techniques to develop an effective theory of a quantum damped harmonic oscillator and use it to study initial
state-dependence, decoherence, and thermalization. We first consider a Gaussian initial state and quadratic
influence functional and obtain general equations for the Green’s functions of the oscillator. We solve the
equations in the specific case of time-local dissipation and use the resulting Green’s functions to obtain the
purity and unequal-time two-point correlations of the oscillator. We find that the dynamics must include a
nonvanishing noise term to yield physical results for the purity and that the oscillator decoheres in time such
that the late-time density operator is thermal. We show that the frequency spectrum or unequal-time correlations
can, however, distinguish between the damped oscillator and an isolated oscillator in thermal equilibrium and
obtain a generalized fluctuation-dissipation relation for the damped oscillator. We briefly consider time-nonlocal
dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation
kernels. Lastly, we develop a double in-out path integral approach to go beyond Gaussian initial states and show
that our equal-time results for time-local dissipation are in fact nonperturbative in the initial state.
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I. INTRODUCTION

Green’s functions are extremely useful for calculating
correlation functions of quantum systems, both in- and out-
of-equilibrium. In an equilibrium quantum field theory (QFT),
for example typically assume that the field is in the ground
state in the infinite past and future and that any interaction
is turned on and off adiabatically. Specifying both initial and
final conditions picks out the Feynman Green’s function as the
primary Green’s function, in terms of which we can obtain any
time-ordered correlation function of the field. In an out-of-
equilibrium QFT, on the other hand are typically interested in
finite-time correlations, with the field initialized in any state at
a finite initial time. Specifying initial conditions now picks out
the retarded Green’s function as the primary Green’s function,
in terms of which we can obtain any field correlations.

The Green’s functions of a given quantum system are most
readily obtained through the path integral approach. The stan-
dard in-out path integral, for example, allows us to obtain
the generating functional and hence correlation functions in
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an equilibrium QFT. Its out-of-equilibrium generalization or
the in-in path integral [1–5] instead allows us to obtain the
generating functional and hence correlation functions in an
out-of-equilibrium QFT. While the original in-in path integral
only describes unitary dynamics, i.e., the dynamics of a closed
quantum system that is initialized in any state and evolves
with a time-independent or time-dependent Hamiltonian, it
can be further generalized to describe the non-Hamiltonian
dynamics of an open quantum system by introducing an in-
fluence functional [6,7]. The influence functional is the path
integral analog of the quantum master equation [8,9] and sim-
plifies the calculation of certain quantities in open quantum
systems, such as Green’s functions and unequal-time correla-
tions [10].

The influence functional method has been used in a vari-
ety of problems since it was first developed. Among exactly
solvable ones are the quantum damped harmonic oscillator
(DHO) and linear Brownian motion, for which a standard
reference is the textbook [11]. An incomplete list of other
problems for which it has been used is the study of quantum
Brownian motion in different environments [12,13], quantum
transport in interacting nanojunctions [14], decoherence in
interacting QFTs [15,16] and inflation [17], entanglement in
primordial correlations [18,19], coarse-graining in interacting
QFTs [20,21], and open holographic QFTs [22]. Given the
versatility of the method, in this paper we revisit one of the
simplest out-of-equilibrium quantum systems described by
an influence functional—a quantum DHO—with a goal of
developing an effective field theory–inspired approach to the
problem. We are thus interested in constraining parameters
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that appear in the influence functional on physical grounds,
without knowledge of the full microscopic model.

We first initialize the oscillator in a Gaussian state and
evolve it with a general but quadratic influence functional
while remaining agnostic to the source of dissipation. We
then specialize to time-local dissipation, find exact solutions
for the Green’s functions in this case, and show that terms
in the influence functional are constrained, due in large part
to fluctuation-dissipation relations of environment degrees of
freedom. We find, in particular, that the influence functional
must contain a nonvanishing noise term, which leads, when
set to zero, to a nonphysical late-time purity of the oscillator.
Using purity as an indicator of decoherence next show that
the DHO decoheres in time and settles into a thermal state
at a temperature defined by the dissipation parameters. We
show that the frequency spectrum or unequal-time correla-
tions can, however, distinguish between the DHO and an
isolated oscillator in thermal equilibrium. We use unequal-
time correlations in the late-time limit to obtain a generalized
fluctuation-dissipation relation, and show that it reduces to the
usual relation only in the high-temperature regime. We further
consider time-nonlocal dissipation with a specific choice of
dissipation kernels, where the fluctuation-dissipation relation
is satisfied at any temperature. Finally develop a double in-out
path integral approach that allows us to obtain equal-time
correlations for any initial state and show that our equal-time
results for time-local dissipation are in fact nonperturbative in
the initial state.

The paper is organized as follows. In Sec. II review
the in-in formalism in the context of a harmonic oscillator,
deriving the corresponding generating functional in an Ap-
pendix for completeness, and discuss the initial state, which
we choose to be Gaussian, and the influence functional, which
we choose to be quadratic. In Sec. III write the generating
functional in terms of Green’s functions, use them to obtain
n-point correlations, again relegating details to an Appendix,
find the initial conditions they must satisfy, and obtain their
equations of motion. In Sec. IV restrict to time-local dissipa-
tion and obtain exact solutions for the Green’s functions in
this case, highlighting the contribution from the noise term.
We use these solutions to understand how the oscillator’s
purity evolves in time and whether it satisfies the fluctuation-
dissipation relation at late times. In Sec. V consider the
fluctuation-dissipation relation for time-nonlocal dissipation
with a specific choice of dissipation kernels. In Sec. VI de-
velop a double in-out path integral approach that allows us to
go beyond Gaussian initial states, and use it to show that our
results for equal-time correlations and purity in the case of
time-local dissipation hold for any initial state. We end with a
discussion in Sec. VII.

II. IN-IN GENERATING FUNCTIONAL

In this section, we obtain the generating functional of a
quantum harmonic oscillator that is initialized in a Gaussian
initial state and undergoes nonunitary/dissipative evolution
described by a quadratic dissipative action; also see Ref. [23]
for a recent review, Ref. [24] for an earlier review, and
Ref. [25] for related recent work. We denote the initial state of
the oscillator at time t0 by the density operator ρ̂(t0) and first

ignore dissipation, so that the oscillator evolves unitarily with
the Hamiltonian Ĥ = 1

2m P̂2 + 1
2 mω2X̂ 2, m being the mass of

the oscillator, ω its frequency [26], X̂ the position operator,
and P̂ the momentum operator. Say we evolve ρ̂(t0) to a
final time t f , which we take to be later than any times of
interest, in the presence of a source J+(t ) on the forward
branch (from t0 to t f ) and J−(t ) on the backward branch (from
t f to t0). The in-in generating functional is then defined as
Z[J+, J−] = Tr[ρ̂(t f )]J+,J− , and finite-time correlation func-
tions of the Heisenberg picture operator X̂ (t ) can be obtained
by taking functional derivatives of Z[J+, J−] with respect to
the two sources J±(t ), which are typically set to zero at the
end of the calculation.

It is convenient to write Z[J+, J−] in the path integral rep-
resentation as that allows us to express it in terms of Green’s
functions. Let us thus define eigenkets and eigenvalues of the
Schrödinger picture operator X̂S , which we denote with |x〉
and x, so that X̂S|x〉 = x|x〉. As shown in Appendix A, one
finds that

Z[J+, J−] =
∫

Dx+Dx−ρ[x+, x−, t0]

× exp

[
i

{
S[x+] +

∫
t
J+x+ − S[x−] −

∫
t
J−x−

}]

× δ[x+(t f ) − x−(t f )], (1)

where ρ[x+, x−, t0] ≡ 〈x+|ρ̂(t0)|x−〉 is a matrix element of
ρ̂(t0) in position basis with the functions x±(t ) evaluated at
t0, S[x±] is the action of the oscillator, the shorthand

∫
t stands

for
∫ t f

t0
dt , the δ-function at the end imposes the boundary

condition at the turnaround point and have set h̄ to unity. The
action S[x±] is given by 1

2

∫
t [(ẋ±)2 − ω2(x±)2], where we

have set the mass m to unity for simplicity and without loss
of generality, and the dot denotes a derivative with time. Note
that Z[J, J] = 1 since in this case the forward and backward
evolution exactly cancels out or, in other words, Z[J, J] is
simply Tr[ρ̂(t f )] for evolution in the presence of a source,
which is normalized to unity.

Let us now introduce dissipation in the dynamics. Dissi-
pation is described by an influence functional that leads to
time-nonlocal terms on each of the forward and backward
branches of evolution and additionally ties together terms on
the two branches. We thus rewrite the generating functional of
Eq. (1) as

Zdiss[J
+, J−] =

∫
Dx+Dx−ρ[x+, x−, t0]

× exp

[
i

{
S[x+] +

∫
t
J+x+ − S[x−] −

∫
t
J−x−

+ SIF[x+, x−]

}]
δ[x+(t f ) − x−(t f )], (2)

where we have added the influence functional SIF[x+, x−]
to the action. We must still have that Zdiss[J, J] = 1 since
Tr[ρ̂(t f )] for evolution in the presence of a source is normal-
ized to unity for both unitary and nonunitary evolution.

To explicitly calculate the generating functional, we need
an ansatz for the initial state and influence functional, which
we discuss in the two subsections below.
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A. Initial state

We choose a Gaussian initial state for the oscillator,
parametrized as ρ[x+, x−, t0] = Nexp{iS0[x+, x−]}, N being
a normalization constant chosen so that Tr[ρ̂(t0)] = 1 and
[27,28]

S0[x+, x−] = p0(x+ − x−) + 1
2 [A(x+ − x0)2

− A∗(x− − x0)2 + 2iB(x+ − x0)(x− − x0)],
(3)

with the functions x±(t ) evaluated at t0, as mentioned earlier.
Note that B here must be real since ρ̂(t0) is Hermitian. A, on
the other hand, can be complex, and we denote its real and
imaginary parts with AR and AI . The normalization N is then
found to be N = √

(AI + B)/π with the condition that AI +
B > 0. x0 and p0 are the initial one-point functions 〈X̂ (t0)〉
and 〈P̂(t0)〉, where we have used angular brackets to denote
the expectation value in ρ̂(t0). Lastly, A and B are related to
the initial two-point correlators, which we denote as cxx, cxp,
and cpp for convenience,

〈X̂ 2(t0)〉c ≡ cxx = 1

2(AI + B)
, (4)

1

2
〈{X̂ (t0), P̂(t0)}〉c ≡ cxp = AR

2(AI + B)
, (5)

〈P̂2(t0)〉c ≡ cpp = A2
R + A2

I − B2

2(AI + B)
. (6)

The subscript “c” here denotes connected correlators, for ex-
ample, 〈X̂ 2〉c = 〈X̂ 2〉 − 〈X̂ 〉2

, and {·, ·} is the anticommutator.
We can also calculate the purity of our initial state, which we
denote Pu(t0) = Tr[ρ̂2(t0)], and relate it to the initial corre-
lators as Pu(t0) =

√
AI +B
AI −B = 0.5/

√
cxxcpp − c2

xp. Since purity
must be between 0 and 1, we also have the condition that
B � 0, with the initial state being pure for B = 0 and mixed
for B < 0.

B. Influence functional

We choose the influence functional to be quadratic and
parametrize it as

SIF[x+, x−] =
∫

t,t ′
[γ1(t, t ′)x+(t )x+(t ′)

− γ ∗
1 (t, t ′)x−(t )x−(t ′) + γ ∗

2 (t, t ′)x+(t )x−(t ′)

− γ2(t, t ′)x−(t )x+(t ′)], (7)

where γ1(t, t ′) and γ2(t, t ′), which we refer to as dissipa-
tion kernels, are complex functions. The complex conjugates
and signs in Eq. (7) ensure that the generating functional is
real or, equivalently, the density operator is Hermitian at all
times. The dissipation kernels must further satisfy γ1(t, t ′) =
γ1(t ′, t ) and γ2(t, t ′) = −γ ∗

2 (t ′, t ) since the integration mea-
sure is symmetric under the interchange of t and t ′. We find
in the next section that only two real functions contribute to
dissipation and show later in the paper that they too are not
independent of one another. We also note that in a microscopic
derivation of the influence functional, we would typically take

the oscillator to be coupled to some environment degrees
of freedom, with the full system plus environment evolving
unitarily. Performing a partial trace over the environment, we
would find that the dissipation kernels here are related to cor-
relation functions of the environment and additionally satisfy
γ1(t, t ′) = γ2(t, t ′)θ (t − t ′) − γ ∗

2 (t, t ′)θ (t ′ − t ). We will not
impose this constraint here, except when mapping to a specific
microscopic model.

