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Gauge symmetry of excited states in projected entangled-pair state simulations
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While gauge symmetry is a well-established requirement for representing topological orders in projected
entangled-pair state (PEPS), its impact on the properties of low-lying excited states remains relatively unex-
plored. Here we perform PEPS simulations of low-energy dynamics in the Kitaev honeycomb model, which
supports fractionalized gauge flux (vison) excitations. We identify gauge symmetry emerging upon optimizing
an unbiased PEPS ground state. Using the PEPS adapted local mode approximation, we further classify the
low-lying excited states by discerning different vison sectors. Our simulations of spin and spin-dimer dynamical
correlations establish close connections with experimental observations. Notably, the selection rule imposed by
the locally conserved visons results in nearly flat dispersions in momentum space for excited states belonging to

the 2-vison or 4-vison sectors.

DOI: 10.1103/PhysRevResearch.6.023102

I. INTRODUCTION

The fundamental concept of long-range entanglement
forms the cornerstone of our exploration into topological or-
ders within quantum phases of matter [1-3]. The Kitaev spin
liquid [4] provides a fertile ground for unraveling topological
properties, including topological degeneracy and fractional-
ized excitations, with numerous potential material realizations
[5-7]. The allure of topological excitations extends into the
realm of spin dynamics [8—10], prompting investigations
through inelastic neutron scattering (INS) and light [Raman
and resonant-inelastic-x-ray scattering (RIXS)] measurements
on Kitaev materials [11-19]. Thus, simulations of low-lying
excitations in the topologically ordered phases are highly
valuable for establishing a close connection with experimental
observations.

Projected entangled-pair state (PEPS) provides a robust
framework for capturing the intricate topology and quan-
tum entanglement in two-dimensional many-body systems
[20,21]. The additive negative topological entanglement en-
tropy of topologically ordered states [1,22] is a manifestation
of the gauge symmetry constraint inherent in PEPS [21,23],
allowing the construction of the degenerate ground state
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manifold [23-30] and associated boundary Hamiltonian [31]
and the computation of modular matrices [27,32,33]. Recent
advancements have expanded the applicability of PEPS to
excited states [34-39] through incorporating the single-mode
approximation [40]. In this framework, the ground state is
locally perturbed by an “impurity” tensor, and momentum
states, generated by superpositions of these local perturba-
tions, provide natural representations of low-energy excited
states [41]. While achieving a faithful representation of gauge
symmetry in PEPS is feasible through variational optimization
[33,42], the exploration of gauge structure and, consequently,
fractionalized excitations in low-energy excited states remains
relatively uncharted.

Here, we delve into the intricate gauge structure of PEPS
simulations, with a particular emphasis on unraveling frac-
tionalized excitations within the Kitaev honeycomb model.
This model is characterized by a gauge symmetry involv-
ing flux (vison) operators and hosts a vortex-free spin liquid
ground state [4]. The unbiased optimized ground state PEPS
maintains its essential vortex-free nature, on top of which we
construct low-energy excited states by introducing local impu-
rity tensors and label them with the associated vison number.
While our simulations of spin dynamics align commendably
with exact solutions, the spin-dimer dynamics simulations
offer valuable insights for Raman and RIXS experiments.

II. GAUGE SYMMETRY IN GROUND STATE PEPS

The Kitaev honeycomb model [4] is defined as

H=-J) oo, (1)

(ij)y
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TABLE I. Variational ground state energy per site Ey (in units of J) and the expectation of the flux operator w, = (W,,).

Exact D=2 D=4 D=2 D=3 D=4 D=6
(loop gas) (loop gas) (optimized) (optimized) (optimized) (optimized)
Ey —0.78730 —0.65399 —0.78576 —0.75624 —0.77194 —0.78695 —0.78716
w, 1 1 1 0.02533 0.88148 0.999996 0.99997

where o? represents the Pauli matrices with y =x,y,z
for the nearest-neighbbor bonds (ij),, along the x, y, and
z directions. In this work, we focus on the ferromagnetic
coupling with J > 0. On the honeycomb lattice, a variational
ground state can be represented in the PEPS form as |W(A)) =
Zsl,... Sy tTrAZ”hC|s1 ---8;---8y), and further graphically
expressed as

