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Maximizing quantum-computing expressive power through randomized circuits
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In the noisy intermediate-scale quantum era, variational quantum algorithms (VQAs) have emerged as a
promising avenue to obtain quantum advantage. However, the success of VQAs depends on the expressive
power of parametrized quantum circuits, which is constrained by the limited gate number and the presence
of barren plateaus. In this paper, we propose and numerically demonstrate an approach for VQAs, utilizing
randomized quantum circuits to generate the variational wave function. We parametrize the distribution function
of these random circuits using artificial neural networks and optimize it to find the solution. This random-circuit
approach presents a trade-off between maximizing the expressive power of the variational wave function and
minimizing the associated time cost, specifically the sampling cost of quantum circuits. Given a fixed gate
number, we can systematically increase the expressive power by extending the quantum-computing time. With
a sufficiently large permissible time cost, the variational wave function can approximate any quantum state
with arbitrary accuracy. Furthermore, we establish explicit relationships between expressive power, time cost,
and gate number for variational quantum eigensolvers. These results highlight the promising potential of the
random-circuit approach in achieving a high expressive power in quantum computing.
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I. INTRODUCTION

In quantum computing, a central issue is to solve problems
using as few quantum gates as possible. The reason is that the
accuracy of quantum gates is inevitably degraded by noise,
causing the possibility of errors in each gate operation. Conse-
quently, when the gate number increases, quantum computing
becomes more and more unreliable, ultimately resulting in
catastrophic failure. Therefore, the number of gates must be
minimized for realizing any quantum computing application.
This issue is particularly relevant for noisy intermediate-scale
quantum (NISQ) computers, in which large-scale quantum
error correction is unavailable [1].

Over the past decade, tremendous effort has been put
forward to develop quantum applications while taking the
gate number as the primary consideration. Among such ap-
plications, variational quantum algorithms (VQAs) [2] have
attracted the most interest. The key idea behind VQAs is con-
structing an Ansatz quantum circuit U (θ ) with parametrized
quantum gates. Gate parameters θ are optimized in a feed-
back loop between quantum and classical computing. See
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the schematic diagram in Fig. 1(a). The circuit generates a
variational wave function |φ(θ )〉 = U (θ )|0〉⊗n. Ideally, once
the optimal parameters are found, |φ(θ )〉 is the answer to the
given problem. In this way, VQAs can solve certain problems
keeping the gate count minimal. Within this variational frame-
work, a diverse range of applications has been developed, such
as the variational quantum eigensolver (VQE) [3–10], varia-
tional quantum simulators [11–15], the quantum approximate
optimization algorithm [16–21], quantum neural networks
[22–26], etc. [27–32]. Notably, VQAs are well suited for the
NISQ technologies of today, leading to rapid progress in their
experimental implementations [2,4,33–35].

The success of VQAs depends on the expressive power
of the variational wave function [36–40]. Since the varia-
tional wave function can only express a subset of all possible
quantum states, a fundamental assumption is that the target
quantum state is within this subset. Therefore, it is desirable to
use a variational wave function with higher expressive power,
capable of exploring a larger portion of the entire state space.
By employing such a variational wave function, VQA has
a better chance of finding the solution or attaining higher
accuracy, as depicted in Fig. 2. To maximize the expres-
sive power, we confront two challenges. First, regarding the
practical implementation, the gate number limits the circuit
size and the number of parameters. Second, highly expressive
circuits usually resemble the unitary t design, which can lead
to difficulties during the training process due to the problem
of vanishing gradients [41–44]. Despite the challenges, much
attention has been devoted to designing circuits [45–53].
However, it remains largely unexplored that the expressive
power can be improved by optimizing the strategy of using
circuits in the quantum-classical feedback loop.
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FIG. 1. (a) The schematic diagram of variational quantum algo-
rithms (VQAs) using deterministic circuits. The problem is solved
by finding the optimal circuit parameters θ to minimize loss function
L(θ ). (b) The schematic diagram of VQAs using random circuits.
Circuits are sampled according to a parametrized guiding function
α(θ ; λ), which determines the possibility distribution. Instead of θ ,
we optimize the parametrized guiding function α(θ ; λ) to solve a
problem. See Sec. II for details.