III. GREEN’S FUNCTIONS

In this section, we write the generating functional in terms
of Green’s functions and obtain the equations of motion and
initial conditions that they satisfy. To introduce Green’s func-
tions, it is convenient to first express the integrand in Eq. (2)
as an exponent. Since we have already written the initial state
and influence functional as exponents in Secs. II A and II B,
we only need to further express the δ-function in Eq. (1) as an
exponent. Following [29], the δ-function can be written as

δ[x+(t f ) − x−(t f )]

= lim
ε→0

1√
πε

exp

[
−1

ε
{x+(t f ) − x−(t f )}2

]

= lim
ε→0

1√
πε

exp

[
−

∫
t,t ′

C(t, t ′){x+(t ) − x−(t )}

× {x+(t ′) − x−(t ′)}
]
, (8)

where C(t, t ′) = 2
ε
δ(t − t ′)δ(t ′ − t f ), and the extra factor of

2 is needed to cancel the factor of 1/2 that arises from eval-
uating the δ-function at a limit of the integral. We will also
integrate by parts the kinetic term in the action S[x±, J±]
to move both time derivatives to a single x±. This generates
boundary terms at t0 and t f , of which those at t f cancel out
between the plus and minus branches given that x+(t f ) =
x−(t f ) and ẋ+(t f ) = ẋ−(t f ), where the second condition is
shown to follow from the first in Appendix A. We also note
in Appendix A that, in the presence of dissipation, ẋ+(t f ) =
ẋ−(t f ) only holds for dissipation kernels γ1(t, t ′) and γ2(t, t ′)
that are not proportional to d2δ(t − t ′)/dt ′2. The boundary
terms at t0 remain, and we keep track of them below.

Putting everything together, we can now write the generat-
ing functional in Eq. (2) as

Zdiss[J
+, J−] = N

∫
Dx+Dx− exp

[
− i

2

∫
t,t ′

× xT (t )O(t, t ′)x(t ′) + i
∫

t
JT

s (t )x(t )

]
. (9)

The vectors x(t ) and Js(t ) here are given by

x(t ) =
[

x+(t )
x−(t )

]
and Js(t ) =

[
J+

s (t )
−J−

s (t )

]
, (10)

with J+
s (t ) = J+(t ) + 2δ(t − t0)[p0 − (A + iB)x0] and J−

s (t )
= J−(t ) + 2δ(t − t0)[p0 − (A∗ − iB)x0] denoting shifted
sources, and the superscript T indicates a transpose. O(t, t ′)
is a 2 × 2 matrix of differential operators whose 11 and
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12 components are given by

O11(t, t ′) = δ(t − t ′)
[(

d2

dt ′2 + ω2

)
+ 2δ(t ′ − t0)

(
d

dt ′ − A

)
− 4i

ε
δ(t ′ − t f )

]
− 2γ1(t, t ′), (11)

O12(t, t ′) = δ(t − t ′)
[
−2iBδ(t ′ − t0) + 4i

ε
δ(t ′ − t f )

]
− 2γ ∗

2 (t, t ′), (12)

the extra factors of 2 in front of the δ(t ′ − t0) terms again
arising from evaluating the δ-function at a limit of the integral.
The other two components of O(t, t ′) are related to these by
O21(t, t ′) = −O12∗(t, t ′) and O22(t, t ′) = −O11∗(t, t ′).

Let us now define a 2 × 2 matrix G(t, t ′) that satisfies the
following Green’s function equation:∫

t ′′
O(t, t ′′)G(t ′′, t ′) = −iIδ(t − t ′), (13)

where

G(t, t ′) =
[

G++(t, t ′) G+−(t, t ′)
G−+(t, t ′) G−−(t, t ′)

]
(14)

and I is the 2 × 2 identity matrix. This leads to four equa-
tions of motion that couple the functions G±±(t, t ′). Since
the ε that appears in O(t, t ′) is arbitrarily small, all terms
proportional to 1/ε in Eq. (13) must cancel out, giving us the
constraints

G++(t f , t ′) = G−+(t f , t ′), (15)

G−−(t f , t ′) = G+−(t f , t ′) (16)

for all t0 < t ′ < t f . Note that these constraints follow directly
from the requirement that x+(t f ) = x−(t f ). We similarly ex-
pect the derivatives at t f to also satisfy the same constraints,
so that

∂t G
++(t, t ′)|t=t f = ∂t G

−+(t, t ′)|t=t f , (17)

∂t G
−−(t, t ′)|t=t f = ∂t G

+−(t, t ′)|t=t f (18)

for all t0 < t ′ < t f , in analogy with the condition that ẋ+(t f ) =
ẋ−(t f ). One way to see this is to first write the solution for the
classical field that satisfies the equation

∫
t ′′ O(t, t ′′)xc(t ′′) =

J(t ) in the presence of any source J(t ) = [ J+(t )
−J−(t )]: xc(t ) =

homogeneous solution + i
∫

t ′ G(t, t ′)J(t ′). Then realizing that
the boundary conditions are carried by the classical field,
i.e., x+

c (t f ) = x−
c (t f ) and ẋ+

c (t f ) = ẋ−
c (t f ), all four constraints

in Eqs. (15)–(18) follow. We note again, however, that
this argument only holds for dissipation kernels that are
not proportional to d2δ(t − t ′)/dt ′2. All four constraints in
Eqs. (15)–(18) are needed to write the generating functional
in standard form. To do so, we first shift x(t ) in Eq. (9)
to xs(t ) = x(t ) − i

∫
t ′ G(t, t ′)Js(t ′), then integrate by parts to

move the derivatives from x±
s (t ) to G±±(t, t ′), and lastly make

use of the four constraints above to cancel the boundary terms.
The generating functional can then be written as

Zdiss[J
+, J−] = Z0 exp

[
−1

2

∫
t,t ′

JT
s (t )G(t, t ′)Js(t

′)
]
, (19)

where the normalization Z0 is chosen such that Zdiss[J, J] = 1
and it turns out to be unity in the case that the initial state is a

coherent state. Further, since we can freely interchange the t
and t ′ integrals in the exponent, the functions G±±(t, t ′) must
also satisfy the conditions

G++(t, t ′) = G++(t ′, t ), (20)

G+−(t, t ′) = G−+(t ′, t ), (21)

G−−(t, t ′) = G−−(t ′, t ), (22)

in addition to the constraints written earlier.
Writing the generating functional in the form of Eq. (19)

makes it easy to obtain correlation functions as usual, and
we discuss this further in the first subsection below. In the
next two subsections, we obtain the initial conditions and
equations of motion for G±±(t, t ′) and sketch how to solve
the resulting equations.

A. n-point correlations

As shown in Appendix B for the case of unitary dynamics,
one- and two-point correlation functions of X̂ (t ) are easily
obtained by taking functional derivatives of Z[J+, J−] with
respect to J±. We can write similar expressions for the case
when the oscillator is coupled to an environment, with the
full system plus environment evolving unitarily, and then trace
out the environment. Correlation functions in the presence of
dissipation can, therefore, be obtained by taking functional
derivatives of Zdiss[J+, J−] instead. Generalizing the calcula-
tion in Appendix B to the dissipative case and additionally
beyond one- and two-point correlations gives

〈T̄ {X̂ (tn+1) · · · X̂ (tn+m)}T {X̂ (t1) · · · X̂ (tn)}〉

= (−i)nim δ

δJ+(t1)
· · · δ

δJ+(tn)

δ

δJ−(tn+1)

× · · · δ

δJ−(tn+m)
Zdiss[J

+, J−]

∣∣∣∣
J±=J

, (23)

in the presence of a source J (t ), where the first n operators
are time-ordered, denoted by T , and the next m are anti-time-
ordered, denoted by T̄ .

We now want to relate n-point correlations to the Green’s
functions by making use of Eq. (19). Let us first consider
the one-point function 〈X̂ (t )〉. Setting n = 1 and m = 0 in
Eq. (23) and using Eq. (19), we find that

〈X̂ (t )〉 = i
∫

t ′
[G++(t, t ′)J+

s (t ′) − G+−(t, t ′)J−
s (t ′)]|J±=J .

(24)

We expect 〈X̂ (t )〉 to match the solution to the classical
equation of motion. Let us next consider the two-point correla-
tions 〈T X̂ (t )X̂ (t ′)〉 and 〈X̂ (t ′)X̂ (t )〉. These yield the functions
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G++(t, t ′) and G+−(t, t ′) plus a product of one-point expecta-
tion values and, therefore,

〈T X̂ (t )X̂ (t ′)〉c = G++(t, t ′), (25)

〈X̂ (t ′)X̂ (t )〉c = G+−(t, t ′). (26)

We can similarly show that 〈T̄ X̂ (t )X̂ (t ′)〉c = G−−(t, t ′)
and 〈X̂ (t )X̂ (t ′)〉c = G−+(t, t ′), where T̄ denotes anti-time-
ordering. Since these are also equal to the Hermitian
conjugates of the above expressions, we further have that
G−−(t, t ′) = G++∗(t, t ′) and G−+(t, t ′) = G+−∗(t, t ′).

We can now write the functions G±±(t, t ′) in a more
convenient form. Let us denote G+−(t, t ′) as G<(t, t ′)
and G−+(t, t ′) as G>(t, t ′) = G<∗(t, t ′), and expand out
〈T X̂ (t )X̂ (t ′)〉c = 〈X̂ (t )X̂ (t ′)〉cθ (t − t ′) + 〈X̂ (t ′)X̂ (t )〉cθ (t ′ −
t ). Then we can write

G++(t, t ′) = G>(t, t ′)θ (t − t ′) + G<(t, t ′)θ (t ′ − t ), (27)

G+−(t, t ′) = G<(t, t ′), (28)

and G−−(t, t ′) as the complex conjugate of Eq. (27). Note
that the functions G±±(t, t ′) written as above satisfy all con-
straints and conditions written earlier in this section. By using
Eqs. (27) and (28) and similar expressions for G−−(t, t ′) and
G−+(t, t ′), we can verify that they additionally satisfy

G++(t, t ′) − G+−(t, t ′) − G−+(t, t ′) + G−−(t, t ′) = 0,

(29)

which is needed to ensure that Zdiss[J, J] = 1 and will also
turn out to be useful later in this section.

Let us lastly consider the n-point correlation
〈T X̂ (t1) · · · X̂ (tn)〉 obtained by setting m = 0 in Eq. (23).
Using again Eq. (19) for Zdiss[J+, J−] and expanding out the
J+(ti ) derivatives on the right-hand side gives us a product
of all G++(ti, t j ) plus a sum of disconnected correlators for
even n and only a sum of disconnected correlators for odd
n. Taking the disconnected correlators to the left-hand side
then turns it into a time-ordered product of X̂ (t ) − 〈X̂ (t )〉 at
times t1, . . . , tn. The time-ordered product of X̂ (t ) − 〈X̂ (t )〉,
therefore, obeys Wick’s theorem. We can also obtain this
result in a simpler way, and it is thus worth discussing, by
writing Eq. (19) in a slightly different form. On expanding
out the shifted sources on the right-hand side of Eq. (19) and
rearranging the resulting expression, we can write it as

exp

[
−i

∫
t
{J+(t ) − J−(t )}〈X̂ (t )〉

]
Zdiss[J

+, J−]

= exp

[
−1

2

∫
t,t ′

JT
c (t )G(t, t ′)Jc(t ′)

]
, (30)

where 〈X̂ (t )〉, given in Eq. (24), is calculated in the presence
of a source J (t ), and Jc(t ) = [ J+(t ) − J (t )

−J−(t ) + J (t )]. Taking derivatives

of Eq. (30) with respect to J+(ti ) and setting J±(t ) = J (t ) now
produces the time-ordered product of X̂ (t ) − 〈X̂ (t )〉 at times
t1, . . . , tn on the left-hand side and a product of G++(ti, t j )
for even n and zero for odd n on the right-hand side, directly
giving us Wick’s theorem.

B. Initial conditions

In the previous subsection, we showed that connected
two-point correlations of X̂ (t ) can be identified with the func-
tions G±±(t, t ′). We next want to argue that the Heisenberg
picture operator P̂(t ) is given by P̂(t ) = ˙̂X (t ), so that we
can additionally relate the connected two-point correlations
that involve P̂(t ) with time derivatives of G±±(t, t ′). If we
substitute the form of G++(t, t ′) given in Eq. (27) into its
equation of motion given by Eq. (13) and equate the δ-
function on both sides, we find that it yields the Wronskian
condition (∂t − ∂t ′ )G<(t, t ′)|t=t ′ = i for those kernels γ1(t, t ′)
that are not proportional to d2δ(t − t ′)/dt ′2. We similarly
need γ2(t, t ′) to not be proportional to d2δ(t − t ′)/dt ′2, so
that the G+−(t, t ′) equation does not spoil this condition.
Since G<(t, t ′) = 〈X̂ (t ′)X̂ (t )〉c, the Wronskian condition fur-
ther implies that 〈[X̂ (t ), ˙̂X (t )]〉 = i, which, together with the
commutation relation [X̂ (t ), P̂(t )] = i, suggests that indeed
P̂(t ) = ˙̂X (t ). We will restrict to those influence functionals
that preserve P̂(t ) = ˙̂X (t ) in this paper, but note that this is
not guaranteed for more general influence functionals, specif-
ically those that arise from derivative system-environment
interactions.