where each local tensor AY, comprises one physical spin-1/2
index (s) and three virtual indices (a, b, and ¢) with bond
dimension D. The PEPS virtual legs are along the nearest-
neighbor x, y, and z bonds as depicted in Eq. (2). The Kitaev
model is distinguished by the gauge symmetry character-
ized by flux operators W, = o703 0fo5 0l of linked to the pth
hexagon plaquette in Eq. (2). Due to WPZ = 1, their eigenval-
ues are w, = £1 with Z, gauge nature. For w, = +1, the
plaquette is vortex free, while for w, = —1 it possesses a vor-
tex (vison). Under periodic boundary conditions, the product
of all flux operators equals one, i.e., [ | » Wp = 1. This topolog-
ical constraint imposes limitations, allowing only excitations
with an even vison number, indicating a Z, gauge symmetry
in the local tensor to encode the topological property [23].
The optimization of the ground state PEPS is accomplished
through variational energy minimization techniques, employ-
ing gradient optimization methods [43,44]. Here, we use
the corner transfer matrix renormalization group (CTMRG)
method [45-47] for tensor contractions with a truncation di-
mension x = 64. The energy gradient is obtained through
reverse mode automatic differentiation [48]. In contrast to
prior work [49], where optimization started from a symmetric
initial PEPS, our unbiased approach initiates from a randomly
generated state. Table I lists the results of the ground-state
variational energy and the flux operator expectation. Addition-
ally, results from the loop-gas PEPS wave function, featuring
a meticulously designed gauge structure [28], are included
for comparison. For a small bond dimension D = 2, the op-
timized PEPS exhibits a lower variational energy than the
loop-gas PEPS. However, this comes at the cost of losing
gauge symmetry, as evidenced by the flux expectation w,
which is evaluated as in Fig. 1(b), being close to zero and
deviating from the exact result w, = 1. With increasing bond
dimension D, the variational energy is further optimized as
anticipated, and concurrently, we observe the flux expectation
w), approaching the exact result w, = 1 for D = 4, thereby

displaying the essential vortex-free nature of the Kitaev spin
liquid ground state. Further improvement for the energy can
be achieved with D = 6, while the flux expectation remains
essentially unchanged.

III. GAUGE SYMMETRY IN EXCITED STATE PEPS

From the ground state, local excited state PEPSs are
Saj »SB; P
constructed as [B;) = Y e WIW(A)), as

A s ¢
abca b’,sui,sﬁi Al
a c

illustrated in the graph

‘Bi>: EI cee (3)

where the impurity tensor B acts on the two sites «; and f;
within the ith unit cell.

Once the ground state is the vortex-free state
[W(A);w, =1), the excited state in Eq. (3) can be
characterized by the eigenvalues w » 3 4 of the four plaquette
operators W|,2,3,4, denoted as |B;; {w) 2,3.4}). Other plaquettes
are not perturbed, and thus w, = 1 for p ¢ {1, 2, 3, 4}, which
follows from the symmetry in the local tensor (see discussions
in Appendix B). The eigenequations WP|B1-) = w,|B;) for
p=1,2,3,4 can be diagonalized simultaneously as the
flux operators commute with each other. In the CTMRG
contraction, the honeycomb lattice is transformed into a
square lattice through the combination of the A-B sublattices
in Fig. 1(a), and the expectation w, of the vortex operator

l
|
|
|
|
|

FIG. 1. (a) Mapping the honeycomb lattice to the square lattice
through the combination of the A-B sublattices. CTMRG evaluation
of the expectation value w), of the vortex operator for the ground state
PEPS in (b), and excited-state PEPS in (c).
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FIG. 2. (a) Absolute value distributions of w; » 3 4, with red stars
denoting the results for the ground state PEPS with D = 4. (b) Zero
momentum low-energy density of state with a broadening o = 0.2J
for the 0, 1, 2, 3, and 4-vison sectors. The full density of state is
expected to be captured up to an energy of order five—seven, roughly,
above which other excitations not included here are expected
to contribute.

for the ground state is evaluated in Fig. 1(b). For the excited
states, we evaluate w; 234 in Eq. (3) by placing the impurity
tensor on the four adjacent positions, respectively, as seen in
Fig. 1(c).

For the infinite PEPS simulation, our choice of initial
boundary conditions in the CTMRG allows both even and odd
vison sectors (see Appendix A for details). w34 take the
value of 1, independent of each other, and |B;; {w; 2.3.4}) has
2% = 16 different vison configurations. Figure 2(a) illustrates
the absolute value distributions of w; >34 for the optimized
PEPS with D = 4, in which all values closely approximate the
exact value of one within a numerical error of less than 2.5%,
affirming the gauge symmetry in both ground and excited
PEPSs. Note that a small violation of the gauge symmetry
in the optimized PEPS could yield a small deviation of ex-
act commutativity of the Wp and of the projectivity sz =1,
leading to the small deviations in w,,.