In this paper, we develop a paradigm of utilizing quan-
tum circuits in VQAs, within which we can systematically
increase the expressive power while the gate number stays
the same. Our method is called variational quantum-circuit
Monte Carlo (VQCMC), which possesses greater expressive
power than conventional VQA methods. Instead of a de-
terministic quantum circuit, we consider a variational wave
function that is the average of wave functions generated
by random circuits, in the form |ψ (λ)〉 = E[eiγ (θ )|φ(θ )〉]. In

FIG. 2. The subset of variational wave functions. In variational
quantum algorithms (VQAs), the solution to a problem is represented
by a quantum state. If the solution state is in the subset (e.g., state a)
or close to the subset (e.g., state b) with a tolerable error ε, VQA can
successfully solve the problem (up to a proper optimizer and other
practical issues). If the solution state is far from the subset (e.g., state
c), VQA fails.

contrast with deterministic-circuit VQAs, the distribution and
phase functions are parametrized and optimized. Specifically,
we propose parametrizing the distribution and phase with arti-
ficial neural networks (ANNs) [54]. In the spirit of VQAs, we
solve problems by optimizing the parametrized distribution
and phase functions, as illustrated in Fig. 1(b).

The key feature of the random-circuit approach is the trade-
off between the expressive power and the time cost. When the
gate number is fixed, we can increase the expressive power
with an enlarged time cost. This feature is because of the sta-
tistical error caused by introducing randomness. To suppress
the statistical error, we must repeat the measurement more
times than in the deterministic-circuit approach, resulting in
an enlarged time cost. We propose methods to control this
time cost. When we apply a strong constraint on the time cost,
the distribution is close to a δ function. In this case, the time
cost and expressive power of |ψ (λ)〉 are almost the same as
|φ(θ )〉. When we apply a weak constraint on the time cost,
distributions with more randomness are allowed. Then the
time cost is larger, and the expressive power becomes higher.

In the first part of this paper, we describe a general frame-
work of VQAs using random circuits. In addition to the
framework, we also analyze the statistical error and introduce
two methods for controlling the time cost. In the second
part, we present a simple numerical demonstration taking the
ground-state problem (i.e., the VQE algorithm) as an example.
The numerical result illustrates the trade-off between expres-
sive power and time cost. In the third part, we give a set
of theorems to justify the performance and potential of the
random-circuit approach.

The rigorous theoretical results are listed as follows.
Firstly, in the low-cost limit, the expressive power of |ψ (λ)〉
is not lower than |φ(θ )〉. This result is obtained using a rec-
tifier ANN [55–57] to parametrize the distribution function.
Secondly, to justify the power-cost trade-off, we show that
increasing the time cost always enlarges the expressive power.
Thirdly, in the high-cost limit, we prove the universal approx-
imation theorem of the random-circuit approach: For many
finite-size Ansatz circuits, we can approximate an arbitrary
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state to arbitrary accuracy if the time cost is sufficiently large.
Fourthly, to have a concrete discussion about this trade-off
feature, we specifically focus on the ground-state problem
and take the Hamiltonian Ansatz circuit [58] as an example.
We obtain an upper bound of the error in approximating the
ground state. We find that the error upper bound is a mono-
tonic decreasing function of the time cost. Subject to a proper
initial state, the error upper bound always vanishes in the limit
of large time cost. Lastly, although VQAs are mainly devel-
oped for NISQ devices, we show the long-term potential of the
random-circuit approach by analyzing its performance with an
increasing gate number. We prove that, given a finite time cost,
the error upper bound decreases with the gate number in the
circuit. The gate number scales with the permissible error ε

as O(1/ε2).