With P̂(t ) = ˙̂X (t ), we can directly transcribe the initial
conditions given in Eqs. (4), (5), and (6) to conditions on
G±±(t, t ′), in particular on G<(t, t ′),

G<(t0, t0) = cxx, (31)
1
2 (∂t + ∂t ′ )G<(t, t ′)|t=t ′=t0 = cxp, (32)

∂t∂t ′G<(t, t ′)|t=t ′=t0 = cpp. (33)

From the Wronskian condition, or the commutator of X̂ (t ) and
P̂(t ) at the initial time, we additionally have that

(∂t − ∂t ′ )G<(t, t ′)
∣∣
t=t ′=t0

= i. (34)

As shown later, the three initial conditions in Eqs. (31), (32),
and (33) are sufficient to solve the equations of motion for the
symmetrized two-point correlation that we introduce in the
next subsection.

It is also worth noting that the initial conditions written
here are consistent with the δ(t ′ − t0) terms in the equations of
motion in Eq. (13), and we show this next for completeness.
Consider specifically the equations of motion of G++(t, t ′)
and G+−(t, t ′) for t0 � t, t ′ < t f , which are obtained by plug-
ging the 11 and 12 components of O(t, t ′), given in Eqs. (11)
and (12), into Eq. (13). On dropping the terms containing a
δ-function at t f since they cancel out and further dropping
the dissipative terms assuming they are of a form that does
not affect the initial conditions, the G++(t, t ′) and G+−(t, t ′)
equations become[

d2

dt2
+ ω2 + 2δ(t − t0)

(
d

dt
− A

)]
G++(t, t ′)

− 2iBδ(t − t0)G−+(t, t ′) = −iδ(t − t ′), (35)[
d2

dt2
+ ω2 + 2δ(t − t0)

(
d

dt
− A

)]
G+−(t, t ′)

− 2iBδ(t − t0)G−−(t, t ′) = 0. (36)
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Let us first set t ′ = t0 + ε, for some small parameter ε, in
Eq. (35) and integrate the equation over t from t0 to t0 + 2ε,
taking care of factors of 1/2 that arise from evaluating the
δ-function at a limit of the integral. Using the forms of
G±±(t, t ′) given in Eqs. (27), (28), and the following text
in the resulting equation and further taking the limit ε → 0
gives

∂t G
>(t, t0)

∣∣
t=t0

− (A + iB)G<(t0, t0) = −i. (37)

Let us next integrate Eq. (36) over t from t0 to t0 + ε. Using
again the forms of G±±(t, t ′) given in Eqs. (27), (28), and the
following text in the resulting equation and further taking the
limit ε → 0 gives

∂t G
<(t, t ′)

∣∣
t=t0

− AG<(t0, t ′) − iBG−−(t0, t ′) = 0 (38)

for any t ′. For the specific choice of t ′ = t0 and using
G<(t, t ′) = G>∗(t, t ′), adding Eqs. (37) and (38) gives

(∂t + ∂t ′ )G<(t, t ′)
∣∣
t=t ′=t0

− 2(A + iB)G<(t0, t0) = −i. (39)

Now equating first the imaginary parts and then the real parts
on both sides of this equation, and using the definitions of
cxx and cxp from Eqs. (4) and (5), yields the initial conditions
given in Eqs. (31) and (32). Similarly, setting t ′ = t0 and
subtracting Eq. (37) from Eq. (38) gives the commutator or
Wronskian condition at the initial time given in Eq. (34).
Lastly, let us differentiate Eq. (38) with respect to t ′ and set
t ′ = t0 + ε. Using the previous initial conditions to simplify
the resulting equation, taking the limit ε → 0, and using the
definition of cpp from Eq. (6) then gives the initial condition
in Eq. (33).

C. Equations of motion

We next consider the equations of motion for G±±(t, t ′)
that are obtained as noted in the previous subsection. We drop
the terms containing a δ-function at t0 since these simply
impose initial conditions on G±±(t, t ′) and those containing
a δ-function at t f since they cancel out, as noted earlier. Then
G++(t, t ′) and G+−(t, t ′) satisfy the following equations for
t0 < t, t ′ < t f :

(
d2

dt2
+ ω2

)
G++(t, t ′) − 2

∫
t ′′

[γ1(t, t ′′)G++(t ′′, t ′) + γ ∗
2 (t, t ′′)G−+(t ′′, t ′)] = −iδ(t − t ′), (40)(

d2

dt2
+ ω2

)
G+−(t, t ′) − 2

∫
t ′′

[γ1(t, t ′′)G+−(t ′′, t ′) + γ ∗
2 (t, t ′′)G−−(t ′′, t ′)] = 0, (41)

while G−−(t, t ′) and G−+(t, t ′) satisfy the complex conju-
gates of the above equations.

To solve these equations, it is simplest to first decouple
them by rotating to a new basis,

ξ(t ) = Mx(t ) with M =
[

1/2 1/2
1 −1

]
, (42)

where ξ(t ) is a vector containing ξ±(t ). The differential
operators and Green’s functions in the two bases are then
related by Oξ (t, t ′) = (M−1)T O(t, t ′)M−1 and Gξ (t, t ′) =
MG(t, t ′)MT , as found using Eqs. (9) and (13), respectively,
where Gξ (t, t ′) is a 2 × 2 matrix containing the functions
Gξ,±±(t, t ′). It is instructive to write these functions explicitly,

Gξ,++(t, t ′) = 1
2 [G>(t, t ′) + G<(t, t ′)], (43)

Gξ,+−(t, t ′) = [G>(t, t ′) − G<(t, t ′)]θ (t − t ′), (44)

Gξ,−+(t, t ′) = Gξ,+−(t ′, t ), (45)

Gξ,−−(t, t ′) = 0, (46)

where the last identity follows from Eq. (29). Gξ,++(t, t ′)
is thus the symmetrized correlation and Gξ,+−(t, t ′) is the
retarded Green’s function of the theory.

We can now obtain the equations of motion for the func-
tions Gξ,±±(t, t ′) in a similar way as we did for the functions
G±±(t, t ′). Since Gξ,−−(t, t ′) vanishes identically, its equa-
tion of motion yields the constraint

∫
t ′′

[γ1I (t, t ′′) − γ2I (t, t ′′)]Gξ,+−(t ′′, t ′) = 0, (47)

where the subscripts I indicate imaginary parts as before. We
take this to imply that γ1I (t, t ′) = γ2I (t, t ′), although one can
envision a more general class of functions that satisfy this
constraint. The equations for Gξ,++(t, t ′) and Gξ,+−(t, t ′) then
simplify to

(
d2

dt2
+ ω2

)
Gξ,++(t, t ′) − 2

∫
t ′′

[γ1R(t, t ′′) + γ2R(t, t ′′)]Gξ,++(t ′′, t ′) = 2i
∫

t ′′
γ1I (t, t ′′)Gξ,+−(t ′, t ′′), (48)(

d2

dt2
+ ω2

)
Gξ,+−(t, t ′) − 2

∫
t ′′

[γ1R(t, t ′′) + γ2R(t, t ′′)]Gξ,+−(t ′′, t ′) = −iδ(t − t ′), (49)

which can be solved for specific dissipation kernels. Note
that only two real functions, γ1R(t, t ′) + γ2R(t, t ′) and
γ1I (t, t ′), contribute to dissipation. The solution to the second

equation above gives us the retarded Green’s function,
Gξ,+−(t, t ′), of the theory. The first equation, on the other
hand, yields the symmetrized correlation, Gξ,++(t, t ′), and
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can be solved by first writing it as the sum of a homoge-
neous piece, that we denote Gξ,++[h](t, t ′), and a particular
solution or noise piece, that we denote Gξ,++[n](t, t ′). While
the homogeneous piece is the solution to Eq. (48) with zero on
the right-hand side and satisfies the initial conditions written
in the previous subsection, the noise piece is obtained by
convolving the source term on the right-hand side of Eq. (48)
with the retarded Green’s function and vanishes at the initial
time (i.e., at t ′ = t0). We will choose a specific form for the
dissipation kernels in the next section that will allow us to
explicitly solve for Gξ,+−(t, t ′) and Gξ,++(t, t ′) in that case.

IV. TIME-LOCAL DISSIPATION

In this section, we specialize to the simple and well-
studied case of time-local dissipation to understand whether
the oscillator thermalizes. Time-local dissipation is obtained
within the Caldeira-Leggett model, for example, when spe-
cializing to an Ohmic spectral density with infinite cutoff
and the high-temperature regime [8,30]. First, to reduce the
integrals on the left-hand side of Eqs. (48) and (49) to a
simple damping term, we choose dissipation kernels such that
γ1R(t, t ′) + γ2R(t, t ′) = γ dδ(t − t ′)/dt ′, where γ is a (real)
positive constant. Second, to reduce the integral on the right-
hand side of Eq. (48) to a local source term, we choose
γ1I (t, t ′) = (α/2)δ(t − t ′), where α is a (real) constant. Equa-
tions (48) and (49) then simplify to(

d2

dt2
+ ω2 + 2γ

d

dt

)
Gξ,++(t, t ′) = iαGξ,+−(t ′, t ), (50)(

d2

dt2
+ ω2 + 2γ

d

dt

)
Gξ,+−(t, t ′) = −iδ(t − t ′). (51)

At the moment, we have not imposed any conditions on
the constants γ and α, except that γ � 0. We note that
in the Caldeira-Leggett model with time-local dissipation,
the dissipation kernels are given by γ1R(t, t ′) + γ2R(t, t ′) =
2γ [dδ(t − t ′)/dt ′]θ (t − t ′) and γ1I (t, t ′) = (2γ /βenv)δ(t −
t ′), where βenv is the inverse of the Boltzmann constant times
the temperature of the thermal environment. We can, there-
fore, specialize to this model by leaving γ as is and replacing
α with 4γ /βenv in our results below.

We solve the equations of motion (50) and (51) in the first
subsection below. In the next two subsections, we obtain the
purity of the oscillator and check whether the fluctuation-
dissipation relation is satisfied in the late-time limit, and we
show that γ and α in fact cannot be independent of one
another.

A. Green’s functions

Let us first solve Eq. (51) for the retarded Green’s function
of the theory, Gξ,+−(t, t ′). This is easily solved in Fourier
space [31], so that Gξ,+−(t, t ′) is given by the following in-
verse Fourier transform:

Gξ,+−(t, t ′) =
∫ ∞

−∞

dω′

2π

ie−iω′(t−t ′ )

ω′2 + 2iγω′ − ω2
. (52)

The integrand has two simple poles at ω′ = −iγ ±√
ω2 − γ 2, both on the negative imaginary axis for ω > γ or

ω < γ and assuming that γ > 0. Closing the contour from

below gives

Gξ,+−(t, t ′) = − ie−γ (t−t ′ )



sin[
(t − t ′)]θ (t − t ′), (53)

where 
 =
√

ω2 − γ 2, and we can check that this expression
has the appropriate ω = γ and γ = 0 limits as well.

We next solve Eq. (50) for the symmetrized two-point
correlation, Gξ,++(t, t ′). Equation (50) is a nonhomogeneous
differential equation and, as mentioned earlier, its solution
consists of a homogeneous piece Gξ,++[h](t, t ′) and a particu-
lar solution or noise piece Gξ,++[n](t, t ′),

Gξ,++(t, t ′) = Gξ,++[h](t, t ′) + Gξ,++[n](t, t ′), (54)

that we consider in turn. The homogeneous piece is the solu-
tion to the equation(

d2

dt2
+ ω2 + 2γ

d

dt

)
Gξ,++[h](t, t ′) = 0, (55)

and, as also mentioned earlier, satisfies the initial condi-
tions imposed on the full solution Gξ,++(t, t ′). Now since
Gξ,++(t, t ′) is symmetric under the interchange of t and t ′, it
satisfies the same equation of motion in both time coordinates.
Also noting that Gξ,++(t, t ′) is a real function, the solution to
Eq. (55) must be of the form

Gξ,++[h](t, t ′) = ah(t )h(t ′) + a∗h∗(t )h∗(t ′)

+ b[h(t )h∗(t ′) + h∗(t )h(t ′)], (56)

where a is a complex constant, b is a real constant, and
h(t ) and h∗(t ) are solutions to the equation ḧ(t ) + 2γ ḣ(t ) +
ω2h(t ) = 0.

