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Topological states of multiband superconductors with interband pairing
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We study the effects of interband pairing in two-band s-wave and d-wave superconductors with D4h symmetry
in both time-reversal invariant as well as time-reversal symmetry-breaking states. The presence of interband
pairing qualitatively changes the nodal structure of the superconductor: nodes can (dis)appear, merge, and leave
high-symmetry locations when interband pairing is tuned. Furthermore, in the d-wave case, we find that also the
boundary modes change qualitatively when interband pairing increases: flat zero-energy Andreev bound states
gap out and transition to helical edge states.
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I. INTRODUCTION

The properties of multiband, in particular two-band, su-
perconductors (SCs) have recently emerged as a subject of
substantial interest in condensed matter physics. Starting
with the discovery of superconductivity in MgB2 [1,2], the
list of SCs in which multiband or multiorbital effects play
an important role has been steadily growing and now in-
cludes numerous materials, such as nickel borocarbides [3],
Sr2RuO4 [4–6], NbSe2 [7] and other transition metal dichalco-
genides [8], the heavy-fermion compounds CeCoIn5 [9] and
CePt3Si [10], iron-based SCs [11,12], doped topological in-
sulators [13,14], and others.

Theoretically, a two-band generalization of the
Bardeen-Cooper-Schrieffer (BCS) model was introduced in
Refs. [15,16]. Under the assumption that the Cooper pairs are
formed by the quasiparticles in the same band, i.e., intraband
Cooper pairs, the order parameter in a one-dimensional
(1D) pairing channel, such as s-wave or d-wave, has two
components, η1 and η2, which describe the pairing state in
each of the two bands. The interband scattering of the Cooper
pairs between the bands couples the two order parameters
as η∗

1η2 + c.c. in the lowest order within a Ginzburg-Landau
(GL) expansion, analogous to the Josephson tunneling.
Depending on the sign of the scattering matrix element
(the coefficient of the GL coupling term), the relative phase
between η1 and η2 in the uniform ground state is either
0 or π , corresponding to a time-reversal (TR) invariant
combination. Subsequent studies have shown that the most
significant qualitative differences from the single-band case
are connected with the spatial and temporal variations of
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the relative phase, which produce such novel features as
the Leggett modes [17], phase solitons [18], and fractional
vortices [19] (see for a review Ref. [20]).

Recent experimental and theoretical developments have
motivated a further extension of the standard theory of multi-
band superconductivity, by taking into account the pairing
among quasiparticles from different bands, i.e., the inter-
band pairing. Within the BCS approach of pairing in the
momentum space, interband pairing is feasible if the pairing
interaction cutoff energy exceeds the band splitting. Alterna-
tively, starting from a real-space pairing interaction involving
different atomic orbitals in a crystalline lattice, we find inter-
band pairing components after transformation into the band
representation [21–27], or the interband pairs arise by the
proximity effect [28]. Assuming that interband pairs are sta-
bilized through a suitable microscopic mechanism, one can
characterize their condensate by an additional order parameter
component. Thus, a complete phenomenological description
of a two-band SC involves a GL free energy which depends
on three complex order parameters: two intraband ones, η1

and η2, and one interband one, η̃. This increases the number of
possible stable superconducting states, some of them breaking
TR symmetry [29–32].

In this paper, we show how the interband pairing affects the
topological properties of a two-band SC, which is manifested
in a qualitative reconstruction of the energy gap of the Bo-
goliubov excitations. We focus on two 1D pairing channels,
s-wave and d-wave, on a two-dimensional (2D) square lattice
and consider both TR-invariant and TR symmetry-breaking
superconducting states. The gap functions corresponding to
the intraband and interband pairing are introduced using a
symmetry-based phenomenological approach. This approach
allows one to determine the gap structure, in particular, the
location of the gap nodes, even if the microscopic pairing
mechanism is not known, and has proved to be very useful
in the studies of unconventional fermionic superfluids and
superconductors [33,34].

According to the bulk-boundary correspondence principle,
changes in the topology of the bulk state are reflected in the
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spectrum of the fermionic modes at the boundary [35,36]. In
particular, the boundary modes are expected to be different
for nodeless (fully gapped) and nodal (gapless) supercon-
ducting states. These boundary modes, also known as the
Andreev bound states (ABSs), have been extensively used
in experimental probes to identify unconventional pairing
states [37,38]. In our paper, we calculate the boundary mode
spectrum by solving numerically the Bogoliubov–de Gennes
(BdG) equations for a 2D lattice model of a two-band SC, and
show how varying the strength of the interband pairing causes
the system to undergo a series of topological phase transitions.

The paper is organized as follows: In Sec. II, we de-
rive the possible interband pairing gap functions compatible
with s-wave, dxy-wave, and dx2−y2 -wave intraband pairing,
respectively. In Sec. III, we discuss the bulk spectrum and,
in particular, the movement of the gap nodes in the Bril-
louin zone when tuning the interband pairing. In Sec. IV, we
numerically compute the edge spectrum of a dxy-wave super-
conductor with a strip geometry and find a topological phase
transition driven by the interband pairing strength. Finally, in
Sec. V, we analyze the topological phase found in Sec. IV and
calculate the corresponding topological invariant(s).

Throughout the paper we use the units in which h̄ = 1, ne-
glecting, in particular, the difference between the quasiparticle
wave vector and momentum. Additionally, the lattice constant
is set to unity.

II. GAP SYMMETRY: GENERAL CONSIDERATIONS

We focus on a quasi-2D centrosymmetric TR-invariant
crystal described by the point group G = D4h (however, our
results can be straightforwardly generalized to other crystal
symmetries); g ∈ G is either a proper rotation R ∈ SO(3) or
an improper rotation IR, where I denotes spatial inversion.
The electron Bloch states are twofold degenerate at each wave
vector k = (kx, ky) due to the combined symmetry KI , called
conjugation [39]. We use the index n to label the bands and
an additional Kramers index s to distinguish two orthonormal
conjugate states within the same band.

We further assume that only two bands n = 1, 2 cross
the chemical potential and participate in superconductivity,
and also that, despite the presence of the electron-lattice
spin-orbit coupling, the Bloch states in both bands transform
under the point-group operations and TR in the same way as
the pure spin-1/2 states. Then, the conjugacy index s =↑,↓
can be regarded as a pseudospin projection transforming un-
der time reversal as K|k, n ↑〉 = | − k, n ↓〉 and K|k, n ↓〉 =
−| − k, n ↑〉, and we have

g|k, ns〉 =
∑

s′
|gk, ns′〉D(1/2)

s′s (R). (1)

Here, D̂(1/2)(R) is the spin-1/2 representation of R. In other
words, we assume that both bands correspond to the double-
valued irreducible representation (irrep) �+

6 of D4h [40]. The
assumption (1), which is widely used in the theory of un-
conventional superconductivity [41], can be relaxed and the
band symmetries corresponding to other, non-pseudo-spin,
double-valued irreps of the point group can be considered,
with important consequences for the superconducting gap
structure [42,43].

The superconducting system is described by the Hamilto-
nian

H = H0 + HSC, (2)

where H0 is the single-particle Hamiltonian and HSC the
attractive two-particle interaction Hamiltonian within a mean-
field approximation. The single-particle Hamiltonian is given
by

H0 =
∑
kns

ξn(k)c†
k,nsck,ns,

where ξn(k) = ξn(−k) are the band dispersions counted from
the chemical potential, so that ξ1(k) < ξ2(k) for all k between
the two Fermi surfaces. The superconducting mean-field pair-
ing Hamiltonian can be represented in the following form:

HSC = 1

2

∑
knn′ss′

�nn′ss′ (k)c†
k,nsc̃

†
k,n′s′ + H.c., (3)

where

c̃†
k,ns ≡ Kc†

k,nsK
−1 = (iσ2)ss̄c

†
−k,ns̄

are the creation operators in the time-reversed states (s̄ flips
s).

The intraband pairing in the nth band is described by �̂nn,
whereas �̂12 and �̂21 describe the pairing of quasiparticles
from different bands (the interband pairing). In order to have a
nonvanishing interband pairing in a BCS-like model, one has
to assume that the pairing interaction shells near the Fermi
surfaces, which are defined by |ξ1|, |ξ2| � εc, overlap, i.e., the
pairing energy cutoff εc exceeds the typical band splitting Eb.
We do not attempt to derive the pairing Hamiltonian (3) from
any microscopic model and regard the gap functions as phe-
nomenological parameters. The strength of the interband vs
intraband pairing is model dependent [44], with the extreme
case of a purely interband pairing discussed, e.g., in Ref. [22]
in the context of iron-pnictide superconductors.

Note that the gap functions �̂nn′ (k) are defined in Eq. (3)
as the measures of the pairing between the quasiparticles
in the states |k, ns〉 and K|k, n′s′〉, not between |k, ns〉 and
| − k, n′s′〉. We neglect the possibility of a nonzero center-of-
mass momentum of the interband pairs, which may lead to a
nonuniform SC state of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) type [45,46]. One can show [32] that the FFLO insta-
bility is generally suppressed due to the hybridization of the
intraband and interband condensates.

The gap function matrices can be represented as

�̂nn′ (k) = ψnn′ (k)σ̂0 + dnn′ (k) · σ̂, (4)

where σ̂0 and σ̂ are respectively the unit matrix and the Pauli
matrices in the pseudospin space, then Eq. (3) takes the form

HSC = 1

2

∑
knn′ss′

[ψnn′ (k)(iσ2)ss′

+dnn′ (k)(iσσ2)ss′ ]c†
k,nsc

†
−k,n′s′ + H.c.

Therefore, ψnn′ can be interpreted as the pseudospin-singlet
component of the gap function and dnn′ as the pseudospin-
triplet component. It follows from the anticommutation of the
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fermionic operators that ψnn′ (k) = ψn′n(−k) and dnn′ (k) =
−dn′n(−k).

