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Reverse design of the ideal pulse for hollow capillary fiber post-compression schemes
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The countless applications of ultrashort laser pulses in very different scientific areas explain the ongoing
efforts to develop new strategies for the generation of light pulses with increasingly better characteristics. In this
work, we theoretically study the application of the nonlinear reverse propagation method to produce few-cycle
pulses with clean temporal profiles from standard post-compression setups based in hollow capillary fibers. By
numerically solving the propagation of a desired goal pulse in the backward direction, we are able to predict the
structure of the ideal input pulse that could be perfectly compressed in a given setup. Although the goal pulse
cannot be chosen in a simple manner due to the fundamental symmetries of the nonlinear propagation equation,
our analysis shows that the ideal pulse presents a recurring form and that, in general, both its intensity profile
and phase must be shaped to recover the optimized goal output.
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I. INTRODUCTION

In the last decades, the rapid growth of ultrafast science
demanding ultrashort laser pulses has pushed the community
to develop different compression schemes for the generation
of tailored light pulses with optimal characteristics [1]. These
pulses have broken new ground in time-resolved spectroscopy
[2] and have become a key enabling tool for strong field
physics leading to the generation of the shortest attosecond
pulses [3], which offer great promise for advancing precision
control of ultrafast dynamics at the atomic scale [4–7]. Among
the main properties of ultrashort laser pulses, their temporal
duration is the one that is most often desired to be pushed
to the limit. The standard technique which is routinely used
by many laboratories to temporally compress intense light
pulses in the optical spectral region towards their ultimate
duration relies on the nonlinear propagation through gas-filled
hollow capillary fibers (HCFs), as first proposed by Nisoli
and coworkers in 1996 [8]. This method is based on the
nonlinear spectral broadening of an input femtosecond pulse
by self-phase modulation (SPM) in a HCF, followed by phase
compensation in an external compressor comprising disper-
sive elements such as chirped mirrors, prisms or gratings
[9]. Intense near-single-cycle pulses have been obtained using
this post-compression scheme in combination with positive
pressure gradients and a d-scan compressor [10], or with
high third-order dispersion (TOD) to group-delay dispersion
(GDD) ratio materials such as water [11,12] or ammonium
dihydrogen phosphate (ADP) [13], or by tuning the spectral
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phase of the input pulse and using broadband chirped mirrors
[14].

Another promising alternative for the generation of ever
shorter sub-cycle optical pulses comes through high-energy
soliton self-compression in HCFs [15], which has been
demonstrated for short precompressed pulses (∼10 fs at
800 nm) [15,16], and also proposed for standard multicycle
pulses in fibers with a decreasing pressure gradient [17,18].
Although all these pulses have extremely short temporal
durations, most of them also present secondary structures
accompanying the main ultrashort peak. Thus there is still
room for improvement and it is natural to ask whether
these structures could be cleaned, preferably by shaping the
less-sensitive input pulse. However, the complex nonlinear
propagation dynamics often results in dramatic pulse reshap-
ing, challenging any explicit design of the initial pulse. In
this work, we have addressed this problem and found a pos-
itive answer, at least from a theoretical point of view, in an
attempt to provide theoretical support and guidelines for in-
line HCF-based post-compression experiments that use input
pulse shaping. Our strategy is based on the nonlinear reverse
propagation method, which has been already applied in the
context of highly nonlinear regimes.

The reverse design method undoing all dispersion and non-
linear effects for output pulse optimization in an optical fiber
was first proposed in 2003 [19]. This work demonstrated that
it is possible to theoretically predict the exact input pulse
shape that yields a desired output by numerically solving
the nonlinear propagation equation backwards, showing that
the resulting optimization is much better than that achieved
with other techniques such as optical phase conjugation [20].
Nonlinear reverse propagation in optical fibers was later used
to generate optimally shaped ultrashort pulses relevant for
coherent control and for selective two-photon excitation of
dye molecules [21,22], proving to be a superior method
than linear dispersion compensation. More recently, backward
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propagation has been demonstrated in highly nonlinear
regimes like filamentation [23], which has unexpectedly
proven to be reversible in many cases of interest despite
intensity clamping, ionization induced nonlinear losses and
extreme phase sensitivity after beam collapse [24]. In this con-
text, the nonlinear reverse propagation method has also been
used to design the initial waveforms which yield a required
complex target electric field at a remote distance after under-
going filamentation [25,26]. These previous works constitute
a clear evidence that the actual reversibility of real physical
systems can expand beyond the domain of formally well-
posed inverse problems, opening the way to explicit pulse
design for control and optimization.

In this paper, we study the application of nonlinear re-
verse propagation to find the ideal input pulse that could lead
to a perfect compression in a HCF-based post-compression
scheme, directly yielding a clean few-cycle pulse. We first
briefly discuss the fundamental symmetries of the nonlinear
pulse propagation equation and its implications for reverse
design. We also note that, despite HCFs present important
guiding losses, the reverse design method can still be used,
although it has to be applied carefully. As explained in
[26], we also find that, in this nonlinear regime, the reverse
propagation method requires an intermediate state, which
in our case corresponds to the output pulse from the fiber
before undergoing perfect phase compensation in a stan-
dard compressor (gratings or d-scan). On the whole, our
method predicts the intensity profile and phase of the ideal
pulse that could be perfectly post-compressed after propa-
gation through the HCF and the compression stage. Most
noticeably, the ideal pulse spectrum always exhibits a similar
modulated structure, typically consisting of a main central
peak and a pair of side lobes, independent of the chosen
setup. Finally, we demonstrate that, in general, both the ideal
amplitude and phase distributions are necessary to achieve
the desired compressed pulse, revealing the intricate sen-
sitivity of the nonlinear propagation equation to the initial
condition.