The constants a and b in Eq. (56) can be fixed by making
use of the initial conditions in Eqs. (31), (32), and (33), which
directly translate into initial conditions on Gξ,++(t, t ′) and,
therefore, on Gξ,++[h](t, t ′). We thus have three equations in
three constants, which yield aR, aI , and b in terms of cxx, cxp,
and cpp and additionally h(t0), ḣ(t0), h∗(t0), and ḣ∗(t0) [32].
We finally need a solution for h(t ) and h∗(t ). The solution for
h(t ) can be written as

h(t ) = −iG1(t )h(t0) + iG2(t )ḣ(t0), (57)

where G1(t ) and G2(t ) are solutions to the same equation as
that of h(t ) with the initial conditions G1(t0) = i, Ġ1(t0) =
0 and G2(t0) = 0, Ġ2(t0) = −i, and the solution for h∗(t )
is similarly given by h∗(t ) = −iG1(t )h∗(t0) + iG2(t )ḣ∗(t0).
Now plugging in the resulting expressions for the constants
aR, aI , and b and the solutions for h(t ) and h∗(t ) back into
Eq. (56) gives us the final expression for Gξ,++[h](t, t ′),

Gξ,++[h](t, t ′) = −G1(t )G1(t ′)cxx + [G2(t )G1(t ′)

+ G1(t )G2(t ′)]cxp − G2(t )G2(t ′)cpp. (58)

Lastly, we write down expressions for the functions G1(t ) and
G2(t ),

G1(t ) = ie−γ (t−t0 )
(

cos [
(t − t0)] + γ



sin [
(t − t0)]

)
,

(59)

G2(t ) = − ie−γ (t−t0 )



sin [
(t − t0)]. (60)
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To summarize, the homogeneous part of the symmetrized two-point correlation is obtained by plugging Eqs. (59) and (60) into
Eq. (58), which gives

Gξ,++[h](t, t ′) = 1

2
2
e−γ (t+t ′−2t0 ){cos[
(t − t ′)](ω2cxx + 2γ cxp + cpp) − cos[
(t + t ′ − 2t0)](γ 2cxx − 
2cxx

+ 2γ cxp + cpp) + 2
 sin[
(t + t ′ − 2t0)](γ cxx + cxp)}. (61)

We see that Gξ,++[h](t, t ′) is proportional to e−γ (t+t ′−2t0 ) and thus vanishes in the limits that γ (t − t0) 
 1 and γ (t ′ − t0) 
 1
for any choice of initial conditions cxx, cxp, and cpp.

The noise contribution in Eq. (54) is simpler to calculate and, as mentioned earlier, obtained by convolving the source term
on the right-hand side of Eq. (50) with the retarded Green’s function,

Gξ,++[n](t, t ′) = −α

∫
t”

[Gξ,+−(t, t”)Gξ,+−(t ′, t”)]. (62)

We will choose t � t ′ without loss of generality, in which case we find on using Eq. (53) for Gξ,+−(t, t ′),

Gξ,++[n](t, t ′) = − α

4γω2
2
e−γ (t+t ′−2t0 )(ω2 cos[
(t − t ′)] − γ 2 cos[
(t + t ′ − 2t0)] + γ
 sin[
(t + t ′ − 2t0)])

+ α

4γω2

e−γ (t−t ′ )(
 cos[
(t − t ′)] + γ sin[
(t − t ′)]). (63)

Note that this vanishes at the initial time (i.e., at t ′ = t0), as mentioned earlier. We see that Gξ,++[n](t, t ′) also has a piece
proportional to e−γ (t+t ′−2t0 ) which vanishes in the limits that γ (t − t0) 
 1 and γ (t ′ − t0) 
 1, but additionally has a piece
proportional to e−γ (t−t ′ ) that need not vanish unless γ (t − t ′) 
 1 as well. This will be important for the fluctuation-dissipation
relation that we discuss later in this section.

With the Green’s functions in hand, we can also use Eq. (24) to write an expression for the one-point function 〈X̂ (t )〉.
Substituting the expressions given after Eq. (10) for the shifted sources into Eq. (24), we see that 〈X̂ (t )〉 can be expressed as

〈X̂ (t )〉 = i
∫

t ′
Gξ,+−(t, t ′)J (t ′) − iG1(t )x0 + iG2(t )p0,

(64)

which, in the absence of a source and using Eqs. (59) and (60), becomes

〈X̂ (t )〉 = e−γ (t−t0 )

(
cos [
(t − t0)] + γ



sin [
(t − t0)]

)
x0 + e−γ (t−t0 )



sin [
(t − t0)]p0. (65)

Note that this vanishes in the limit that γ (t − t0) 
 1.

B. Purity

As discussed in Sec. II A, the purity of an oscillator in a Gaussian state can be written in terms of its two-point correlators.
At the initial time t0, we found that Pu(t0) = 0.5/

√
cxxcpp − c2

xp. We can similarly write the purity at any time t in terms of
two-point correlators at that time using

Pu(t ) = 0.5√
〈X̂ 2(t )〉c〈P̂2(t )〉c − (1/4)〈{X̂ (t ), P̂(t )}〉2

c

, (66)

with the correlators in turn obtained from Gξ,++(t, t ′) of the previous subsection,

〈X̂ 2(t )〉c = Gξ,++(t, t ), (67)
1
2 〈{X̂ (t ), P̂(t )}〉c = ∂t ′Gξ,++(t, t ′)|t ′=t , (68)

〈P̂2(t )〉c = ∂t∂t ′Gξ,++(t, t ′)|t ′=t . (69)
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We do not write explicit expressions for the two-point correlators, but they can be obtained using the results from the previous
subsection. It is instructive, however, to consider the final expression for the purity, which we find to be

Pu(t ) =
[

α2

4γ 2ω2
− α

2γ 2ω2
2
e−2γ (t−t0 ){ω2(−2ω2γ cxx − 4γ 2cxp − 2γ cpp + α)

+ γ 2(2ω2γ cxx + 4ω2cxp + 2γ cpp − α) cos[2
(t − t0)] − 2γ 2
(ω2cxx − cppt ) sin [2
(t − t0)]}

+ 1

4γ 2ω2
e−4γ (t−t0 )

(−4αω2γ cxx + 16ω2γ 2cxxcpp − 16ω2γ 2c2
xp − 4αγ cpp + α2

)]−1/2

. (70)

In the late-time limit, in particular, the above expression re-
duces to

lim
γ (t−t0 )
1

Pu(t ) = 2γω

α
. (71)

The late-time purity is thus independent of the initial condi-
tions cxx, cxp, and cpp, similar to the late-time correlations,
and is in fact constant. Since purity must be between 0 and
1 at all times, we find a constraint on the three parameters:
0 � 2γω/α � 1, showing that the dissipation parameters γ

and α are not independent of one another and additionally that
α is positive. We also see that α cannot be set to zero as the
late-time purity would otherwise diverge. In other words, the
α → 0 limit of Eq. (70) reads

lim
α→0

Pu(t ) = e2γ (t−t0 )Pu(t0), (72)

which grows exponentially in time and is, therefore, not phys-
ical. The fact that α needs to be nonzero if γ is nonzero
has to do with properties of the environment that is causing
dissipation of the oscillator in the first place.

We can go even further and reconstruct the late-time
density operator. Since our initial state is Gaussian and the dy-
namics are linear, we expect the density matrix 〈x+|ρ̂(t )|x−〉
at any time t to be of the same form as the initial density
matrix in Sec. II A, except that all correlations—x0, p0, cxx,
cxp, and cpp—must be replaced by those at time t . Upon doing
so using the expressions in the previous subsection (in the
absence of a source), we find that the late-time density matrix
is given by

〈x+|ρ̂(∞)|x−〉 = ω

√
2γ

πα
exp

[
− ω

4

{
α

2γω
(x+ − x−)2

+ 2γω

α
(x+ + x−)2

}]
. (73)

Let us compare this to the density operator for an isolated
harmonic oscillator in a thermal state, ρ̂β (t ) = e−βĤ , where β

is the inverse of the Boltzmann constant times the temperature
of the oscillator. In position basis, ρ̂β (t ) is given by

〈x+|ρ̂β (t )|x−〉 =
√

ω tanh(βω/2)

π
exp

[
− ω

2 sinh(βω)

× {[(x+)2 + (x−)2] cosh(βω) − 2x+x−}
]
.

(74)

Equations (73) and (74) together suggest that the DHO ther-
malizes at the temperature β = (2/ω) tanh−1(2γω/α). We

can arrive at the same conclusion by directly comparing the
late-time purity of the DHO in Eq. (71) with the purity
of an oscillator in thermal equilibrium, given by Pu(t ) =
tanh(βω/2), as well. Note, however, that although the late-
time density operator is thermal, this does not necessarily
imply that the fluctuation-dissipation relation is satisfied, and
we discuss this further in the next subsection.

Before closing this subsection, we also plot in Fig. 1 the
two-point correlators found from Eqs. (67), (68), and (69), on
substituting for Gξ,++(t, t ′) from the previous subsection, and
the purity in Eq. (70), for three different choices of initial
state and one set of dissipation parameters for illustration.
In units of the oscillator frequency ω, we first consider a
coherent initial state with cxx = 1/(2ω), cxp = 0, and cpp =
ω/2, therefore Pu(t0) = 1. We next consider a squeezed ini-
tial state with cxx = e−2r/(2ω), cxp = 0, cpp = e2rω/2, and
r = 1, therefore Pu(t0) = 1 again. And we lastly consider
a thermal initial state with cxx = coth(βω/2)/(2ω), cxp = 0,
cpp = coth(βω/2)ω/2, and β = 1/(2ω), therefore Pu(t0) ≈
0.24. We choose the dissipation parameters to be γ = ω/2 and
α = 10ω2 in all three cases and set ωt0 = 0 for simplicity. We
also show the result for an isolated harmonic oscillator at tem-
perature β = (2/ω) tanh−1(2γω/α) ≈ 0.2/ω for comparison,
using Eq. (75) below to find the correlators and the expression
from the previous paragraph for the purity. It is evident from
the figure that the late-time behavior of the system is indepen-
dent of the choice of initial state, and equal-time results match
those of an oscillator in thermal equilibrium.

C. Fluctuation-dissipation relation

The fluctuation-dissipation relation goes beyond demand-
ing that the density operator be thermal as it is a statement
about unequal-time correlators of the system. Let us first
review the fluctuation-dissipation relation for an isolated har-
monic oscillator in a thermal state, ρ̂β (t ) = e−βĤ . In our
notation (see Sec. III A), the two-point correlation G<

β (t, t ′)
is given by

G<
β (t, t ′) = eβωeiω(t−t ′ ) + e−iω(t−t ′ )

2ω(eβω − 1)
, (75)

and G>
β (t, t ′) = G<∗

β (t, t ′). Since Eq. (75) only depends on
the difference of times, we will write G<

β (t, t ′) and G>
β (t, t ′)

as G<
β (T ) and G>

β (T ) instead, where T = t − t ′. Denoting
the Fourier transforms of G<

β (T ) and G>
β (T ) with G̃<

β (ω′)
and G̃>

β (ω′), one finds that G̃<
β (ω′) = e−βω′

G̃>
β (ω′), called the

Kubo-Martin-Schwinger (KMS) relation.
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FIG. 1. Equal-time two-point correlations 〈X̂ 2(t )〉c (top, left), (1/2)〈{X̂ (t ), P̂(t )}〉c (top, right), and 〈P̂2(t )〉c (bottom, left) and purity
(bottom, right) as a function of time for three different choices of initial state—(i) a coherent state with cxx = 1/(2ω), cxp = 0, and cpp = ω/2;
(ii) a squeezed state with cxx = e−2r/(2ω), cxp = 0, cpp = e2rω/2, and r = 1; and (iii) a thermal state with cxx = coth(βω/2)/(2ω), cxp = 0,
cpp = coth(βω/2)ω/2, and β = 1/(2ω)—in the presence of time-local dissipation with γ = ω/2 and α = 10ω2 in each case and setting
ωt0 = 0 for simplicity. We also show the result for an isolated harmonic oscillator at temperature β = (2/ω) tanh−1(2γω/α) ≈ 0.2/ω for
comparison.

Let us now consider the Fourier transform of the antisym-
metric two-point correlation G>

β (T ) − G<
β (T ), which is equal

to twice the real part of the Fourier transform of [G>
β (T ) −

G<
β (T )]θ (T ). We define

Aβ (ω′) = Re
∫ ∞

0
dT eiω′T [G>

β (T ) − G<
β (T )], (76)

so that Aβ (ω′) = [G̃>
β (ω′) − G̃<

β (ω′)]/2. Similarly, we denote
the Fourier transform of the symmetric two-point correlation
with Sβ (ω′), so that

Sβ (ω′) = 1

2

∫ ∞

−∞
dT eiω′T [G>

β (T ) + G<
β (T )] (77)

and it is given by [G̃>
β (ω′) + G̃<

β (ω′)]/2. Using the KMS
relation, we can show that Aβ (ω′) and Sβ (ω′) satisfy

Sβ (ω′) = coth

(
βω′

2

)
Aβ (ω′), (78)

known as the fluctuation-dissipation relation.

