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How flexible parasites can outsmart their hosts for evolutionary dominance
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Antagonistic coevolution between hosts and parasites substantially impacts community structure, with para-
sites displaying fluctuating selection or arms race dynamics during coevolution. The traditional matching alleles
(MA) and gene-for-gene (GFG) models have been used to describe the dynamics and interaction of host-parasite
coevolution, with these models assuming that parasites adopt a single strategy when competing with other
parasites. We present a nonlinear dynamic population model that challenges this assumption, showing how a
parasite that is disadvantaged under either the MA or the GFG model can win the competition by switching
between the two losing strategies based on an external environmental cue, internal processes, or stochastic
decision-making. This counterintuitive outcome is analogous to Parrondo’s paradox, a game-theoretic concept
that shows how alternating between two losing strategies can result in a winning outcome. Our numerical
experiments support the validity of this model, suggesting that parasites can greatly benefit from maximum
flexibility in their interactions with hosts. The flexibility of successful parasites puts an extra burden on the
host defenses that have to adapt to different strategies of the parasites. These findings contribute to a deeper
understanding of the coevolution of parasites and hosts, with broad implications for the evolution of complex
ecological systems.
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I. INTRODUCTION

Antagonistic interactions and coevolution between hosts
and parasites, as well as competition among parasites, are
evolutionary processes that are pervasive in nature and have
substantial ecological impacts [1–4]. The dynamics of host-
parasite coevolution and competition are highly complex.
Anderson and May [5,6] studied the regulatory roles of par-
asites in host mortality and population growth, respectively.
Two types of models capture the fundamental features of
these processes. The first model, known as the matching al-
leles (MA) model, assumes that hosts can defend against any
parasites without a matching genotype based on self- versus
non-self-discrimination. Under this model infection outcomes
depend on the genotypes of both the host and the parasite,
resulting in fluctuating selection dynamics and evolution of
specialist parasites [7,8]. The MA model has been widely used
to study invertebrate immune systems. The second model,
known as the gene-for-gene (GFG) model, is widely applied
in plant pathology [9,10]. In this model the outcome of an
infection is determined by the relationship between the host’s
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resistance loci and the parasite’s virulence loci, leading to
directional arms race dynamics (ARD) and evolution of gen-
eralist parasites [11,12]. These models have been used to
solve various key problems in host-parasite coevolution and
evolutionary biology [13,14], such as the evolution of sexual
reproduction under the red queen hypothesis [15], patterns
of local adaptation [16], effects of resistance and virulence
[10], tradeoffs found in coevolution between bacteriophages
and Escherichia coli [17], factors of epidemic dynamics [18],
the role of the immunity response [19,20], and evolution of
recombination [21].

Recent studies [22,23] still assume that host-parasite co-
evolution follows either the MA or GFG strategy, meaning
that a parasite is either a specialist or generalist. However,
Ref. [24] suggested that directional ARD intensifies as the
host becomes more exposed to the parasite, which can result
in the parasite adopting the GFG (generalist) strategy. Fur-
thermore, the environment can also impact the evolutionary
dynamic [12,25,26]. A hybrid MA-GFG model with a sin-
gle parameter was developed by Agrawal and Lively [9] to
describe the host-parasite evolutionary dynamic. This work
aims to investigate the effects of parasites switching between
specialist and generalist strategies in the hybrid MA-GFG
model and how parasites determine their coevolution strategy.

To study the coevolution of hosts and parasites, we de-
velop a population dynamics model describing two distinct
parasites competing for the same host. One of the parasites
is a specialist, whereas the other one, with inferior traits,
can switch between being a specialist or a generalist, under
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TABLE I. Infection rate γ for different pairs of hosts and para-
sites. The parameter p determines the interaction between P2 and H ,
as well as the position of the parasite on the MA-GFG continuum.