II. METHODS

A. Nonlinear propagation of ultrashort laser pulses in hollow
capillary fibers

In the low-intensity regime, where the peak power and
the peak intensity of an ultrashort laser pulse remain, re-
spectively, below the critical power for self-focusing and the
threshold intensity for gas ionization, the nonlinear propa-
gation through a gas-filled HCF can be accurately modeled
with the one-dimensional generalized nonlinear Schrödinger
equation (GNLSE) [27]. In this approximation, the transverse
pulse profile is assumed to remain unmodified along the
propagation and equal to a waveguide mode. The propaga-
tion equation for the complex temporal envelope A(z, T ) of
a linearly polarized electric-field can then be written in the
frequency domain as [28]

∂Ã

∂z
+ α(ω)

2
Ã − i[β(ω) − β0 − β1(ω − ω0)]Ã

= F{N̂[A(z, T )]A(z, T )}, (1)

where F stands for direct Fourier transform, Ã(z, ω) =
F{A(z, T )}, z is the propagation coordinate along the fiber,
and T is the local time measured in a reference frame traveling
with the pulse at the group velocity vg = 1/β1. The left-hand
side of Eq. (1) includes the effects of linear losses through
the absorption coefficient α(ω) of the HCF, and the complete
chromatic dispersion through the frequency-dependent prop-
agation constant β(ω). The parameters β0 and β1 are defined,
respectively, as β0 = β(ω0) and β1 = (dβ/dω)ω0 with ω0 be-
ing the central frequency of the input pulse. On the right-hand
side, the operator N̂[A(z, T )] gathers all the nonlinear effects
which influence the pulse propagation, and can be expressed
in the time domain as:
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with the nonlinear parameter given by γ = n2ω0/(cAeff ), n2

being the nonlinear refractive index of the gas filling the HCF,
c the speed of light in vacuum, and Aeff the effective modal
area as defined elsewhere [28]. The operator (i/ω0)∂/∂T ac-
counts for pulse self-steepening, and the nonlinear response
function
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includes both an instantaneous electronic and a delayed
molecular contribution to the Kerr nonlinearity in relative
fractions (1 − fR) and fR, respectively. Here δ(T ) represents
the Dirac delta function and 	(T ) is the Heaviside step func-
tion. The first term in R(T ) describes the effect of SPM and the
second is responsible for intrapulse stimulated Raman scatter-
ing (SRS), which is modeled in a damped harmonic oscillator
approximation with two characteristic time constants τ1 and
τ2 [29,30].

To solve Eq. (1) numerically, we have implemented the
efficient fourth-order Runge-Kutta in the interaction picture
algorithm [31], in combination with the local error method for
continuously adapting the step size [32]. For the propagation
constant and the absorption coefficient that appear in Eq. (1)
we have used the analytical expressions for the fundamental
mode of a hollow dielectric capillary, EH11, which are given
by [33]

β(ω) = ω

c
neff (ω) = ω

c

√
n2

gas(ω) − u2
11c2

ω2a2
, (4)

α(ω) =
(

u11

ngas(ω)

)2 c2

ω2a3

ν2(ω) + 1√
ν2(ω) − 1

,

with ν(ω) = nclad(ω)

ngas(ω)
, (5)
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where u11 = 2.4048, a represents the fiber core radius, nclad

is the refractive index of the dielectric cladding and ngas is
the refractive index of the filling gas [34]. In our simulations,
we have modeled a 3 m long, 125 µm core radius fused-silica
HCF filled with argon, with no SRS contribution ( fR = 0) and
a nonlinear refractive index of n2 = 1.08 × 10−19 p (cm2/W)
[35], p being the gas pressure in bar.

Given an input pulse A(0, T ), Eq. (1) describes its forward
nonlinear propagation towards the fiber output in z = L. In
principle, one could also think of using the GNLSE to recover
the original initial condition from the output A(L, T ) by re-
versing the pulse propagation. This can be accomplished by
changing dz to −dz in the GNLSE [19], as z is the evolution
variable of Eq. (1). However, when energy losses are taken
into account, the resulting backward equation is mathemati-
cally ill-posed, meaning that the reverse propagation solution
is highly sensitive to small perturbations of its initial condition
and to the amplification of noise [23,36].

In particular, Eq. (1) includes two different sources of en-
ergy dissipation, namely, the linear absorption of the HCF and
the nonresonant losses associated with SRS, which transfers
part of the pulse energy to the gas molecules due to the inter-
action with excited rotational states [28,37–39]. The latter are
always finite and do not represent a problem when simulating
the reverse propagation of a laser pulse, because light is never
completely absorbed by the molecular medium. However,
special care has to be taken when including the fiber losses
which, being turned into an exponential gain in backward
propagation, can amplify unphysical numerical noise leading
to the blow up of the solution.

Fortunately, the problematic large-loss regions of a HCF
are not within the transparency windows of both the dielectric
cladding and the filling gas, so the GNLSE can be numerically
reversed with minimal error if the curve α(ω) as given in
Eq. (5) is restricted to the spectral region of interest, as shown
in Appendix A. For the simulations performed in the 125
µm core radius HCF filled with Ar at 1 bar, the absorption
coefficient was limited to the range of wavelengths shorter
than 4.5 µm, where it safely remains below 22 dB/m. Across
the full spectral bandwidth of the broadest pulses analyzed,
α(ω) varies smoothly between 2.1 dB/m at 1.5 µm and 0.24
dB/m at 500 nm, not representing a problem for numerical
reverse propagation (see Fig. 7 in Appendix A).

B. Fundamental symmetries of the propagation equation

If the GNLSE is written in the time domain by expanding
the propagation constant β(ω) in a Taylor series around the
central frequency and then applying inverse Fourier trans-
forms (see Appendix B or Refs. [28,40]), it is straightforward
to prove that, in the absence of linear losses (α = 0) and SRS
( fR = 0), Eq. (1) is parity-time (PT ) symmetric. In other
words, it is invariant under the joint transformations of space
reversal (z → −z), time reversal (T → −T ) and complex
conjugation (i → −i, A → A∗). As a consequence, in this
loss-free regime, if A(z, T ) is a solution of the propagation
equation with initial condition A(0, T ), then so is A∗(−z,−T )
with initial condition A∗(0,−T ). Therefore, as the backward
propagation equation is defined as the spatial inversion of
the GNLSE, these symmetries imply that, in the absence of

linear losses and SRS, the one-dimensional nonlinear reverse
propagation of a pulse is equivalent to the forward propagation
of its complex conjugated temporal inversion, meaning that
both propagation directions are physically indistinguishable
[36].