By taking a linear superposition of all locally perturbed
states, we can construct translational-invariant excited states
[Bg) = >, €97 |B;) with momentum q. In the variational
space spanned by these excited states (hereafter labeled by
m), the generalized eigenvalue equation for local tensor B7" is
given by

HoB" = AgNyB", &)

where Hq and Ny represent the effective Hamiltonian and
norm matrices.

The locally conserved vison makes the Hamiltonian (4)
block diagonal. For better clarity, we categorize the 16 vi-
son configurations into distinct vison sectors, spanning 0 to
4 visons. Each sector corresponds to a specific number of
vison configurations: one for 0-vison, four for 1-vison, six
for 2-vison, four for 3-vison, and one for 4-vison. The total
density of state (at momentum q = 0) shown in Fig. 2(b)
within each sector reveals fractionalized continua, indicative
of multiple-spinon excitations.

IV. SPIN DYNAMICS

Spin excited states o] |/ (A)) on the s site can be also
labeled by the surrounding vison configurations w » 3 4 since
the flux operator W, commutes or anticommutes with local
operators. Examining the plaquettes in Eq. (2), when o~ is

applied on site two, three, five, or six, we have U;‘Wpaf =
—W,; when o acts on site one or four, we have o*W,0 =
Wp. Consequently, the spin excited state o[y (A)) introduces
a vison in each of the two plaquettes containing the bond along
the x direction, adjacent to the s site [8,9]. Similar outcomes
apply for o7 | (A)) and 0| (A)), leading to the following:

(+1, =1, =1, +1),
(+1, =1, =1, +1), op|¥(4)
(+1, =1, +1,=1), o} |¥(A)
(=141, =1,+1), oy |¥(A)
(+1,+1, =1, —1), o |¥(A)
(=1, =L +1,+1), afl¥(A)

(Wi, wo, w3, wWy) =

)
)
)- ®)
)
)
)

The dynamical spin correlation function is defined as
ST @) = (Y M)lo] (1)a] 1Y (A)), (6)

from which we obtain the spin dynamics

S@.©) = Y [(ByIS;)[ 30 — (1§ —2))- (D)
my

Figure 3 presents the numerical results on the spin dynamics
S(q, w) for different ground state PEPSs. Figure 3(a) dis-
plays S(0, w) for the optimized PEPS with D = 4 in which
the peak around w = 0.5J corresponds to the 2-vison-related
excitations.

The spin excited states belong to the 2-vison sector. Vi-
son excitations, static and conserved over time, adhere to the
gauge symmetry, leading to an ultrashort spin correlation with
a strictly vanishing of correlations beyond nearest neighbors
[8,9]. This ultrashort correlation manifests in flat momentum-
resolved spin dynamics, providing a crucial validation for our
numerical findings. Faithfully capturing the gauge structure
in both the ground state and excited PEPS, as exemplified by
the analytical loop-gas wave function in Figs. 3(b) and 3(c),
and the optimized wave function with D = 4 in Fig. 3(f); the
observed flat pattern in spin dynamics signifies an exception-
ally weak dependence on momentum. In contrast, the gauge
structure is entirely lost in the optimized wave function with
D = 2, resulting in dispersive spin dynamics in Fig. 3(d). It
is noteworthy that despite the loop-gas wave function with
D = 2 providing a less accurate variational ground state, it
accurately captures the gauge structure, ensuring a correct
representation of short spin correlation physics in Fig. 3(b)
(see Appendix B for further details for the gauge structure of
excited state based on the loop-gas PEPS.)