H1 H2

P1 fs(≡ γ1) 0
P2 p fg(≡ γ3) p fg + (1 − p) fs(≡ γ4)

different schemes. Due to its inferior traits (lower burst size,
higher mortality, and lower infection rate), the second parasite
loses the competition when adopting any of the individual
strategies (MA or GFG). However, this disadvantaged para-
site can win the competition by switching between the two
losing strategies. We also describe three switching schemes
that can benefit the disadvantaged parasite, namely, switching
(1) in response to an external environment factor, (2) as a
result of internal processes, and (3) by stochastic decision-
making, which is the most unexpected result. We show that
the parasite with inferior traits reaches a higher density in the
competition when following each of these switching schemes.
This counterintuitive result is analogous to the game-theoretic
Parrondo’s paradox [27], where switching between two losing
strategies can result in a winning outcome. A broad range of
real-world biological data is compatible with our conclusions
on the advantage of strategy switching by parasites [28,29].

II. MODEL OF HOST-PARASITE COEVOLUTION

The evolution model includes two types of parasites (P1

and P2) that infect two types of hosts (H1 and H2), with
different features. The host has the maximum growth rate α

and grows under a logistic growth model determined by the
carrying capacity K = α/β, where β is the competition factor
among hosts. The susceptible host can be infected to death by
each type of parasite with rate γ , although γ can be equal
to 0 in specific cases (Table I). There will be τ copies of
the parasite in each infection (burst size τ ). The parasites are
also inactivated with rate ρ. Hence, the evolution model for
the host and parasite is captured by the following differential

equations:

Ḣ1 = α1H1

(
1 − H1

α1/β1

)
− H1(γ1P1 + γ3P2),

Ḣ2 = α2H2

(
1 − H2

α2/β2

)
− γ4P2H2,

Ṗ1 = γ1(τ1 − 1)P1H1 − ρ1P1,

Ṗ2 = (τ2 − 1)P2(γ3H1 + γ4H2) − ρ2P2. (1)

The initial values, descriptions, and units of parameters in-
corporated in this evolution model are given in Table II. We
employ data from recent host-parasite interaction models and
biologically realistic values of the parameters [28,29]. Further
details can be found in Appendix A. The infection rate γ

varies widely depending on the specific type of infection,
related to the value of p (Table I), and the parameter p is
used to determine the parasite placement on the MA-GFG
continuum [9]. When p = 0, the interaction is at the MA end,
so that both P1 and P2 are specialists that can only infect H1 or
H2 individually, with the binding affinity fs. When p = 1 the
interaction is at the GFG end. In this case, P1 remains a spe-
cialist virus but P2 is a generalist, which means P2 can infect
both H1 and H2. Compared with the specialist host-parasite
pair, the binding affinity of the generalist fg is much lower
(around fg = 0.1 fs). The connection between the two popular
models, MA and GFG, is described by linear interpolation
and determined by the parameter p. Thus the structure of the
host-parasite network changes depending on p [30]. In this
model, parasites P1 and P2 do not compete directly, but they
infect a common host (indirect competition) when p > 0.

III. RESULTS

The two types of hosts, H1 and H2, have different values of
growth rate and competition factor. The parasite P2 is inferior
to P1 in all respects due to the smaller burst size τ , higher
mortality rate ρ, and lower infection rate γ . The infection
rate γ determined by parameter p is the key variable in this
evolution model because it describes the interaction between
hosts and parasites. In particular, P2 is a pure specialist when
p = 0 and a pure generalist when p = 1. All parameter values

TABLE II. The description, value, and unit of parameters in our proposed evolutionary model. We employ the data from recent host-parasite
interaction models and biological realistic values [28,29].