Furthermore, from the properties of the Fourier transform,
it is simple to prove that combined complex conjugation and
time reversal of an envelope are equivalent to phase conjuga-
tion in the frequency domain [19,41]. Therefore Ã(z, ω) and
Ã∗(−z, ω) are the two equivalent solutions of the loss-free
GNLSE in the frequency space. An immediate consequence of
these fundamental symmetries is that, if the initial condition
is such that A(0, T ) = A∗(0,−T ) (e.g., a transform limited
pulse), then the forward and backward propagation directions
are exactly equivalent. For example, as Fourier limited pulses
(FLPs) always broaden their spectrum by SPM during their
forward propagation [28], then just the same occurs in the
backward direction. And this is true even if fiber losses and
SRS are not negligible, because these effects do not alter the
direction of the spectral broadening (see Appendix B for a
more detailed analysis on the symmetries of the GNLSE and
the role of linear absorption and SRS). This result indicates
that an initial pulse cannot self-compress in a single stage to a
FLP if the spectrum broadens during the propagation, which is
the usual situation in self-compression experiments. If direct
self-compression to a FLP was pursued, the input pulse should
have a broader and more complex spectrum than the output
FLP [see, for example, Fig. 8(e) in Appendix B].

As a consequence, the desired output pulse cannot be cho-
sen in such a simple manner, and a two-stage compression
method is preferable to design a feasible compression towards
a FLP while starting from a practicable input. Thus, in this
work, we have introduced an intermediate chirped pulse at
the fiber output that can then be optimally post-compressed in
a subsequent dispersive stage to produce the goal few-cycle
pulse. We have tested the reverse design method with two
different compressors: a standard set of pairs of diffraction
gratings and a d-scan, which is commonly used for simul-
taneous few-cycle pulse compression and characterization
[10,11,13,42].

III. RESULTS AND DISCUSSION

A. Reverse nonlinear propagation to find the ideal pulse for
post-compression

Our first proposal to test the reverse propagation method
with a grating compressor is schematically depicted in the
flowchart in Fig. 1. We start by choosing a compressed
goal pulse with a few-cycle Gaussian profile Agoal(T ) =√

P0 exp[−T 2/(2T 2
0 )] centered at 800 nm, with an intensity

full width at half maximum (FWHM) duration of 8 fs (T0 =
4.80 fs) and a peak power P0 = 1.75 GW. In this way, Agoal(T )
models what could be the resulting ultrashort pulse from
an ideal post-compression setup, without secondary temporal
structures arising from uncompensated high-order dispersion
terms remnant from the nonlinear interaction. This pulse is
then reverse propagated through two pairs of gratings in a
Treacy configuration which introduce a GDD of −150.82 fs2

and TOD of +197.21 fs3 [43]. As the compressor is assumed
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FIG. 1. Flowchart describing the nonlinear reverse design
method followed to generate ideal input pulses Aint (0, T ) that could
be optimally compressed to clean few-cycle goal pulses Agoal(T ) after
their propagation through a gas-filled HCF and a grating compressor.
For clearness, the color code for the different pulses is preserved in
all figures throughout the paper.

to be a linear stage, this simply chirps the goal pulse with the
opposite phase to that introduced by the gratings, stretching it
to a duration of 50.96 fs and reducing its peak power to 0.27
GW. The resulting chirped intermediate pulse Aint (L, T ) is
used for nonlinear reverse propagation through the 3 m long,
125 µm core radius HCF filled with Ar at 1 bar. Note that, for
this fiber, the zero-dispersion pressure is 0.47 bar, so at 1 bar
the propagation takes place in the normal dispersion regime,
as is usual in post-compression schemes. All pulse and fiber
parameters were chosen—within standard and practicable ex-
perimental values—to ensure the validity of the 1D-GNLSE
model at the same time that the pulse accumulated enough
nonlinear phase to broaden (narrow) its spectrum during for-
ward (backward) propagation.

Figures 2(a) and 2(b) show the temporal (a) and spectral
(b) intensity and phase distributions of the chirped Gaus-
sian intermediate pulse (fuchsia) and the resulting ideal pulse
Aint (0, T ) after reverse propagation (light pink). As we can see

in Fig. 2(b), the spectrum of the ideal pulse is slightly mod-
ulated, with an asymmetric spectral phase and an intensity
profile with a main central peak and a pair of low-intensity
side lobes. This secondary structure results from the mis-
match between the chirp of Aint (L, T ) and the nonlinear chirp
induced mainly by SPM [44]. Although the ideal spectrum
at the HCF entrance is relatively complex, it seems to be
narrower than the output one, which might be indicative of
a proper post-compression scenario. It is interesting to note
that this reverse spectral compression of the positively chirped
intermediate pulse is equivalent to that found in the con-
ventional forward propagation of Gaussian-like pulses with
negative chirp, where the initial linear frequency modula-
tion is compensated for by the SPM-induced positive chirp
[28,45–49]. The requirement that the intermediate Gaussian
pulse must have positive GDD in order to narrow its spectrum
in reverse propagation can be easily understood by recalling
the GNLSE symmetries in the frequency domain as explained
in Sec. II B. However, as we can see in Fig. 2(c), the FLPs
of the spectra at both HCF ends are almost identical, except
for the pedestal structure that is present in the FLP of the
input ideal pulse. Thus this situation does not correspond to an
effective compression process, but to a nonlinear reshaping of
the pulse spectrum, increasing the energy carried around the
central frequency, without introducing important changes in
the corresponding FLP. Nevertheless, although this situation
does not represent a compression scenario where the FLP
duration is reduced, it can be seen as a reshaping stage to
prepare an input pulse to undergo perfect compression.