V. SPIN-DIMER DYNAMICS

From Eq. (5), we can easily show the following for the
dimer excited states:

(+1, +1,+1, +1), K|y (4))
(=1, =1, =1, =1, K1Y A), (®)

(wr, wa, w3, wy) =
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FIG. 3. Computed spin dynamics with a Lorentzian broadening o = 0.1J. (a) Zero momentum dynamics for optimized PEPS with D = 4.
The first Brillouin zone and the momentum path for the spectral function are shown in the inset. Momentum-resolved spin dynamics for
loop-gas PEPS with D = 2 in (b) and D = 4 in (c), optimized PEPS with D = 2 in (d), D = 3 in (e), and D = 4 in (f).

with K] = 0,,’[,.0; and i refers to an x bond. Therefore,
KCY 14 (A)) belongs to the 0-vison sector, whereas K |/ (A))
and KC¥|y(A)) reside in the 4-vison sector [10]. These distinct
vison sectors result in markedly different spin-dimer correla-

tions which are defined as
KL @) = (y AIKT (OKT [ (A)), 9)

from which we have the spin-dimer dynamical structural
factor

K7 (q.0) = Y (B4 1K) 8 = (4 = 20))- (10)

Figure 4 presents the spin-dimer dynamics for the opti-
mized PEPS with D = 4. The zero-momentum spin-dimer
dynamics (0, w), which is potentially probed in the Ra-
man scattering measurements [13—17], displays a 4-vison
peak around 0.5/ in K7 and K%, as shown in Fig. 4(a).
The momentum-dependent spin-dimer dynamics, potentially
measurable in RXIS experiments [18,19], are depicted in
Figs. 4(b) and 4(c). Remarkably, the spin-dimer dynamics

4 (a) — K
33 o (k%)
S
g 2
1%
1
0]
0 2 4 6 8 10 12
w(J)

K**(q, w) depicted in Fig. 4(b) displays a dispersive fractional
continuum in the zero-vison sector spanning the entire Bril-
louin zone. This characteristic feature is in agreement with the
model of Eq. (1) being gapless [4], and provides a distinctive
signature of spinon-pair excitations, particularly relevant for
interpreting RIXS measurements. In contrast, the selection
rule imposed by vison conservation—all excitations created
by K and K belong to the 4-vison sector—results in a flat
momentum-resolved dynamics [ (q, w) and K¥(q, w)], as
seen in Fig. 4(c) [50]. The distinctive momentum dependences
of the spin-dimer dynamics highlight the primordial role of the
gauge structure in the optimized PEPS with D = 4.

VI. Conclusion

In conclusion, our investigation has delved into the intri-
cate gauge structure of projected entangled pair state (PEPS)
simulations, extending our scrutiny beyond the ground state to
low-lying excited states within the Kitaev honeycomb model.
Importantly, we have demonstrated that gauge symmetry is

FIG. 4. Computed spin dimer dynamics with a Lorentzian broadening ¢ = 0.2/ for an optimized PEPS with D = 4; (a) K£*(0, w) and
K70, w) [K#(0, )]; (b) color plot of K (q, w); (c) color plot of X (q, w) [K¥(q, ®)].
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not maintained solely in the unbiased optimized ground state
achieved through variational optimization; rather, it seam-
lessly extends to excited states constructed by the PEPS
adaptive local mode approximation method. Furthermore, our
simulations of low-energy dynamics in spin and spin-dimer
correlations establish connections with experimental obser-
vations such as INS and light scattering (Raman and RIXS)
experiments. The selection rule imposed by locally conserved
vison flux yields flat momentum-resolved dynamics if the
excited states contain vison excitations.

This study underscores the efficacy of employing PEPS to
explore gauge symmetry and fractionalized excitations within
topologically ordered states, presenting a robust framework
for further investigations in the realm of quantum many-body
systems. For general topologically ordered states, although
there is no associated local conserved quantity the same as the
vortex operator in the Kitaev spin liquid, we can still identify
the emergent internal gauge symmetry. Utilizing the gauge
flux generated by this symmetry, analogous to the role of Wp in
the Kitaev model, we can extend our method to explore gauge
symmetries of the excited states in these topological phases.
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APPENDIX A: VISON EXCITATION UNDER DIFFERENT
BOUNDARY CONDITIONS

The vison excitations depend on the boundary conditions
through the selection of initial boundary tensors, as shown
in Figs. 5(a) and 5(b) in our infinite PEPS simulation. Odd-
vison excitations are only allowed when the initial boundary
tensors are chosen as depicted in Fig. 5(a), while they are
not permitted in Fig. 5(b). In the latter case, the odd vison
will have exactly zero norm, thereby prohibiting the existence

ke e
b g L
)

(a (b) (c)

FIG. 5. Tensor network evaluation under the different boundary
conditions. (a), (b) Open boundary condition in CTMRG. The initial
boundary tensors are chosen as transfer matrices of the trace of the
redundant bond (}_, T\.) in (a), and transfer matrices of the first
index of the redundant bond (7},) in (b). (c) Periodical boundary
condition in a 3 x 4 torus, where each tensor includes a unit cell of
the honeycomb lattice.

of odd-vison states. Additionally, for periodic boundary con-
ditions, our exact contraction evaluation on a 3 x 4 torus in
Fig. 5(c) indicates existence only of even-vison states. The
allowed odd-vison excitations in the boundary conditions of
Fig. 5(a) is likely due to vison condensation on the boundary
[51], which needs further investigations.