Parameter Description Value Units

H1, H2 Host density 103, 103 ml−1

P1, P2 Parasite density 106, 106 ml−1

α1, α2 Growth rate of host 1,1 h−1

β1, β2 Competition factor of host 10−6, 9 × 10−6 ml/h
τ1, τ2 Burst size 50,30 —
ρ1, ρ2 Mortality rate of parasite 0.2,0.3 h−1

γ1, γ3, γ4 Infection rate — ml/h
fs Binding affinity for the specialist parasite 10−6 ml/h
fg Binding affinity for the generalist parasite 0.9 × 10−7 ml/h
p Determining factor — —
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FIG. 1. Population size time series illustrating the competition between parasites under different strategies. Two losing strategies for P2

result in low density, where P2 is (a) a specialist (MA end, p = 0) or (b) a generalist (GFG end, p = 1). The winning outcome for P2 results from
switching schemes based on (c) external environmental condition (RU = 72, RL = 12), (d) periodic internal processes (T = 10, T1 = 5), (e) &
(f) different orders of the interaction models under the switching scheme based on periodic internal processes (T1 ∈ [1, 9], measured in the range
[4000, 5000]), (g) quasiperiodic switching scheme (T = 10, Ti ∈ {2, 3, 4, 5}), (h) stochastic decision-making I (R = 0.35, td = 3, k = 104),
and (i) stochastic decision-making II (R = 0.5, td = 2, k = 104) individually. All other parameter values are listed in Table II.

are provided in Table II unless stated otherwise. In addition to
the average density, typically used to measure species fitness,
this work also considers the peak density due to its importance
in the competitive dynamics [31–33].

A. Single disadvantage strategy

In the first competition, P2 adopts a single strategy, that
is, either the MA model or the GFG model. Under the MA
model [Fig. 1(a)], P2 undergoes large-amplitude fluctuations
in the beginning but stabilizes at around t = 100. P1 also
experiences large-amplitude fluctuations that continue for a
longer time and then stabilize around t = 2000. However, the
equilibrium density of P2 was lower than that of P1, demon-
strating that the specialist strategy is losing for P2. When P2

adopts the GFG model [Fig. 1(b)], the evolutionary dynamics
of P1 remain similar to the previous case, with large-scale
fluctuations followed by stabilization at around t = 2000. In
contrast, the density of P2 experiences a sharp drop and per-
sists at a substantially low density, approaching extinction.
Thus, both the pure MA model and the pure GFG model
are losing strategies for P2, as indicated by the lower peak
density and average density shown in Table III. The equilibria

of each population for different cases are further derived in
Appendix B.

B. Switching scheme under external environmental
condition—Host exposure to parasite

Biological experiments [24] have shown that increasing
host exposure to the parasite (population mixing) promotes
both infectivity and resistance, resulting in ARD. There are
single alleles that can change the host resistance and parasite
host ranges under the GFG model, promoting the evolution of
generalists and predisposing the system towards directional
ARD [9]. Thus the ratio of the size of the parasite population
to the size of the host population can render the parasite to
adopt the GFG strategy. In this competition, P2 could switch
between the MA and GFG strategies depending on the relative
sizes of the parasite and host population [Fig. 1(c)],

p =
{

1, P2
H1+H2

> RU

0, P2
H1+H2

< RL

. (2)

When the parasite/host ratio is above RU , P2 adopts the GFG
model, resulting in directional ARD, and when the ratio is
below RL, P2 adopts the MA model. In this case both parasites

TABLE III. Average density and peak density of parasites P1 and P2 in various scenarios, which are measured in the range [4000, 5000] as
the competition entered the steady state by this time. Parameter values are listed in Table II, unless stated otherwise.

Density
(×106)

Pure specialist
scheme (MA)

Pure generalist
scheme (GFG)

External
environment

condition scheme
Internal periodic

scheme

Internal
quasiperiodic

scheme

Stochastic
decision-making

scheme I

Stochastic
decision-making

scheme II

P̄1 0.9959 0.9936 0.8441 0.9644 0.9015 0.9573 0.9553
P̄2 0.9069 0.0263 1.7753 1.1578 1.5609 0.9795 1.1515
max P1 0.9962 0.9939 1.0354 1.0094 0.9580 0.9628 0.9631
max P2 0.9069 0.0268 3.0784 2.3855 3.2060 1.0937 1.2065
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undergo large-amplitude fluctuations, but P2 gains advantage
over P1, as indicated by its higher density after t = 20. Hence,
P2 succeeds in the competition with a higher peak density
and average density (Table III) by alternating its strategy in
response to the large population size of H2. Tradeoffs in the
evolutionary dynamics have also been studied under different
strategies depending on the host density [34].