When looking at the ideal spectral profile [light pink solid
line in Fig. 2(b)], it is natural to wonder how relevant are the
low-intensity modulations that appear after the reverse propa-
gation, and whether the main features of the ideal nonlinear
propagation leading to the goal pulse could be recovered
without them. To answer this question, we have fitted the
modulated spectral intensity at the fiber entrance to a Gaussian

FIG. 2. (a) Temporal and (b) spectral intensity profiles (solid line, left axis) and phase (dot-dashed line, right axis) at the entrance (light
pink) and the end (fuchsia) of the HCF, corresponding to the ideal pulse that could be perfectly post-compressed to a goal few-cycle Gaussian
pulse in a pair of gratings. (c) FLPs of the two spectra shown in (b). [(d) and (e)] Spectral intensity and phase of the tailored pulse at the
fiber entrance (light green) and at the fiber output (dark green) after its forward nonlinear propagation. In (d), the tailored pulse was built by
combining the ideal spectral phase and a Gaussian intensity fit, while in (e), it comprises the ideal spectral intensity and an approximated phase
(see text for details).
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distribution [light green solid line in Fig. 2(d)] and combined
it with the ideal spectral phase to build a new pulse, from
now on referred to as tailored pulse Atail (0, T ), which closely
resembles the ideal one. Finally, we have (forward) propa-
gated the resulting pulse through the HCF under the same
conditions as in the reverse propagation. To have an equivalent
nonlinear interaction, we have forced the tailored pulse to
have the same peak intensity than the ideal pulse. In Fig. 2(d),
we can see the spectrum at the fiber output obtained after the
forward propagation of the tailored pulse, which turns out to
be completely different from the initially proposed Gaussian
profile. These results demonstrate that, even though Aint (0, T )
and Atail (0, T ) are very similar, their nonlinear propagation
results in a completely different output situation, showing
the great sensitivity of the nonlinearity to small changes
in the initial spectral amplitude, and hindering the recovery
of the perfectly compressed goal pulse.

As a complementary test, we have analyzed what hap-
pens if we build the tailored pulse with the ideal spectral
intensity and instead fit the spectral phase using a Taylor
series around the central frequency up to a few dispersion
orders. Figure 2(d) shows the resulting output spectrum after
forward propagating Atail (0, T ) comprising the ideal spectral
amplitude and a spectral phase corresponding to a GDD of
+101.25 fs2, a TOD of −205.44 fs3 and a fourth-order disper-
sion (FOD) of +1.35 × 103 fs4, an expansion that faithfully
reproduces the ideal phase inside the main spectral lobe.
Again, the output spectrum is quite different from the goal
Gaussian distribution, proving that, in this situation, both the
ideal phase and amplitude profiles are important to achieve a
perfect pulse compression. We should note that similar results
are obtained when using different goal pulse durations or dif-
ferent compressors. For the case of ultrashort goal pulses close
to the single-cycle limit, the asymmetries and modulations
of the ideal spectrum increase both in amplitude and phase,
entering a very complex scenario which is out of the scope of
this manuscript (see Appendix C for some examples).

B. Reverse nonlinear propagation to improve the
post-compression process

The previous section has shown that selecting a too-ideal
goal pulse is not a feasible situation, both because it produces
a complex input pulse that would be difficult to shape in a
real experiment with enough precision so as to recover the
ideal propagation, and because it does not lead in general to
an effective post-compression scenario. Therefore we now try
to relax the output condition by choosing a goal pulse which
is at the same time optimally compressed and close to an
actual nonlinear solution, with a typical SPM-modulated spec-
trum and a complex nonlinear phase. In this section, we test
the applicability of the nonlinear reverse propagation method
to improve the results obtained beforehand from a standard
HCF post-compression setup with a d-scan, which allows for
a direct assessment of the post-compression quality and its
optimization. The new proposal is schematically depicted in
the flowchart of Fig. 3.

An initial simple pulse A(0, T ) is first propagated through
a gas-filled HCF and its spectrum is broadened by SPM.
The resulting output A(L, T ) is compressed in the d-scan

FIG. 3. Flowchart describing the nonlinear reverse design
method followed to generate ideal shaped pulses Aint (0, T ) that could
be optimally compressed in a d-scan system after their nonlinear
propagation through a gas-filled HCF.

module, and the compression performance is directly eval-
uated from the appearance of the d-scan trace. Intuitively,
a flat and thin trace would be indicative of excellent com-
pression, but actual d-scan traces often exhibit more complex
tilts and curvatures which are a signature of residual higher-
order dispersion terms from the nonlinear interaction [9,50].
Especially, TOD, which appears in the d-scan trace as a lin-
ear tilt, has proven to be one of the main limiting factors
in many in-line post-compression experiments [10,11,13,14].
The optimization step then consists in adding small amounts
of TOD and FOD to A(L, T ) until its d-scan trace is optimally
flattened (the goal d-scan trace). Finally, the intermediate
phase-optimized pulse, Aint (L, T ), is used as the initial con-
dition to solve the nonlinear propagation equation backwards
again towards the fiber entrance. This yields the ideal input
pulse Aint (0, T ) that should be launched in the HCF to achieve
the best compressed ultrashort pulse after the d-scan. The
way of building Aint (0, T ) together with the reversibility of
the GNLSE, ensures that the reverse propagation produces
a practicable input. Our strategy is somehow similar to the
hybridization proposed by Berti et al. in the context of fila-
mentation to ensure the collapse of the back-propagated target
waveform into a filament [25].

In Fig. 4, we can see the results obtained for an initial trans-
form limited Gaussian pulse A(0, T ) = √

P0 exp[−T 2/(2T 2
0 )]

