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Predicting the properties of strongly correlated materials is a significant challenge in condensed matter theory.
The widely used dynamical mean-field theory faces difficulty in solving quantum impurity models numerically.
Hybrid quantum-classical algorithms such as variational quantum eigensolvers emerge as a potential solution
for quantum impurity models. A common challenge in these algorithms is the rapid growth of the number
of variational parameters with the number of spin-orbitals in the impurity. In our approach to this problem,
we develop compact Ansätze using a combination of two different strategies. First, we employ a compact
physics-inspired ansatz, k-unitary cluster Jastrow ansatz, developed in the field of quantum chemistry. Second,
we eliminate largely redundant variational parameters of physics-inspired Ansätze associated with bath sites
based on physical intuition. This is based on the fact that a quantum impurity model with a star-like geometry
has no direct hopping between bath sites. We benchmark the accuracy of these Ansätze for both ground-state
energy and dynamic quantities by solving typical quantum impurity models with and without shot noise. The
results suggest that we can maintain the accuracy of ground-state energy while we drop the number of variational
parameters associated with bath sites. Furthermore, we demonstrate that a moment expansion, when combined
with the proposed Ansätze, can calculate the imaginary-time Green’s functions under the influence of shot
noise. This study demonstrates the potential for addressing complex impurity models in large-scale quantum
simulations with fewer variational parameters without sacrificing accuracy.
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I. INTRODUCTION

Accurately predicting the properties of strongly correlated
materials poses a significant challenge in condensed matter
theory, including long-standing challenges in the field, such as
the mechanism of high-temperature superconductivity [1,2].
Simulating these strongly correlated materials is difficult due
to quantum superposition, which exponentially increases the
accessible Hilbert space with the number of particles. Even
with quantum computers with more than a hundred logical
qubits, simulating solids with large numbers of degrees of
freedom is still challenging. Quantum embedding theories,
such as dynamical mean-field theory (DMFT) [3,4] or density
matrix embedding theory (DMET) [5,6], aims to address this
issue by limiting the correlated degrees of freedom in solid
materials based on local approximation.

In DMFT, widely used in condensed matter physics, the
original lattice system is divided into impurities with local
interactions and an environment called a bath. This model
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is called a quantum impurity model. A self-consistent cal-
culation is performed to update the parameters associated
with the bath until the local Green’s function defined on
impurity matches that of the original lattice system with
the dynamical mean field. DMFT allows us to compute the
single-particle excitation spectrum and successfully describes
transitions from metallic to Mott insulating behavior. The
biggest numerical bottleneck in DMFT calculations is solving
the correlated quantum impurity models, specifically comput-
ing local Green’s functions for these interacting problems.
While state-of-the-art classical algorithms have been adapted
for use as impurity solvers, such as tensor networks [7–9]
or quantum Monte Carlo methods [10], their applications
are limited to models with only a few impurity and/or bath
orbitals [7–9]. This challenge stems from the exponential
increase in quantum entanglement entropy and the notorious
negative sign problem.

To exploit the growing potential for solving quantum
impurity models on quantum devices, quantum algorithms
based on quantum phase estimation [11,12] and adia-
batic algorithms [13,14] have been proposed [15]. Their
practical implementation, however, may take decades be-
cause it requires large-scale error correction schemes. This
led to a growing interest in variational quantum algo-
rithms [16,17] for near-term quantum computers with limited
hardware resources, often dubbed noisy intermediate-scale
quantum (NISQ) devices [18]. A number of proof-of-principle
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TABLE I. Number of variational parameters for the UCCGSD,
UCCGSD(S), k-uCJ, and k-uCJ(S).

Ansatz Number of variational parameters NP

UCCGSD O
(
N4

SO

) = O[(Nimp + Nbath )4]
UCCGSD(S) O

(
N4

imp

)
k-uCJ O

(
N2

SO

) = O[(Nimp + Nbath )2]
k-uCJ(S) O

(
N2

imp

)

demonstrations of solving quantum impurity models using
NISQ devices have been conducted [19–24].

In near-term quantum algorithms, such as those in the
NISQ era, it is crucial to utilize limited hardware resources
effectively. Therefore, there is a need to discretize a con-
tinuous bath with fewer bath sites. This reduction can be
achieved through the use of imaginary time formalism in
DMFT [25–29]. For example, a recent estimate for 20-orbital
impurity models for iron-based superconductors indicates that
about 300 bath sites are sufficient for accurate discretization
in the imaginary-time formalism [27].

Once this finite Hamiltonian representation of the quan-
tum impurity model has been found, it is now in principle
amenable to solution on a quantum device. For variational
quantum algorithms, the first challenge is to define an appro-
priate ansatz which is flexible enough to span the solution to
the problem, able to be efficiently evaluated via unitary quan-
tum gates, and where the number of variational parameters NP

does not grow prohibitively as the number of spin-orbitals NSO

increases. Physics-inspired Ansätze based on unitary coupled
cluster (UCC) methods [30–32], are widely used in previ-
ous studies for quantum impurity models [23,33,34]. Among
the family of UCC methods, for the unitary coupled cluster
with generalized singles and doubles (UCCGSD) [35], NP

grows as O(N4
SO). The computational times for computing

imaginary-time Green’s function grow even more rapidly, e.g.,
as O(NdepthN2

P ) [36] using the UCCGSD [35] and the varia-
tional quantum simulation (VQS) [17,37], where the depth of
the circuit Ndepth ∝ NP. Thus, more compact Ansätze (circuits)
are an important research direction for the success of simulat-
ing impurity models on quantum devices.

In this study, we develop compact Ansätze using a com-
bination of two different strategies. First, we employ the
k-unitary coupled Jastrow (k-uCJ) ansatz originally proposed
for quantum chemistry, where NP scales only as O(N2

SO) [38].
Second, we drop largely redundant variational parameters in
both the UCCGSD and the k-uCJ ansatz based on physical
intuition. This exploits structures in the Hamiltonian which
are specific to quantum impurity models with a star-like bath
geometry where the bath sites are connected via the Hamil-
tonian only through the impurity (see Fig. 1). In particular,
we eliminate part of the two-particle excitations associated
with direct excitations between bath sites, which does not
change the scaling of NP but reduces the coefficient for a
large number of bath sites. The scalings of the proposed An-
sätze are summarized in Table I. We numerically demonstrate
that the compact Ansätze describe ground-state energies and
dynamic quantities, especially imaginary-time Green’s func-
tions, without compromising accuracy for typical quantum

FIG. 1. Schematic illustrations for the construction of sparse An-
sätze. (a and b) Eliminated operators that involve more than three
bath orbitals when constructing the UCCGSD(S) from the UCCGSD.
(c and d) Eliminated operators acting between the different bath sites
when constructing the k-uCJ(S) from the k-uCJ.

impurity models with or without shot noise, validating their
potential in quantum impurity models.

The following outlines the contents of each section.
Section II provides an overview of Green’s functions and
variational quantum algorithms for computing ground-state
energy and dynamic quantities. This section also introduces
the physics-inspired Ansätze used in this study. Section III
introduces compact quantum circuits for quantum impurity
models and compares the scaling of their variational param-
eters to those of the original Ansätze. Section IV compares
the accuracies of ground-state energy and dynamic quantities
such as spectral functions and imaginary-time Green’s func-
tions among Ansätze for typical quantum impurity models.
Section V explores the effect of finite shot noise within the
single-site impurity model. Section VI reviews our results,
compares them to existing methods, and highlights areas for
future research.