C. Switching scheme under internal processes—Biological clock

In the above scenario, the switching strategy employed by
the parasite depended on an external environmental factor,
namely, the relative densities of the parasite and host pop-
ulations. We then explored a time-based, periodic switching
scheme motivated by the notion of the biological clock, which
controls the physiological reactions of organisms, such as
feeding behavior, sleep patterns, and hormone release accord-
ing to the circadian cycle [35–39]. The switching scheme
based on internal processes takes the form

p =
{

0, 0 < mod(t, T ) � T1

1, T1 < mod(t, T ) � T
. (3)

Thus, the MA and GFG models are executed sequentially.
Specifically, the MA and GFG models are adopted during
(0, T1] and (T1, T ], respectively, and P2 chooses one of the
two models with different values of T1. Under this scheme
[Fig. 1(d)], the fluctuation amplitude of P2 is greater than that
of P1. However, both the peak density and the average density
of P2 are higher than that of P1 (Table III), resulting in P2

winning the competition. Additionally, as the period assigned
by the biological clock to a single strategy can vary depending
on the species and other factors, the changing value of T1 has
been explored in Fig. 1(e), where peak density and average
density are represented by circles and triangles, respectively.
The larger the value of T1, the more time P2 will allocate to the
MA model. The rapidly declining peak density of P2 is always
higher than the slowly rising peak density of P1, whereas the
average density, following the same trend, makes P2 slightly
lower than P1 when T1 reaches the maximum value. Thus, the
advantage of P2 weakens as T1 increases.

The effect of internal processes was further studied
[Fig. 1(f)] under different orders of the two strategies (GFG
first). In this competition, the GFG and MA strategies are
adopted, respectively, during (0, T1] and (T1, T ],

p =
{

1, 0 < mod(t, T ) � T1

0, T1 < mod(t, T ) � T
. (4)

The advantage of P2 increases with increasing T1 as the GFG
strategy is adopted first. Similarly, an unexpected win for
P2 is obtained. Overall, in these extreme cases [i.e., T1 = 9
in Fig. 1(e) and T1 = 1 in Fig. 1(f)], P2 almost exclusively
adopts a single losing strategy (the MA model), whereas the
alternative strategy (the GFG model) is followed within a very
short time frame, which is not enough for P2 to reverse the
outcome and win the competition. Thus, parasites that are
originally disadvantaged in the given environment can rely
on their internal processes to adjust their switching strategy,
finding ways to win in various competitions.

Noise can disrupt the biological clock of an organism,
shifting from regular periodic behavior to pseudoregular or
even irregular behavior [40,41]. Therefore, a quasiperiodic
switching scheme with noise is considered in the competition
[Fig. 1(g)], where the MA and GFG models are adopted dur-
ing (0, Ti] and (Ti, T ], respectively:

p =
{

0, 0 < mod(t, T ) � Ti

1, Ti < mod(t, T ) � T
, (5)

where Ti, i = �t/T � is a random number selected from a given
set that changes in each period i. Even in the presence of
noise, the quasiperiodic switching scheme still renders P2 to
win the competition, regardless of the peak density or the
average density of the two types of parasites (Table III). This
outcome is the same as the periodic switching scheme shown
in Fig. 1(d).