We now want to check whether the quantum DHO that we
studied in the previous subsections satisfies the fluctuation-
dissipation relation in the late-time limit. Consider first A(ω′)
for the DHO, given by the real part of the Fourier transform
of Gξ,+−(t, t ′) with respect to T = t − t ′. Reading off the
Fourier transform of Gξ,+−(t, t ′) from Eq. (52), we find that

A(ω′) = 2γω′

|ω′2 + 2iγω′ − ω2|2 . (79)

Next, consider S (ω′), given by the Fourier transform of
Gξ,++(t, t ′). We noted in Sec. IV A that the homogeneous part
of Gξ,++(t, t ′) vanishes in the late-time limit, and therefore
we only need to consider its noise part. The Fourier transform
of Gξ,++[n](t, t ′) in the late-time limit can in turn be obtained
from Eq. (62) by first replacing Gξ,+−(t, t ′′) and Gξ,+−(t ′, t ′′)
with their integral representation in Eq. (52), then setting
the limits of the t ′′ integral to be t0 = −∞ to t f = ∞, and
then using

∫ ∞
−∞ dt ′′ei(ω′+ω′′ )t ′′ = 2πδ(ω′ + ω′′) to collapse one

of the two frequency integrals. The resulting expression for
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FIG. 2. Unequal-time two-point correlations, symmetric (left) and antisymmetric (right), for a quantum DHO compared to an iso-
lated harmonic oscillator in a thermal state. The DHO is initialized in a coherent state with cxx = 1/(2ω), cxp = 0, and cpp = ω/2 at
ωt0 = −10, and undergoes time-local dissipation with γ = ω/2 and α = 10ω2, while the isolated harmonic oscillator is at the temperature
β = (2/ω) tanh−1(2γω/α) ≈ 0.2/ω.

S (ω′) is given by

S (ω′) = α

|ω′2 + 2iγω′ − ω2|2 , (80)

and A(ω′) and S (ω′) for the DHO, therefore, satisfy

S (ω′) =
(

α

2γω′

)
A(ω′). (81)

Comparing Eqs. (78) and (81), we see that they match for mul-
tiple values of ω′ only in the high-temperature regime where
βω′ � 1 and coth(βω′/2) ≈ 2/(βω′), and the temperature
to which the oscillator thermalizes is given by β = 4γ /α.
This agrees with the temperature found towards the end of
the previous subsection, β = (2/ω) tanh−1(2γω/α), in the
high-temperature limit. It also matches the temperature of the
environment for the Caldeira-Leggett model in the regime
mentioned at the beginning of this section, where we noted
that α = 4γ /βenv in this model.

Equation (81) can also be interpreted as a generalized
fluctuation-dissipation relation for the quantum DHO, which
when compared with Eq. (78) gives an effective frequency-
dependent temperature, βeff (ω′) = (2/ω′) tanh−1(2γω′/α)
[33–35]. We see that the effective temperature agrees with the
temperature β obtained earlier at the isolated frequency ω′ =
ω; the physical significance of this, however, is unclear to
us. We emphasize that the generalized fluctuation-dissipation
relation in Eq. (81) can be used to distinguish a quantum
DHO from an isolated harmonic oscillator in a thermal state.
Alternatively, the frequency spectrum or unequal-time mea-
surements of the system can also be used to distinguish
between the two cases even in the high-temperature regime.
We show the unequal-time correlations explicitly in Fig. 2 for
clarity, for the same choice of parameters as in Fig. 1 with a
coherent initial state.

It is also worth noting that the late-time limit of
Gξ,++(t, t ′), which is simply the second term in Eq. (63), also
agrees with the symmetric two-point correlation obtained in
[11,36–39] by first assuming that the fluctuation-dissipation
relation holds for the quantum DHO, then finding the inverse

Fourier transform of coth(βω′/2)ρ(ω′), and finally taking
the high-temperature and additionally weak-coupling (ω > γ )
limit of the result.

V. TIME-NONLOCAL DISSIPATION

In this section, we briefly consider time-nonlocal dissipa-
tion with a specific choice of dissipation kernels, such that
the fluctuation-dissipation relation is satisfied in the late-time
limit at any temperature. We choose our dissipation kernels to
match those in the Caldeira-Leggett model, specializing again
to an Ohmic spectral density with infinite cutoff but without
restricting to the high-temperature regime [8,30]. In this case,
we have γ1R(t, t ′) + γ2R(t, t ′) = 2γ [dδ(t − t ′)/dt ′]θ (t − t ′)
as before and

γ1I (t, t ′) = γ

∫ ∞

−∞

dω′

2π
e−iω′(t−t ′ )ω′ coth

(
βenvω

′

2

)
, (82)

which simply evaluates to −(πγ /β2
env) cosech2[π (t − t ′)/

βenv]. Using the techniques of the previous section, we can
now solve for the corresponding antisymmetric and symmet-
ric two-point correlations of the time-nonlocal DHO.

Gξ,+−(t, t ′) is, in fact, the same as before, and is given
by Eq. (53). Its Fourier transform with respect to t − t ′ is
thus simply given by Eq. (79), which we write again for
convenience,

A(ω′) = 2γω′

|ω′2 + 2iγω′ − ω2|2 . (83)

The homogeneous piece of Gξ,++(t, t ′) is also unchanged,
given by Eq. (61), and again vanishes in the late-time limit.
The noise piece of Gξ,++(t, t ′), on the other hand, is given by

Gξ,++[n](t, t ′) = −2
∫

t ′′,t ′′′
[Gξ,+−(t, t ′′)γ1I (t ′′, t ′′′)

× Gξ,+−(t ′, t ′′′)], (84)

with γ1I (t, t ′) given by Eq. (82). Since we are only inter-
ested in checking the fluctuation-dissipation relation in this
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section, we only need to consider the Fourier transform of
Gξ,++[n](t, t ′) in the late-time limit. This can be obtained from
Eq. (84) by first replacing Gξ,+−(t, t ′′), Gξ,+−(t ′, t ′′′), and
γ1I (t, t ′) with their integral representations in Eqs. (52) and
(82), then setting the limits of the t ′′ and t ′′′ integrals to be
t0 = −∞ to t f = ∞, and then using the δ-functions obtained
by performing the time integrals to collapse two of the three
frequency integrals. The resulting expression for the Fourier
transform of Gξ,++(t, t ′) in the late-time limit is given by

S (ω′) = coth

(
βenvω

′

2

)
2γω′

|ω′2 + 2iγω′ − ω2|2 , (85)

and A(ω′) and S (ω′) for the time-nonlocal DHO, therefore,
satisfy

S (ω′) = coth

(
βenvω

′

2

)
A(ω′). (86)

Since this matches Eq. (78), we conclude that the fluctuation-
dissipation relation is satisfied for a time-nonlocal DHO with
the specific dissipation kernels chosen here, and it thermalizes
to the temperature of the thermal environment. As in the
time-local case, the frequency spectrum or unequal-time mea-
surements of the system can, however, be used to distinguish
a quantum DHO from an isolated harmonic oscillator in a
thermal state.

Lastly, we comment on how this relates to the time-local
case of the previous section. In the high-temperature limit,
we can expand the integrand in Eq. (82) using coth(x) ≈
x−1 + x/3 + O(x3) as x → 0. Since the factors of ω′ cancel
in the zeroth-order piece, the kernel reduces to the time-local
one with γ1I (t, t ′) = (2γ /βenv)δ(t − t ′). The next-to-leading
order term is equally interesting since it results in a factor
of ω′2 under the integrand, which gives a −(γ βenv/6)d2δ(t −
t ′)/dt ′2 contribution to the kernel. Note that such a term by
itself will need to be handled carefully since we have assumed
in our derivation that the dissipation kernels γ1(t, t ′) and
γ2(t, t ′) are not proportional to d2δ(t − t ′)/dt ′2. Our deriva-
tion should be valid here, however, since this term arises
from expanding the full dissipation kernel in Eq. (82). We can
see that a −(γ βenv/6)d2δ(t − t ′)/dt ′2 contribution would also
generate time-local dissipation, but with higher-order time
derivatives appearing in the noise term. In the spirit of effec-
tive field theory, we can, therefore, replace the time-nonlocal
dissipation kernel with a time-local one with successively
higher-order time derivatives, in the high-temperature limit.
Going back to the frequency domain, we see that the series
expansion tracks all the way to Eq. (86) and the fluctuation-
dissipation relation matches that in Eq. (81) with α = 4γ /βenv

to leading order, with higher-order corrections.

VI. BEYOND GAUSSIAN INITIAL STATES

In the previous sections, we folded in the initial conditions
arising from the Gaussian density matrix of Eq. (3) with the
dynamics of the quantum DHO from the outset, and solved for
the relevant 2 × 2 Green’s function G(t, t ′). We then solved
for the n-point correlation functions and purity of the system
from G(t, t ′) itself. In this section, we instead compute the
time evolution operator of the density matrix for the quantum
DHO, without first convolving it against the initial density

operator. This approach not only allows us to cleanly separate
the influence of dynamics from that of the initial conditions,
but also results in expressions for equal-time n-point functions
and purity that are valid for any choice of initial state.

As a start, we recall that the path integral, without dissipa-
tion,

K[t f , x+
f ; t0, x+

0 ] ≡
∫ x+

f

x+
0

Dx+ exp

[
i
∫

t
L[x+, ẋ+]

]
, (87)

for an appropriate Lagrangian L, evolves any initial state
|�[t0]〉 (in the Schrödinger picture) forward in time, through
the relation

〈x+
f |�[t f ]〉 =

∫
R

dx+
0 K[t f , x+

f ; t0, x+
0 ]〈x+

0 |�[t0]〉. (88)

This in turn means that the density matrix of a closed system
is related to its initial state via

〈x+
f |ρ̂[t f ]|x−

f 〉 =
∫
R

dx+
0

∫
R

dx−
0 〈x+

0 |ρ̂[t0]|x−
0 〉

× KK[t f , x+
f , x−

f ; t0, x+
0 , x−

0 ], (89)

where the time evolution of ρ̂[t f ] would be the result of
Eq. (88) acting upon the ket and the bra separately, namely

KK[t f , x+
f , x−

f ; t0, x+
0 , x−

0 ]

= K[t f , x+
f ; t0, x+

0 ]K[t f , x−
f ; t0, x−

0 ] (90)

=
∫ x+

f

x+
0

Dx+
∫ x−

f

x−
0

Dx−

× exp[i
∫

t
(L[x+, ẋ+] − L[x−, ẋ−])], (91)

with the overbar denoting complex conjugation. Note that the
time evolution operator here factorizes into two separate ones.
As already mentioned in Sec. II, however, if ρ̂ describes a
subsystem embedded in a larger environment, then this is in
general no longer the case. Then instead,

KK[t f , x+
f , x−

f ; t0, x+
0 , x−

0 ]

=
∫ x+

f

x+
0

Dx+
∫ x−

f

x−
0

Dx− exp[iST [x+, x−]], (92)

where the total action ST consists of three separate terms,

ST [x+, x−] = S[x+] − S[x−] + SI [x
+, x−], (93)

S[x±] =
∫

t
L[x±, ẋ±], (94)

SI [x
+, x−] =

∫
t
LI [x

+, ẋ+; x−, ẋ−]. (95)

That is, there is now a piece of the action, SI , that couples
the variables x+ and x− in the double path integrals as before,
rendering the time evolution operator KK nonfactorizable. Its
presence is again due to the “tracing out” of irrelevant or
inaccessible states from the full system’s density operator.

In the subsections below, we first impose a general con-
straint on KK and next solve for it in the case of time-local
dissipation. We then use the resulting solution to time-evolve
the n-point correlations and purity of the system for any initial
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state. We emphasize that solving for KK rather than ρ̂[t f ] in
this section allows us to obtain results for any initial state,
whether Gaussian or non-Gaussian.

A. Probability conservation

As long as our subsystem can be embedded in a larger
closed system, the total probability of finding it in some state
has to remain unity at all times. And since KK arose from
tracing over the irrelevant states of the larger closed system,
tracing over the remaining states of the subsystem then corre-
sponds to performing the trace over the entirety of the former.
We must, therefore, have

1 =
∫
R

dx〈x|ρ̂[t f ]|x〉 (96)

=
∫
R

dx+
0

∫
R

dx−
0

[∫
R

dx+
f KK[t f , x+

f = x−
f ; t0, x+

0 , x−
0 ]

]

×〈x+
0 |ρ̂[t0]|x−

0 〉. (97)

Now since the initial density operator is arbitrary, the time
evolution operator must obey∫

R
dx+

f KK[t f , x+
f = x−

f ; t0, x+
0 , x−

0 ] = δ[x+
0 − x−

0 ]. (98)

This condition for KK that preserves Tr[ρ̂[t f ]] = 1 can be
contrasted with the condition Zdiss[J, J] = 1 discussed after
Eq. (2).