II. REVIEW OF GREEN’S FUNCTIONS AND
VARIATIONAL QUANTUM ALGORITHMS

A. Green’s function

We study a fermionic system in the grand-canonical en-
semble, represented by the Hamiltonian H, with

H =
N∑
i j

ti j ĉ
†
i ĉ j + 1

2

∑
i jkl

Ui jkl ĉ
†
i ĉ†

k ĉl ĉ j − μ
∑

i

ĉ†
i ĉi, (1)

where ci/c†
i are annihilation and creation operators for spin-

orbital i, and N represents the total number of spin-orbitals.
The hopping matrix, Coulomb interaction tensor, and chemi-
cal potential are denoted by ti j , Ui jkl , and μ, respectively. The
retarded (fermionic) Green’s function is defined as

GR
ab(t ) = −iθ (t )〈ĉa(t )ĉ†

b(0) + ĉ†
b(0)ĉa(t )〉, (2)

where ĉa(t ) = eiHt ĉae−iHt and ĉ†
b(t ) = eiHt ĉ†

be−iHt represent
the annihilation and creation operators for the spin-orbitals
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a and b, respectively, in the Heisenberg representation. The
θ (t ) denotes the Heaviside step function. In this paper, we use
h̄ = kB = 1. The thermal expectation, symbolized by 〈· · · 〉, is
evaluated in the grand canonical ensemble.

The retarded Green’s function can be continued to the real
frequency axis as

GR
ab(ω) =

∫ ∞

−∞
dt eiωt GR

ab(t ), (3)

where ω is a real frequency, while the imaginary-time Green’s
function is defined as

Gab(τ ) = −θ (τ )〈ĉa(τ )ĉ†
b(0)〉 + θ (−τ )〈ĉ†

b(0)ĉa(τ )〉, (4)

where ĉa(τ ) = eτHĉae−τH. Note that the imaginary-time
Green’s function is antiperiodic as Gab(τ + β ) = −Gab(τ ).
The Fourier transform of the imaginary-time Green’s func-
tion, known as the Matsubara Green’s function, is given by

Gab(iω) =
∫ β

0
dτeiωτ Gab(τ ), (5)

where ω = (2n + 1)π/β and n ∈ N and β = 1/T .
The Matsubara Green’s function G(iω) can be analytically

continued from the imaginary axis to the full complex plane
as Gab(z), if the spectral width is finite. The analytically con-
tinued Gab(z) has the spectral representation

Gab(z) =
∫ ∞

−∞
dω

Aab(ω)

z − ω
, (6)

with

Aab(ω) ≡
∑
mn

(e−βEn + e−βEm )×

〈n|ĉa|m〉〈m|ĉ†
b|n〉δ[ω − (Em − En)], (7)

where z is a complex energy and n, m runs over all eigen-
states of the system, with Em and En being corresponding
eigenvalues of H. On the real axis, these eigenvalues define
individual poles for a finite system, or combine to form a
branch cut for an infinite system. The retarded and advanced
Green’s functions are given by the value of Gab(z) just above
and below the real axis,

GR
ab(ω) = Gab(ω + i0+), (8)

GA
ab(ω) = Gab(ω + i0−). (9)

Due to the branch cut on the real axis, GR
ab(ω) �= GA

ab(ω) in
general. The following relationship holds between the spectral
function and the retarded and advanced Green’s functions:

Aab(ω) = − 1

2π i

[
GR

ab(ω) − GA
ab(ω)

]
, (10)

where we used the formula 1/(x + i0+) = P (1/x) − iπδ(x),
and P stands for the principal value.

We now consider the limit of T → 0, where the ensemble
average is restricted to the ground state(s) �G. At sufficiently
low temperatures, Eq. (4) can be rewritten as

Gab(τ ) =
T →0

∓〈�G|Â±e∓(H−EG )τ B̂±|�G〉, (11)

where A+ = ĉa and B+ = ĉ†
b for 0 < τ < β/2, and A− = ĉ†

b
and B− = ĉa for −β/2 < τ < 0. The signs ∓ are for τ > 0

and τ < 0, respectively, and EG = 〈�G|H|�G〉. In the pres-
ence of degenerate ground states, Eq. (11) should be averaged
over all such states. In general, |Gab(τ )| decays exponen-
tially in an insulating system, while algebraic in a metallic
system. In numerical simulations, one sometimes uses the
finite-temperature formalism with a sufficiently large β. To
ensure that Gab(τ ) is sufficiently small at the boundary, we
need to increase β, which determines the upper limit of time
evolution.

B. Variational quantum algorithms

In quantum computing, it is necessary to convert fermionic
operators into qubit representations. There are several meth-
ods for this, such as the Jordan-Wigner transformation [39]
and the Bravyi-Kitaev transformation [40,41]. In this study,
we use the Jordan-Wigner transformation given by

ĉ†
j → 1

2 (Xj − iYj )Z1Z2 . . . Zj−1, (12)

ĉ j → 1
2 (Xj + iYj )Z1Z2 . . . Zj−1. (13)

1. Ground-state calculation using variational
quantum eigensolver

We use a variational quantum eigensolver (VQE) [16,42].
It begins by preparing an initial state |�init〉 on a quan-
tum computer. Then, a unitary operator described by a
parametrized circuit with variational parameters θ, denoted
as U (θ), is applied to the initial state, producing a quantum
state |�(θ)〉. Subsequently, the expectation value of each term
in the Hamiltonian is measured using the quantum computer.
This measured data is accumulated to compute the total expec-
tation value of the Hamiltonian 〈H〉 on a classical computer.
The variational parameters are updated on the classical com-
puter to minimize 〈H〉, and the process is iterated until the
parameters are stably minimized. Provided the ansatz has
sufficiently high expressive power and the optimization is car-
ried out well using an appropriate initial state, the variational
quantum state |�(θ∗)〉 with optimized variational parameters
θ∗ approximates the ground state |�G〉 accurately. The suc-
cess of the VQE therefore relies on finding an appropriate
representation of the quantum state in terms of a sufficiently
compact parametric quantum circuit that can be optimized
classically.

2. Recursive VQE for spectral moments

We detail here an approach to extend the scope of VQE to
optimize the dynamics of the single-particle excitation spec-
trum via a compact moment expansion. This expansion allows
access to a causal imaginary-time Green’s function directly
at zero temperature and in a fashion that allows for efficient
quantum computation via a modified VQE [43–45]. In a re-
cent paper, direct measurements of the moment expansion
expectation values via VQE have been proposed to compute
the Green’s functions [22]. However, the proposed approach
required measuring an increasing number of Pauli terms at
higher-order moments and as systems increase in size, which
we aim to mitigate via a recursive VQE approach to avoid this
issue, as we will detail below.