D. Switching scheme under stochastic decision-making

Which parasite will win in the competition if P2 switches
between MA and GFG models stochastically, regardless of
the external environment factors and the internal state of the
parasite? Under stochastic decision-making by P2, P2 decides
which strategy to adopt every td hours,

p =
{

0, prob R

1, prob 1 − R
. (6)

The MA model is adopted with probability R, and the GFG
model is adopted with probability 1 − R. As this is a random
process, the results are recorded over k repetitions. At steady
state, the population size of P2 is greater than that of P1, that is,
P2 wins the competition [Fig. 1(h) and Table III]. Furthermore,
under this random switching scheme, the population of P2 also
stabilizes earlier than the P1 population. Despite the fact that
the density of P2 is not as high as observed in the previous
switching schemes, a winning outcome can still be achieved
via stochastic decision-making.

Furthermore, another switching scheme for P2 under
stochastic decision-making was considered, where P2 directly
decides whether to change the previously adopted strategy
with probability R every td hours,

p(t ) =
{

1 − p(t − 1), prob R

p(t − 1), prob 1 − R
. (7)

In this scheme, P2 consistently achieves a higher density
than P1 [Fig. 1(i) and Table III]. Compared with the previ-
ous scheme under stochastic decision-making, this scheme
reduces the fluctuation amplitude of P2, and its density is
consistently higher than that of P1.

In all competitions (Fig. 1), the interaction between H and
P follows the Lotka-Volterra equations [42]. Thus, even when
each individual strategy yields a relatively low density of the
disadvantaged parasite, alternating between the two losing
strategies under each of the three schemes can counterintu-
itively result in a winning outcome [43], that is, higher density
compared to the parasite with superior traits. The case where
parasites can adopt N (N � 3) losing strategies [44] is further
explored in Appendix C, and the switching schemes can still
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FIG. 2. The parameter space that determines the advantaged par-
asite in the competition under the switching scheme determined by
internal processes. The difference (P2 − P1) between the average
density of two parasites at t ∈ [4000, 5000] under the change of
(a) growth rate α, (b) binding efficiency f , (c) burst size τ , and
(d) mortality rate ρ are shown. Parameter values are listed in Table II
unless stated otherwise.

enable the inferior parasite to win the competition based on
peak density.

E. Combinations of parameters yielding Parrondo’s paradox

The range of model parameters that determine when P2 can
win the competition due to Parrondo’s paradox was further
studied by comprehensive simulation, including the parame-
ters that characterize both the host and parasite. The results
were evaluated through the difference (P2 − P1) between the
average densities of the two parasites at t ∈ [4000, 5000],
because the competition entered the steady state by this
time. The parameters under the switching scheme based on
internal processes (T = 10, T1 = 3) and the external environ-
mental condition (RU = 72, RL = 12) were analyzed in pairs
in Figs. 2 and 3, respectively.

First, the effects of parameters characterizing the hosts [the
host growth rate α, Fig. 2(a)] were compared. P2 wins the
competition between the two parasites at higher values of
α2 and lower values of α1, because only P2 can get enough
resources from H2 when H2 grows fast. The effects of H1 on
P1 and P2 are similar and are determined by the interaction
efficiency. Therefore, the effect of α2 is more pronounced than
that of α1 under the same scale of changes. Then, the param-
eters pertaining to parasites themselves were compared. With
respect to the interaction affinity for a specialist parasite fs and
a generalist parasite fg [Fig. 2(b)], P2 enjoys an advantage in a
large range, that is, low values of fs and high values of fg. P2

only loses the competition at low values of fs and fg because
more resources will be obtained by P1. The burst size τ1 of P1

has no obvious impact on the result, and only τ2 determines
the outcome of the competition [Fig. 2(c)]. The advantage
of P2 is strengthened at higher τ2, which is consistent with
intuitive expectations: features that enable a parasite to survive
in the environment give it an advantage. The mortality rates

FIG. 3. The parameter space for determining the advantaged
parasite under the switching scheme determined by external environ-
mental conditions (RU = 72, RL = 12). Parameter values are listed
in Table II unless stated otherwise.

were studied in the interval ρ1, ρ2 ∈ [0.1, 0.5], with P2 having
an advantage across this range [Fig. 2(d)]. At lower ρ2, the
advantage of P2 is greater, for the same reason as in the case
of Fig. 2(c).