Additional symmetry constraints on the gap functions are
obtained by looking at the transformation of the mean-field
Hamiltonian (3) under the point-group operations and TR.
Different pairing channels correspond to different single-
valued irreps γ of G. For G = D4h, we consider only three
even-parity pairing channels: the s-wave pairing which corre-
sponds to the trivial irrep A1g and the d-wave pairing which
corresponds to either B1g (dx2−y2 pairing) or B2g (dxy pair-
ing). It follows from Eq. (1) that if the pairing is described
by a 1D irrep, then the gap functions satisfy the following
constraints:

D̂(1/2)(R)�̂nn′ (g−1k)D̂(1/2),†(R) = χγ (g)�̂nn′ (k), (5)

where χγ (g) are the group characters of the irrep γ . In par-
ticular, setting g = I , we have �̂nn′ (−k) = �̂nn′ (k) because
χγ (I ) = 1 in the even irreps. The response of the gap func-
tions to TR is given by �̂nn′ (k) → �̂

†
n′n(k).

Next, we introduce the order parameter components ηnn′

and represent the gap functions in the form �̂nn′ (k) =
ηnn′ φ̂nn′ (k). The basis functions φ̂nn′ which determine the
momentum dependence of the gap—in particular, the loca-
tion of the gap nodes—are 2 × 2 matrices in the pseudospin
space, which satisfy the point-group constraint Eq. (5) and can
have singlet and triplet components similar to Eq. (4). Note
that φ̂21(k) = σ̂2φ̂



12(−k)σ̂2 due to the anticommutation of the

fermionic operators. Regarding the constraint imposed by TR,
one can prove that the basis functions can be chosen to satisfy
φ̂nn′ (k) = φ̂

†
n′n(k).

Denoting the intraband order parameters as ηn ≡ ηnn and
observing that the interband gap functions �̂12 and �̂21 are not
independent and characterized by the same order parameter
η̃ ≡ η12 = η21, we finally obtain

�̂11(k) = η1α1(k)σ̂0 = ψ1(k)σ̂0,

�̂22(k) = η2α2(k)σ̂0 = ψ2(k)σ̂0,

�̂12(k) = η̃[α̃(k)σ̂0 + iβ̃(k) · σ̂],

�̂21(k) = η̃[α̃(k)σ̂0 − iβ̃(k) · σ̂]. (6)

Here α1, α2, α̃, and β̃ are real even functions of k. The
intraband pairing in the even channels is purely singlet; the
interband pairing has both singlet and triplet components.
The Pauli principle is not violated because the exchange of
electrons in an interband pair involves not only the reversal of
their momenta but also the exchange of the band indices.

Our system is characterized by three order parameter com-
ponents η1, η2, and η̃ which can be found by minimizing the
Ginzburg-Landau free energy [32]. It is easy to show that the
action of TR on the order parameter components η1, η2, and η̃

is equivalent to complex conjugation (see Appendix A). One
can always choose one of the components, say η̃, to be real and
positive; then, η1 and η2 are either both real (positive or neg-
ative), which corresponds to a TR-invariant superconducting
state, or have complex phases other than 0 or π , which corre-
sponds to a TR symmetry-breaking superconducting state (see
Appendix B).

The point-group constraints on the basis functions take the
following form:

αn(g−1k) = χγ (g)αn(k),

α̃(g−1k) = χγ (g)α̃(k),

R(g)β̃(g−1k) = χγ (g)β̃(k), (7)

where R(g) denotes the rotational part of g. Below we are
looking for real and even-in-k solutions of these equations,
for g = C4z and C2y (the two rotational generators of the group
D4h). To facilitate the numerical analysis later in the paper, the
solutions are expressed in terms of the lattice-adapted basis
functions of the even 1D irreps of D4h, namely,

fA1g (k) = 1,

fA2g (k) = sin(kx ) sin(ky)[cos(kx ) − cos(ky)],

fB1g (k) = cos(kx ) − cos(ky),

fB2g (k) = sin(kx ) sin(ky).

For analytical calculations, it is more convenient to use the
expressions that depend only on the direction of the wave
vector in the xy plane:

fA1g (k) = 1,

fA2g (k) = sin(4θ ),

fB1g (k) = cos(2θ ),

fB2g (k) = sin(2θ ), (8)

where k = k(cos θ, sin θ ).

A. s-wave pairing

For γ = A1g, the simplest singlet solutions of the symmetry
constraints (7) are given by α1(k) = α2(k) = α̃(k) = fA1g =
1. Since C2z is a symmetry element, for the triplet inter-
band component we have β̃(k) = C2zβ̃(C−1

2z k) = C2zβ̃(−k) =
C2zβ̃(k); therefore, β̃1 = β̃2 = 0. It is easy to show that β̃3 ∝
fA2g: since ẑ and σ̂3 also correspond to A2g, β̃3σ̂3 indeed cor-
responds to A2g × A2g = A1g. Collecting everything together,
we arrive at the following expressions for the gap functions:

�̂11(k) = η1σ̂0,

�̂22(k) = η2σ̂0,

�̂12(k) = η̃[σ̂0 + iρ fA2g (k)σ̂3],

�̂21(k) = η̃[σ̂0 − iρ fA2g (k)σ̂3], (9)

where ρ is a real parameter. One can say that the interband gap
functions in the A1g channel correspond to an s + ig pairing,
with the understanding that the s and g components have a
different pseudospin structure.

B. d-wave pairing

The singlet components of the gap functions can be cho-
sen in the standard form: α1(k) = α2(k) = α̃(k) = fB1g (k) or
fB2g (k), for dx2−y2 - or dxy-wave pairing, respectively. For the
same reason as in the s-wave case, β̃1 = β̃2 = 0, and, using
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B2g × A2g = B1g and B2g × A2g = B1g, we obtain

�̂11(k) = η1 fB1g (k)σ̂0,

�̂22(k) = η2 fB1g (k)σ̂0,

�̂12(k) = η̃[ fB1g (k)σ̂0 + iρ fB2g (k)σ̂3],

�̂21(k) = η̃[ fB1g (k)σ̂0 − iρ fB2g (k)σ̂3], (10)

for the dx2−y2 -wave pairing and

�̂11(k) = η1 fB2g (k)σ̂0,

�̂22(k) = η2 fB2g (k)σ̂0,

�̂12(k) = η̃[ fB2g (k)σ̂0 + iρ fB1g (k)σ̂3],

�̂21(k) = η̃[ fB2g (k)σ̂0 − iρ fB1g (k)σ̂3], (11)

for the dxy-wave pairing. In both cases, ρ is a real parameter.
We would like to add two comments about the structure of

the interband gap functions. First, the momentum dependence
of their singlet and triplet components corresponds to different
even irreps of the point group (for instance, in the case of
dxy pairing, it is B2g for α̃ and B1g for β̃3). However, the
pseudospin also transforms under the point-group operations,
in such a way that both α̃ and β̃σ̂3 correspond to the same
pairing channel. It is in this sense that the interband gap
functions in both B1g and B2g channels correspond to a d + id
pairing. Second, the singlet components in the interband gap
functions in Eqs. (10) and (11) have the same symmetry as in
the intraband ones. As seen from Eq. (5), this is a consequence
of our assumption that both bands correspond to the same
double-valued irrep of D4h. In general, i.e., for the bands
corresponding to different irreps, the symmetry of α̃ may be
different from that of α.

III. BOGOLIUBOV SPECTRUM IN THE BULK

The mean-field Hamiltonian (2) can be written in the form

H = const + 1

2

∑
k

C†(k)ĤBdG(k)C(k), (12)

where we introduced the Nambu spinor operator

C
(k) = (ck,1↑, ck,1↓, c̃†
k,1↑, c̃†

k,1↓, ck,2↑, ck,2↓, c̃†
k,2↑, c̃†

k,2↓)
(13)

and the BdG Hamiltonian

ĤBdG =

⎛
⎜⎜⎜⎜⎝

ξ1σ̂0 �̂11 0 �̂12

�̂
†
11 −ξ1σ̂0 �̂

†
21 0

0 �̂21 ξ2σ̂0 �̂22

�̂
†
12 0 �̂

†
22 −ξ2σ̂0

⎞
⎟⎟⎟⎟⎠, (14)

which is an 8 × 8 matrix in the tensor product of the band,
Nambu, and pseudospin spaces. The gap functions �̂nn′ (k) are
given by Eqs. (9), (10), and (11).

The Hamiltonian (14) is even in k and has the built-in
particle-hole symmetry:

ĤBdG(k) = −Û†
CĤ∗

BdG(−k)ÛC,

where

ÛC =
(

τ̂2 ⊗ σ̂2 0
0 τ̂2 ⊗ σ̂2

)

and τ̂ are the the Pauli matrices in the Nambu space. Since
Û


C = ÛC , the Hamiltonian is generically in the tenfold class
D [47–49]. The TR action on the Nambu operators (13) is
given by KC(k)K−1 = ÛKC(−k), where

ÛK =
(

τ̂0 ⊗ iσ̂2 0
0 τ̂0 ⊗ iσ̂2

)
.

Therefore,

K : ĤBdG(k) → Û†
K Ĥ∗

BdG(−k)ÛK , (15)

which is equivalent to replacing (η1, η2, η̃) → (η∗
1, η

∗
2, η̃

∗). If
the superconducting state is TR invariant, i.e., η1, η2, and η̃

are all real, then the BdG Hamiltonian satisfies an additional
constraint:

ĤBdG(k) = Û†
K Ĥ∗

BdG(−k)ÛK .