II. VQCMC

In this section, firstly, we introduce concepts necessary
for understanding the random-circuit approach. Secondly, we
give a general formalism of the approach. Finally, we analyze
the statistical error and relate it to a quantity that can be evalu-
ated with a quantum computer, and we introduce the methods
for controlling the time cost.

A. Preliminaries

Our random-circuit approach, called VQCMC, is inspired
by quantum Monte Carlo in classical computing [59,60].
Quantum Monte Carlo methods combined with quantum com-
puting have recently been proposed, including auxiliary-field
Monte Carlo [61,62], Green’s function Monte Carlo [62,63],
variational Monte Carlo [62,64,65], full configuration inter-
action Monte Carlo [66,67], and stochastic series expansion
Monte Carlo [68]. VQCMC consists of two main components:
sample space and guiding function. In this section, we intro-
duce the two components and present a way of parametrizing
the guiding function using an ANN.

1. Sample space

The sample space 
 is a set of quantum states from
which we draw random samples. A quantum computer can
prepare states in the form |φ(θ )〉 = U (θ )|0〉⊗n, where |0〉⊗n

is the initial state of n qubits, U (θ ) is the unitary opera-
tor of a parametrized quantum circuit, and θ is a vector of
parameters. An example of the parametrized circuit is il-
lustrated in Fig. 1(b). For those familiar with conventional
deterministic-circuit VQAs, U (θ ) could be one of the promi-
nent Ansatz circuits, e.g., the unitary coupled cluster Ansatz
[3], hardware-efficient Ansatz [4], Hamiltonian Ansatz [58],
or ADAPT-VQE [69]. All these states generated by the circuit
form the sample space 
 = {|φ(θ )〉|θ ∈ �}, where � denotes
the space of parameters (� ⊆ RK when the circuit has K
real parameters). More generally, the sample space can be
generated by several different Ansätze, which means that the
circuit structure can also be randomly sampled.

2. Guiding function

The guiding function α(θ ; λ) determines the distribution of
states in sample space. It also determines the phase factor eiγ .

In this paper, we parametrize the guiding function as ANN, as
shown in Fig. 1(b). ANNs, consisting of interconnected neu-
rons, have the ability to approximate a function with arbitrary
accuracy [70–72]. Recently, they have been used to represent
wave functions in classical computing [73–78]. In our case,
we use an ANN to parametrize the guiding function α(θ ; λ).
The input to the network is the circuit parameter vector θ ,
and the output is a complex number α. The map from input
to output depends on network parameters, represented by λ.
Details of ANN are given in Sec. II A 3. We solve problems
by optimizing λ.

The distribution of states |φ(θ )〉 is described by a prob-
ability density function that is proportional to the guiding
function, i.e.,

P(θ ; λ) = |α(θ ; λ)|
C(λ)

, (1)

where

C(λ) =
∫

dθ |α(θ ; λ)| (2)

is the normalization factor. Note that θ is the random variable,
and λ represents the parameters of the distribution. Given the
guiding function, we can sample θ from the distribution using
Markov chain Monte Carlo methods, e.g., the Metropolis-
Hastings algorithm [79]. In addition, the phase factor is

eiγ (θ ;λ) = α(θ ; λ)

|α(θ ; λ)| . (3)

3. Rectifier ANN

We take the rectifier ANN as an example. The rectifier
ANN is a feed-forward neural network with the rectifier ac-
tivation function ReLU(z) = max{0, z} [80]. The activation
function is an essential part of ANNs, giving them nonlinear
expression ability. Activation functions include the recti-
fier activation function, sigmoid activation function, andtanh
activation function. Rectifier feed-forward neural networks
comprise one of the most generally used activation functions.
Rectifier feed-forward neural networks, one of the most com-
monly used activation functions, stand out as a potent tool in
various applications due to their exceptional attributes such as
rapid convergence rate, swift learning speed, and streamlined
expression for simplified calculations.