Figure 3 explores parameter effects under external
condition-driven switching, contrasting with the internal pro-
cess determinants in Fig. 2. However, P2 is able to consistently
outperform its competitors to win the competition in most
of the parameter space. Through comprehensive simulation
experimental analysis, the disadvantaged parasite P2 is able to
achieve counterintuitive winning results by switching between
losing strategies at different timescales and parameter spaces.
This shows that the more flexible a parasite is, the better it
fares in evolutionary competitions, even with inferior traits.

IV. DISCUSSION

In this work, we investigated competition between par-
asites depending on the flexibility of their host interaction
strategies. We show that a disadvantaged parasite can outcom-
pete a fitter one by alternating between two losing strategies.
Regardless of whether the fitter parasite is a specialist (MA
model) or a generalist (GFG model), its density is always
lower than that of its competitor, which represents individu-
ally losing strategies [Figs. 1(a) and 1(b)]. We show that a
disadvantaged parasite can win the competition by alternating
strategies under three distinct switching schemes: external
environmental condition (host exposure to parasite), internal
processes (for example, biological clock), and stochastic (ran-
dom) decision-making (Fig. 1). This counterintuitive result
is analogous to the framework of game theory, in terms of
Parrondo’s paradox, that is, a winning outcome caused by
switching between two losing strategies. Generally, each of
the two parasites is envisaged being restricted to its basin of
attraction on the fitness landscape due to unpassable valleys
of low fitness. However, switching between losing strategies
allows the parasite to cross the formerly prohibiting valleys
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and reach a region of the landscape corresponding to higher
fitness. Similar phenomena appear to be common in multi-
ple biological contexts [45], such as nomadic and colonial
lifestyles of animals [43], periodic intercellular competition
in multicellular organisms [46] (similar to the maximized
population fitness under the competition between a cheater
and co-operator [47]), and lytic cycle versus lysogeny in bac-
teriophages [48].

The parameters that determine the outcome for different
types of parasites competing for the same host are poorly un-
derstood. We studied the behavior of the model under varying
parameter combinations, including features of both the hosts
and the parasites, and further explored the parameter space
that determines which parasite reaches higher density under
switching schemes based on internal processes (Fig. 2) and
external environmental conditions (Fig. 3). For the analysis of
the model parameters, we employed the data from several bi-
ological studies under identical laboratory conditions [28,29].
The results of this analysis reveal the conditions under which
the disadvantaged parasite wins the competition by alternating
losing strategies, according to Parrondo’s paradox.

The general conclusion from this analysis of host-parasite
coevolution models is that the more flexible a parasite is in its
interactions with the host, the better it fares in evolutionary
competitions. Arguably, the flexibility of successful parasites
puts an extra burden on the host defenses that have to adapt to
different strategies of the parasites.

The code is available at OSF [49].
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APPENDIX A: PARAMETER VALUES DETERMINATION

The selection process for parameter values in this work is
introduced below. In the coevolution model [28], the initial
condition for a parasite is set at 106 ml−1, while for a host it
spans a range from 102 to 103 ml−1. Hence, the initial parasite
and host densities are set to 106 and 103 ml−1, respectively,
in this work. For the host, its growth rate α is simplified to a
constant value 1 h−1 from the dynamic form [28], which orig-
inally ranges from 1 h−1 to 1.2 h−1. The competition factor β

is determined by the value of K = α/β = 106 ml−1 according
to [28]. For the parasite, its burst size τ is set to either 30 or
50, falling within the range of [30, 50] as specified in [28].
The mortality rate ρ is chosen to be either 0.2 or 0.3 h−1, ap-
proximating the original setting 0.2 h−1 in [28]. The binding
affinity for the speciality parasite fs remains consistent with
the original setting 10−6 ml/h. However, for the generalist
parasite, fs is chosen to be 0.9 × 10−7 ml/h, falling within
the range of [0.01 × fs, 0.1 × fs] = [0.1 × 10−7, 10−7] [28].
Notably, [28] claims that the utilized parameter values are
drawn from biologically realistic values in [29].