023110-3



RIHITO SAKURAI et al. PHYSICAL REVIEW RESEARCH 6, 023110 (2024)

The key physical quantities we aim to compute on the
quantum device are the spectral moments of the Green’s func-
tion. This quantity, which is classified as either hole or particle
type at zero temperature, is defined in each case at the order
m as follows:

Mh,(m)
rs = 〈�G|ĉ†

r [HN ]mĉs|�G〉, (14)

Mp,(m)
rs = 〈�G|ĉr[HN ]mĉ†

s |�G〉, (15)

where HN = H − EG.
These can be related to the matrix-valued spectral function

A(ω)rs, defined in Eq. (10), as

Mh,(m)
rs =

∫ 0

−∞
Ars(ω)ωmdω, (16)

Mp,(m)
rs =

∫ ∞

0
Ars(ω)ωmdω. (17)

The spectral moments defined in Eqs. (14) and (15)
correspond to the Taylor expansions of the imaginary-time
Green’s function at the discontinuity points τ = 0− and τ =
0+, respectively. By increasing the number of moments, the
imaginary-time Green’s function can be systematically ap-
proximated over longer times τ .

Once the spectral moments for the particle and hole sectors
are determined up to a maximum order Nmom, we can appeal
to the block Lanczos algorithm [46] to constructively build
an effective single-particle Hamiltonian from these moments.
This single-particle Hamiltonian spans the physical system
and couples to it an auxiliary system whose dimensionality
grows linearly with the number of system degrees of free-
dom and the maximum order Nmom. This auxiliary system
acts as a zero-temperature dynamical self-energy, allowing
correlation-driven changes to the original spectrum. These
changes result from the projection of the eigenstates of this
effective Hamiltonian back into the physical system. This aux-
iliary space is built in such a way that the resulting spectrum
is causal, obeys required sum rules, and exactly preserves the
initially provided moments, according to Eqs. (16) and (17).
The resulting Green’s function can be obtained directly in
the Lehmann representation from the diagonalization of this
effective Hamiltonian, providing the residues and energies of
all the poles and allowing the Green’s function to be easily
transformed into any domain, including imaginary time. For
more details of this procedure, see Refs. [[43–45]], while
similar approaches have also recently been applied in classical
perturbative electronic structure methods to expand the self-
energy [47,48].

We describe the procedure for calculating the moments de-
fined by Eqs. (14) and (15) using a hybrid quantum-classical
optimization algorithm, similar to the VQE approach for the
ground state. We assume that approximated |�G〉 and EG are
already computed using VQE. To simplify the exposition, we
describe the construction of the particle sector moments, with
the hole moments computed analogously.

First, we prepare a variational quantum state for the single-
particle excited state ĉ†

s |�G〉. Because the operator is not
unitary, we represent the resultant state as the action of a
unitary multiplied by a scalar as

ĉ†
s |�G〉 � d0

∣∣φ0
EX

(
θ0

EX

)〉
, (18)

where d0 is a coefficient and the parametrized quantum state
|φEX(θ0

EX)〉 is defined by∣∣φ0
EX

(
θ0

EX

)〉 = U
(
θ0

EX

)∣∣φ0
EX

〉
. (19)

We choose to construct this state by defining an initial state
|φ0

EX〉 with N + 1 electrons and ensure that our parametriza-
tion for U (θ0

EX) conserves the electron number of the state.
The variational parameters θ0

EX and coefficient d0 can be
computed as follows: After transforming ĉ†

s into the qubit
representation, we measure the cost function defined by

C = −∣∣〈φ0
EX

(
θ0

EX

)∣∣ĉ†
s |�G〉∣∣2

. (20)

We evaluate Eq. (20) on the quantum computer via a circuit
similar to a Hadamard test [49,50] (see Appendix A). The
variational parameters are optimized to minimize the cost
function C until convergence is achieved. After this optimiza-
tion process, the scaling coefficient, defined as follows, is
measured on the quantum device:

d0 = 〈
φ0

EX

(
θ0∗

EX

)∣∣ĉ†
s |�G〉. (21)

Finally, the zeroth-order moment, defined as follows, can be
computed via sampling:

Mp,(0)
rs = 〈�G|ĉr ĉ†

s |�G〉 ≈ d0〈�G|ĉr

∣∣φ0
EX

(
θ0∗

EX

)〉
. (22)

We can then subsequently compute the higher-order mo-
ments up to the maximum order of the moments order with
(1 � m � Nmom) via a recursive approach, avoiding the need
to measure over increasingly large numbers of Pauli strings
for higher-order moments, as considered in Ref. [22]. Using
|φ(m−1)

EX (θ(m−1)∗
EX )〉 computed in the previous step, we approxi-

mate HN |φ(m−1)
EX (θ(m−1)∗

EX )〉 as

HN
∣∣φ(m−1)

EX

(
θ

(m−1)∗
EX

)〉 � dm

∣∣φm
EX

(
θm

EX

)〉. (23)

The variational parameters θm
EX and constant coefficient dm are

determined by minimizing the following cost function:

C = −∣∣〈φm
EX

(
θm

EX

)∣∣HN
∣∣φ(m−1)

EX

(
θ

(m−1)
EX

)〉∣∣2
. (24)

By performing m VQE steps optimizing these states, we can
calculate the moments of order m as

Mp,(m)
rs = 〈�|ĉr[HN ]mĉ†

s |�〉
= d0d1 . . . dm〈�G|ĉr

∣∣φm
EX

(
θm∗

EX

)〉
. (25)

Similar ideas of hybrid quantum-classical variational opti-
mization of alternative functionals for computing other (e.g.,
dynamical) properties have also been considered in other
works [17,49,51–54].

As the ansatz used in optimizing all m states |φm
EX(θm

EX)〉
becomes complete, it should enable the computation of the
exact moments up to order m using the described approach.
However, this optimization is also subject to various types of
noises, including finite sampling errors of expectation values
in a physical device, as well as optimization bottlenecks. This
can result in numerical errors, which would likely accumulate
exponentially at high orders of m. Nevertheless, as the magni-
tude of the moment also increases exponentially with respect
to its order, we find that the numerical relative error in these
moments compared to their exact benchmarks remains almost
constant (see Appendix B). Finally, we note that while this
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approach has been presented for the computation of single-site
Green’s functions and moments, off-diagonal elements cor-
responding to matrix-valued Green’s functions are possible,
analogous to the approaches in Refs. [49] and [22].

C. Ansätze

We use two physics-inspired Ansätze: UCCGSD [35,55]
and k-uCJ [38], which we describe below.

1. UCCGSD

The UCCGSD is a generalization of a unitary coupled
cluster (UCC) [30,31,56–59] written as the exponential of an
antisymmetric sum of excitation operators. The UCCGSD is
formulated as follows:

|�UCCGSD〉 = e(T̂2−T̂2
†
)+(T̂1−T̂1

†
)|�init〉, (26)

where |�init〉 represents an initial product state, while T̂n (n =
1, 2) and their respective conjugates T̂ †

n are excitation opera-
tors. The excitation operators T̂n are given by

T̂1 =
∑
pq,αβ

tαβ
pq ĉ†

pα ĉqβ, (27)

T̂2 = 1

4

∑
pqrs,αβγ ζ

tαβγ ζ
pqrs ĉ†

pα ĉ†
qβ ĉrγ ĉsζ , (28)

where T̂1 is a single-particle excitation operator, and T̂2 is
a two-particle excitation operator. The indices p, q, r, s rep-
resent spatial orbitals, and α, β, γ , ζ represent spin. The
composite indices pα, qβ, rγ , sζ span all spin-orbitals NSO.
In this study, we removed one-particle and two-particle
excitations that change total Sz. The tαβ

pq and tαβγ ζ
pqrs are

complex-number variational parameters. The number of vari-
ational parameters NP scales as O(N4

SO) = O[(Nimp + Nbath )4],
where Nimp represents the number of spin-orbitals of the im-
purity and Nbath the number in the bath.