centered at 800 nm, with a standard intensity FWHM du-
ration of 30 fs (T0 = 18.02 fs) and an input peak power
P0 = 1.6 GW [light blue line in Fig. 4(a)]. As before, these
parameters were chosen to ensure both the validity of the 1D
theoretical model and that the broadened spectrum by SPM
could be compressed to a few-cycle pulse. After the nonlinear
propagation of A(0, T ) through the same 3 m long, 125 µm
core radius HCF filled with Ar at 1 bar, the resulting output
pulse [dark blue line in Fig. 4(c)] has a d-scan trace with tilt
and curvature which are a signature of the higher-order disper-
sion remnant from the nonlinear interaction [Fig. 4(e)]. In this
case, the d-scan compressor was composed of ultra-broadband
chirped mirrors introducing −100 fs2 of pure GDD, and a
pair of BK7 wedges. By adding the extra dispersion terms
TOD = −30 fs3 and FOD = +60 fs4 to A(L, T ), its d-scan
trace is optimized as seen in Fig. 4(f). The resulting pulse
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FIG. 4. Reverse design of the ideal input pulse Aint (0, T ) for optimal post-compression in a d-scan starting from an initial Gaussian pulse.
(a) Initial pulse A(0, T ) and ideal pulse Aint (0, T ) after back-propagation of the intermediate state, and (b) their corresponding spectra at the
fiber entrance. (c) Output pulse A(L, T ) obtained after the forward propagation of the initial Gaussian pulse through the HCF, and intermediate
pulse with optimal d-scan trace Aint (L, T ) used as the initial condition for the reverse propagation. (d) Corresponding spectra at the fiber output.
Solid lines are for intensity (left axis) and dot-dashed lines represent the temporal and spectral phases (right axis). (e) Initial d-scan trace of
A(L, T ), (f) goal trace of Aint (L, T ), and d-scan traces obtained after forward propagating the original Gaussian pulse with (g) the complete
ideal spectral phase of Aint (0, T ) and (h) an approximated input spectral phase up to FOD. The dashed horizontal lines over the d-scan traces
represent the optimal glass insertion for maximum pulse compression.

Aint (L, T ) corresponding to this goal trace [fuchsia line in
Fig. 4(c)] is finally back-propagated, yielding the ideal input
pulse Aint (0, T ) plotted in light pink in Fig. 4(a). The latter is
quite close to the original Gaussian pulse but, again, presents
a modulated spectrum [light pink line in Fig. 4(b)], with two
low-intensity side lobes which are very similar to those found
in the previous section.

To illustrate the main features of the nonlinear propagation
through the HCF in this scenario, Fig. 5 shows the computed
full temporal and spectral evolution of both A(0, T ) (top row)
and Aint (L, T ) (bottom row) during their forward and back-
ward propagation, respectively. As we can see, in the forward
direction, A(0, T ) broadens its spectrum by SPM and tem-
porally disperses due to the combined positive chirp induced
by SPM and the fiber normal dispersion. This is the typical
evolution observed in most HCF-based post-compression se-
tups. The backward propagation of Aint (L, T ) resembles the
previous forward evolution, but close to the fiber entrance the
pulse spectrum develops the characteristic side lobes.

As before, to find out if both the amplitude and spec-
tral profiles of the ideal pulse are necessary to recover the
goal d-scan trace in this second scenario, we have performed
some approximations to Aint (0, T ) and simulated its for-
ward propagation. First, we have replaced the input shaped
spectrum by the original Gaussian amplitude, neglecting the
low-intensity side lobes. When the input tailored pulse gener-
ated by combining the Gaussian spectrum with the complete
spectral phase of Aint (0, T ) is forward propagated through
the HCF and subsequently compressed in the d-scan, its
trace [Fig. 4(g)] slightly deviates from the optimized one but,

FIG. 5. Complete temporal (left) and spectral (right) evolution
of the Gaussian initial pulse A(0, T ) (top row) and the corresponding
Aint (L, T ) (bottom row) during their forward and backward propaga-
tion through the HCF, respectively.
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FIG. 6. Reverse design method of the ideal input pulse Aint (0, T ) for optimal post-compression in a d-scan, applied to an initial hyperbolic
secant pulse. (a) Initial pulse A(0, T ) and ideal pulse Aint (0, T ) after nonlinear back-propagation of the intermediate state, and (b) their
corresponding spectra at the fiber entrance. (c) Output pulse A(L, T ) obtained after the forward propagation of the initial sech pulse through
the HCF, and intermediate pulse with optimal d-scan trace Aint (L, T ) used as the initial condition for the reverse propagation. (d) Corresponding
spectra at the fiber output. (e) Initial d-scan trace of A(L, T ), (f) goal trace of Aint (L, T ), and d-scan traces obtained after forward propagating
the original sech pulse with (g) the complete ideal spectral phase of Aint (0, T ) and (h) an approximated input spectral phase up to FOD.

surprisingly, it is still clearly better than the initial d-scan
trace, showing that the optimization performed with the
reverse design procedure can be partially recovered. Sec-
ond, we have further simplified the ideal input pulse by
approximating the predicted spectral phase of Aint (0, T )
with a Taylor series expansion around the central frequency
up to fourth order. This fit, which yields the dispersion
terms GDD = −23.71 fs2, TOD = +74.90 fs3 and FOD =
+8.555 × 103 fs4, faithfully reproduces the theoretical phase
inside the main peak of the Gaussian spectrum. The forward
propagation of the original Gaussian spectrum with these dis-
persion orders results in the d-scan trace shown in Fig. 4(h). In
this case, the reconstructed trace is almost identical to the orig-
inal one, and all the optimization performed with the reverse
design method is lost by approximating the optimized input
spectral phase. This fact reveals the extraordinary sensitivity
of the nonlinearity to the phase of the initial condition, even
in regions with low spectral amplitude.

Finally, to further illustrate the great sensitivity of the
propagation to changes in the ideal pulse and to show how
different conditions converge to a similar ideal spectrum in
this second scenario, we have repeated the previous analy-
sis starting from a slightly different initial pulse shape. In
Fig. 6, we can see the results obtained with the nonlinear re-
verse design method for an initial unchirped hyperbolic-secant
pulse A(0, T ) = √

P0sech(T/T0) centered at 800 nm, with an
intensity FWHM duration of 31.76 fs (T0 = 18.02 fs) and an
input peak power P0 = 1.6 GW [light blue line in Fig. 6(a)].
All pulse parameters have been chosen so that the dispersion
and nonlinear lengths match those of the previous Gaussian
case for the same 3 m long, 125 µm HCF filled with 1 bar
of Ar (LD = 5.58 m and LNL = 0.17 m). In this way, both
situations can be fairly compared. For the usual definitions

of the characteristic lengths LD and LNL the reader is referred
to [28,51,52].