In the theoretical analysis, we take the rectifier ANN with
only one hidden layer to parametrize the guiding function,
see Fig. 3. It is straightforward to generalize to the case
of multiple hidden layers and other activation functions. In
the numerical experiment, we use a neural network with
two hidden layers to have better training results. Without
loss of generality, we suppose that the circuit parameter θ =
(ϑ1, ϑ2, . . . , ϑK )T is a K-dimensional real vector (for clarity,
we use ϑ to denote the component of θ ). Then the input layer
has K neurons. Suppose the hidden layer has L neurons. The
output of the hidden layer is an L-dimensional real vector
h = ReLU(wθ + b). The output layer has only two neurons
corresponding to the magnitude and phase of the guiding
function α. Their outputs are two real numbers A = wAh + bA

and B = wBh + bB. The guiding function is parametrized as

α(θ ; λ) = W (A)eiBF (θ ), (4)
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FIG. 3. The rectifier neural network with one hidden layer
for parametrizing the guiding function α(θ ; λ), where λ =
(w, b, wA, wB, bA, bB ).

where λ = (w, b,wA, bA,wB, bB) is the parameter vector
of the network, W (A) is a nonnegative function [for in-
stance, W (A) = |A|, W (A) = e−A, and W (A) = exp(− 1

2 A2)],
and F (θ ) is a prior guiding function (a complex-valued func-
tion in general).

We introduce the prior guiding function to incorporate
knowledge/intuition about the target state, such as which
states |φ(θ )〉 may contribute more to the target state. We can
also use the prior guiding function to confine θ to a subset of
�, i.e., taking F (θ ) = 0 for θ outside the subset. Without any
intuition or confinement, we can take F (θ ) = 1.

B. General formalism

The core idea of VQCMC is expressing a quantum state as
a weighted average of states in the sample space. Given the
expression, we can evaluate the expected value of operators
with the Monte Carlo method and then the loss function used
to find optimal parameters.

In VQAs, we solve problems by optimizing a variational
wave function. In the deterministic-circuit approach, if U (θ )
is the Ansatz circuit, the state |φ(θ )〉 is the variational wave
function, i.e., we aim to find the solution in the state subset 
.

In the random-circuit approach, we aim to express the
quantum state as an average of states in 
. Specifically, the
variational wave function reads

|ψ (λ)〉 =
∫

dθP(θ ; λ)eiγ (θ ;λ)|φ(θ )〉. (5)

Here, both the distribution P(θ ; λ) and the phase γ (θ ; λ) are
determined by the guiding function α(θ ; λ). In Sec. IV, we
theoretically prove that |ψ (λ)〉 in VQCMC has an expressive
power not lower than |φ(θ )〉 in the conventional VQA meth-
ods with the same time cost. Further, by increasing the time
cost, |ψ (λ)〉 can have a higher expressive power. Notice that
this variational wave function is a function of network param-
eters λ. We optimize λ to solve problems, in contrast with
optimizing circuit parameters θ in the deterministic-circuit
approach.

In many VQAs, we determine the parameters of the vari-
ational wave function by minimizing a loss function. In this

paper, we focus on VQAs in this category, including VQE,
quantum approximate optimization algorithm, and quantum
neural networks. However, we would like to note that the
random-circuit approach can also be employed in variational
quantum simulators that update parameters following certain
differential equations.

We take VQE as an example, in which the loss function
is the expected value of a Hamiltonian operator H . Because
the variational wave function |ψ (λ)〉 is unnormalized, the
expected value of H reads

L(λ) = 〈ψ (λ)|H |ψ (λ)〉
〈ψ (λ)|ψ (λ)〉 . (6)

By minimizing the loss function, we can find the optimal
|ψ (λ)〉 to approximate the ground state of H .