Computing 〈�UCCGSD|H|�UCCGSD〉 is exponentially ex-
pensive on classical computers because it results in a
nontruncating Baker-Campbell-Hausdorff expansion. In con-
trast, quantum computers can compute this expectation value
directly. We use a Trotter decomposition to implement
Eq. (26) on a quantum computer. Classical optimization of
variational quantum algorithms can partially mitigate the Trot-
terization error [60,61], but does result in a dependence of
the final state on the ordering of the individual excitation
operators. As commonly done, we set the Trotter step to 1,
resulting in

|�UCCGSD〉 � e(T̂2−T̂2
†
)e(T̂1−T̂1

†
)|�init〉

=
NSO∏

pα,qβ,rγ ,sζ

{
et pqrs

αβγ ζ ĉ†
pα ĉ†

qβcrγ csζ −t pqrs∗
αβγ ζ ĉ†

sζ ĉ†
rγ ĉqβ ĉpα

}

×
NSO∏

pα,qβ

{
etαβ

pq ĉ†
pα ĉqβ−tαβ∗

pq ĉ†
qβ ĉpα

}|�init〉

=
NSO∏

pα,qβ,rγ ,sζ

{
et pqrs

αβγ ζ ĉ†
pα ĉ†

qβcrγ csζ −t pqrs∗
αβγ ζ ĉ†

sζ ĉ†
rγ ĉqβ ĉpα }|�orb

〉
,

(29)

where |�orb〉 ≡ ∏NSO
pα,qβ{etαβ

pq ĉ†
pα ĉqβ−tαβ∗

pq ĉ†
qβ ĉpα }|�init〉, demonstrat-

ing that the UCCGSD ansatz incorporates single-particle
basis rotations into its definition [62].

2. k-uCJ

Let us first define the unitary cluster Jastrow (uCJ) ansatz
and then the k-uCJ ansatz [38]. The uCJ ansatz is defined as
follows:

|�uCJ〉 = eK̂ eĴe−K̂ |�orb〉, (30)

where

K̂ =
∑
pq,α

Kpqĉ†
qα ĉpα, (31)

Ĵ =
∑
pq,αβ

J αβ
pq ĉ†

pα ĉpα ĉ†
qβ ĉqβ. (32)

The matrix K is complex and anti-Hermitian. The matrix J is
symmetric, and its elements are purely imaginary. The |�orb〉
is the single-particle basis rotated state defined in Eq. (29).
This ansatz preserves the particle’s number and total Sz. The
scaling with NP is O(N2

SO) = O[(Nimp + Nbath )2].
The uCJ ansatz is motivated via a tensor decomposition

process that compresses the generalized two-particle exci-
tation operators in the coupled cluster method. This ansatz
compresses two-particle excitation operators into number op-
erators with just two indices (pα) and (qβ ). This reduces the
number of the variational parameters, for instance, compared
to UCCGSD. Similar approaches based on tensor decompo-
sition have been proposed in Refs. [63–67]. Equation (32)
can be implemented without Trotterization, as it involves
only commuting number operators. By performing the Jordan-
Wigner transformation on the equation, this term ĉ†

pα ĉpα ĉ†
qβ ĉqβ

can be simplified to 1
4 (1 − Zpα )(1 − Zqβ ). The k-uCJ ansatz

differs from the uCJ ansatz in that the operators J and K are
applied multiple times, resulting in the k-uCJ ansatz,

|�k-uCJ〉 =
k∏

i=1

eK̂i eĴi e−K̂i |�orb〉, (33)

where variational parameters for different i are independently
optimized. The k-uCJ ansatz becomes more accurate as k is
increased.

III. SPARSE Ansätze

In a quantum embedding calculation, a continuous hy-
bridization can be discretized with a finite number of bath
sites. In particular, for a star-like geometry, the bath sites are
connected only through the impurity. The number of bath sites
Nbath required for an accurate discretization scales linearly
with Nimp, albeit with a significant prefactor (on the order of
ten [27]). Given the significant number of variational param-
eters associated with the bath sites, reducing the number of
these parameters is critical for efficient quantum simulation
of impurity models.

We propose compact Ansätze for quantum impurity models
with star-like bath geometries. We assume that two-particle
excitation operators associated with two-body coupling be-
tween bath sites are not critical in the description of the ground
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states and spectral moments, given that two-particle interac-
tion terms in the Hamiltonian are localized to the impurity
space, and no Hamiltonian terms directly couple the bath sites.
The Ansätze incorporating this assumption are referred to as
“sparse Ansätze.” In the present study, we construct sparse
Ansätze based on the UCCGSD and the k-uCJ. We call them
sparse UCCGSD and sparse k-uCJ, denoted UCCGSD(S) and
k-uCJ(S), respectively.

For the UCCGSD, we remove two-particle excitation op-
erators that involve more than three bath orbitals. Examples
of such operators that involve three or four bath orbitals are
ĉ†

1ĉ†
1ĉ2ĉ2 and d̂†ĉ†

3ĉ3ĉ4, where d̂† (ĉ†) are fermionic creation
operators for the impurity (bath) degrees of freedom, respec-
tively. We illustrate these operators in Figs. 1(a) and 1(b).
For the UCCGSD, this reduces the number of variational
parameters NP from O[(Nimp + Nbath )4] to O(N4

imp + N2
bath ) �

O(N4
imp) for the sparse variant (refer to Table I). Although

Nbath is proportional to Nimp [27], ensuring that the scaling
with respect to impurity size remains the same, the significant
computational savings still result since Nbath � Nimp.

For the k-uCJ, we apply a similar motivation to remove
the operators acting between different bath sites while keeping
the two-particle excitation operators between the impurity and
the bath. For example, ĉ†

1ĉ1ĉ†
2ĉ2 is dropped, as illustrated in

Figs. 1(c) and 1(d). As summarized in Table I, the scaling
of NP in the k-uCJ ansatz scales as O[(Nimp + Nbath )2], while
NP in the corresponding k-uCJ(S) sparse ansatz scales as
O(N2

imp). Again, the prefactor is substantially reduced when
Nbath � Nimp.

In the case of sparse Ansätze, reducing the number of
two-particle excitation operators will lead to a reduction in
the number of CNOT gates. The number of reduced CNOT

gates is proportional to the number of reduced terms in the
two-particle excitation operators.

IV. STATE VECTOR SIMULATION

In this section, we benchmark the k-uCJ and the pro-
posed sparse Ansätze for typical quantum impurity models.
We consider both single-site and two-site impurity models
with Nbath = 3 and Nbath = 6, respectively. All calculations in
this section are based on state vector simulations of quantum
circuits.

A. Numerical details

The calculations were performed using the following li-
braries: QCMATERIALNEW [68] was used as a quantum circuit
simulator, which is a Julia wrapper of QULACS [69]. We used
OPENFERMION [70] for the Jordan-Wigner transformation and
to calculate the exact eigenvalues of Hamiltonians. We per-
formed DMFT calculations using DCORE [71] to generate the
single-site impurity models. We used the DYSON [72] library
in order to compute the Green’s functions poles and residues
from the spectral moments, as well as benchmark exact spec-
tral moments via exact diagonalization.