As we can see in Figs. 6(a)–6(d), all the pulses at both
the fiber entrance and exit are very close to the previous
results for a Gaussian pump. In this case, the initial d-scan
trace was optimized by adding the almost identical disper-
sion terms TOD = −30 fs3 and FOD = +100 fs4 to A(L, T ).
Furthermore, the spectrum of the ideal input pulse Aint (0, T )
now exhibits smaller side lobes and greatly approaches the
original sech pulse spectral amplitude. Thus one would expect
that, in this case, the approximations performed to the ideal
input shape should allow for a better recovery of the goal
d-scan trace. However, just the opposite happens. As we can
see in Fig. 6(g), now the mere substitution of the modulated
spectrum of Aint (0, T ) by the initial sech amplitude results in
a clearly deteriorated d-scan trace after the nonlinear forward
propagation of the tailored pulse though the HCF. The situ-
ation further worsens when the input spectral phase is also
replaced by a Taylor series expansion (GDD = +57.45 fs2,
TOD = +1.204 × 103 fs3 and FOD = +1.735 × 105 fs4) as
shown in Fig. 6(h). All these results reveal the intricate sen-
sitivity of the nonlinear propagation equation to the initial
condition, suggesting that, contrary to what is usually as-
sumed in ultrashort pulse post-compression experiments with
phase precompensation [11,14,50], in general both the input
pulse phase and amplitude must be shaped—to a greater
or lesser extent depending on the specific situation—in or-
der to achieve optimal compression. This behavior has been
recently pointed out in [53], where both experiments and
numerical simulations demonstrated the extreme sensitivity
of the nonlinear spectral broadening and post-compressed
pulse duration to the initial bandwidth and phase of the pump
pulse.
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IV. CONCLUSIONS

We have demonstrated that the reverse nonlinear propaga-
tion method can be applied to find the ideal pulse structure
that yields a desired ultrashort and clean goal pulse, after
its propagation through a HCF-based post-compression setup.
We have shown that, in typical nonlinear scenarios dominated
by SPM, the reverse design method requires a chirped inter-
mediate state in order to overcome the limitations imposed by
the fundamental symmetries of the propagation equation and
generate a feasible input that could be shaped in a standard
experiment. In this work, we have tested the applicability
of the reverse propagation method to predict the exact input
pulse shape that could lead either to an ideal few-cycle post-
compressed pulse, or to an improved compression scenario in
a standard HCF setup with a d-scan-based compression stage.
Two common conclusions are obtained from our analysis:
first, that the ideal input pulses typically present a modulated
spectrum with characteristic low-intensity side lobes. And
second, our results reveal the intricate sensitivity of the non-
linear propagation equation to the initial condition showing
that, in general, both input phase and amplitude shaping may
be necessary to achieve the desired optimal compression, as
both quantities are inevitably linked by the nonlinearity.
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APPENDIX A: REVERSIBILITY OF THE NONLINEAR
PULSE PROPAGATION EQUATION

The forward nonlinear propagation of an ultrashort laser
pulse through a gas-filled HCF is accurately described by
the one-dimensional GNLSE, which is conveniently written
in the frequency domain as in Eq. (1). The GNLSE can be
numerically reversed to solve the propagation backwards and
recover the initial condition A(0, T ) which yields a known
output pulse A(L, T ). This can be accomplished by simply
changing dz to −dz in Eq. (1), as z is its evolution vari-
able [19]. However, if energy losses are taken into account,
the resulting backward equation is mathematically ill-posed,
meaning that the reverse propagation solution is highly sen-
sitive to small perturbations of its initial condition and to
the amplification of noise [23,36]. The different behavior be-
tween the forward and backward equations in terms of their
stability under perturbations is reminiscent of the thermody-
namic arrow of time. In our case, the propagation direction
which is mathematically well-defined is that where energy is
emitted outwards (forward propagation), and not that where
energy flows towards the system from infinity (backward
propagation), in connection with the Sommerfeld radiation
condition for the Helmholtz equation [36].

The main problem for numerically solving the GNLSE in
the backward direction comes through the term α(ω)Ã/2 in

Eq. (1), which represents the linear losses. As is evident from
Eq. (5), the absorption coefficient α(ω) of a HCF diverges
for ω → 0, in the cladding resonances and in the frequencies
where ν2(ω) → 1. The strong absorption in these regions,
being turned into an exponential gain for backward propaga-
tion, may indeed lead to the divergence of the simulation at
a finite distance. Even if the pulse spectrum does not actually
reach any of these frequencies, the numerical noise appearing
in the frequency window used for the calculations can be
uncontrollably amplified in reverse propagation simulations,
leading to the blow up of the solution.

Fortunately, most of the aforementioned large-loss regions
of a HCF are not within the transparency windows of both the
dielectric cladding and the filling gas where the propagation
takes place and where the Sellmeier formulas of both media
used in the simulations are valid [34,54,55]. However, even in
the transparency region of the fused silica cladding between
0.21 and 6.7 µm, the absorption coefficient of a 125 µm core
radius HCF filled with 1 bar of N2 can become as high as
58 dB/m in the low-frequency end close to the resonance
at around 10 µm. These large losses do not actually lead
to the blow up of the solution for typical fiber lengths, but
can, in some cases, start to amplify numerical noise without
physical sense. Therefore the HCF loss curve must be appro-
priately limited to the narrowest possible frequency window
of interest in backward propagation simulations to produce a
truly physical solution. If this issue is conveniently addressed,
the nonlinear propagation of an ultrashort pulse can be nu-
merically reversed with minimal error, despite the complex
nonlinear dynamics. As an example, Figs. 7(a1) and 7(a2)
show the perfect recovery of an input 50 fs, 100 µJ Gaus-
sian pulse at 800 nm after its forward propagation through
a 3 m long, 125 µm core radius HCF filled with N2 at a
pressure of 1 bar, and the subsequent numerical backward
propagation of the resulting output. Here we used nitrogen as
a molecular gas to show that the reverse propagation method
can undo all linear and nonlinear effects, including stimulated
Raman scattering (SRS) with its corresponding nonresonant
losses arising from the energy transfer to excited rotational
states [28]. The simulations in N2 were performed with the
parameters n2 = 2.20 × 10−19 p[bar] cm2/W [56], fR = 0.7,
τ1 = 62.5 fs, and τ2 = 120 fs [57].