In general, the loss function is a function of such expected
values. We define the expected value of an operator O in the
state |ψ (λ)〉 as

〈O〉(λ) = 〈ψ (λ)|O|ψ (λ)〉, (7)

and the expected value in the normalized state as

〈̃O〉(λ) = 〈ψ (λ)|O|ψ (λ)〉
〈ψ (λ)|ψ (λ)〉 = 〈O〉(λ)

〈1〉(λ)
, (8)

where 1 is the identity operator. With the notations, the loss
function in VQE can be rewritten as L(λ) = 〈̃H〉(λ). Let
O1, O2, . . . be a set of operators. The general loss function
reads

L(λ) = L(〈̃O1〉(λ), 〈̃O2〉(λ), . . .). (9)

We need to evaluate such loss functions to carry out VQAs.
Next, we present the method of evaluating an expected

value 〈O〉(λ) by sampling states in 
, and we also give a
detailed pseudocode.

The operator estimator

We only demonstrate how to evaluate 〈O〉(λ). Then it is
straightforward to evaluate expected values in the normalized
state 〈̃O〉(λ) and the loss function L(λ).

Given the expression of the variational wave function in
Eq. (5), we can rewrite the expected value as

〈O〉(λ) =
∫

dθdθ ′P(θ ; λ)P(θ ′; λ)exp{i[γ (θ ; λ) − γ (θ ′; λ)]}

× 〈φ(θ ′)|O|φ(θ )〉. (10)

Notice that Eq. (10) is a double integral, where θ and θ ′ are
independent of each other. In this way, we have transformed
the expected value in a quantum state into the expected value
of the quantity:

Xθ,θ ′ (λ) = exp{i[γ (θ ; λ) − γ (θ ′; λ)]}〈φ(θ ′)|O|φ(θ )〉. (11)

According to the Monte Carlo method, we can evaluate
〈O〉(λ) by computing the sample mean in randomly drawn
(θ, θ ′).

We measure the quantity Xθ,θ ′ on a quantum computer.
We can use the Hadamard test [81] to measure such a quan-
tity, including methods with and without ancilla qubit. See
Appendix A for a brief review of these methods. Regardless
of which method we use, quantum computing outputs an
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ALGORITHM 1. Operator estimator.

1: Input an operator O, the neural network parameter λ, a sample
space 
, and the sample size M.
2: for l = 1 to M
3: Draw circuit parameters (θ, θ ′) according to the distribution

P(θ ; λ)P(θ ′; λ). � Use Markov chain Monte Carlo.
4: X̂θ,θ ′ ← QUANTUMCOMPUTINGλ, θ, θ ′, O � Via Hadamard

test shown in Appendix A.
5: μl ← X̂θ,θ ′

6: Output ˆ〈O〉 ← 1
M

∑M
l=1 μl .

estimate of Xθ,θ ′ , denoted by X̂θ,θ ′ . Due to the randomness
in quantum measurement, X̂θ,θ ′ is usually inexact. In what
follows, we suppose that X̂θ,θ ′ is unbiased and has a finite
variance, which is true in the Hadamard test.

The pseudocode for evaluating 〈O〉(λ) is shown in
Algorithm 1. Here, ˆ〈O〉 is the output value. With
Algorithm 1 as the subroutine, the procedure of VQCMC is
like conventional VQAs; see Algorithm 2.

C. Statistical errors

There are two sources of statistical errors: quantum mea-
surement and randomized circuits. We will show that both
of them can be suppressed by taking a large sample size M
(see Algorithm 1). We will also show that statistical errors
are amplified when 〈1〉(λ) is small, which is known as the
sign problem. Therefore, we have to take a larger sample size
(i.e., time cost) when 〈1〉(λ) is smaller. Through 〈1〉(λ), we
can control the time cost.

For the first error source, when we use a quantum circuit to
measure the quantity Xθ,θ ′ , the measurement outcome in each
run of the circuit is random. To reduce this statistical error due
to quantum measurement, we can repeat the measurement. For
example, in the Hadamard test, we take X̂θ,θ ′ as the mean of
outcomes in the repeated measurements. Then the variance
of X̂θ,θ ′ decreases with the number of measurements, denoted
by MQ. In the ancilla-qubit Hadamard test, supposing O is a
unitary Hermitian operator, the variance of X̂θ,θ ′ has the upper
bound:

Var(X̂θ,θ ′ ) � σ 2
O = 1

MQ
. (12)

The result is similar for a general operator: For a general
operator, σ 2

O depends on properties of O and details of the
measurement protocol, see Appendix A.