B. DHO: Setup

Let us compute this time evolutionary operator KK for the
quantum DHO, defined via the Lagrangians

L[x±, ẋ±] = 1
2 (ẋ±)2 − 1

2 (ω2 − iα)(x±)2 (99)

and

LI [x
+, ẋ+; x−, ẋ−]

= −γ (x+ − x−)(ẋ+ + ẋ−) + igx+x−. (100)

This is, of course, the time-local case considered in Sec. IV,
where ω, γ , and α here are the same as those in that section.
That this is the quantum version of the classical DHO system
will be explicitly verified when we obtain both the solution
and equation of motion of the position operator’s expectation
value in Eqs. (148) and (149) below. Physically speaking,
ω2 − iα is the square of the oscillation frequency of the simple
harmonic oscillator, where ω2 and −α are, respectively, its
real and imaginary parts. The strength of friction is controlled
by the magnitude of γ . We have included the g term because
it is allowed at the quadratic level; in fact, it turns out to be
mandatory.

Since ω appears only as a squared quantity, we will take it
to be non-negative without loss of generality. We will also see
that in order to prevent a runaway solution to the quantum
statistical expectation value of the position, the friction γ

also needs to non-negative. Moreover, to ensure probability
conservation in Eq. (98), we will find that g = −α. Finally,
for nonzero γ and ω, α needs to be positive to produce a
well-defined density operator in the asymptotic future. To

summarize, we will find that

ω > 0, (g = −α) < 0, and γ > 0. (101)

As before, we will remain agnostic to how the model in
Eqs. (99) and (100) arises, but simply assume that it is a
consistent effective theory with time-independent parameters.
For technical convenience, we now perform the change-of-
variables [40]

ξ± ≡ x+ ± x−, (102)

under which the total action becomes

ST [ξ+, ξ−] =
∫

t

{
1

2
ξ̇+ξ̇− − ω2

2
ξ+ξ−

+ i
g + α

4
(ξ+)2 − i

g − α

4
(ξ−)2 − γ ξ−ξ̇+

}
,

(103)

on using Eqs. (99) and (100) for L and LI .

C. Evaluation of the DHO KK

The double path integrals occurring in the time-evolution
operator KK may be evaluated in a similar manner to their
single path integral counterpart K . First, we seek the classical
solutions ξ±[t] = ξ±

c [t] that extremize the total action. Then,
we perform a change in path integration variables from ξ±
to ξ±

q by expanding around the classical path, namely, ξ± =
ξ±

c + ξ±
q . We will find that the double path integrals over ξ±

q
may be determined by probability conservation.

By varying Eq. (103) with respect to ξ±, we find that the
classical solutions ξ±

c must obey

D I
(t ) J ξ J

c [t] = 0, (104)

where the indices I and J run over ±, and the 2 × 2 differential
operator reads

D(t ) ≡
[

d2

dt2 + 2γ d
dt + ω2 −i(α − g)

−i(α + g) d2

dt2 − 2γ d
dt + ω2

]
. (105)

The x+ portion of the KK path integrals in Eq. (92) propa-
gates the quantum system from (t0, x+

0 ) to (t f , x+
f ), whereas

the x− portion propagates the same system from (t0, x−
0 ) to

(t f , x−
f ). This motivates us to impose the following boundary

conditions on the classical solutions, keeping in mind that
ξ± ≡ x+ ± x−:

ξ±
c [t f ] = x+

f ± x−
f and ξ±

c [t0] = x+
0 ± x−

0 . (106)

The solutions ξ±
c may be expressed in terms of the retarded

Green’s function, which we express here as a function of a
single time variable τ ,

G I
(R) J[τ ] ≡ θ [τ ]GI

J[τ ], (107)

of the matrix differential operator D I
(τ ) J in Eq. (104),

D I
(τ ) JG

J
(R) M[τ ] = δI

Mδ[τ ]. (108)

When α = −g, Eq. (108) is intimately related to Eqs. (50)
and (51). Unlike the Gξ,++ and Gξ,+− there, however, we will
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solve for G J
(R) M with retarded boundary conditions and use it

to construct the classical trajectories ξ±
c .

The 2 × 2 retarded Green’s function admits the integral
representation

G J
(R) M[τ ]

=
∫

C

dω′

2π

eiω′τ

(2γ )2ω′2 − g2 + α2 + (ω′2 − ω2)2

×
[
−ω′2 − i2γω′ + ω2 i(α − g)

i(α + g) −ω′2 + i2γω′ + ω2

]J

M

.

(109)

The integrand here is the matrix inverse of the D I
(τ ) J in

Eq. (104), but expressed in frequency ω′-space. The contour
C skirts all four poles of the matrix integrand on the complex
ω′ plane from below so that when, and only when, τ > 0 the
result is nonzero. Upon summing over the residues, we find

2χr3
0σG+

+[τ ] = sinh[r0στ ]
(
χ

(
r2

0 − ω2
)

cos[χr0τ ]

− 2γ r0 sin[χr0τ ]
)

+ σ
(
r2

0 + ω2
)

sin[χr0τ ] cosh[r0στ ],

(110)

2χr3
0σG+

−[τ ] = −i(α − g)(χ cos[χr0τ ] sinh[r0στ ]

− σ sin[χr0τ ] cosh[r0στ ]), (111)

2χr3
0σG−

+[τ ] = −i(α + g)(χ cos[χr0τ ] sinh[r0στ ]

− σ sin[χr0τ ] cosh[r0στ ]), (112)

2χr3
0σG−

−[τ ] sinh[r0στ ]
(
2γ r0 sin[χr0τ ]

+ χ
(
r2

0 − ω2) cos[χr0τ ]
)

+ σ
(
r2

0 + ω2
)

sin[χr0τ ] cosh[r0στ ],

(113)

with the relations

r0 = ω
4
√

1 + (α2 − g2)/ω4, (114)

(
r0χ

r0σ

)
= ω

√
1

2

[√
1 + (α2 − g2)/ω4 ±

(
1 − (2γ )2

2ω2

)]
.

(115)

A direct calculation further reveals that

D I
(τ ) JGJ

M[τ ] = 0, (116)

GJ
M[0] = 0, (117)

∂τGJ
M[τ = 0] = δJ

M. (118)

In terms of G, the homogeneous solution portion of the classi-
cal trajectories is

ξ J
c [t0 � t � t f ]

= GJ
K[t − t0](G−1)K

M[t f − t0]

[
x+

f + x−
f

x+
f − x−

f

]M

+ (GJ
K[t − t0](G−1)K

L[t f − t0]∂t0GL
M[t f − t0]

− ∂t0GJ
M[t − t0])

[
x+

0 + x−
0

x+
0 − x−

0

]M

. (119)

That Eq. (119) solves its equation of motion in (104) is be-
cause of Eq. (116), and that it obeys the appropriate boundary
conditions in Eq. (106) is because of Eqs. (117) and (118). We
will also need the first derivatives of these trajectories at the
boundary times. Invoking Eq. (118) hands us

ξ̇ J
c [t0] = (G−1)J

M[t f − t0]

[
x+

f + x−
f

x+
f − x−

f

]M

+ (
(G−1)J

L[t f − t0]∂t0GL
M[t f − t0]

− ∂t∂t0GJ
M[t = t0]

)[x+
0 + x−

0

x+
0 − x−

0

]M

, (120)

while ξ̇ J
c [t f ] is simply the t-derivative of Eq. (119) with t

replaced with t f .
Note that even though the total action involves the time in-

tegral over t ∈ [t0, t f ], it may be converted into a difference of
boundary terms when it is evaluated on the classical solutions
ξ±

c . For upon integration-by-parts, the action in Eq. (103) is
transformed into

ST [ξ± = ξ±
c ]

= 1

4
[ξ+

c ξ̇−
c + ξ̇+

c ξ−
c − 2γ ξ−

c ξ+
c ]t=t f

t=t0

− 1

4

∫
t

(
ξ+

c D −
(t ) Jξ

J
c + ξ−

c D +
(t ) Jξ

J
c

)
(121)

= 1

4
((x+

f + x−
f )ξ̇−

c [t f ] + ξ̇+
c [t f ](x+

f − x−
f )

− 2γ {(x+
f )2 − (x−

f )2})

− 1

4
((x+

0 + x−
0 )ξ̇−

c [t0] + ξ̇+
c [t0](x+

0 − x−
0 )

− 2γ {(x+
0 )2 − (x−

0 )2}), (122)

where the integral terms vanish because of Eq. (104) and we
used the boundary conditions in Eq. (106).

We now explicitly shift the path integration variables using

ξ± ≡ ξ±
c + ξ±

q . (123)

Since the boundary conditions for the path integration vari-
ables, ξ±[t f ] = x+

f ± x−
f and ξ±[t0] = x+

0 ± x−
0 , are already

accounted for by the ξ±
c in Eq. (106), we must impose

ξ±
q [t f ] = 0 = ξ±

q [t0], (124)
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which in turn implies that∫ x+
f

x+
0

Dx+
∫ x−

f

x−
0

Dx− →
∫ x+

f +x−
f

x+
0 +x−

0

Dξ+
∫ x+

f −x−
f

x+
0 −x−

0

Dξ−

→
∫ 0

0
Dξ+

q

∫ 0

0
Dξ−

q . (125)

Equation (103) now reads

ST [ξ± = ξ±
c + ξ±

q ] = ST [ξ±
c ] + ST [ξ±

q ], (126)

where ST [ξ±
c ] is the total action evaluated solely on ξ±

c and
given by Eq. (122), while ST [ξ±

q ] is evaluated solely on ξ±
q but

with the limits implied by Eq. (124). There are no cross terms
between ξ±

c and ξ±
q as the action is quadratic and the cross

terms are, therefore, themselves necessarily linear in ξq. Since
the action itself is extremized by the solution to Eq. (104),

these linear-in-ξq terms must vanish upon integrating-by-parts
all the derivatives acting on ξ±

q and employing Eq. (124) to set
to zero the associated boundary terms.

With the new form of the total action in Eq. (126) and
keeping in mind the integration limits in Eq. (125), we can
now write the time evolution operator in Eq. (92) as

KK[t f , x+
f , x−

f ; t0, x+
0 , x−

0 ]

= KK[t f , 0, 0; t0, 0, 0] exp[iST [ξ±
c ]]. (127)

Let us now consider again the trace of ρ̂[t f ], which involves
setting x+

f = x−
f ≡ x in Eq. (127), followed by integrating

over all real x. This procedure will, however, yield an ST [ξ±
c ]

that is quadratic in x, because of the (x+
f + x−

f )ξ̇−
c [t f ] term

in Eq. (122). More explicitly, a direct calculation tells us that
these quadratic-in-x terms in ST [ξ±

c ] are

x2(g + α)r2
0 (2γ (1 − σ 2 cos[2r0χ (t f − t0)]) − χ (2γχ cosh[2r0σ (t f − t0)]

+ 2r0σ (χ sinh[2r0σ (t f − t0)] − σ sin[2r0χ (t f − t0)])))

× {
2 sinh2[r0σ (t f − t0)]

(
χ2 cos2[r0χ (t f − t0)]

( − α2 + g2 − (
r2

0 − ω2)2) + (2γ )2r2
0 sin2[r0χ (t f − t0)]

)
+ 2σ 2 sin2[r0χ (t f − t0)]

( − α2 + g2 − (
r2

0 + ω2
)2)

cosh2[r0σ (t f − t0)]

+ χσ sin[2χr0(t f − t0)]
(
α2 − g2 − r4

0 + ω4
)

sinh[2r0σ (t f − t0)]
}−1

. (128)

If we were to substitute the above into the integral on the
left-hand side of the probability conservation statement in
Eq. (98), we would end up with a Gaussian integral and would
not obtain the required δ-function on the right-hand side. We
must, therefore, eliminate these x2 terms completely, which
can be done by setting

g = −α, (129)

as indicated by the overall factor of (g + α) in Eq. (128).
This, in fact, recovers the time-local version of the γ1I (t, t ′) =
γ2I (t, t ′) condition that we deduced from Eq. (47). Notice also

that we had to perform an explicit calculation of the density
operator’s time evolution operator KK in this section to obtain
the condition in Eq. (129), whereas it arose directly from the
Green’s function equation in Sec. III.