Since Û

K = −ÛK , the TR invariant BdG Hamiltonian is in the

tenfold class DIII.
For the pairing symmetries we consider, the Hamiltonian

(2) is invariant under an arbitrary U (1) pseudospin rotation
c†

kn↑(↓) → e∓iθ/2c†
kn↑(↓), and we have [ĤBdG, �̂3] = 0, where

�̂3 = 14×4 ⊗ σ̂3. Therefore, Eq. (14) can be represented in the
form

ĤBdG(k) = Ĥ↑(k) ⊕ Ĥ↓(k),

where the Hamiltonians

Ĥ↑(↓) =

⎛
⎜⎜⎜⎜⎝

ξ1 η1α1 0 η̃(α̃ ± iβ̃ )

η∗
1α1 −ξ1 η̃(α̃ ± iβ̃ ) 0

0 η̃(α̃ ∓ iβ̃ ) ξ2 η2α2

η̃(α̃ ∓ iβ̃ ) 0 η∗
2α2 −ξ2

⎞
⎟⎟⎟⎟⎠

(16)

act in the two four-dimensional eigenspaces of �̂3, corre-
sponding to the two pseudospin projections. In Eq. (16) and
everywhere below, we use the notation β̃ = β̃3 and the inter-
band order parameter η̃ is chosen to be real and positive, but
the phases of η1 and η2 can be arbitrary.

It follows from Eq. (15) that the pseudospin-resolved
Hamiltonians Ĥ↑ and Ĥ↓ are transformed into each other by
TR:

K : Ĥ↑(k) → Ĥ∗
↓ (−k) = Ĥ∗

↓ (k). (17)

Also, they satisfy the relation Û †Ĥ∗
↑ (k)Û = −Ĥ↓(k), where

Û = 12×2 ⊗ τ̂2. Introducing the magnitude and the phase of
the interband gap functions

η̃(α̃ + iβ̃ ) ≡ �̃(k) = |�̃(k)|eiϕ̃(k), (18)

with |�̃(k)| = η̃g̃(k) and g̃ =
√

α̃2 + β̃2, one can see that Ĥ↑
and Ĥ↓ are particle-hole symmetric at each k, in the following
sense:

Û †
C,↑(↓)(k)Ĥ∗

↑(↓)(k)ÛC,↑(↓)(k) = −Ĥ↑(↓)(k)
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where

ÛC,↑(↓) =
(

e∓iϕ̃ τ̂2 0
0 e±iϕ̃ τ̂2

)
.

Therefore, Ĥ↑ and Ĥ↓ have the same bulk spectrum, which
consists of symmetric pairs of eigenstates E and −E . Since
Û 


C,↑(↓) = −ÛC,↑(↓), the pseudospin-resolved Hamiltonians Ĥ↑
and Ĥ↓ are in the tenfold class C.

The matrices Ĥ↑ and Ĥ↓ can be diagonalized analytically
(see Appendix C), and we find that the bulk Bogoliubov spec-
trum consists of four branches ±E±, where

E±(k) =
√

P(k) ±
√

P2(k) − Q2(k) = E±(−k). (19)

The notations are as follows:

P = 1
2

(
ξ 2

1 + |ψ1|2 + ξ 2
2 + |ψ2|2

) + |�̃|2,
Q2 = r2

1 + r2
2 + r2

3 ,

ψn(k) = ηnαn(k) are the intraband gap functions, and

r1 = ξ1ξ2 − |ψ1ψ2| + |�̃|2,
r2 = ξ1|ψ2| + ξ2|ψ1|,

r3 =
√

2|�̃|2[|ψ1ψ2| − Re(ψ1ψ2)].

One can show that P > Q in the presence of interband pairing.
Therefore, E+ is strictly greater than E− at all k. Each of the
four branches ±E± is twofold degenerate due to pseudospin.
In the absence of interband pairing, we set η̃ = 0 and recover
the usual expressions for a two-band superconductor:

E+(k) = max{ε1(k), ε2(k)},
E−(k) = min{ε1(k), ε2(k)},

where εn = √
ξ 2

n + |ψn|2 is the excitation energy in the nth
band.

While the upper Bogoliubov excitation branch E+ is fully
gapped in the superconducting state, the lower branch E−
vanishes at the wave vector k if

r1(k) = r2(k) = r3(k) = 0, (20)

in which case E−(k) and −E−(k) touch, producing a gap node.
In two spatial dimensions, the three real functions r1,2,3 cannot
simultaneously vanish at the same k, unless forced to do so by
additional symmetries.

Writing the intraband order parameters in the form

η1 = |η1|eiϕ1 , η2 = |η2|eiϕ2 , (21)

we see that r3 identically vanishes in the states in which
ϕ1 + ϕ2 = 0 or 2π . This happens, in particular, in the TR-
invariant states in which η1 and η2 are both either real positive
or real negative. As shown in Appendix B, the TR-symmetry-
breaking states with ϕ1 + ϕ2 = 0 or 2π are stable only if the
system’s parameters are fine tuned, the possibility that can
be neglected. In a generic state with the interband pairing,
i.e., when η̃ �= 0 and ϕ1 + ϕ2 �= 0 or 2π , r3(k) = 0 only if
ψ1(k) = 0 or ψ2(k) = 0. In the s-wave case, this can only
happen accidentally and is neglected. In contrast, the d-wave
intraband gap functions, and therefore r3, vanish along the
high-symmetry directions for symmetry reasons. Thus, there

FIG. 1. Schematic illustration of the nodal behavior in the toy
model of the generic dxy-wave case (Sec. III B). Empty red dots:
high-symmetry nodes without interband pairing η̃ = 0. Filled red
dots: high-symmetry nodes at small interband pairing 0 < η̃ < η̃c

[see Eq. (26)]. Red crosses: annihilation of high-symmetry nodes at
interband pairing η̃ = η̃c.

exist four classes of the stable bulk nodal structures, which are
studied below.

A. Generic s-wave pairing

In this case, the phases of η1 and η2 take any values, except
ϕ1 = ϕ2 = 0 or π . The TR invariant states in which η1 and η2

are real but have opposite signs are also included here. Since
r3 is nonzero at all k, the s-wave superconducting state is fully
gapped, regardless of the strength of the interband pairing.

B. Generic d-wave pairing

For concreteness, let us consider the evolution of the nodal
structure in the dxy-wave case (for the dx2−y2 -wave pairing,
the nodes are just rotated by π/4). In the absence of the
interband pairing, r3 identically vanishes and the point gap
nodes are located where ξ1 = ψ1 = 0 or ξ2 = ψ2 = 0, i.e., at
the intersections of the axes of the 2D Brillouin zone with the
Fermi surfaces.

In the presence of the interband pairing and for generic
phases of η1 and η2, r3 only vanishes along the axes kx = 0
and ky = 0 for symmetry reasons. Moreover, r2 is also zero
there and the only remaining gap node condition, Eq. (20),
takes the following form:

ξ1ξ2 = −η̃2g̃2 (22)

along the kx = 0 or ky = 0 lines. As η̃ increases, the nodes
remain on the high-symmetry axes, but move into the “inter-
band space,” where ξ1 < 0 and ξ2 > 0 (recall that we assume
ξ1 < ξ2). Eventually, at a sufficiently strong interband pairing,
the nodes merge and annihilate each other, which marks the
transition into a fully gapped bulk phase, as shown in Fig. 1.
Annihilating nodes were also found in Ref. [50], in a model
of a TR-invariant SC with a dx2−y2 -wave intraband pairing and
dxy-wave interband pairing.

The evolution of the gap structure can be studied analyt-
ically using a simple model with two parabolic electronlike
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bands:

ξ1(2)(k) = ξ (k) ∓ Eb

2
, ξ (k) = k2 − k2

0

2m
, (23)

where Eb > 0 is the band splitting, in which the two Fermi

surfaces are circles of radii kF,1(2) = k0

√
1 ± mEb/k2

0 . We use
the following gap symmetry factors:

α1 = α2 = α̃ = sin(2θ ),

β̃ = ρ cos(2θ )
(24)

[see Eqs. (11) and (8)]. The gap node equation (22)
becomes

ξ 2 =
(Eb

2

)2

− η̃2ρ2,

along the axes of the momentum space. Taking, for instance,
the θ = 0 axis, at η̃ = 0 the two nodes are located on the
Fermi surfaces, at k = kF,1x̂ and kF,2x̂. As η̃ increases, the
nodes move towards each other, to k = k1x̂ and k2x̂, where

k1,2 = k0

⎡
⎣1 ± 2m

k2
0

√(Eb

2

)2

− η̃2ρ2

⎤
⎦

1/2

. (25)

Finally, when the interband order parameter η̃ reaches the
critical value

η̃c = Eb

2|ρ| , (26)

the nodes merge at k = k0x̂ and “annihilate” each other. At
stronger interband pairing, our dxy-wave superconductor is
fully gapped.

Note that the disappearance of the nodes happens only
if ρ �= 0, i.e., when the interband gap functions contain the
triplet component with the dx2−y2 -wave-like momentum de-
pendence. The singlet components of both the intraband and
interband gaps have the same symmetry and vanish along the
high-symmetry axes, whereas the interband triplet component
does not vanish there and controls the behavior of the nodes.

C. s-wave pairing, ϕ1 = ϕ2 = 0 or π

In this TR invariant state, r3 is identically zero everywhere,
but we still need to solve the remaining equations r1 = 0 and
r2 = 0. Assuming, without loss of generality, the same intra-
band symmetry factors in both bands, α1(k) = α2(k) = α(k),
the equation r2 = 0 takes the form |α|(ξ1|η2| + ξ2|η1|) = 0.
One way to satisfy this is to put α = 0, but that does not
happen in the s-wave case, whereas in the d-wave case that
can happen only along the high-symmetry lines, which was
already considered in Sec. III B. Therefore, if we look for the
gap nodes away from the high-symmetry axes, then we need
to solve the following two equations:

|ξ1(k)ξ2(k)| = η̃2g̃2(k) − |η1η2|α2(k),

0 = ξ1(k)|η2| + ξ2(k)|η1|. (27)

Note that the second equation can have solutions only be-
tween the two Fermi surfaces, where ξ1 < 0 and ξ2 > 0, i.e.,
ξ1ξ2 = −|ξ1ξ2|. If the interband pairing is sufficiently strong,
so that the right-hand side of the first equation is positive,

FIG. 2. Schematic illustration of the nodal behavior in the toy
model of the exceptional s-wave case (Sec. III C). Empty red dots:
stray nodes at interband pairing η̃ = η̃c,1 [see Eq. (29)]. Filled red
dots: stray nodes at interband pairing η̃c,1 < η̃ < η̃c,2 [see Eq. (30)].
Red crosses: annihilation of stray nodes at interband pairing η̃ = η̃c,2.

then Eq. (27) defines two lines between the Fermi surfaces.
The intersections of these lines, if they exist, correspond to
accidental point nodes in the excitation spectrum.