ALGORITHM 2. Variational quantum-circuit Monte Carlo.

1: Input a set of operator {O1, O2, . . .}, initialized neural network
parameter λ, a sample space 
, the sample size M, and
the training steps N .

2: for t = 1 to N
3: Estimate the loss function L(λ) [Eq. (9)] using Algorithm 1.
4: Optimize λ to minimize L(λ)
5: Output the solution L(λ).

For the second error source, 〈O〉 is the mean of the random
variable Xθ,θ ′ , which has fluctuation.

Overall, the variance of ˆ〈O〉 has two terms and is propor-
tional to 1/M:

Var( ˆ〈O〉) = 1

M
(A + B − 〈O〉2), (13)

where

A =
∫

dθdθ ′P(θ ; λ)P(θ ′; λ) Var(X̂θ,θ ′ ), (14)

B =
∫

dθdθ ′P(θ ; λ)P(θ ′; λ)|Xθ,θ ′ |2. (15)

Here, A and B correspond to the first and second error sources,
respectively.

Let ‖O‖ be the spectral norm of O. Then B � ‖O‖2, and
the overall variance has the upper bound:

Var
(

ˆ〈O〉) � 1

M

(‖O‖2 + σ 2
O

)
. (16)

When σ 2
O ∝ 1/MQ, it is optimal to take MQ = 1 to minimize

the total number of measurements MMQ required for achiev-
ing a certain value of the variance.

To complete the discussion on statistical properties of ˆ〈O〉,
we note that, when X̂θ,θ ′ is unbiased, ˆ〈O〉 is also unbiased.

1. Sign problem and time cost

In classical computing, quantum Monte Carlo suffers from
the sign problem. It arises when the probability distribution
sampled in the Monte Carlo simulation has a complex phase,
resulting in a cancellation of positive and negative contribu-
tions. VQCMC has a similar problem: When the phase of
Xθ,θ ′ is oscillatory, the absolute value of 〈O〉 is small; then
the relative error is large. The large relative error can lead to
a large absolute error when evaluating expected values in the
normalized state 〈̃O〉.

Let δO = ˆ〈O〉 − 〈O〉 be the error in ˆ〈O〉. The error in eval-
uating 〈̃O〉 is

ˆ〈O〉
ˆ〈1〉 − 〈̃O〉 � δO − 〈̃O〉δ1

〈1〉 . (17)

We can find that the error is amplified by a factor of 1/〈1〉.
To suppress the error, we have to take a sufficiently large M,
such that δO and δ1 are sufficiently small compared with 〈1〉.
Therefore, when 〈1〉 is small, the sample size is large. This
observation is summarized in the following theorem, and the
proof is in Appendix B.

Theorem 1. Let ε and κ be any positive numbers. When the
sample size satisfies

M � χ2

κε2〈1〉2
, (18)

where

χ =
√

‖O‖2 + σ 2
O +

√
1 + σ 2

1‖O‖ + ε

√
1 + σ 2

1, (19)

the statistical error is smaller than ε with the probability:

Pr

(∣∣∣∣∣ ˆ〈O〉
ˆ〈1〉 − 〈̃O〉

∣∣∣∣∣ � ε

)
� 1 − 2κ. (20)
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FIG. 4. The barrier term Lb(λ) = −z tanh[ 〈1〉(λ)−x
y ] in the modi-

fied loss function, where the parameter x specifies the position of the
barrier. We illustrate this with two examples: for y = 0.4 and 0.1,
while holding z = 5 and x = 0.8 constant.

According to Theorem 1, when we take M =
χ2/(κε2〈1〉2), the sample size (i.e., time cost) is sufficient for
achieving the accuracy ε with a probability not lower than
1 − 2κ .