To optimize the variational parameters, we used the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. In
this study, we employ the numerical finite difference method
for gradient calculation, setting the value of the finite differ-

FIG. 2. Two quantum impurity models used in this study.
(a) Single-site impurity model with Nbath = 3 and (b) two-site im-
purity model with Nbath = 6.

ence to 10−5. We observed that setting the initial guess to zero
could lead the optimization to converge to a metastable so-
lution. We initialized the variational parameters with random
numbers, although this approach does not entirely eliminate
the possibility of being trapped in a metastable solution. For
ground-state calculations with VQE using the k-uCJ, we in-
creased the number of terms k in the ansatz one by one,
reusing the optimized variational parameters. In practice, at
the beginning of the VQE calculations with k terms, we ran-
domized the variational parameters in K̂1 and Ĵ1 but set those
in K̂i and Ĵi (2 � i � k) to the optimized variational param-
eters obtained in the previous calculation with k − 1 terms.
This procedure ensures that the optimized energy decreases
or remains nearly stable with an increasing number of terms
in the k-uCJ. While it was not attempted in this study, there is
a possibility that further optimization could be achieved by
conducting a complete reoptimization of all the k terms of
k-uCJ simultaneously after optimizing the kth terms.

For convergence in energy and spectral moments, we con-
ducted 1000 BFGS iterations for the single-site impurity
model (see Secs. IV B and V A) and 300 iterations for the
two-site impurity model (see Sec. IV C 1). Additionally, to
demonstrate the dependence of the initial parameters on the
ground-state energy, the number of initial guesses was set
to 50 for the single-site impurity model (see Figs. IV B 1
and V A) and 20 for the two-site impurity model (see
Fig. IV C 1).

It is worth noting that the initial parameters significantly
influence the accuracy of the optimized ground state and spec-
tral moments. For ground-state calculations, we conducted
VQE multiple times, each with a different set of initial pa-
rameters, to find the best variational state for the ground state.
We used this best variational state for computing spectral
moments.

Simulations were executed using an Message Passing In-
terface (MPI) parallelized program on a workstation with an
AMD EPYC 7702P 64-core processor. Solving the largest
model with 16 qubits and about 750 variational parameters
in the k-uCJ took about 5 days on 55 cores using VQE and the
recursive approach.

B. Single-site impurity model

We consider the single-site impurity model with particle-
hole symmetry and Nbath = 3 illustrated in Fig. 2(a). The
number of qubits in this model is 8. The Hamiltonian is given
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FIG. 3. Computed δEG for the single-site impurity model, where
the x axis represents the number of parameters NP. (a and b) Results
for U = 4 and U = 9, respectively. In the k-uCJ and the k-uCJ(S), k
increases from 1 to 5. The markers represent the smallest errors when
the initial parameters are changed 50 times. The hatched lines in the
figures show how absolute errors depend on initial parameters for
k-uCJ and k-uCJ(S), respectively. The vertical lines indicate similar
dependency for UCCGSD and UCCGSD(S), respectively.

by

H = Ud̂†
1↑d̂1↑d̂†

1↓d̂1↓ − μ
∑

σ=↑,↓
d̂†

1σ d̂1σ

−
3∑

k=1

∑
σ=↑,↓

Vk (d̂†
1σ ĉkσ + ĉ†

kσ
d̂1σ ) +

3∑
k=1

∑
σ=↑,↓

εk ĉ†
kσ

ĉkσ ,

(34)

where d̂†
1σ (ĉ†

kσ
) are the impurity (bath) degrees of freedom

of the fermionic creation operator with σ =↑,↓, and k is an
index for bath sites. The U represents the on-site Coulomb
repulsion, Vk is the hybridization term, μ (= U/2) is the
chemical potential, and εk denotes the bath energy.

We obtained the bath parameters using self-consistent
DMFT calculations on a square lattice at zero temperature
for U = 4 (metallic phase) and U = 9 (insulating phase).
The nearest-neighbor hopping parameter was set to 1. For
U = 4, we obtained Vk = {−1.26264, 0.07702,−1.26264}
and εk = {1.11919, 0.0,−1.11919}. For U = 9, we
obtained Vk = {1.31098, 0.07658,−1.38519} and εk =
{−3.26141, 0.0, 3.26141}.

1. Ground-state calculation

Figures 3(a) and 3(b) show the absolute errors in ground-
state energies (δEG) for U = 4 and U = 9, respectively,
compared to exact diagonalization results. For the k-uCJ and
the k-uCJ(S), we varied k from 1 to 5 to check convergence.

The markers represent the best results obtained by varying
the initial parameters 50 times for each ansatz. The hatched
lines indicate the variation in converged results depending on
the choice of initial parameters for each ansatz. In all four
Ansätze, the best ground-state energies are well reproduced.
We also confirmed that the k-uCJ reproduces the ground-state
energy with smaller NP than the UCCGSD. Also, the results
for the sparse Ansätze in Figs. 3(a) and 3(b) show that re-
ducing the variational parameters associated with bath sites
does not compromise the accuracy of the ground-state ener-
gies. Also, the sparse k-uCJ with fewer parameters results in
smaller errors than those of k-uCJ. One possible explanation
is that reducing the number of parameters in the sparse ansatz
simplifies the landscape of the cost functions, making it easier
for the optimization algorithm to find a more accurate solu-
tion. It should be noted that the sparse Ansätze are efficient
even for the metal-like system (U = 4), where the electronic
structure is very much delocalized across the bath sites.

The following summarizes the reduction in NP for each
ansatz by using the sparseness. In the UCCGSD, NP is
reduced from 334 to 104. In the k-uCJ, NP is reduced
from {64, 96, 128, 160, 192} to {58, 84, 110, 136, 162} for
k = 1, 2, . . . , 5. The k-uCJ(S) has a small reduction in the
number of parameters for this system, but this reduction
becomes more significant with increasing system size and
complexity (see Sec. IV C 1).

2. Spectral functions

Figures 4(a) and 4(b) show the reconstructed spectral func-
tions using the moment expansion for U = 4 and U = 9,
respectively. For the k-uCJ, we set k = 5. We computed the
exact values of the moments using exact diagonalization (ED).
As shown in Fig. 4(a), for U = 4, all the Ansätze can re-
produce the peaks around ω = 0. However, the quality of
reproduction drops for ω � 2. These discrepancies primarily
arise from numerical errors during the moment computations
via recursive VQE due to the limited representational ability
of the Ansätze and the optimization issues. This fitting error
in the recursive approach grows exponentially with the max-
imum order Nmom, which prevents systematic improvement
of reconstructed spectral functions with increasing Nmom. In-
deed, we observed no improvement for Nmom > 7, although
knowledge of the exact moments up to order Nmom = 5 is
largely sufficient to converge the spectral function over all
frequencies.

As shown in Fig. 4(b), for U = 9, by increasing the max-
imum order Nmom to 7, all the Ansätze accurately reproduced
the positions of peaks for ω � 6. In general, an insulating
system has fewer spectral peaks than metallic cases, allowing
the moment expansion by the recursive approach to repro-
duce the peak positions more accurately. Still, there is some
variation among the Ansätze, likely due to the fitting error,
especially around the small peak near ω = 4. The spectral
function shows a tiny peak near ω = 0 as shown in the inset of
Fig. 4(b). This is due to the k = 3 bath site nearly decoupled
from the impurity being physically irrelevant.