APPENDIX B: GAUGE STRUCTURE OF EXCITED STATES
FOR THE LOOP-GAS PEPS

In this section, we interpret our result in terms of the
analytical loop-gas PEPS for the Kitaev spin liquid [28], in
which the gauge symmetry is explicitly incorporated.

In an effort to preserve the symmetries of the Kitaev spin
liquid ground state, a straightforward naive trial wave function
for the Kitaev model is the GHZ state along the (111) direction

IGHZ) = @) 1(111)); + @) (-1 =1 —1))i.  (BD)

When we rotate the (111) direction into the Z axis in the
rotated axis, where the spin indices are rotated as |5) = S|s)
with § = exp(—i%az)exp(—i%ay) (cosh = %), it becomes
straightforward to write down the nonzero elements of the
local tensor for the GHZ state T151:1T = T2‘§2:2¢(2, 2,2)=1. We
obtain the local tensor for the (111) GHZ as T}, . = Zs S_Yﬂ”jbc
by applying the spin-rotation operator S.

The (111)-GHZ state not only exhibits inadequate varia-
tional energy but also lacks the crucial property of being an
eigenstate of the vortex operator W), a characteristics essential
for maintaining the vortex-free nature of the Kitaev spin-
liquid ground state. To address the vortex-related challenge,
Lee et al. introduced the loop gas operator Q; g layer atop the
GHZ state with the local tensor

, (B2)
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which preserves the symmetries of the Kitaev model, and
additionally possesses the Z, gauge structure

= - Hﬂz o
"}

>T+

—07)/+/2 and

&4

where + + denotes the vortex operator W),. The loop gas
operator Oy g enriches the gauge symmetry of the GHZ state.
When applied to the GHZ state, it yields the gauged GHZ state
as the loop-gas PEPS

IGHZ), = Q1.6IGHZ), (B6)

(B4)

with Y = (¢* satisfies

eigenequations:

the following

;. (BS)

At

bo
b,

with the local tensor

C1
demonstrated to manifest a vortex-free character according to
the eigenequations in Eq. (BS).

Numerically verifying the ground state of the loop-gas
PEPS, we confirm its vortex-free nature with w, = 1. Ad-
ditionally, we examine the excited states with local impurity
tensors, finding that they exhibit w, = %1 for p =1, 2,3, 4.
Specifically, for the D = 2 loop-gas PEPS, where the GHZ
state is replaced by the product state &), [(111));, our numer-
ical check involves both CTMRG contraction on an infinite
lattice and exact contraction on a small 3 x 4 unit cluster. In
the case of the torus-shaped cluster with periodic boundary
conditions, excited states in the odd (one and three) vison
sectors display zero norm. Conversely, for the cluster with

S

az

a, s, which can be readily

open boundary conditions, excited states in the odd (one and
three) vison sectors exhibit nonzero norm.

The local impurity tensors for the spin-excited states are
x

ss>§g:y<>< }:%
1Y) = }g:% - x:% H ®7)
s

and those for the spin-dimer excited states are

0.£ O.-'L'
0= Y - §jg
o¥ oY o¥ ¥

IK7) =

at
H _
F-He

P
)i)ii

From the eigenequations in Eq. (B5), for the loop operator,
we notice that each o, on the virtual bond of Q¢ [the blue
layer in Eqgs. (B7) and (B8)] introduces two-vison excitations
associated with the bond. Thus, we are ready to show that the
spin and spin-dimer excited states are the eigenstates of the
vortex operator

+IE), p¢i
WplEi) = ) (B9)
_|Ei>7 p € l

where p € i represents the vison excitation for the vortex
operator W),. The spin-excited states |S7) introduce two visons
associated with the bond along «-direction joint with the i site.
While the spin-dimer excited state |XCY) does not induce any
vortex in the vicinity of the impurity tensor, |K}) and |K?)
harbor four visons.
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