2. Modified loss functions and time-cost control

According to Theorem 1, we can control the time cost (i.e.,
the sample size) by confining the variational wave function in
the region where 〈1〉 is large. Here, we propose two methods
for this purpose. The first method is generic for all VQAs
that work through minimizing a loss function. The second
method is specific to VQE. We will give a rigorous theoretical
justification of the second method.

In the first method, we modify the loss function and take

L′(λ) = L(λ) − z tanh

[ 〈1〉(λ) − x

y

]
, (21)

where the tanh function is added to the raw loss function.
The tanh function plays the role of a barrier at 〈1〉(λ) = x
(see Fig. 4): In the vicinity of the barrier, the loss function
increases rapidly (y determines how rapidly) when 〈1〉(λ)
decreases. The height of the barrier is determined by z. With
the tanh function, λ prefers to stay where 〈1〉 > x, thus con-
trolling the time cost. Some other functions, e.g., the rectifier
and sigmoid functions, can be used in a similar way (after a
preliminary numerical test, we find that the tanh may perform
better than the other two).

In the second method, we regularize the loss function of
VQE by adding positive constants to the denominator and
numerator, i.e.,

L′′(λ) = 〈H〉(λ) + ηH

〈1〉(λ) + η1
. (22)

Now we explain why such a loss function can prevent 〈1〉 from
vanishing. The exact value of 〈1〉 is always positive. Adding
η1 to the denominator makes sure that the denominator is
positive (with a certain probability) even with the presence
of statistical error, noticing that ˆ〈1〉 may be negative due to
the statistical error. When the denominator is positive, adding
ηH to the numerator increases the value of the loss function.
The increment is larger when the denominator is smaller.

Therefore, minimizing the modified loss function can prevent
the denominator from vanishing.

By taking proper values of η1 and ηH , the modified loss
function L′′(λ) has two good properties. First, it is variational,
i.e., L′′(λ) � Eg, where Eg is the ground-state energy of H .
Therefore, minimizing L′′(λ) always leads to a better result
of the ground-state energy. The estimator of the modified loss
function inherits this property. Second, we have an analytical
upper bound of the statistical error in the energy [the raw loss
function L(λ) = 〈̃H〉(λ) is the expected value of the energy in
the normalized state]. These two properties are summarized in
the following theorem, and the proof is in Appendix C.

Theorem 2. Let κ be any positive number. Take

ηH =
√

‖H‖2 + σ 2
H

κM
and η1 =

√
1 + σ 2

1

κM
.

An estimate of the modified loss function

L̂′′(λ) =
ˆ〈H〉(λ) + ηH

ˆ〈1〉(λ) + η1
(23)

is in the interval:

min{〈̃H〉(λ), 0} � L̂′′ � 〈̃H〉(λ) + 2
ηH + ‖H‖η1

〈1〉(λ)
, (24)

with a probability of at least 1 − 2κ .
We can find that the estimator of the modified loss function

is variational when the true ground-state energy Eg is negative.
The negativity condition can always be satisfied by subtract-
ing a sufficiently large positive constant from the Hamiltonian,
i.e., taking H ← H − Econst. When Eg is negative, L̂′′ � Eg

holds in the entire parameter space up to a controllable prob-
ability (notice that 〈̃H〉(λ) � Eg).

III. NUMERICAL DEMONSTRATION

In this section, we demonstrate the random-circuit ap-
proach by numerical simulations. We take VQE as an example
of VQAs and solve the ground state of an antiferromagnetic
Heisenberg model. We choose the barrier method to control
the time cost, and we illustrate the trade-off between ex-
pressive power and time cost. The numerical simulations are
performed on a high-performance server with an Intel Xeon
Gold 6230 CPU @ 2.10GHz CPU. They can also run on
ordinary laptops.