Here, we aim to quantify the difference between the spec-
tral functions reconstructed from the exact moments and those
calculated via the recursive approach. To this end, we utilize
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FIG. 4. Computed A1↑,1↑(ω) for each maximum order Nmom. (a)
and (b) Results for U = 4 and U = 9, respectively. In the k-uCJ
and the k-uCJ(S), we set k = 5. ED refers to the spectral functions
constructed from exact moments using exact diagonalization. The
spectrum of V = 0.1 around ω = 0 has a tiny magnitude of 10−2, as
shown in the inset.

the Wasserstein metric, quantifying a difference between two
distributions [73,74]. Figures 5(a) and 5(b) show the com-
puted Wasserstein metric between the spectral functions from
the exact moments at Nmom = 7 and those using Ansätze at
each maximum order Nmom for U = 4 and U = 9, respec-
tively. As the maximum order Nmom increases, the distance
between the two distributions decreases, consistent with the
enhanced reproducibility of the spectrum at large Nmom.

3. Imaginary-time Green’s functions

Figures 6(a) and 6(b) show the imaginary-time Green’s
functions computed from the reconstructed spectral function
by the moment expansion for U = 4 and U = 9, respectively.
We use the reconstructed spectral function from the exact
moments for each Nmom as a reference. In the k-uCJ, we set
k = 5. In computing the reference data, we filtered out peaks
below ω � 10−2 that are physically irrelevant.

In Fig. 6, for both U = 4 and U = 9, the differences
among the Ansätze become less pronounced in the imaginary-
time Green’s functions compared to the differences in the
spectral function. In Fig. 6(a), for U = 4, imaginary-time
Green’s functions exhibit a power-law decay. This necessi-
tates a higher Nmom in the moment expansion. However, for

FIG. 5. Computed Wasserstein metric for each maximum order
Nmom. (a and b) Results for U = 4 and 9, respectively. In the k-uCJ
and the k-uCJ(S), we set k = 5.

τ > 5, we observed that increasing Nmom did not improve the
accuracy due to the exponential growth in the fitting error with
Nmom in the recursive approach. Only the UCCGSD(S) result
seems to diverge from the rest. Nonetheless, its deviation
starting at τ = 5 aligns with the trends observed in other
Ansätze, displaying a comparable pattern. In Fig. 6(b), for
U = 9, imaginary-time Green’s functions exhibit an exponen-
tial decay. The Green’s functions computed by the recursive
approach, even at Nmom = 5, match the reference data, sug-
gesting a smaller Nmom achieves convergence compared to the
metallic case.

C. Two-site impurity model

We consider the two-site impurity model with particle-hole
symmetry and Nbath = 6, shown in Fig. 2(b). The number of
qubits in this model is 16. The Hamiltonian is given by

H = U
2∑

i=1

d̂†
i↑d̂i↑d̂†

i↓d̂i↓ − μ
∑
i=1,2

∑
σ=↑,↓

d̂†
iσ d̂iσ

− t
∑

σ=↑,↓
(d̂†

1σ d̂2σ + d̂†
2σ d̂1σ )

−
2∑

j=1

3∑
k1=1

6∑
k2=4

∑
σ=↑,↓

V(d̂†
jσ ĉk jσ + ĉ†

k jσ
d̂ jσ )

+
6∑

k=1

∑
σ=↑,↓

εk ĉ†
kσ

ĉkσ , (35)
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FIG. 6. Computed G1↑,1↑(τ ) for each maximum order Nmom. (a
and b) Results for U = 4 and U = 9, respectively. In the k-uCJ
and the k-uCJ(S), we set k = 5. ED refers to the spectral functions
constructed from exact moments using exact diagonalization. The
black vertical lines in (a) for the maximum order Nmom = 7 show
where the deviation of the reconstructed spectral functions from the
reference data starts.

where t represents the hopping between the two impurities.
For V = 0.5 and V = 0.1, we use common bath parameters:
U = 4, μ = U/2, t = 1, and εk = {1, 0,−1, 1, 0,−1}. The
case of V = 0.5 is expected to be more metallic than V = 0.1.

1. Ground-state calculation

Figures 7(a) and 7(b) show δEG for V = 0.5 and V = 0.1,
respectively. For the k-uCJ and the k-uCJ(S), k was varied
from 1 to 5 to check convergence. We omitted the VQE
calculation with the UCCGSD because of its prohibitively
large number of variational parameters. As before, the mark-
ers represent the optimal results obtained from 20 variations
of the initial variational parameters for each ansatz. The
hatched lines highlight the dependency of each ansatz on
initial guesses.

In the three Ansätze, the ground-state energies are repro-
duced with comparable accuracy. Considering NP, both k-uCJ
and k-uCJ(S) are more efficient than UCCGSD(S). The results
for the sparse Ansätze in Figs. 7(a) and 7(b) show that we can
reduce the number of the variational parameters associated
with bath sites without sacrificing ground-state accuracy in the

FIG. 7. Computed δEG for the two-site impurity model, where
the x axis represents the number of parameters NP. (a and b) Results
for U = 4 and U = 9, respectively. In the k-uCJ and the k-uCJ(S),
k increases from 1 to 5. The markers represent the smallest errors
when the initial parameters are changed 20 times. The hatched lines
in the figures show how absolute errors depend on initial parameters
for k-uCJ and k-uCJ(S), respectively. The vertical lines indicate this
dependency for UCCGSD and UCCGSD(S), respectively.

cluster impurity model. The sparse Ansätze are also applicable
for the case of V = 0.5, which exhibits more metallic charac-
teristics. For the k-uCJ, NP is reduced from [256, 384, 512,
640, 768] to [226, 324, 422, 520, 618] for k = 1, 2, . . . , 5.

2. Spectral functions

Figures 8(a) and 8(b) show the reconstructed spectral func-
tions using the moment expansion for V = 0.5 and V = 0.1,
respectively. We computed the reference data from the exact
moments for each Nmom using exact diagonalization. In the
k-uCJ, we set k = 5. We omitted the moment calculations
using UCCGSD for the same reasons as the ground-state
calculations.

In Fig. 8(a), for V = 0.5, increasing Nmom tends to enhance
the representation of several spectral peaks. Yet, it remains
challenging to comprehensively capture the entire structure,
mainly due to the fitting error observing no improvement
beyond Nmom = 7. In Fig. 8(b), for V = 0.1, by increasing
the maximum order Nmom up to 5, all the Ansätze accurately
reproduced the positions of several peaks for ω � 4. This
indicates that an insulating system with fewer spectral peaks
offers the advantage of accurately determining peak positions.
However, variations around the small peak near ω = 1 among
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FIG. 8. Computed A1↑,1↑(ω) for each maximum order Nmom. (a
and b) Results for V = 0.5 and V = 0.1, respectively. In the k-uCJ
and the k-uCJ(S), we set k = 5. ED refers to the spectral functions
constructed from exact moments using exact diagonalization. The
spectrum for V = 0.1 has a tiny peak around ω = 0, as shown in the
inset.

the Ansätze likely result from the fitting error. The spec-
tral function shows a small peak around ω = 0 as shown in
Fig. 8(b). This originates from bath sites weakly coupled with
the impurity being physically insignificant.