With the condition in Eq. (129) and the definitions


 ≡
√

ω2 − γ 2 and T ≡ t f − t0, (130)

the T here not to be confused with the T ≡ t − t ′ of Sec. IV,
we may now record the following. The homogeneous solution
portion of the 2 × 2 Green’s function and its inverse, written
as a function of a single time variable τ , are

GJ
K[τ ] =

[
Gγ [τ ] iα

ω2

(

−1 cosh [γ τ ] sin [
τ ] − 1

γ
cos [
τ ] sinh [γ τ ]

)
0 G−γ [τ ]

]
, (131)

(G−1)J
K[τ ] =

[
Gγ [τ ]−1 −iα
2

ω2 sin2 [
τ ]

(

−1 cosh [γ τ ] sin [
τ ] − 1

γ
cos [
τ ] sinh [γ τ ]

)
0 G−γ [τ ]−1

]
, (132)

where we have identified the Green’s function of the classical DHO as

Gγ [τ ] ≡ θ [τ ]Gγ [τ ], (133)

Gγ [τ ] ≡ e−γ τ
−1 sin[
τ ], (134)
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and its antidamped counterpart G−γ [τ ] and G−γ [τ ] given by the same expressions, except with γ replaced by −γ . The DHO
Green’s function obeys (

d2

dτ 2
+ 2γ

d

dτ
+ ω2

)
Gγ [τ ] = δ[τ ], (135)(

d2

dτ 2
+ 2γ

d

dτ
+ ω2

)
Gγ [τ ] = 0, (136)

and the antidamped one again obeys the same equations, except with γ replaced by −γ . Let us also observe that G+
+ in Eq. (131)

is, up to a factor of −i, the same as Gξ,+− in Eq. (53).
The action evaluated on the classical trajectory now reads

iST [ξ±
c ] = α csc2[
T ]

32γω2
((x+

f − x−
f )2 − (x+

0 − x−
0 )2)((2γ )2 cos[2
T ] − 4ω2)

− α
2e−2γ T

8γω2 sin2[
T ]
(e4γ T (x+

0 − x−
0 )2 − (x+

f − x−
f )2) + α
2 cos[
T ]

2γω2 sin2[
T ]
sinh[γ T ](x+

f − x−
f )(x+

0 − x−
0 )

+ α


4ω2 sin[
T ]
[cos[
T ]((x+

f − x−
f )2 + (x+

0 − x−
0 )2) − 2(x+

f − x−
f )(x+

0 − x−
0 ) cosh[γ T ]]

+ i

2




sin[
T ]
[sinh[γ T ]2(x+

f x−
0 − x−

f x+
0 ) + cosh[γ T ]2(x−

f x−
0 − x+

f x+
0 )

+ cos[
T ]{(x+
f )2 − (x−

f )2 + (x+
0 )2 − (x−

0 )2}]

− iγ

2
[{(x+

f )2 − (x−
f )2} − {(x+

0 )2 − (x−
0 )2}], (137)

and setting x+
f = x−

f ≡ x in Eq. (137) gives

iST [ξ±
c ; x+

f = x−
f ≡ x]

= −i
x(x+

0 − x−
0 )

Gγ [T ]

+ i

2
{(x+

0 )2 − (x−
0 )2}(γ + 
 cot [
T ])

− α(x+
0 − x−

0 )2

8γω2 sin2 [
T ]
(
2e2γ T − ω2 + γ 2 cos [2
T ]

− γ
 sin [2
T ]). (138)

The probability conservation of Eq. (98) applied to the time
evolution operator in Eq. (127) further yields

KK[t f , 0, 0; t0, 0, 0]
∫
R

dx exp[iST [ξ±
c ; x = x′ ≡ x]]

= δ[x+
0 − x−

0 ]. (139)

Employing Eq. (138) thus hands us the relation

KK[t f , 0, 0; t0, 0, 0] = |2πGγ [T ]|−1. (140)

As alluded to earlier, probability conservation allows us to
evaluate the remaining double path integrals involving ξ±

q ,
namely KK[t f , 0, 0; t0, 0, 0]. We may, at this point, conclude
that the time evolution operator for the DHO system in
Eq. (127) with g = −α is given by

KK[t f , x+
f , x−

f ; t0, x+
0 , x−

0 ]

= |2πGγ [T ]|−1 exp[iST [ξ±
c ]], (141)

with the classical action specified in Eq. (137). Further-
more, armed with this KK for the DHO, we may im-
mediately integrate it against a Gaussian initial density
matrix 〈x+|ρ̂(t0)|x−〉 = Nexp{iS0[x+, x−]}, with S0 given in
Eq. (3)—i.e., compute Eq. (89)—to discover that the final
density matrix takes the same form as the initial one, except
that all relevant “initial” parameters are replaced with the
time-dependent final ones. For instance, the initial position
and momentum are replaced as

x0 → 〈X̂ [t f ]〉, (142)

p0 → d

dt f
〈X̂ [t f ]〉 = 〈P̂[t f ]〉, (143)

and the parameters A and B, related to the initial two-point
correlations cxx, cxp, and cpp by Eqs. (4), (5), and (6), are
similarly replaced by their counterparts at t f .

D. DHO “equal-time” n-point functions

We now turn to calculating the quantum statistical average
of a product of n � 1 position operators at time t f . An appli-
cation of Eqs. (89) and (141) gives us

〈X̂ n[t f ]〉 ≡
∫
R

dx〈x|X̂ nρ̂[t f ]|x〉

=
∫
R

dx

|2πGγ [T ]|xn
∫
R

dx+
0

∫
R

dx−
0

× exp[iST [ξ±
c ; x+

f = x−
f ≡ x]]〈x+

0 |ρ̂[t0]|x−
0 〉.
(144)
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To proceed, we consider the generating functional

Z[J] ≡
∫
R

dx

|2πGγ [T ]|eiJx
∫
R

dx+
0

∫
R

dx−
0

× exp[iST [ξ±
c ; x+

f = x−
f ≡ x]]〈x+

0 |ρ̂[t0]|x−
0 〉. (145)

The time-independent J here is similar in spirit to, but not to
be confused with, the time-dependent J± introduced in the
previous sections. From Eq. (145), the n-point function in
Eq. (144) may be extracted via

〈X̂ n[t f ]〉 = 1

in

∂nZ[J]

∂Jn

∣∣∣∣
J=0

, (146)

or, equivalently, by reading off the coefficient in the Tay-
lor series of Z[J] containing exactly n powers of J . Now,
employing Eq. (138) in Eq. (145), we would discover that
x+

0 − x−
0 = Gγ [T ]J is enforced by the δ-functions obtained by

integrating over x. The generating functional is then found to
be

Z[J] = exp

[
α(iJ )2

8γω2

(
1 + e−2γ T


2
{γ 2 cos [2
T ]

− γ
 sin [2
T ] − ω2}
)]

×
∫
R

dx

〈
x − i

2
Gγ [T ](iJ )

∣∣∣∣ρ̂[t0]

∣∣∣∣x + i

2
Gγ [T ](iJ )

〉

× exp[xGγ [T ](iJ )(γ + 
 cot [
T ])]. (147)

We note, parenthetically, that the x integral in Eq. (147) bears
a resemblance to the Wigner function in quantum mechan-
ics. Moreover, we have written iJ as a group in the above
expressions since n-point correlations are generated by dif-
ferentiating Z[J] with respect to it.

Applying Eq. (146) to Eq. (147), we first find the one-
point function to not only depend on the initial position and
momentum one-point functions,

〈X̂ [t f ]〉 = e−γ T
(

cos [
T ] + γ



sin[
T ]

)
〈X̂ [t0]〉

+ e−γ T



sin[
T ]〈P̂[t0]〉, (148)

which is, of course, Eq. (65) with t replaced with t f , but also
to obey the classical DHO equation,(

d2

dt2
+ 2γ

d

dt
+ ω2

)
〈X̂ [t = t f ]〉 = 0, (149)

since the pair e−γ T sin[
T ] and e−γ T cos[
T ] do. Equa-
tion (148) is thus the quantum analog of the initial value
formulation of the classical DHO differential equation. Notice
that it does not depend on the additional parameter α, the
imaginary portion of the DHO’s frequency-squared, occurring
in our dynamics defined in Eqs. (99) and (100) (with g = −α).
This suggests that α is tied to the underlying quantum and/or
statistical aspect(s) of the DHO system at hand.

As in Sec. IV, we choose γ � 0 in order for the e−γ T

factors in Eq. (148) to not describe runaway trajectories. Also,
〈X̂ [t0]〉 is readily recovered by setting t f = t0 in Eq. (148),
while taking one time derivative before setting t f = t0 gives
us 〈P̂[t0]〉,

〈P̂[t0]〉 = d

dt
〈X̂ [t]〉

∣∣∣∣
t=t0

. (150)

In fact, a direct calculation shows that the general momentum
one-point function,

〈P̂[t f ]〉 ≡
∫
R

dx(−i∂x〈x|)ρ̂[t f ]|x〉 (151)

=
∫
R2

dx+
0 dx−

0 〈x+
0 |ρ̂[t0]|x−

0 〉

×
∫
R2

dx+
f dx−

f

|2πGγ [T ]| (−i∂x+
f
eiST [ξ±

c ] )δ[x+
f − x−

f ],

(152)

is exactly the time derivative of the position one-point func-
tion in Eq. (148), i.e.,

〈P̂[t f ]〉 = d

dt f
〈X̂ [t f ]〉, (153)

again suggesting that P̂(t ) = ˙̂X (t ) for the problem we con-
sider.

Turning next to the two-point function, application of
Eq. (146) returns

〈X̂ 2[t f ]〉 = α

4γω2

(
1 + e−2γ T


2

{
γ 2 cos [2
T ] − γ
 sin [2
T ] − ω2

})

+ Gγ [T ]2

[
(γ + 
 cot[
T ])2〈X̂ 2[t0]〉 + 1

2
(γ + 
 cot[
T ])〈{X̂ [t0], P̂[t0]}〉 + 〈P̂2[t0]〉

]
. (154)

This recovers Eq. (67) with Gξ,++(t, t ) there given by the
sum of Eqs. (61) and (63) with t ′ = t , except that the ini-
tial two-point correlations here are arbitrary. We also note
that the α term is independent of the initial conditions—a
feature already present in Eq. (63)—whereas the remaining
terms depend linearly on the initial two-point functions in-
volving both position and momentum operators. In fact, in
the asymptotic future, T → ∞, the exp(−2γ T ) in Gγ [T ]2—

recall Eq. (134)—implies that the entire dependence on the
initial two-point functions is damped out and all that remains
is the α-term,

〈X̂ 2[∞]〉 = 1

2ω

(
α

2γω

)
. (155)

It is worth reiterating that although our dynamics as en-
coded within Eq. (103) are purely quadratic—i.e., with linear
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equations of motion—we have not made any assumptions
regarding the initial density operator ρ̂[t0] in Eq. (146) and,

therefore, regarding the initial n-point functions in Eqs. (148)
and (154).

E. Purity of the DHO system and the α → 0 limit

We now turn to computing the purity of the DHO system without assumptions on the initial state. Using the time evolution in
Eq. (89) and the form of KK for the DHO in Eq. (141), the purity at time t f is given by

Pu[t f ] ≡ Tr[ρ̂2[t f ]] =
∫
R

dx+
0

∫
R

dx−
0

∫
R

dy+
0

∫
R

dy−
0 KKKK[t f ; x+

0 , x−
0 , y+

0 , y−
0 ]〈x+

0 |ρ̂[t0]|x−
0 〉〈y+

0 |ρ̂[t0]|y−
0 〉, (156)

where the time evolution operator associated with purity is

KKKK[t f ; x+
0 , x−

0 , y+
0 , y−

0 ] ≡
∫
R2

dx+
f dx−

f

|2πGγ [T ]|2 exp[iST [ξ±
c ; x+

f , x−
f , x+

0 , x−
0 ] + iST [ξ±

c ; x−
f , x+

f , y+
0 , y−

0 ]]. (157)

Let us now take the α → 0 limit of Pu[t f ]’s time evolution operator KKKK . Upon switching to the ξ± ≡ x+ ± x− variables, the
exponent is found to be linear in both ξ±,

KKKK[t f ; x+
0 , x−

0 , y+
0 , y−

0 ] = exp

[
i

2
(γ + 
 cot[
T ]){(x+

0 )2 − (x−
0 )2 + (y+

0 )2 − (y−
0 )2}

]
1

2

∫
R2

dξ+dξ−

|2πGγ [T ]|2

× exp

[
− i

2




sin[
T ]
{e−γ T ξ−(x+

0 + x−
0 − y+

0 − y−
0 ) + eγ T ξ+(x+

0 − x−
0 + y+

0 − y−
0 )}

]
. (158)

The integral representation of the Dirac δ-function together with the identity δ[az] = δ[z]/|a|, which holds for integration
variable z and constant a, tells us that KKKK is proportional to

δ[x+
0 + x−

0 − y+
0 − y−

0 ]δ[x+
0 − x−

0 + y+
0 − y−

0 ] = 1

2
δ[x+

0 − y−
0 ]δ[x−

0 − y+
0 ], (159)

where we have used that x+
0 + x−

0 = y+
0 + y−

0 and x+
0 − x−

0 = −(y+
0 − y−

0 ) together imply x+
0 = y−

0 and x−
0 = y+

0 . Equation (158),
therefore, simplifies to

KKKK[α = 0] = e2γ T δ[x+
0 − y−

0 ]δ[x−
0 − y+

0 ]. (160)

Plugging Eq. (160) back into Eq. (156) informs us that, in the α = 0 case, the purity at time t f is the initial purity multiplied by
an exponential growth factor,

Pu[t f ]α=0 = e2γ T Pu[t0]. (161)

We conclude that the quantum DHO system cannot have a purely real frequency-squared, i.e., α �= 0 as long as γ > 0. This is
because purity is constrained to lie within [0,1], while the e2γ T factor in Eq. (161) indicates that the α = 0 DHO system has an
infinite purity in the asymptotic future. This was already noted in Eq. (72), but once again we see that it holds for arbitrary initial
conditions.