To illustrate these points for the s-wave pairing, we use
the band structure model Eq. (23), with the following angular
dependence of the gap functions:

α = α̃ = 1, β̃ = ρ sin(4θ )

[see Eqs. (9) and (8)]. Solving Eq. (27), we obtain that the
accidental nodes are located on the circle of the radius

K = k0

√
1 + ζ

mEb

k2
0

, kF,2 < K < kF,1, (28)

where

ζ = |η2| − |η1|
|η2| + |η1| , |ζ | < 1,

at the angles found from the equation

η̃2[1 + ρ2 sin2(4θ )] − |η1η2| = (1 − ζ 2)

(Eb

2

)2

.

In the absence of the interband pairing, this last equation does
not have any solutions. As η̃ increases and reaches

η̃c,1 =
√

|η1η2|
1 + ρ2

√
1 +

( Eb

|η1| + |η2|
)2

, (29)

the nodes emerge in pairs, first at the angles given by θ =
π/8, 3π/8, . . . . As the interband pairing further increases,
the nodes split and move along the circle defined by Eq. (28)
towards the angles θ = 0, π/4, . . . , where they finally merge
and disappear at

η̃c,2 =
√

1 + ρ2 η̃c,1. (30)

These changes in the gap structure are shown in Fig. 2. The
superconducting state is fully gapped at η̃ < η̃c,1 and at η̃ >

η̃c,2.
Note that the gap nodes appear for the s-wave pairing in

the model (23) only if ρ �= 0, i.e., when the interband gap
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functions contain the “triplet” component with an anisotropic,
g-wave-like momentum dependence. Although these nodes
are topologically unstable, since any deviation from the con-
dition ϕ1 = ϕ2 = 0 or π will remove them, they are protected
by TR symmetry. Accidental nodes may also be produced in
a more general model in which either the band dispersions or
the singlet parts of the gap functions are anisotropic. We do
not investigate this possibility here.

D. d-wave pairing, ϕ1 = ϕ2 = 0 or π

The difference from the generic d-wave case is that r3 now
vanishes everywhere, which makes it possible for additional
gap nodes to appear away from the high-symmetry lines.
Repeating the reasoning from Sec. III C, we find that there
are two types of nodes: the “high-symmetry” ones, which
are located where α(k) = 0, and also the “stray” ones, which
correspond to the solutions of Eq. (27).

To develop some analytical insight, we again assume a
dxy-wave pairing and use the parabolic bands (23), with the
symmetry factors given by Eq. (24). We obtain that the stray
nodes are located on the circle defined by Eq. (28), at the
angles determined by the equation

(1 − ζ 2)

(Eb

2

)2

= η̃2[sin2(2θ ) + ρ2 cos2(2θ )]

− |η1η2| sin2(2θ ). (31)

At η̃ = 0, this equation has no solutions. To illustrate the
different scenarios of how the stray nodes are created and
destroyed by increasing the interband pairing strength, we
solve Eq. (31) in three cases, for ρ = 0, |ρ| � 1, and ρ = 1.

At ρ = 0, which corresponds to the absence of the triplet
dx2−y2 component in the interband gap functions, the stray
nodes appear in pairs at θ = π/4, 3π/4, . . . when η̃ reaches
the critical value

η̃c,1 =
√

|η1η2|
√

1 +
( Eb

|η1| + |η2|
)2

.

As the interband pairing strength further increases, the nodes
split and move away from each other, staying on the circle (28)
and asymptotically approaching the axes θ = 0, π/2, . . . .
Since at ρ = 0 both the intraband and interband gap func-
tions vanish along the axes, the high-symmetry nodes are not
affected by η̃, i.e., always remain at the intersections of the
two Fermi surfaces with the lines kx = 0 and ky = 0. Note
that, in contrast to the generic d-wave pairing considered in
Sec. III B, one does not need the triplet interband component
to control the stray nodes. The reason is that the stray nodes
are located away from the high-symmetry axes, where the
singlet interband components are nonzero.

At |ρ| � 1, which corresponds to the triplet dx2−y2 compo-
nent dominating the interband gap functions, the stray nodes
appear at θ = 0, π/2, . . . when the interband pairing strength
reaches

η̃c,1 =
√|η1η2|

|ρ|(|η1| + |η2|)Eb.

At this point they “peel off” in pairs from the high-symmetry
nodes and, as η̃ increases, move along the circle (28) towards

the diagonals. Whereas the high-symmetry nodes annihilate
each other at η̃c > η̃c,1 [see Eq. (26)], the stray nodes survive
in the limit η̃ � η̃c,1, asymptotically approaching the axes
θ = π/4, 3π/4, . . . .

To see what happens in the general case, when both the
singlet (dxy) and the triplet (dx2−y2 ) components are present in
the interband gap functions, we set ρ = 1. Then, the solutions
of Eq. (31) exist only if η̃c,1 � η̃ � η̃c,2, where

η̃c,1 =
√|η1η2|

|η1| + |η2|Eb, (32)

and

η̃c,2 =
√

|η1η2|
√

1 +
( Eb

|η1| + |η2|
)2

. (33)

As η̃ increases, the stray nodes first appear on the axes, i.e., at
θ = 0, π/2, . . . , where they peel off in pairs from the high-
symmetry nodes, then move towards θ = π/4, 3π/4, . . . ,
where they eventually merge and annihilate each other. Note
that η̃c,1 is less than the critical strength of the interband
pairing at which the high-symmetry nodes disappear [see
Eq. (26)]. Therefore, there is an interval of η̃, in which the
stray nodes coexist with the high-symmetry ones, so that there
are 16 nodes altogether (eight of each type), all located be-
tween the Fermi surfaces, as shown in Fig. 3. Similar behavior
of the nodes was also found in a different model in Ref. [51],
in which the interband pairing in a TR invariant d-wave state
is controlled by the interorbital SO coupling. In contrast to the
limiting cases of ρ = 0 and ρ � 1, in which η̃c,2 = ∞ and the
stray nodes survive the strong interband pairing, in the general
case all nodes eventually disappear as η̃ increases.

The stray nodes are accidental, in the sense that they are
not protected by the crystal symmetry. In order to destroy
them, one has to tune the intraband order parameter phases out
of the TR-invariance condition ϕ1 = ϕ2 = 0 or π . However,
this condition always corresponds to a critical point of the
free energy (see Appendix B), and if this critical point is a
minimum, then the state is stable. Therefore, the stray nodes
are protected by the TR symmetry.

E. Summary

The effect of the interband pairing on the energy gap nodes
in the bulk is fundamentally different in the four cases dis-
cussed in this section. The least interesting case is the generic
s-wave state, which is fully gapped at η̃ = 0 and remains so
as η̃ increases. This state is topologically trivial and does not
support zero-energy boundary modes.

In the TR-invariant s-wave state with ϕ1 = ϕ2 = 0 or π ,
a sufficiently strong interband pairing can create and then
destroy again point nodes between the Fermi surfaces. The
critical values of η̃ separating the gapped and gapless phases,
as well as the locations of the nodes, are model dependent.

In the generic d-wave state, the nodes are located only
along the high-symmetry lines. As η̃ increases, these nodes
leave the Fermi surfaces, move towards each other into the
interband space, and merge and disappear at η̃ = η̃c. The
gapless and gapped phases separated by η̃c are expected to be
topologically different, which is confirmed in Secs. IV and V
below.
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FIG. 3. Schematic illustration of the nodal behavior in the toy
model of the exceptional dxy-wave case (Sec. III D). Top: Empty red
dots, high-symmetry nodes without interband pairing η̃ = 0; filled
red dots, high-symmetry nodes at small interband pairing 0 < η̃ <

η̃c,1 [see Eq. (32)]. Bottom: Empty red dots, high-symmetry nodes
at interband pairing η̃ � η̃c,1; filled red dots, high-symmetry nodes
(along the main axes) and stray nodes (off the main axes) at interband
pairing η̃c,1 < η̃ < η̃c,2 [see Eq. (33)]; red crosses, annihilation of
high-symmetry nodes (along the main axes) at interband pairing η̃ =
η̃c and annihilation of stray nodes (off the main axes) at interband
pairing η̃ = η̃c,2 (η̃c < η̃c,2).

The TR-invariant d-wave state with ϕ1 = ϕ2 = 0 or π ex-
hibits the most complex behavior. In this case, the nodes along
the high-symmetry lines can coexist with the additional (stray)
nodes in the interband space, whose number and locations are
model dependent. As the interband pairing increases, the two
families of nodes evolve as the system passes through a series
of transitions characterized by the creation and destruction of
the pairs of nodes. Across these transitions, the topological
charges of the nodes are conserved (see Sec. V A). Eventually,
at a sufficiently large η̃, all the nodes will have pairwise col-
lided and annihilated each other, so that the superconducting
state will be fully gapped.

IV. BOUNDARY MODES

Having discussed the bulk properties of the different super-
conducting phases in Sec. III, we turn our attention towards
the boundaries of the material. We consider a strip geometry:
the system is infinitely extending along the x direction, but has
a finite width along the y direction. To formulate the lattice
model, we assume Nx (Ny) lattice sites with periodic (open)

boundary conditions along the x (y) direction. As a result,
the system effectively possesses two infinitely extended edges
parallel to the x axis.

The bulk band structure is described by

ξn(k) = −2tn[cos(kx ) + cos(ky)] − 4t ′
n cos(kx ) cos(ky) − μ,

where μ is the chemical potential, tn is the nearest-, and t ′
n is

the next-nearest-neighbor hopping amplitude in the nth band.
Superconductivity is either of s- or dxy-wave type, given by
Eqs. (9) and (11), respectively; for dx2−y2 -wave superconduc-
tivity, we would consider edges rotated by π/4. The total bulk
Hamiltonian of the lattice model is described by Eq. (2).