Figures 9(a) and 9(b) show the computed Wasserstein met-
rics between the spectral functions reconstructed from the
exact moments at Nmom = 7 and those computed using the
Ansätze at each maximum order Nmom for V = 0.5 and V =
0.1, respectively. Due to the influence of noise, the distances,
especially for Nmom � 5, stay at higher values than those with-
out shot noise. Still, the Wasserstein metric tends to decrease
as the maximum order Nmom increases, which is consistent
with the improved reproducibility of the spectral functions
reconstructed by the moment expansion.

3. Imaginary-time Green’s functions

Figures 10(a) and 10(b) show the imaginary-time Green’s
functions computed from the moment expansion for V = 0.5
and V = 0.1, respectively, with the k-uCJ ansatz with k =
5. We computed the reference data from the reconstructed
spectral function using exact moments for each Nmom. In
this computation, we removed the physically irrelevant peaks

FIG. 9. Computed Wasserstein metric between the spectral func-
tions constructed from exact moments and those computed using the
Ansätze for the two-site impurity model for each maximum order
Nmom. (a and b) Results for V = 0.5 and 0.1, respectively. In the
k-uCJ and the k-uCJ(S), we set k = 5.

below ω = 10−2 in the spectrum (see the inset of Fig. 8).
In Fig. 10, for both V = 0.5 and V = 0.1, the differences
among the Ansätze become less pronounced in imaginary-
time Green’s functions compared to the cases of spectral
functions. In Fig. 10(a), for V = 0.5, the imaginary-time
Green’s functions exhibit a power-law decay. We observed no
improvement by increasing NP, likely due to the fitting error
in computing spectral moments. In Fig. 10(b), for V = 0.1,
imaginary-time Green’s functions exhibit an exponential de-
cay. The results with Nmom = 5 agree with the reference data.

V. FINITE SHOT SIMULATIONS

In this section, we explore the impact of shot noise for
the single-site impurity model with Nbath = 3 to evaluate the
feasibility of the proposed method on quantum devices. We
first optimize variational parameters for the ground state and
the intermediate states in the computation of the spectral
moments [Eqs. (18) and (23)] using state vector simulations
as detailed in Sec. IV. Then, we measure the expectation
values of the Hamiltonian and the transition amplitude (25)
for each order of the moment m with a finite number of mea-
surements. It should be noted that the effect of the shot noise
was not considered during the optimization steps. This noise
affects the measured scalar values, the ground-state energy
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FIG. 10. Computed G1↑,1↑(τ ) for each maximum order Nmom. (a
and b) Results for V = 0.5 and V = 0.1, respectively. In the k-uCJ
and the k-uCJ(S), we set k = 5. ED refers to the spectral functions
constructed from exact moments computed by exact diagonalization.
The black vertical lines in (a) for Nmom = 7 show where the deviation
of the reconstructed spectral functions from the reference data starts.

EG and coefficients d0, d1, . . . , dmom in the recursive approach
[Eq. (25)]. We set the number of measurements to 30 000.

A. Ground-state calculation

Figures 11(a) and 11(b) show δEG computed with shot
noise for U = 4 and U = 9, respectively. The markers repre-
sent the best results obtained by varying the initial parameters
50 times for each ansatz. As indicated by the shaded area, the
issue of initial parameter dependency remains significant in
the presence of shot noise.

In all four Ansätze, statistical errors with a finite number
of measurements reduce the overall accuracy compared to the
results without shot noise (see Fig. 3). Still, the ground-state
energies can be reproduced with comparative accuracy among
Ansätze. The results for the sparse Ansätze in Figs. 11(a)
and 11(b) show that reducing the variational parameters as-
sociated with bath sites does not compromise the accuracy
of EG. The accuracy of the k-uCJ(S) is lower than that of
the k-uCJ for the metallic system (U = 4), which may be
attributed to statistical error.

FIG. 11. Computed δEG with 30 000 measurements for the
single-site impurity model, where the x axis represents the number of
parameters NP. (a and b) Results for U = 4 and U = 9, respectively.
In the k-uCJ and the k-uCJ(S), k was varied from 1 to 5. The markers
represent the best result obtained by varying the initial parameters 50
times. The hatched lines in the figures show how absolute errors de-
pend on initial parameters for k-uCJ and k-uCJ(S), while the vertical
lines indicate this dependency for UCCGSD and UCCGSD(S).

B. Spectral functions

Figures 12(a) and 12(b) show the reconstructed spectral
functions using the spectral moment computed with shot noise
for U = 4 and U = 9, respectively. We set k = 5 in the k-uCJ.
In Fig. 12(a), for U = 4, none of the Ansätze reconstruct the
spectral peaks. These discrepancies primarily stem from nu-
merical errors in the moment calculations. It should be noted
that reconstructing a spectral function from the moments is
not a well-conditioned problem (although more robust than
traditional numerical analytic continuation from imaginary
time due to the analytic procedure). Specifically, in the shot
noise simulation, such errors are attributed to statistical error,
the limited representational capability of the Ansätze, and
optimization issues. The effect of statistical noise is dominant
when comparing the calculation results to the case without
shot noise Fig. 4. In Fig. 12(b), for U = 9, the shot noise
induces small shifts in the positions of several peaks for ω � 6
compared to the results computed without the shot noise.
There are some variations among the Ansätze, likely due to the
fitting error, but generally, the agreement is much improved
compared to the more metallic U = 4 results.
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FIG. 12. Computed A1↑,1↑(ω) with 30 000 measurements for
each maximum order Nmom. In the k-uCJ and the k-uCJ(S), we set
k = 5. ED refers to the spectral functions constructed from exact
moments using exact diagonalization. (a and b) Results for U = 4
and U = 9, respectively.

C. Imaginary-time Green’s functions

We now compute the imaginary-time Green’s functions
from the reconstructed spectral functions by the moment ex-
pansion with the shot noise. Figures 13(a) and 13(b) show
the results for U = 4 and 9, respectively. In the k-uCJ, we
set k = 5.

For both U = 4 and U = 9, despite the large deviations in
the spectral functions due to the fitting error, these variations
are suppressed in the reconstructed imaginary-time Green’s
functions. The results from all the Ansätze are consistent
up to τ ≈ 1, then they start to deviate. This is because the
imaginary-time Green’s function is insensitive to changes in
the associated spectral function. In Fig. 13(a), for U = 4
with Nmom = 7, due to the shot noise, the black vertical
line at τ = 1 marks the earlier start of deviation, while the
gray vertical line at τ = 5 indicates the start without shot
noise (see Fig. 6). In Fig. 13(b), for U = 4 with Nmom = 5,
the results with shot noise are in good agreement with the
reference data. These results indicate the moment expan-
sion can successfully calculate the imaginary-time Green’s
functions under the influence of shot noise. The imaginary-
time Green’s function, as calculated in this way, is sufficient
for performing self-consistent calculations of DMFT. After

FIG. 13. Computed G1↑,1↑(τ ) with 30 000 measurements for
each maximum order Nmom. (a and b) Results for U = 4 and U = 9,
respectively. In the k-uCJ and the k-uCJ(S), we set k = 5. ED refers
to the spectral functions constructed from exact moments using exact
diagonalization. The black vertical lines in (a) for Nmom = 7 indicate
where the reconstructed spectral functions with shot noise begin
to differ from those derived from exact moments. The gray line
indicates the case without shot noise (see Fig. 6).

convergence, some quantities computed from the imaginary-
time Green’s function (e.g., electron occupancy) are expected
to be less sensitive to noise than real-frequency spectral
functions.