The recovery of the initial condition after forward and
backward propagation was also verified for all the situations
presented before. For completeness, Figs. 7(b1)–7(c2) show
these results for the worst case scenario analyzed in the main
text, i.e., that with the broader spectrum more liable to suffer
from unphysical amplification of noise in the edges of the
frequency window. This corresponds to the case presented in
Fig. 4, where the output pulse spectrum spans approximately
from 0.25 PHz (1200 nm) to 0.6 PHz (500 nm). Figures 7(b1)
and 7(b2) show the perfect recovery of the Gaussian input
pulse A(0, T ) after its forward propagation through the 3 m
long, 125 µm core radius HCF filled with 1 bar of Ar, and the
subsequent backward propagation of the output pulse A(L, T ).
The same results for the more complex ideal pulse Aint (0, T )
are presented in Figs. 7(c1) anf 7(c2), demonstrating that in
all cases the initial condition at z = 0 is perfectly recovered.

In addition, to illustrate the treatment of fiber losses in
reverse propagation simulations, the grey line in Fig. 7(b2)
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FIG. 7. (Top row) Forward propagation of a 50 fs, 100 µJ Gaussian pulse at 800 nm through a 3 m long, 125 µm core radius HCF filled with
1 bar of N2, and subsequent numerical backward propagation of the output, showing excellent recovery of the initial condition. (a1) Temporal
intensity profile and (a2) spectrum of the initial (light green solid line), forward propagated (fuchsia solid line) and back-propagated (dark
green dashed line) pulses. (Middle and bottom rows) Idem for [(b1), (b2)] the initial Gaussian pulse A(0, T ) and [(c1), (c2)] the ideal pulse
Aint (0, T ), corresponding to the case presented in Fig. 4, after their forward and backward propagation through the 3 m long, 125 µm core
radius HCF filled with 1 bar of Ar. The grey curve in (b2) depicts the absorption coefficient α(ω) of the corresponding HCF, which was limited
to the frequency range above 0.065 PHz (grey shaded area) to avoid unphysical amplification of noise in reverse propagation simulations. FP:
forward propagation, BP: backward propagation.

depicts the absorption coefficient α(ω) of the corresponding
HCF. As we can see, the curve was limited to the frequency
range above 0.065 PHz (grey shaded area), where it remains
safely below 22 dB/m. As discussed before, for lower fre-
quencies, α(ω) grows indefinitely around the resonance of
the fused silica cladding. Across the spectral bandwidth of
interest for the pulse at z = L, the absorption coefficient varies
smoothly between 2.1 dB/m at 0.2 PHz (1500 nm) and 0.24
dB/m at 0.6 PHz (500 nm).

APPENDIX B: SYMMETRIC PULSE PROPAGATION AND
SYMMETRY-BREAKING EFFECTS

Another interesting property of the GNLSE regards the
symmetry relation between the forward and backward prop-

agation directions, and its implications to the applicability of
the reverse design method. As briefly mentioned in Sec. II B,
these symmetries can be deduced from the temporal version
of the GNLSE, as we shall see now. We start by expanding
the propagation constant β(ω) in a Taylor series around the
pulse central frequency ω0:

β(ω) = β0 + β1(ω − ω0) +
∞∑

n=2

βn

n!
(ω − ω0)n, (B1)

with βn ≡ (dnβ/dωn)ω0 . By substituting this expression into
Eq. (1) and performing inverse Fourier transforms with (ω −
ω0) → i∂T , we arrive to the GNLSE in the time domain.
Neglecting linear absorption (α = 0) and SRS ( fR = 0), the
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loss-free propagation equation can finally be written as

∂

∂z
A(z, T ) = −

∞∑
n=2

in−1

n!
βn

∂n

∂T n
A(z, T )

+ iγ

(
1 + i

ω0

∂

∂T

)
A(z, T )|A(z, T )|2. (B2)

This equation is mathematically well-posed in both for-
ward and backward evolution directions, and it is now
straightforward to verify that it is invariant under the joint
transformations of time and space reversal (T → −T, z →
−z) and complex conjugation (i → −i, A → A∗). In other
words, the loss-free GNLSE is parity-time (PT ) symmet-
ric. As discussed in Sec. II B, this implies that if A(z, T )
is a solution of the propagation equation with initial condi-
tion A(0, T ), then so is A∗(−z,−T ) with initial condition
A∗(0,−T ). Therefore, as the backward propagation equa-
tion is defined as the spatial inversion of the GNLSE, the
loss-free nonlinear reverse propagation of a pulse is equivalent
to the forward propagation of its complex conjugated temporal
inversion, meaning that both propagation directions are physi-
cally indistinguishable [36]. As an example of this symmetry,
Figs. 8(a)–8(c) show the evolution of a pair of equivalent
solutions of Eq. (B2) obtained by simulating the nonlinear
forward propagation of an arbitrary input pulse A(0, T ) and
the back-propagation of its corresponding partner A∗(0,−T )
through an ideal noble gas-filled HCF.

Furthermore, from the properties of the Fourier transform,
it is simple to prove that combined complex conjugation and
time reversal of an envelope are equivalent to phase con-
jugation in the frequency domain [20,41]. Therefore, in the
frequency space, Ã(z, ω) and Ã∗(−z, ω) are the two equivalent
solutions of Eq. (B2), which explains the reflection symmetry
of the spectral intensity observed in Fig. 8(b). An immediate
consequence of these fundamental symmetries is that, fol-
lowing the nonlinear propagation of a laser pulse through a
loss-free fiber, a conjugated and time reversed copy of the
input can be recovered by complex conjugating the output
spectrum and launching the resulting pulse in an identical
fiber. Thus, when the initial condition is such that A(0, T ) =
A∗(0,−T ) (e.g., a transform limited pulse), the input can be
exactly recovered. In fact, Tsang and Psaltis proposed spectral
phase conjugation as a superior method than optical phase
conjugation in the time domain to compensate, not only for
even order dispersion and self-phase modulation [58], but also
for the complete dispersion including odd order terms and
self-steepening [20].