The formal description of the superconducting strip sys-
tem follows Ref. [52]. The momentum component ky is not
a good quantum number, because translation symmetry is
broken along the y direction. To account for this, we only
consider the momentum representation k ≡ kx along the x
direction, while we keep the real space representation i ≡ iy
along the y direction. Assuming a sufficiently wide strip, the
superconducting gap is approximately constant along the y
direction and we neglect any potential surface effects causing
the order parameter to be spatially deformed close to the
edges. The order parameters η1, η2, and η̃ are not computed
self-consistently, but set to their respective bulk values.

Similar to Eq. (12), the total mean-field Hamiltonian is of
the form

H = const + 1

2

∑
k

C†(k)ĤBdG(k)C (k), (34)

where C† = C†
↑ ⊕ C†

↓ and ĤBdG = Ĥ↑ ⊕ Ĥ↓. The pseudospin-
resolved Nambu operators are given by

C†
s (k) = (c†

k1,1s, c†
k1,2s, . . . , c†

kN,2sc̃k1,1s, c̃k1,2s, . . . , c̃kN,2s),

where c†
ki,ns (cki,ns) creates (annihilates) an electron with mo-

mentum k = kx at position i = iy = 1, . . . , Ny in band n =
1, 2 with pseudospin s =↑,↓, and

Ĥ↑(↓) =
(

ξ̂↑(↓) �̂↑(↓)

�̂
†
↑(↓) −ξ̂↑(↓)

)
. (35)

The exact forms for the 2Ny × 2Ny matrices ξ̂↑(↓) and �̂↑(↓)

are provided in Appendix D, for both the s- and dxy-wave
cases.

The BdG Hamiltonian ĤBdG is diagonal in the pseudospin
space, with the blocks Ĥ↑ and Ĥ↓ being related by TR [see
Eq. (17)]. Furthermore, it is diagonal in k space. As a con-
sequence, the problem is reduced to the diagonalization of a
4Ny × 4Ny matrix. Here, we employ an exact diagonalization
procedure to solve for the eigenvalues as well as the corre-
sponding eigenstates of Ĥ↑(k).

We begin the discussion of our results with the s-wave case.
For a weak interband pairing, the spectrum is fully gapped
in both the generic (see Sec. III A) and the exceptional cases
(see Sec. III C). In the generic case, this situation remains true
regardless of the strength of the interband pairing. In contrast,
in the exceptional case, there exist two critical values, η̃c,1 and
η̃c,2, between which the spectrum is gapless for four distinct
k values (three k values at η̃ = η̃c,1 and two k values at η̃ =
η̃c,2). As the interband pairing strength increases from η̃c,1 to
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FIG. 4. Energy spectrum of Ĥ↑(k) [see Eq. (35)] in the generic dxy-wave case, for increasing interband pairing η̃ (top to bottom). Left
column: periodic boundary conditions. Right column: strip geometry. Parameters: Nx = 2501, Ny = 500, μ = −1.5, t1 = 1.2, t2 = 0.8, t ′

1 =
0.5, t ′

2 = 0.0, η1 = 0.11, η2 = −0.09, ρ = 0.5. Energy is measured in the units of t = (t1 + t2)/2.

η̃c,2, these nodes move towards each other until they annihilate
eventually, so that the spectrum is fully gapped again. There
are no edge states present—regardless of the interband pairing
strength.

Next, we discuss the generic dxy-wave case (see Sec. III B).
The results are summarized in Fig. 4. In the absence of inter-
band pairing (the top panels), the energy spectrum shows five
zeros at kLO < kLI < k0 ≡ 0 < kRI < kRO (L, left; R, right; O,
outer; I, inner). These correspond to the bulk nodes along the
main axes and are located exactly on the two Fermi surfaces.
The node at k0 is fourfold degenerate corresponding to the
four nodes of the system along the y direction. Between kLO

and kRO the spectrum shows flat ABSs. As soon as the in-
terband pairing is turned on, the ABSs between kLI and kRI

gap out, while they remain intact between kLO and kLI as
well as between kRI and kRO. Therefore, the zero-energy ABSs
between the “inner” bulk nodes are topologically unstable (see
Sec. V A).

As the interband pairing strength increases, the nodes move
away from the Fermi surfaces until they meet each other and

annihilate. After this point, the bulk is completely gapped
but eight zero-energy crossing ABS branches remain. They
are singly degenerate (doubly degenerate for Ĥ↑ ⊕ Ĥ↓ if both
edges are taken into account, as shown in Fig. 5) and the
corresponding eigenstates are localized near the edges of the
strip (see Appendix D). They mark a different, topologically
nontrivial, superconducting phase.

The edge states in the gapped phase are schematically
illustrated in Fig. 5. For Ĥ↑, four states are located close to the
left edge of the strip, while the other four are located close to
the right edge of the strip. Depending on their slope they move
either along the positive or negative x direction. Furthermore,
they mix electrons from one band with holes from the other
band (see Appendix D).

Finally, we turn our attention towards the exceptional dxy-
wave case (see Sec. III D). Similarly to the generic case,
we observe a topological phase transition when the inter-
band pairing strength increases. However, apart from the
phase transition, the behavior of the spectrum significantly
differs from the generic case. Weak interband pairing does not
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FIG. 5. Schematic illustration of the edge states in a fully gapped
dxy-wave SC, for strong interband pairing (top panel, the edge states
for Ĥ↑; bottom panel, the edge states for Ĥ↓).

immediately and fully gap out the ABSs. Indeed, there are
ABSs present until the stray nodes annihilate along the diag-
onals of the Brillouin zone (see Sec. III D). As a comparison
to the generic dxy-wave case, we present the spectrum of the
exceptional dxy-wave case in Appendix D1.

We make two final remarks. First, the topological phase
transition occurs regardless of the presence of TR symmetry.
The characteristics of the edge states in the strip spectrum
(see Fig. 4) are the same regardless of the intraband order
parameter phases ϕn. Only the behavior of the bulk nodes
and the ABSs in the gapless regime differs between the TR
symmetry-breaking generic states and the TR-invariant excep-
tional states. Second, the interband pairing strength required
to reach the topologically nontrivial superconducting phase
strongly depends on the distance between the two Fermi sur-
faces. The closer the Fermi surfaces along the main axes of
the Brillouin zone, the weaker the required interband pairing
in order to annihilate the gap nodes.

V. TOPOLOGICAL ARGUMENTS

The results of the previous two sections show that the
effects of the interband pairing are most profound in the d-
wave states. The evolution of the bulk gap structure, which
is reflected in the changes of the ABS spectrum, can be inter-
preted in terms of a series of transitions between topologically
distinct superconducting phases. In this section, we discuss
the relevant bulk topological invariants, focusing as before on
the dxy-wave states.

A. Gapless bulk

According to Sec. III, the bulk gap structure of a generic
nodal dxy-wave state is insensitive to the phases of the intra-
band order parameters: the nodes move on the high-symmetry
axes as the interband pairing strength varies. In order to study
the topological properties, one can focus on the TR invariant
states, in which the order parameter components η1, η2, and
η̃ are all real. If η1η2 < 0, then there exist only the high-
symmetry nodes (Sec. III B), whereas at η1η2 > 0 the stray
nodes are also possible (Sec. III D).

For the real order parameters, the Hamiltonians Ĥ↑ and Ĥ↓
[see Eq. (16)] have a “chiral” symmetry:

Û †
S Ĥ↑(↓)(k)ÛS = −Ĥ↑(↓)(k), ÛS =

(
τ̂2 0
0 τ̂2

)
.

In the basis in which ÛS is diagonal, the Hamiltonians can be
brought to a block off-diagonal form, e.g.,

Ĥ↑(k) → V̂ Ĥ↑(k)V̂ † =
(

0 υ̂(k)
υ̂†(k) 0

)
,

where

V̂ = 1√
2

⎛
⎜⎜⎝

1 −i 0 0
0 0 1 −i

−i 1 0 0
0 0 −i 1

⎞
⎟⎟⎠

and

υ̂ =
(

ψ1 + iξ1 |�̃|eiϕ̃

|�̃|e−iϕ̃ ψ2 + iξ2

)
. (36)

The υ matrix for Ĥ↓ is obtained from Eq. (36) by replacing
ϕ̃ → −ϕ̃.

The positions of the gap nodes are determined by the zeros
of | det υ̂|, whereas the topological charges of the nodes are
given by the winding number of the phase of det υ̂:

q =
∮

dk
2π i

∇k ln det υ̂ (37)

(see Refs. [53,54]). The integration here is performed around
an infinitesimally small circular contour wrapping counter-
clockwise around the node. From Eq. (36), we have

det υ̂ = ψ1ψ2 − ξ1ξ2 − |�̃|2 + i(ξ1ψ2 + ξ2ψ1), (38)

where ψn(k) = ηnα(k), assuming the same intraband symme-
try factors in both bands. In agreement with the results of
Sec. III, we see that the zeros of | det υ̂| are located in the
interband space, either where α = 0 and ξ1ξ2 + �̃2 = 0 (the
high-symmetry nodes), or away from the symmetry axes (the
stray nodes), the latter being possible only if η1 and η2 have
the same sign.

The topological charges of the nodes can be easily calcu-
lated by expanding det υ̂(k) in the vicinity of the nodes. In the
case η1 > 0, η2 < 0, we find (see Appendix E) that the gap
nodes located on the same axis are oppositely “charged,” as
shown in Figs. 6–8, which makes it possible for the nodes to
annihilate each other, as discussed in Sec. III B.

According to Refs. [53,54], the number of the zero-energy
edge modes at given momentum kx along the boundary, per
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FIG. 6. Integration contour for computing the topological in-
variant N (kx ) [see Eq. (40)]. Red triangles and squares: gap node
positions at finite interband pairing 0 < η̃ < η̃c (generic dxy-wave
case). The different shapes indicate that the nodes have opposite
topological charges.

one pseudospin projection, is equal to |N (kx )|, where

N (kx ) = Im
∫ ∞

−∞

dky

2π
∇ky ln det υ̂(k). (39)

The integral here is taken along a straight line which runs be-
tween the opposite edges of the Brillouin zone perpendicular
to the boundary. In a continuum model, the limits are extended
to infinity. Assuming that all gap functions vanish far from
the Fermi surfaces, one can integrate along a closed contour C
shown in Figs. 6–8. Using the Stokes theorem to contract the
contour without crossing any gap nodes, we find that N (kx ) is
equal to the total charge of the nodes enclosed by C.