APPENDIX B: POPULATION EQUILIBRIUM

The population equilibrium of the model when there is only
one parasite is first explored. The first one is that there is only
P1 in the interaction to infect two types of hosts. The equilib-
rium x†

1 = (H†
1 , H†

2 , P†
1 , 0) of each population can be obtained

by setting Ḣ1, Ḣ2, Ṗ1 = 0. In this case, the evolutionary model
is

α1H†
1

(
1 − H†

1

α1/β1

)
− H†

1 γ1P†
1 = 0,

α2H†
2

(
1 − H†

2

α2/β2

)
= 0,

γ1(τ1 − 1)P†
1 H†

1 − ρ1P†
1 = 0. (B1)

Here, H†
2 will reach the environmental carrying capacity K2 =

α2/β2, and H†
1 = ρ1

γ1(τ1−1) because Ṗ1 = 0. Based on the den-

sity of hosts, P†
1 can be obtained by α1

γ1
(1 − H†

1
α1/β1

).
The other case is that there is only P2 in the interac-

tion to infect two types of hosts. The equilibrium x◦
2 =

(H◦
1 , H◦

2 , 0, P◦
2 ) of each population can be obtained by setting

Ḣ1, Ḣ2, Ṗ2 = 0, and the evolutionary model is

α1H◦
1

(
1 − H◦

1

α1/β1

)
− γ3H◦

1 P◦
2 = 0,

α2H◦
2

(
1 − H◦

2

α2/β2

)
− γ4P◦

2 H◦
2 = 0,

(τ2 − 1)P◦
2 (γ3H◦

1 + γ4H◦
2 ) − ρ2P◦

2 = 0. (B2)

It can be easily obtained that

γ3H◦
1 + γ4H◦

2 = ρ2

(τ2 − 1)
. (B3)

In addition, H◦
1 and H◦

2 can be obtained by

H◦
1 =

(
1 − γ3P◦

2

α1

)
α1/β1 (B4)

and

H◦
2 =

(
1 − γ4P◦

2

α2

)
α2/β2. (B5)

By simplifying Eq. (B3) by Eqs. (B4) and (B5), the following
formula can be obtained:

γ3

(
1 − γ3P◦

2

α1

)
α1/β1 + γ4

(
1 − γ4P◦

2

α2

)
α2/β2 = ρ2

(τ2 − 1)
,

(B6)

and thus P◦
2 is expressed by

P◦
2 =

γ3
α1
β1

+ γ4
α2
β2

− ρ2
(τ2−1)

γ3
2

β1
+ γ4

2

β2

. (B7)

The expression of H◦
1 and H◦

2 can be easily obtained based on
Eq. (B7).
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The population equilibrium of the model x‡
3 =

(H‡
1 , H‡

2 , P‡
1 , P‡

2 ) when all populations exist can be obtained
by setting Ḣ1, Ḣ2, Ṗ1, Ṗ2 = 0. The evolutionary model can be
obtained,

α1H‡
1

(
1 − H‡

1

α1/β1

)
− H‡

1 (γ1P‡
1 + γ3P‡

2 ) = 0,

α2H‡
2

(
1 − H‡

2

α2/β2

)
− γ4P‡

2 H‡
2 = 0,

γ1(τ1 − 1)P‡
1 H‡

1 − ρ1P‡
1 = 0,

(τ2 − 1)P‡
2 (γ3H‡

1 + γ4H‡
2 ) − ρ2P‡

2 = 0. (B8)