Before closing this discussion on purity, we record here the α �= 0 integral representation of purity at time t f ,

Pu[t f ] = eγ T ω

√
− γ
2

παϒ[T ]

∫
R3

du−dξ−dξ ′−δ[ξ− + ξ ′−] exp

[
1

ϒ[T ]

{
− 2α

(ξ ′−)2

γ
(ω2 − γ 2 cos[2
T ] − 
2 cosh[2γ T ])

+ (u−)2

α
e−2γ T (4
2γω2) + (u−ξ ′−)(8iγω2 sin2[
T ])

}]

×
∫
R

du+
〈

1

2
(u+ + u− − ξ ′−)

∣∣∣∣ρ̂[t0]

∣∣∣∣1

2
(u+ + u− + ξ ′−)

〉〈
1

2
(u+ − u− + ξ ′−)

∣∣∣∣ρ̂[t0]

∣∣∣∣1

2
(u+ − u− − ξ ′−)

〉
, (162)

where the time-dependent ϒ is defined as

ϒ[T ] ≡ 4
2e−2γ T + 4γ 2 cos[2
T ] + 4
γ sin[2
T ] − 4ω2. (163)

In terms of the original integration variables occurring in Eq. (156), ξ− ≡ x+
0 − x−

0 , ξ ′− ≡ y+
0 − y−

0 , u− ≡ (x+
0 + x−

0 − y+
0 −

y−
0 )/2, and u+ ≡ (x+

0 + x−
0 + y+

0 + y−
0 )/2.
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VII. DISCUSSION

The quantum DHO is a prototypical example of an exactly
solvable dissipative quantum system. We revisited this simple
system in this paper, with a goal of developing an effective
field theory–inspired and influence functional–based method
to describe its dynamics. We were particularly interested in
what constraints one can impose on various terms that can
appear in the influence functional. We thus considered a
quadratic influence functional without describing the system-
environment interaction that led us to it. We first found that the
dissipation kernels we introduced are related in such a way
that only two real functions are needed to describe the sys-
tem’s dynamics. We next restricted to time-local dissipation
and solved for the exact Green’s functions of the system in
this case. We used the resulting Green’s functions to show that
late-time correlations and purity are independent of the initial
conditions for both Gaussian and more general initial states
and argued that the two dissipation kernels must in fact be
constrained in order to obtain a physically meaningful purity
in the late-time limit. We briefly considered time-nonlocal
dissipation as well and showed that the fluctuation-dissipation
relation is satisfied for a specific choice of dissipation kernels.

It is worth highlighting that we discussed two different
approaches to solve the problem—in Secs. II–V, we focused
on the in-in formalism, and in Sec. VI, we focused on a double
in-out formalism. We found that each approach has its own
advantages. For example, the former allowed the calculation
of unequal-time correlations, which are crucial to understand
whether the fluctuation-dissipation relation holds at late times.
The latter, on the other hand, allowed us to go beyond Gaus-
sian initial states and obtain results that are nonperturbative
in the initial state. Which approach is “better” to use thus
depends on the problem at hand, but it may be interesting to
understand how to extend each approach.

We would also like to highlight a few other exten-
sions of the methods developed in this paper that could
be useful. First, we restricted our calculation to dissipa-
tion kernels γ1(t, t ′) and γ2(t, t ′) that are not proportional
to d2δ(t − t ′)/dt ′2. We further specialized first to time-
local dissipation with γ1R(t, t ′) + γ2R(t, t ′) = γ dδ(t − t ′)/dt ′
and γ1I (t, t ′) = (α/2)δ(t − t ′), with γ and α constant, and
then to time-nonlocal dissipation with the specific choice
of γ1I (t, t ′) given in Eq. (82). It would be interesting to
lift these restrictions to consider more general influence
functionals—time-dependent, generally nonlocal, and arising
from derivative system-environment interactions. Second, it
would be interesting to adapt these methods to describe a
dissipative QFT in Minkowski spacetime as well as time-
dependent spacetimes such as de Sitter. Such an effective field
theory–inspired approach would again complement existing
work on open QFTs. And third, it would be interesting to
study loop corrections in dissipative QFTs in the presence of
interactions and/or nonlinear dissipation, replacing the usual
Green’s functions in loop corrections with their dissipative
analogs. This may, for example, help us to better understand
the secular growth that is often found in loop corrections to
observables in time-dependent quantum systems and QFTs;
see [41–44] for reviews and [45–54] for related work and
other possible resolutions.
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APPENDIX A: GENERATING FUNCTIONAL IN EQ. (1)

In this Appendix, we derive the generating functional
in the absence of dissipation that was shown in Eq. (1).
This is a standard calculation, reproduced here for complete-
ness and to highlight a few important points. As mentioned
earlier, the generating functional is defined as Z[J+, J−] =
Tr[ρ̂(t f )]J+,J− , which can be written as

Z[J+, J−] = Tr[ÛJ+ (t f , t0)ρ̂(t0)Û †
J− (t f , t0)], (A1)

where ÛJ± (t f , t0) = T exp[−i
∫

t (Ĥ − J±X̂ )] is the time evo-
lution operator for the harmonic-oscillator problem we
consider in this paper, with T denoting time-ordering. The
subscripts J± indicate that the forward time evolution is per-
formed in the presence of the source J+(t ) and the backward
time evolution in the presence of the source J−(t ).

The trace in Eq. (A1) can be written as the integral∫
R dx f 〈x f |[· · · ]|x f 〉, where the subscript f is simply a label

to denote states at the final time t f , and the dots indicate
the operator on the right-hand side of Eq. (A1). Let us now
insert a complete set of states on either side of ρ̂(t0), say∫
R dx+

0 |x+
0 〉〈x+

0 | on the left and
∫
R dx−

0 |x−
0 〉〈x−

0 | on the right,
where the subscript 0 is again a label that denotes states
at the initial time t0, and we use the standard path integral
representation of transition amplitudes,

〈x f |ÛJ+ (t f , t0)|x+
0 〉 =

∫ x f

x+
0

Dx+ exp

[
i

{
S[x+] +

∫
t
J+x+

}]

(A2)

and

〈x−
0 |Û †

J− (t f , t0)|x f 〉 =
∫ x f

x−
0

Dx− exp

[
− i

{
S[x−] +

∫
t
J−x−

}]
.

(A3)

We are now left with integrals over x f , x+
0 , and x−

0 , and the ma-
trix element 〈x+

0 |ρ̂(t0)|x−
0 〉, that we will denote ρ[x+

0 , x−
0 , t0].

The integral over x f can be used to remove the upper limits
from the path integrals in Eqs. (A2) and (A3), while inserting
a δ-function to impose that x+(t f ) = x−(t f ). The integrals
over x+

0 and x−
0 , on the other hand, can be used to remove

the lower limits and write the initial density matrix element
as ρ[x+, x−, t0], with the functions x±(t ) evaluated at t0. The
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generating functional then becomes

Z[J+, J−] =
∫

Dx+Dx−ρ[x+, x−, t0]

× exp

[
i

{
S[x+] +

∫
t
J+x+ − S[x−] −

∫
t
J−x−

}]

× δ[x+(t f ) − x−(t f )], (A4)

as given in Eq. (1).
The δ-function at the turnaround time t f also imposes the

constraint ẋ+(t f ) = ẋ−(t f ) that is needed to cancel the bound-
ary terms at t f , as discussed in Sec. III. This was shown in
[55], and we reproduce their argument here for completeness.
Following [55], let us first discretize the x+ path integral and
action as

∫
Dx+ = limδt→0

∫
dx+

f dx+
t f −δt · · · dx+

0 and

S[x±] = 1

2

∑
t

δt

[(
x±

t − x±
t−δt

δt

)2

− ω2(x±
t )2

]
, (A5)

where the summation runs over all t between t0 + δt and t f

in steps of δt , and similarly discretize the x− path integral
and action. Using the δ-function in Eq. (A4), we can also
write

∫
R2 dx+

f dx−
f δ(x+

f − x−
f ) as a single integral that we de-

note
∫
R dx f , replacing x±

f everywhere with x f . Let us now
specifically consider the x f integral. The terms proportional
to ω2 (and multiplied by x2

f ) cancel between S[x+] and S[x−].
We can also set J±(t f ) = 0 since t f is chosen to be later than
any times at which we are interested in calculating correlation
functions. Then the x f integral in the discretized version of the
generating functional in Eq. (A4) becomes

lim
δt→0

∫
R

dx f exp

[
−ix f

(
x+

t f −δt − x−
t f −δt

δt

)]
, (A6)

which is simply 2πδ(
x+

t f −δt −x−
t f −δt

δt ). This can be further simpli-
fied to δ(ẋ+

f − ẋ−
f ) by Taylor expanding x±

t f −δt = x f − ẋ±
f δt .

The path integral, therefore, imposes the constraint ẋ+(t f ) =
ẋ−(t f ).

Lastly, we note that the constraint ẋ+(t f ) = ẋ−(t f ) may
not necessarily hold in the presence of dissipation. Specifi-
cally, if the dissipation kernels γ1(t, t ′) and γ2(t, t ′) that we
introduced in Eq. (7) are proportional to d2δ(t − t ′)/dt ′2, then
the argument in the previous paragraph needs to be revis-
ited as Eq. (A6) could potentially contain other terms. If,
on the other hand, the dissipation kernels are proportional
to dδ(t − t ′)/dt ′, as considered in the main text, then the
constraint ẋ+(t f ) = ẋ−(t f ) continues to hold.

APPENDIX B: n-POINT CORRELATIONS FROM Z[J+, J−]

In this Appendix, we use the generating functional de-
rived in Appendix A in the absence of dissipation to define
the one- and two-point correlations of X̂ (t ). Consider first
the one-point function 〈X̂ (t )〉, with angular brackets de-
noting the expectation value in ρ̂(t0). Explicitly, 〈X̂ (t )〉 =
Tr[ρ̂(t0)X̂ (t )] = Tr[ρ̂(t0)Û †(t, t0)X̂SÛ (t, t0)], which can fur-
ther be written as Tr[Û (t f , t )X̂SÛ (t, t0)ρ̂(t0)Û †(t f , t0)] by
inserting Û †(t f , t )Û (t f , t ) = Î before X̂S and rearranging op-
erators inside the trace. Note that all of these steps can be
done in the presence of sources J±(t ) as well, as long as we
set them to be equal at the end of the calculation. We can
write the resulting expression in path integral form using a
generalization of Eq. (A2),

〈xt f |ÛJ+ (t f , t )X̂SÛJ+ (t, t0)|x+
t0 〉

=
∫ xt f

x+
t0

Dx+ x+(t )exp

[
i

{
S[x+] +

∫
t
J+x+

}]
, (B1)

and Eq. (A3), and we see that 〈X̂ (t )〉 can, therefore, be written
as

〈X̂ (t )〉 = −i
δ

δJ+(t )
Z[J+, J−]

∣∣∣
J±=J

(B2)

in the presence of a source J (t ).
Let us next consider the time-ordered two-point correlation

〈T X̂ (t )X̂ (t ′)〉, which can be written using similar manipula-
tions as we did for the one-point function as

〈T X̂ (t )X̂ (t ′)〉 = (−i)2 δ

δJ+(t )

δ

δJ+(t ′)
Z[J+, J−]

∣∣∣∣
J±=J

, (B3)

again in the presence of a source J (t ). Taking the Her-
mitian conjugate of the above expression further gives
us the anti-time-ordered correlation 〈T̄ X̂ (t )X̂ (t ′)〉 in terms
of functional derivatives with respect to J−(t ) and J−(t ′)
instead. Lastly, let us consider the two-point correla-
tion 〈X̂ (t ′)X̂ (t )〉 without time-ordering. This can be writ-
ten as Tr[{Û (t f , t )X̂SÛ (t, t0)}ρ̂(t0){Û †(t ′, t0)X̂SÛ †(t f , t ′)}],
where we have grouped together terms such that the first X̂S is
inserted at time t and the second at t ′, without specifying their
ordering. This can be expressed in terms of the generating
functional as

〈X̂ (t ′)X̂ (t )〉 = (−i)i
δ

δJ+(t )

δ

δJ−(t ′)
Z[J+, J−]

∣∣∣∣
J±=J

. (B4)

Taking the Hermitian conjugate of this expression similarly
gives us the correlation 〈X̂ (t )X̂ (t ′)〉 in terms of functional
derivatives with respect to J−(t ) and J+(t ′) instead. The in-in
generating functional, therefore, allows the calculation of non-
time-ordered two-point correlations in addition to the usual
time-ordered ones.

Lastly, we note that replacing Z[J+, J−] in the above ex-
pressions with Zdiss[J+, J−], which we defined in Eq. (2),
yields instead correlation functions in the presence of dissi-
pation, as explained in Sec. III A.
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