In this way, we obtain

|N (kx )| =

⎧⎪⎨
⎪⎩

0, at |kx| < k2,

1, at k2 < |kx| < k1,

0, at k1 < |kx|,
(40)

where k1,2 are the positions of the bulk nodes [see Eq. (25)].
Taking into account the pseudospin degeneracy, the total num-
ber of the zero-energy ABS localized near one edge of the

FIG. 7. Integration contour for computing the topological in-
variant N (kx ) [see Eq. (40)]. Red triangles and squares: gap node
positions at finite interband pairing 0 < η̃ < η̃c (generic dxy-wave
case). The different shapes indicate that the nodes have opposite
topological charges.

FIG. 8. Integration contour for computing the topological in-
variant N (kx ) [see Eq. (40)]. Red triangles and squares: gap node
positions at finite interband pairing 0 < η̃ < η̃c (generic dxy-wave
case). The different shapes indicate that the nodes have opposite
topological charges.

sample is equal to 2|N (kx )|. We see that the momentum range
in which the topologically protected zero-energy boundary
modes exist shrinks with increasing the interband pairing and
eventually disappears, in agreement with the numerical results
of Sec. IV.

In the d-wave case with η1η2 > 0 (see Sec. III D), any
two gap nodes located on the same high-symmetry axis have
the same topological charges, until one of the nodes reverses
the sign of its charge by shedding two stray nodes at some
strength of the interband pairing, as explained in Appendix E.
One can repeat the arguments leading to Eq. (40) and obtain
that in the presence of the stray nodes, the zero-energy ABSs
are topologically protected if kx is between the innermost and
outermost projections of the stray nodes onto the boundary.

In the nodal s-wave case considered in Sec. III C, one can
show that the topological charges of the accidental nodes
shown in Fig. 2 have alternating signs along the circle (28).
Therefore, N (kx ) = 0 at all kx and there are no zero-energy
ABSs.

B. Gapped bulk

We have seen in the previous sections that the bulk Bo-
goliubov spectrum becomes fully gapped when the interband
pairing exceeds a certain value. Moreover, if �̃ �= 0, then the
Bogoliubov branches E+ and E− [see Eq. (19)] are always
separated. In the absence of any level crossings, the intraband
pairing can be adiabatically turned off without affecting the
bulk topology. Therefore, in order to study the topology of the
mappings k → Ĥ↑(k) and k → Ĥ↓(k) in the nodeless regime,
we can set η1 = η2 = 0, which considerably simplifies the
calculations. The pseudospin-resolved Hamiltonians (16) are
then reduced to direct sums of 2 × 2 matrices:

Ĥ↑(k) = ĥ+
↑ (k) ⊕ ĥ−

↑ (k), Ĥ↓(k) = ĥ+
↓ (k) ⊕ ĥ−

↓ (k),

where

ĥ±
↑ = ±ξ1 − ξ2

2
σ̂0 + ν±σ̂,

ĥ±
↓ = ∓ξ1 − ξ2

2
σ̂0 + ν±σ̂, (41)
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and ν± = (η̃α̃,∓η̃β̃, ξ ) and ξ = (ξ1 + ξ2)/2. Since the
Hamiltonians Ĥ↑ and Ĥ↓ are in the class C, the gapped bulk
states are characterized by an even (2Z) topological invari-
ant [49]. Therefore, we expect an even number of zero-energy
boundary modes.

In the case of the dxy-wave pairing, we have

α̃ ± iβ̃ = sin(2θ ) ± iρ cos(2θ ) (42)

[see Eqs. (11) and (8)]. Therefore, the matrices (41) have the
same form as the BdG Hamiltonians for the chiral d ± id
states, shifted up or down in energy. It is well known [55]
that the d + id and d − id superconductors can support chiral
boundary modes, which are protected by the bulk topology.

Diagonalizing Eq. (41) and using the band model (23), we
find that the bulk spectra of Ĥ↑ and Ĥ↓ are the same and,
in agreement with Eq. (19), are given by four particle-hole
symmetric branches ±E±, where

E± =
∣∣∣∣
√

ξ 2 + |�̃|2 ± Eb

2

∣∣∣∣
and �̃ has the form (18). Note that the branch indices in this
last expression have nothing to do with the chirality index ±
in Eq. (41). At a sufficiently strong interband pairing, |�̃| >

Eb/2, the bulk spectrum is fully gapped.
According to Refs. [35,56], the topological invariant char-

acterizing a gapped chiral d-wave state has the following
form:

N = 1

4π

∫
d2k ν̂

(
∂ ν̂

∂kx
× ∂ ν̂

∂ky

)
, (43)

where ν̂ = ν/|ν| and ν = ν+ or ν−. Here we integrate over
the 2D momentum space, which can be compactified into an
S2 sphere, because the gap functions vanish outside the over-
lapping BCS pairing shells (see Sec. II), so that ν̂ = ẑ sign ξ

and the integrand in Eq. (43) is equal to zero far from the
Fermi surfaces. The expression (43) is nothing but the degree
of the mapping k → ν̂(k), which takes integer values and
can be used to enumerate different equivalence classes of the
Hamiltonians (41).

Writing the interband gap functions in the form (18), with
|�̃| nonvanishing only inside the pairing shells of thickness
εc, Eq. (43) takes the form

N = 1

4π

∫
d2k

|�̃|2
(ξ 2 + |�̃|2)3/2

(
∂ξ

∂kx

∂ϕ̃

∂ky
− ∂ξ

∂ky

∂ϕ̃

∂kx

)
.

Finally, neglecting the ξ dependence of |�̃| and ϕ̃ inside the
pairing shell, sending εc → ∞, and integrating with respect
to ξ , we obtain

N = 1

2π

∮
dϕ̃, (44)

where the integration is performed along the ξ = 0 line. Since
we neglect the ξ dependence of ϕ̃, one could integrate along
either of the two Fermi surfaces, with the same result (note
that the lines ξ = 0, ξ1 = 0, and ξ2 = 0 all lie within the BCS
pairing shell, which encompasses both Fermi surfaces). Thus,
the invariant (43) is equal to the phase winding number of the
interband gap function.

FIG. 9. Schematic illustration of the chiral edge modes for the
Hamiltonian ĥ+

↑ [see Eq. (41)]. Dashed lines: chiral modes without
the energy shift. Solid lines: chiral modes shifted by −Eb/2.

For the dxy-wave pairing [see Eq. (42)], we obtain the
following winding numbers for ĥ±

↑ and ĥ±
↓ :

N± = ∓2 sign ρ.

Therefore, each of the four Hamiltonians ĥ±
↑ and ĥ±

↓ has two
chiral zero modes near each edge of the sample. These modes
have opposite slopes for opposite chiralities, and are also
shifted up and down in energy by ±Eb/2, as shown in Fig. 9
for ĥ+

↑ and ρ > 0. The 4 × 4 Hamiltonian Ĥs corresponding
to one pseudospin channel has four helical modes composed
of two pairs of the counterpropagating chiral modes from ĥ+

s

and ĥ−
s , as shown in Fig. 5. This result is in agreement with

the numerical solution of the BdG equations (see Fig. 4).

VI. CONCLUSION

Based on a symmetry analysis, we determined the possible
interband pairing gap functions in the case of two-band su-
perconductors with s-wave, dxy-wave, or dx2−y2 -wave pairing,
which can give rise to both TR invariant and TR symmetry-
breaking superconducting states. As the interband pairing
strength increases, the nodal structure changes fundamentally.
Nodes leave the Fermi surfaces and eventually annihilate each
other on the high-symmetry axes, whereas other nodes (stray
nodes) appear, move, and merge in the interband space.

In the case of a d-wave superconductor with a strip ge-
ometry, the boundary modes exhibit qualitative changes when
interband pairing increases. Starting from zero-energy flat
ABSs in the absence of interband pairing, these modes par-
tially gap out as soon as interband pairing is turned on. In
the limit of strong interband pairing, the system undergoes a
topological phase transition to a fully gapped helical d ± id-
wave superconducting state. The corresponding topological
invariant is the phase winding number of the interband gap,
which explains the existence of the eight gap-crossing zero-
energy branches near one edge of the sample in the helical
state.
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APPENDIX A: RESPONSE TO TR

Suppose that the triplet component of the interband gap
function is given by β̃ = (0, 0, β̃ ) (see Secs. II A and II B).
Then, the pairing Hamiltonian (3) takes the following form:

ĤSC = 1

2

∑
k

[η1α1(c†
k,1↑c̃†

k,1↑ + c†
k,1↓c̃†

k,1↓)

+η2α2(c†
k,2↑c̃†

k,2↑ + c†
k,2↓c̃†

k,2↓)

+η̃(α̃ + iβ̃ )(c†
k,1↑c̃†

k,2↑ + c†
k,2↓c̃†

k,1↓)

+η̃(α̃ − iβ̃ )(c†
k,1↓c̃†

k,2↓ + c†
k,2↑c̃†

k,1↑)] + H.c.

Since K (c†
k,nsc̃

†
k,n′s′ )K−1 = c†

k,n′s′ c̃
†
k,ns, the TR-transformed

Hamiltonian is given by

KĤSCK−1 = 1

2

∑
k

[η∗
1α1(c†

k,1↑c̃†
k,1↑ + c†

k,1↓c̃†
k,1↓)

+η
∗
2α2(c†

k,2↑c̃†
k,2↑ + c†

k,2↓c̃†
k,2↓)

+η̃(α̃ − iβ̃ )(c†
k,2↑c̃†

k,1↑ + c†
k,1↓c̃†

k,2↓)

+η̃(α̃ + iβ̃ )(c†
k,2↓c̃†

k,1↓ + c†
k,1↑c̃†

k,2↑)] + H.c.

which is the same as ĤSC, with (η1, η2, η̃) replaced by
(η∗

1, η
∗
2, η̃

∗). If the order parameter is real, then KĤSCK−1 =
ĤSC, i.e., the Hamiltonian is intrinsically complex, but TR
invariant.