Similarly, H‡
1 should be ρ1

γ1(τ1−1) due to Ṗ1 = 0. Bringing

the expression of H‡
1 into Ṗ2 = 0, H‡

2 can be obtained
by

H‡
2 =

ρ2 − ρ1
(τ2−1)γ3

(τ1−1)γ1

(τ2 − 1)γ4
. (B9)

In this case, the expressions of P‡
1 and P‡

2 can be easily
obtained,

P‡
2 = α2 − β2H‡

2

γ4
,

P‡
1 = α1 − β1H‡

1 − γ3P‡
2

γ1
. (B10)

APPENDIX C: SWITCHING SCHEME WITH N
LOSING STRATEGIES

The disadvantaged parasite can switch among N � 3
losing strategies in the evolutionary model. The switching
scheme based on the external environmental condition (rel-
ative sizes of the parasite and host population) is

p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, P2
H1+H2

> RN−1

i/(N − 1), Ri+1 > P2
H1+H2

> Ri

0, P2
H1+H2

< R1

, (C1)

where i ∈ {1, 2, . . . , N − 2} and R = [R1, R2, . . . , RN−1]T .
Apart from p = 1 (GFG model) and p = 0 (MA model), the
value of p can be 0.5 when the relative size of the parasite and
host population (host exposure to parasite [24]) is between R1

and RN−1. This is reasonable because the parasite can adopt
more suitable strategies according to the external environmen-
tal conditions that they face. Similarly, the switching scheme

TABLE IV. Peak density of parasites P1 and P2 in different
scenarios which are measured in the range [4000, 5000]. Parameter
values are listed in Table II, unless stated otherwise.

Strategy max P1(×106) max P2(×106)

p = 0 2.0193 0.9069

N
=

3

p = 0.5 1.9340 1.5273
p = 1 2.0158 0.0263

Internal process 2.3886 3.0323
External environment condition 1.7690 2.7720

p = 0 3.3871 0.9069
p = 0.2 3.3194 1.0847
p = 0.4 3.1958 1.3434

N
=

6

p = 0.6 3.0344 1.7492
p = 0.8 2.8577 2.4245
p = 1 3.1631 1.0629

Internal process 3.2113 3.4623
External environment condition 2.7402 2.7841

based on internal processes is

p =

⎧⎪⎪⎨
⎪⎪⎩

1, TN−1 < mod(t, T ) < T

i/(N − 1), Ti < mod(t, T ) < Ti+1

0, 0 < mod(t, T ) < T1

, (C2)

where i ∈ {1, 2, . . . , N − 2} and T = [T1, T2, . . . , TN−1]T .
The peak density of each parasite in different scenarios is

shown in Table IV. When there are N = 3 strategies imple-
mented individually (with α1 = 2), the population size of P2

is consistently smaller than that of P1 for each strategy individ-
ual. The difference between the two parasites is smallest when
p = 0.5. A similar pattern can be obtained when six losing
strategies can be adopted individually (with α1 = 3 and fg =
10−7): the difference is minimized at p = 0.8, and the largest
difference is observed in the extreme cases (GFG model and
MA model). However, under the two switching schemes based
on internal process and external environmental conditions, P2

can win the competition, for both N = 3 (R = [40, 44]T and
T = 20, T = [5, 10]T ) and N = 6 (R = [33, 36, 39, 42, 45]T

and T = 30, T = [5, 8, 14, 20, 27]T ). The peak density of P2

substantially surpasses that of P1 when P2 switches among
three losing strategies. In contrast, the peak density of P2 is
only slightly different from that of P1 with six losing strate-
gies for P2, but P2 still wins the competition. Therefore, both
switching schemes with N � 3 losing strategies can allow
the disadvantaged parasite to win in the competition when
measured by the peak density. Overall, when more losing
strategies are involved, the winning advantage of P2 is weaker.
This means that switching schemes can facilitate a slightly
disadvantaged population to reverse and win, but when the
disadvantage is substantial, the reversal may not occur as
expected.
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