VI. SUMMARY AND DISCUSSION

In this paper, we proposed compact quantum circuits for
quantum impurity models with a star-like bath geometry by
sparsifying the UCCGSD and k-uCJ ansatz. These forms have
a significant parameter scaling of N4

SO and N2
SO, respectively,

which are reduced by removing insignificant variational pa-
rameters associated with two-body coupling between bath
sites. This results in a reduced number of variational param-
eters scaling as O(N4

imp) and O(N2
imp) for the UCCGSD(S)

and k-uCJ(S) ansatz, respectively. We numerically demon-
strated that the compact Ansätze can accurately reproduce the
ground-state energies for typical quantum impurity models,
with and without shot noise. In the moment calculations for
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dynamic quantities, to avoid measuring more Pauli-operator
terms at higher orders, we proposed a recursive method sim-
ilar to VQE. We also demonstrated that, when combined
with the suggested Ansätze, the moment expansion effectively
computes the imaginary-time Green’s function, even in the
presence of shot noise.

Before concluding this paper, we compare the proposed
Ansätze and the spectral moments with other approaches.
Previous studies utilized an adaptive variational quantum
eigensolver (ADAPT-VQE) for impurity models [34,75].
While ADAPT-VQE can provide near-exact solutions with
a deep circuit, it demands more measurements for gradient
computation than traditional VQE. Also, its success depends
on the selected operator pool, which makes it hard to compare
it to other approaches. In addition, it is instructive to compare
the moment expansion to alternative approaches such as the
VQS approach [36], with which the method bears many simi-
larities. The moment expansion preserves the causal nature of
the spectral functions; however, it encounters growing fitting
errors in the recursive approach, most significantly in metallic
systems. The VQS method might handle these systems more
effectively via time evolution over a longer time span. Still,
it could be costly since it requires computing all variational
parameters at every time step. A more detailed comparison is
left for future studies.

Finally, we discuss the potential future research directions.
Firstly, it should be noted that the noise is underestimated be-
cause the effect of shot noise has not been taken into account
in the optimization steps. To ensure the accuracy of energy
and spectral moments, a substantial number of measurements
are required for gradient calculations during optimization.
This requirement challenges current quantum computers. In
addressing this issue, when optimizing in the VQE, employing
robust optimization methods against noise [76,77] as well as
noise mitigation techniques is crucial [78,79]. Secondly, the
initial parameter selection plays a crucial role in the accuracy
of ground-state energies and moments. Specifically, the accu-
racy of the moment is closely tied to that of the ground state.
The selection of optimal initial parameters to avoid local min-
ima and metastable solutions should be a critical area of future
studies. Thirdly, minimizing the number of measurements in
VQE and the recursive approach is essential in the context
of utilizing near-term quantum devices. One viable solution
is the efficient grouping of observables for simultaneous mea-
surement [80]. Fourthly, it is also important to investigate how
the noise in the measured Green’s function and discretization
errors of the bath propagate during self-consistent calculations
in DMFT and affect quantities of interest, e.g., momentum-
resolved spectrum. Developing methods for suppressing such
errors is crucial. Fifthly, the potential applicability of sparse
Ansätze to other impurity models with star-like geometry,
such as multiorbital systems, requires further investigation.
There might be a possibility that sparse Ansätze are a rea-
sonable approach for models other than impurity models.
Specifically, in molecular models that feature tree-like struc-
tures [81], applying a sparse ansatz could potentially be a
plausible approach. Lastly, incorporating the concept of spar-
sity into classical variational algorithmic approaches, such
as machine learning wave functions [82,83], may improve
computational efficiency.
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APPENDIX A: A QUANTUM CIRCUIT TO COMPUTE
TRANSITION AMPLITUDE

We evaluate the transition amplitude on a quantum com-
puter by measuring the Hermitian and anti-Hermitian parts of
the following form:

〈0|U †
1 PU2|0〉, (A1)

where P are Pauli operators with m qubits, and U1 and U2

are unitary operators with m qubits. Equation (A1) can be
measured using the quantum circuit in Fig. 14 [49,50,84],
which requires one ancilla qubit.

Let p0/p1 be the probability of measuring 0/1 in the ancilla
qubit. The real and imaginary parts of the transition amplitude
can be measured separately by setting φ = 0 and π/2 in the
Rz gate, respectively, as

p0 − p1 =
{

Re〈0|U †
1 ( �θ1)PU2(θ2)|0〉 φ = 0,

−Im〈0|U †
1 ( �θ1)PU2(θ2)|0〉 φ = π/2.

(A2)

As this method is based on a single ancilla qubit, we need
complex quantum circuits for NISQ devices because of the
control unitary operators.

APPENDIX B: MOMENT CALCULATIONS VIA THE
RECURSIVE VQE

This Appendix shows the computed spectral moments via
VQE and recursive VQE for the single-site impurity model
with Nimp = 3, with or without shot noise.

FIG. 14. Quantum circuit for computing the transition amplitude
in Eq. (A1). The quantum circuit employs m qubits (on the bottom
line) and one additional qubit as an ancilla (on the top line). The
transition amplitude can be obtained by summing the measurement
outcomes of the ancilla qubit for the Z basis.
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FIG. 15. Computed |δMp
rs|/Mp

rs for the single-site impurity
model. (a and b) Results for U = 4 and U = 9, respectively. In the
k-uCJ and the k-uCJ(S), we set k = 5.

1. State vector simulation

Figures 15(a) and 15(b) show the relative error of the spec-
tral moments |δMp

rs|/|Mp
rs| for U = 4 and U = 9, respectively.

|δMp
rs|/|Mp

rs| are calculated via VQE or recursive VQE and
exact diagonalization. The relative error for each ansatz re-
mains nearly constant. In Fig. 15(a), for U = 4, the k-uCJ(S)
has the highest accuracy at Nmom = 5, followed by the k-uCJ,
UCCGSD. In Fig. 15(b), for U = 9, the UCCGSD has the
highest accuracy, followed by the k-uCJ.

2. Shot noise

Figures 16(a) and 16(b) show the relative errors of the
spectral moments |δMp

rs|/|Mp
rs| with a finite number of mea-

FIG. 16. Computed |δMp
rs|/Mp

rs for the single-site impurity model
with shot noise. (a and b) Results for U = 4 and U = 9, respectively.
In the k-uCJ and the k-uCJ(S), we set k = 5. The markers indi-
cate the mean, while the lightly shaded areas represent the standard
deviation.

surements, 30 000 for U = 4 and U = 9, respectively. The
markers in the figure denote the mean, and the lightly shaded
areas indicate the standard deviation derived from the cal-
culation repeated ten times with shot noise for each ansatz.
The sparse ansatz is generally less accurate than the original
ansatz due to the shot noise. In Fig. 15(a), for U = 4, no
significant difference in relative error between Ansätze was
observed due to the shot noise. Still, the relative error for each
ansatz remains nearly constant.
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