APPENDIX B: STABLE STATES

The three order parameter components can be combined
into η = (η1, η2, η̃)
. The second- and fourth-order uniform
terms in the GL free energy density have the following form:

F2 = η†Âη, Â =
⎛
⎝A11 A12 Ã13

A12 A22 Ã23

Ã13 Ã23 Ã33

⎞
⎠, (B1)

where Â is a real symmetric matrix and

F4 = β1|η1|4 + β2|η2|4 + β̃1|η1|2|η̃|2 + β̃2|η2|2|η̃|2

+β̃3|η̃|4 + β̃4(η1η2η̃
∗,2 + c.c.)

(see Ref. [32] for the microscopic derivation). The diagonal
elements of the matrix Â depend on temperature, so that Â
loses positive definiteness at the critical temperature Tc. In the
absence of the interband pairing, all the quantities with tildes
are zero and Eq. (B1) takes the usual form for a two-band
superconductor, with A12 describing the Josephson tunneling
of the Cooper pairs between the bands.

Choosing η̃ to be real positive, neglecting the quartic terms,
and writing the intraband order parameters in the form (21),

the phase-dependent terms in the energy can be represented as

F (ϕ1, ϕ2) = a cos(ϕ1 − ϕ2) + ã1 cos ϕ1 + ã2 cos ϕ2, (B2)

where a, ã1, and ã2 are proportional to the off-diagonal el-
ements of Â and can be positive or negative. Minimizing
Eq. (B2), we obtain

a sin(ϕ1 − ϕ2) + ã1 sin ϕ1 = 0,

a sin(ϕ1 − ϕ2) − ã2 sin ϕ2 = 0. (B3)

These equations always have four solutions ϕ1, ϕ2 = 0 or π ,
which correspond to the TR invariant superconducting states.
Whether these states are stable or not depends on the parame-
ters in Eq. (B2).

In general, Eq. (B3) can also have solutions different from
0 or π , which describe TR symmetry-breaking supercon-
ducting states. To construct these solutions, we employ the
following procedure. First, we pick some values of ϕ1 and ϕ2

and use Eq. (B3) to obtain

ã1 = −a
sin(ϕ1 − ϕ2)

sin ϕ1
, ã2 = a

sin(ϕ1 − ϕ2)

sin ϕ2
. (B4)

If the coefficients satisfy these relations, then the energy (B2)
has a critical point at the given (ϕ1, ϕ2). Next, we check if
this critical point is a minimum by calculating the second
derivatives of the function (B2). Using Eq. (B4), we obtain
that the Hessian matrix is positive definite if

sign (a)
sin ϕ1

sin ϕ2
< 0. (B5)

Taking any point (ϕ1, ϕ2) from the stability regions defined by
this last inequality and substituting it in Eq. (B4), we find the
GL energy for which this pair of phases delivers a minimum
(local or global).

One can easily show that the solutions satisfying Eq. (B5)
exist only if aã1ã2 > 0, i.e., if

sign (A12Ã13Ã23) > 0.

In other words, we have proved that if the number of negative
quadratic intercomponent couplings in Eq. (B1) is even, then
our system can have TR symmetry-breaking superconducting
states, which are at least locally stable.

Also, we note that the TR symmetry-breaking states with
ϕ1 + ϕ2 = 0 discussed in Sec. III can only exist at the special
values of the coefficients, namely, if ã1 = ã2. Therefore, such
states are unstable against a small variation of the system’s
parameters, e.g., the temperature.

APPENDIX C: BULK ENERGY SPECTRUM

Assuming a real η̃, the BdG Hamiltonian (16) in either
pseudospin channel can be represented in the form

Ĥ =
(

ν1σ̂ �̃σ̂1

�̃∗σ̂1 ν2σ̂

)
, (C1)

where νn = (Reψn,−Imψn, ξn). It is manifestly particle-hole
symmetric and one can find its spectrum either by a direct cal-
culation of a 4 × 4 determinant [43] or by using the following
trick [57].

023105-13



HOLST, SIGRIST, AND SAMOKHIN PHYSICAL REVIEW RESEARCH 6, 023105 (2024)

Let us calculate the second and fourth powers of Eq. (C1):

Ĥ2 =
(

μ1σ̂0 m̂
m̂† μ2σ̂0,

)
,

where μn = ν2
n + |�̃|2, m̂ = �̃(ν1σ̂σ̂1 + ν2σ̂1σ̂ ), and

Ĥ4 =
(

μ2
1σ̂0 + m̂m̂† (μ1 + μ2)m̂

(μ1 + μ2)m̂† μ2
2σ̂0 + m̂†m̂

)
.

One can see that the matrix M̂ = Ĥ4 − (μ1 + μ2)Ĥ2 does not
contain off-diagonal 2 × 2 blocks. Moreover, since

m̂m̂† = m̂†m̂ = |�̃|2[(ν1 − ν2)2 + 4ν1,1ν2,1]σ̂0,

we find that M̂ is proportional to the 4 × 4 unit matrix. There-
fore, the eigenvalues of Ĥ satisfy the following bi-quadratic
equation:

E4 − (μ1 + μ2)E2

+μ1μ2 − |�̃|2[(ν1 − ν2)2 + 4ν1,1ν2,1] = 0.

Solving it, we obtain the Bogoliubov energy branches given
by Eq. (19).

APPENDIX D: BDG FORMALISM IN THE STRIP
GEOMETRY

The 2Ny × 2Ny matrices ξ̂↑(↓) and �̂↑(↓) appearing in the
BdG Hamiltonian (34) are of the form

ξ̂↑(↓) =

⎛
⎜⎝

ξ̂+0↑(↓) ξ̂+1↑(↓)

ξ̂−1↑(↓)
. . .

. . .
. . .

. . .

⎞
⎟⎠,

which is block tridiagonal, and

�̂↑(↓) =

⎛
⎜⎜⎜⎜⎝

�̂+0↑(↓) �̂+1↑(↓) �̂+2↑(↓)

�̂−1↑(↓)
. . .

. . .
. . .

�̂−2↑(↓)
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠,

which is block quinquediagonal. The labels +0,±1,±2 refer
to the respective (off)diagonals of the matrices ξ̂↑(↓) and �̂↑(↓).
Furthermore, regardless of the superconducting pairing we
have

ξ̂+0↑(↓) =
[
−μ1 + μ2

2
− (t1 + t2) cos(k)

]
τ̂0

+
[
−μ1 − μ2

2
− (t1 − t2) cos(k)

]
τ̂3,

ξ̂+1↑(↓) =
[
− t1 + t2

2
− (t ′

1 + t ′
2) cos(k)

]
τ̂0

+
[
− t1 − t2

2
− (t ′

1 − t ′
2) cos(k)

]
τ̂3,

and ξ̂−1↑(↓) = ξ̂
†
+1↑(↓), where τ̂i matrices refer to the band

space.
Fermionic antisymmetry requires

�̂↑(↓)(k) = �̂

↓(↑)(−k),

FIG. 10. Energy spectrum of Ĥ↑(k) [see Eq. (35)] in the generic
dxy-wave case, for the strip geometry at the interband pairing η̃ = 0.4
(see bottom-right plot of Fig. 4). Red triangles: positions k1 < k2 <

k3 < k4 for which the corresponding eigenstate profiles are shown in
Fig. 11.

so that �̂−1(−2)↑(↓)(k) = �̂

+1(+2)↓(↑)(−k). Therefore, in the s-

wave case, we have

�̂+0↑(↓)(k) = η1 + η2

2
τ̂0 + η̃τ̂1 + η1 − η2

2
τ̂3,

�̂+1↑(↓)(k) = ± i

2
ρη̃ sin(k) cos(k)τ̂2,

�̂+2↑(↓)(k), = ∓ i

4
ρη̃ sin(k)τ̂2,

while in the dxy-wave case, we have

�̂+0↑(↓)(k) = ∓ρη̃ cos(k)τ̂2,

�̂+1↑(↓)(k) = ±1

2
ρη̃τ̂2 − i

2
sin(k)

×
[
η1 + η2

2
τ̂0 + η̃τ̂1 + η1 − η2

2
τ̂3

]
,

�̂+2↑(↓)(k) = 0.

If periodic boundary conditions are also considered along the
y direction (i.e., the strip is closed to a torus), then additional
off-diagonal terms appear in the corners of ξ̂↑(↓) and �̂↑(↓).

Figure 10 illustrates that the gap-crossing energy branches
in the strong interband-pairing regime belong to states which
are localized near the edges of the strip. The respective eigen-
states ψ of the Hamiltonian Ĥ↑ are of size 4Ny and split into
electron and hole contributions as well as band contributions
n = 1 and 2, as shown in Fig. 11.

1. Spectrum of the exceptional dxy-wave case

We have included the spectrum of the exceptional dxy-wave
case in Fig. 12 for completeness. To compare it with the
spectrum of the generic dxy-wave case in Fig. 4, we have used
the same parameters for the numerical simulation except that
the relative phase between the two intraband order parameters
is now zero.

In the absence of interband pairing (as shown in the top
panels), the energy spectrum displays five zeros, similar to the
generic dxy-wave case. These correspond to the bulk nodes
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FIG. 11. Eigenstate profiles of the states marked by red dots in Fig. 10 as a function of y position. Left column: electron components of
the eigenstates. Right column: hole components of the eigenstates.

along the main axes and are located exactly on the two Fermi
surfaces. The node at k = 0 is fourfold degenerate corre-
sponding to the four nodes of the system along the y direction.