Interestingly, as Fourier limited pulses (FLPs) always ver-
ify A(0, T ) = A∗(0,−T ), their forward and backward prop-
agation solutions A(z, T ) and A∗(−z,−T ) can be perfectly
connected to produce a symmetric continuous propagation
like the one shown in Figs. 8(d) and 8(e). This yields a class
of initial conditions (which can be numerically predicted by
back-propagating any arbitrary FLP) that perfectly compress
at a distance L and then recover a complex-conjugated tem-
poral inversion of themselves at a distance 2L. This property
is not exclusive of the nonlinear propagation of laser pulses,
but should also translate to other dynamical systems which are
governed by a GNLSE-type equation [59].

We can also analyze how the absorption and SRS terms in
the complete GNLSE break the symmetry between the for-
ward and backward propagation directions. In Figs. 8(f) and
8(g) we can see the results of two simulations for the propaga-
tion of a FLP where we have artificially boosted these effects.
First, as we can see in Fig. 8(f), the linear energy losses, com-
bined with a decrease in peak intensity due to pulse dispersion,
continuously reduce the nonlinearity in forward propagation
and, eventually, the spectral broadening ends up saturating
(top panel). On the contrary, in backward propagation, the
absorption term changes sign and exponentially amplifies the
pulse energy, leading to a broader and much more complex
spectra (bottom panel). Second, in Fig. 8(g) we can see how,
in forward propagation in N2, the boosted SRS term pro-
duces a continuous red-shift of the pulse spectrum due to the
interaction with molecular rotational states (top panel). The
opposite occurs in the backward direction, where the spectrum
is blue-shifted towards negative values of z to ensure that the
central frequency is higher at the HCF entrance than at the
output (bottom panel). Furthermore, as the SRS term also
introduces nonresonant energy losses, the nonlinear spectral
broadening is smaller in the forward than in the backward
direction.

APPENDIX C: TESTING THE REVERSE DESIGN
METHOD WITH GOAL NEAR-SINGLE-CYCLE PULSES

Finally, we present the results of the nonlinear re-
verse design method applied to a goal near-single-cycle
pulse in a HCF-based post-compression setup with a grat-
ing pair compressor. Following the procedure described in
Sec. III A, we start by choosing a compressed goal pulse
with a Gaussian profile Agoal(T ) = √

P0 exp[−T 2/(2T 2
0 )]

centered at 800 nm, with an intensity full width at half-
maximum (FWHM) duration of 3 fs (1.1 optical cycles)
and an input peak power P0 = 1.75 GW. This pulse is
then chirped with the opposite phase to that introduced
by a grating compressor, whose first dispersion terms are
GDD = −75.4 fs2 and TOD = +98.6 fs3. Note, however,
that the complete chromatic dispersion is included through
the analytical formulas given in [43], because higher-
order dispersion becomes increasingly important for such
ultra-broadband pulse. The resulting chirped intermediate
pulse Aint (L, T ) is used for nonlinear reverse propagation
through a 3 m long, 125 µm core radius HCF filled with 1 bar
of Ar. Figures 9(a) and 9(b) show the temporal (a) and spectral
(b) intensity and phase distributions of the chirped Gaussian
pulse (fuchsia) and the resulting ideal pulse Aint (0, T ) after
backward propagation (light pink). When compared to the
results for a few-cycle goal pulse shown in Fig. 2, the ideal
pulse is now much more complex, exhibiting fast modulations
and an asymmetric intensity profile with a noticeable pedestal
in the leading part. These asymmetries also appear in the
ideal spectrum, which presents a higher-intensity side lobe ex-
tending towards low frequencies. Note also that, again in this
regime and despite the complex nonlinear pulse reshaping and
apparent spectral narrowing towards the fiber entrance, the
FLP remains almost the same along the HCF [Fig. 9(c)], and
thus this situation does not represent an effective compression
process.
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FIG. 8. (a) Temporal and (b) spectral evolution of both solutions A(z, T ) (top row) and A∗(−z,−T ) (bottom row) of the loss-free (α =
0, fR = 0) nonlinear pulse propagation equation for an arbitrary initial condition. (c) Corresponding pulse intensity profiles and temporal
phases at two different propagation distances. The top panel of (c) represents the initial condition used for the simulations. (d) Temporal
and (e) spectral evolution during the loss-free forward propagation of a complex input pulse through a gas-filled HCF, showing a continuous
symmetric behavior around the central position where it reaches a FLP. The input pulse which was forward propagated was obtained by first
simulating the reverse propagation of an arbitrary FLP. [(f), (g)] Spectral evolution during the numerical forward (top row) and backward
(bottom row) nonlinear propagation of an arbitrary FLP when (f) the linear absorption term in the GNLSE is artificially doubled (while
keeping fR = 0), and when (g) the SRS term is multiplied by a factor of 5 (now assuming α = 0). These two terms are here artificially boosted
to illustrate their effect on breaking the symmetry relation between the forward and backward propagation directions of the GNLSE.

The previous results demonstrate that, even though the
reverse design method is still capable of predicting the ideal
pulse that would lead to a desired post-compression, its ex-
perimental realization would become increasingly difficult as

the goal pulse approaches the single-cycle limit. In typical
experiments, the initial condition tends to be simple (e.g.,
a Gaussian-like pulse with none or few dispersion orders)
and the nonlinear propagation then generates a complicated

023111-11



GALÁN, CONEJERO JARQUE, AND SAN ROMAN PHYSICAL REVIEW RESEARCH 6, 023111 (2024)

FIG. 9. (a) Temporal and (b) spectral intensity profiles (solid line, left axis) and phase (dot-dashed line, right axis) at the entrance (light
pink) and the end (fuchsia) of the HCF, corresponding to the ideal pulse that could be perfectly post-compressed to a goal single-cycle Gaussian
pulse in a pair of gratings. (c) FLPs of the two spectra shown in (b).

pulse at the HCF output, both in amplitude and phase, due
to the complex interaction between all the effects involved.
Analogously for backward propagation due to the symmetries
of the GNLSE, we can understand that generating a desired

simple pulse at the fiber end would require pumping with
a complex input, which would be difficult to realize in a
standard experiment with enough precision so as to recover
the ideal propagation.
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