However, when interband pairing is turned on, the inner zero-
energy ABSs do not completely gap out, unlike the generic
dxy-wave case. The reason is that the nodes located on the
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FIG. 12. Energy spectrum of Ĥ↑(k) [see Eq. (35)] in the exceptional dxy-wave case, for increasing interband pairing η̃ (top to bottom).
Left column: periodic boundary conditions. Right column: strip geometry. Parameters: Nx = 2501, Ny = 500, μ = −1.5, t1 = 1.2, t2 = 0.8,
t ′
1 = 0.5, t ′

2 = 0.0, η1 = 0.11, η2 = 0.09, ρ = 0.5. Energy is measured in the units of t = (t1 + t2)/2.

same high-symmetry axis have the same topological charge
(see Appendix E). The inner ABSs persist until the stray nodes
annihilate each other off the high-symmetry axes, as discussed
in Sec. III D.

The bottom panels of Fig. 12 correspond to the situation
when the interband pairing is sufficiently strong, so that the
high-symmetry nodes have all annihilated each other and only
the stray nodes remain in the interband space. The flat zero-
energy ABSs shown in the bottom-right panel connect the
projections of those stray nodes onto the kx axis. Eventually,
for even stronger interband pairing (not shown in Fig. 12), the
bulk spectrum gaps out and we observe the same topological
phase transition as in the generic d-wave case, with only the
helical ABS branches remaining.

APPENDIX E: TOPOLOGICAL CHARGES OF THE NODES

Substituting Eqs. (23) and (24) in Eq. (38), we obtain

det υ̂ =
(Eb

2

)2

− η̃2
[
ρ2 + (1 − ρ2) sin2(2θ )

]
− ξ 2 + η1η2 sin2(2θ )

+ i

[(
ξ + Eb

2

)
η1 +

(
ξ − Eb

2

)
η2)

]
sin(2θ ),

(E1)

with real η1 and η2. Equating the real and imaginary parts of
this last expression to zero, we recover the results of Sec. III B,
if η1η2 < 0, and Sec. III D, if η1η2 > 0.
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Let us consider, for example, the high-symmetry nodes
along the positive kx axis, i.e., at θ = 0. They are located
between the two Fermi surfaces, at ξ = ±ξ0, where

ξ0 =
√(Eb

2

)2

− η̃2ρ2.

We expand Eq. (E1) near the nodes by setting ξ = ±ξ0 +
ξ0x, θ = y (|x|, |y| � 1), and obtain det υ̂ = ∓ξ 2

0 (x + iw±y),
where

w± = − 1

ξ 2
0

[(
ξ0 ± Eb

2

)
η1 +

(
ξ0 ∓ Eb

2

)
η2

]
. (E2)

Therefore, the topological charges of the nodes [see Eq. (37)]
are given by

q± = sign (w±).

In particular, in the absence of the interband pairing, we have
q+ = − sign (η1) and q− = − sign (η2).

It follows from Eq. (E2) that

q+q− = sign

[
η1η2 − η̃2ρ2

E2
b

(η1 + η2)2

]
. (E3)

If η1 and η2 have opposite signs, then q+q− < 0, indepen-
dently of the value of η̃. The high-symmetry nodes on the
same axis have opposite charges and annihilate each other at
the critical strength of the interband pairing, given by Eq. (26).

In contrast, if η1 and η2 have the same sign, then Eq. (E3)
changes sign at

η̃c = Eb

|ρ|
√|η1η2|

|η1| + |η2| .

At this value of the interband pairing, one of the high-
symmetry nodes splits into two stray nodes of the same charge
and one high-symmetry node of the opposite charge (see
Sec. III D). All nodes eventually annihilate one another at a
sufficiently strong interband pairing.

[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J.
Akimitsu, Superconductivity at 39 K in magnesium diboride,
Nature (London) 410, 63 (2001).

[2] S. L. Bud’ko and P. C. Canfield, Superconductivity of magne-
sium diboride, Physica C 514, 142 (2015).

[3] P. C. Canfield, P. L. Gammel, and D. J. Bishop, New magnetic
superconductors: A toy box for solid-state physicists, Phys.
Today 51(10), 40 (1998).

[4] A. P. Mackenzie and Y. Maeno, The superconductivity of
Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod.
Phys. 75, 657 (2003).

[5] D. F. Agterberg, T. M. Rice, and M. Sigrist, Orbital depen-
dent superconductivity in Sr2RuO4, Phys. Rev. Lett. 78, 3374
(1997).

[6] C. Kallin and A. J. Berlinsky, Is Sr2RuO4 a chiral p-wave
superconductor? J. Phys.: Condens. Matter 21, 164210 (2009).

[7] E. Boaknin, M. A. Tanatar, J. Paglione, D. Hawthorn, F.
Ronning, R. W. Hill, M. Sutherland, L. Taillefer, J. Sonier, S. M.
Hayden, and J. W. Brill, Heat conduction in the vortex state of
NbSe2: Evidence for multiband superconductivity, Phys. Rev.
Lett. 90, 117003 (2003).

[8] W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki,
N. Inoue, Y. Saito, and Y. Iwasa, Superconductivity series in
transition metal dichalcogenides by ionic gating, Sci. Rep. 5,
12534 (2015).

[9] M. A. Tanatar, J. Paglione, S. Nakatsuji, D. G. Hawthorn, E.
Boaknin, R. W. Hill, F. Ronning, M. Sutherland, L. Taillefer, C.
Petrovic, P. C. Canfield, and Z. Fisk, Unpaired electrons in the
heavy-fermion superconductor CoCoIn5, Phys. Rev. Lett. 95,
067002 (2005).

[10] E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt,
A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl,
Heavy fermion superconductivity and magnetic order in non-
centrosymmetric CePt3Si, Phys. Rev. Lett. 92, 027003 (2004).

[11] M. R. Norman, High-temperature superconductivity in the iron
pnictides, Physics 1, 21 (2008).

[12] P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Gap symme-
try and structure of Fe-based superconductors, Rep. Prog. Phys.
74, 124508 (2011).

[13] L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov,
Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z.
Hasan, A topological insulator surface under strong coulomb,
magnetic and disorder perturbations, Nat. Phys. 7, 32
(2011).

[14] L. Fu and E. Berg, Odd-parity topological superconductors:
Theory and application to CuxBi2Se3, Phys. Rev. Lett. 105,
097001 (2010).

[15] H. Suhl, B. T. Matthias, and L. R. Walker, Bardeen-Cooper-
Schrieffer theory of superconductivity in the case of overlap-
ping bands, Phys. Rev. Lett. 3, 552 (1959).

[16] V. A. Moskalenko, Superconductivity for overlapping electron
bands, Fiz. Met. Metalloved. 8, 503 (1959) [Phys. Met. Metal-
logr. 8, 25 (1959)].

[17] A. J. Leggett, Number-phase fluctuations in two-band supercon-
ductors, Prog. Theor. Phys. 36, 901 (1966).

[18] Y. Tanaka, Soliton in two-band superconductor, Phys. Rev. Lett.
88, 017002 (2001).

[19] E. Babaev, Vortices with fractional flux in two-gap supercon-
ductors and in extended Faddeev model, Phys. Rev. Lett. 89,
067001 (2002).

[20] Y. Tanaka, Multicomponent superconductivity based on multi-
band superconductors, Supercond. Sci. Technol. 28, 034002
(2015).

[21] O. V. Dolgov, E. P. Fetisov, D. I. Khomskii, and K. Svozil,
Model of interband pairing in mixed valence and heavy fermion
systems, Z. Phys. B 67, 63 (1987).

[22] A. Moreo, M. Daghofer, A. Nicholson, and E. Dagotto, Inter-
band pairing in multiorbital systems, Phys. Rev. B 80, 104507
(2009).

[23] M. H. Fischer, Gap symmetry and stability analysis in the multi-
orbital Fe-based superconductors, New J. Phys. 15, 073006
(2013).

023105-17

https://doi.org/10.1038/35065039
https://doi.org/10.1016/j.physc.2015.02.024
https://doi.org/10.1063/1.882396
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/PhysRevLett.78.3374
https://doi.org/10.1088/0953-8984/21/16/164210
https://doi.org/10.1103/PhysRevLett.90.117003
https://doi.org/10.1038/srep12534
https://doi.org/10.1103/PhysRevLett.95.067002
https://doi.org/10.1103/PhysRevLett.92.027003
https://doi.org/10.1103/Physics.1.21
https://doi.org/10.1088/0034-4885/74/12/124508
https://doi.org/10.1038/nphys1838
https://doi.org/10.1103/PhysRevLett.105.097001
https://doi.org/10.1103/PhysRevLett.3.552
https://doi.org/10.1143/PTP.36.901
https://doi.org/10.1103/PhysRevLett.88.017002
https://doi.org/10.1103/PhysRevLett.89.067001
https://doi.org/10.1088/0953-2048/28/3/034002
https://doi.org/10.1007/BF01307308
https://doi.org/10.1103/PhysRevB.80.104507
https://doi.org/10.1088/1367-2630/15/7/073006


HOLST, SIGRIST, AND SAMOKHIN PHYSICAL REVIEW RESEARCH 6, 023105 (2024)

[24] T. Ong, P. Coleman, and J. Schmalian, Concealed d-wave pairs
in the s± condensate of iron-based superconductors, Proc. Natl.
Acad. Sci. USA 113, 5486 (2016).

[25] A. Ramires and M. Sigrist, Identifying detrimental effects for
multiorbital superconductivity: Application to Sr2RuO4, Phys.
Rev. B 94, 104501 (2016).

[26] T. Nomoto, K. Hattori, and H. Ikeda, Classification of
“multipole” superconductivity in multiorbital systems and its
implications, Phys. Rev. B 94, 174513 (2016).

[27] E. M. Nica, R. Yu, and Q. Si, Orbital-selective pairing and
superconductivity in iron selenides, npj Quantum Mater. 2, 24
(2017).

[28] G.-Y. Zhu, F.-C. Zhang, and G.-M. Zhang, Proximity-induced
superconductivity in monolayer CuO2 on cuprate substrates,
Phys. Rev. B 94, 174501 (2016).
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