The antiferromagnetic Heisenberg model has six qubits on
a randomly generated graph, as shown in Fig. 5. On the graph,
each vertex represents a spin- 1

2 particle, and each edge repre-
sents the coupling between the two spins. The Hamiltonian
reads

H = J
∑
〈i, j〉

(XiXj + YiYj + ZiZ j ), (25)

where Xi, Yi, and Zi denote Pauli operators of the ith qubit,
J is the coupling strength, and 〈i, j〉 denotes two coupled
spins on the graph. We take the coupling strength J such
that the Hamiltonian is normalized by the spectral norm,
i.e., ‖H‖ = 1.

We parametrize the circuit with a simplified version of the
Hamiltonian Ansatz. The circuit has only two parameters θXY
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FIG. 5. A six-qubit Heisenberg model. Qubits are denoted by
vertices. Two qubits are coupled if there is an edge incident on
corresponding vertices.

and θZ :

U (θ ) = [R(θ )]NT R0, (26)

where

R(θ ) =
∏
〈i, j〉

exp

(
− iZiZ jθZ

2

)
exp

(
− iYiYjθXY

2

)

× exp

(
− iXiXjθXY

2

)
, (27)

NT denotes the number of gate layers, R0 prepares the pairwise
singlet state:

|�0〉 = R0|0〉⊗n = |�〉1,2 ⊗ |�〉3,4 ⊗ · · · , (28)

and

|�〉i, j = 1√
2

(|0〉i ⊗ |1〉 j − |1〉i ⊗ |0〉 j ) (29)

is the singlet state of spins i and j.
With this simplified Hamiltonian Ansatz circuit, we can

plot the energy landscape as shown in Fig. 6. This energy
landscape has undesired properties. First, it has a rugged
surface. When using gradient descent and randomly choosing
the initial point, we find that the point easily falls into a local
minimum. Second, even for the global minimum, its error in
the energy is ∼0.05 (the exact ground-state energy is −1,
and the global minimum is about −0.95). In other words,

FIG. 6. Energy landscape of the simplified Hamiltonian Ansatz
circuit with NT = 2. The colored lines represent the training process
of finding the minimum value using the variational quantum algo-
rithm (VQA) method from different initial points.

the expressive power of the Ansatz circuit is insufficient for
approximating the ground state to achieve an error <0.05.
Therefore, the performance of the Ansatz circuit is poor in the
deterministic-circuit approach.

In the random-circuit approach, we can solve the ground
state to a satisfactory accuracy even with the poor-
performance Ansatz circuit. By controlling the time cost, we
can systematically increase the expressive power and ap-
proach the exact solution with a sufficiently large time cost.

In the random-circuit approach, we parametrize the guid-
ing function using a rectifier ANN with two hidden layers,
each consisting of 200 neurons. We take θ = (θXY , θZ ) as the
input to ANN. For the output function, we take W (A) = e−A.
We choose the prior guiding function F (θ ) = ∑Nθ

i=1 δ(θ − θi ),
where θi are Nθ = 100 uniformly generated points in the pa-
rameter space. With this prior guiding function, we effectively
utilize a finite sample space to simplify the numerical simula-
tion.

Implementing the barrier method requires a proper initial
value of the parameter λ. Suppose the initial λ is randomly
chosen in the parameter space, the corresponding value of
〈1〉(λ) may be small and violate the 〈1〉(λ) > x restriction.
In this case, the statistical error can be large and cause prob-
lems in the initial stage of training. To avoid this issue, we
must choose the initial value satisfying 〈1〉(λ) > x. We give
two methods of doing this. First, we can take λ such that
P(θ ; λ) ≈ δ(θ − θ0) is a δ-function distribution. For such a
distribution, 〈1〉(λ) ≈ 1. In Sec. IV, we will show how to
take λ to approximate the δ-function distribution by the ANN.
Second, we can employ two-stage training, as shown in Fig. 7.
In the first stage, we can take Lb(λ) = −z tanh[ 〈1〉(λ)−x

y ] as the
loss function to find a value of λ satisfying 〈1〉(λ) > x. This
tanh loss function is robust to the statistical error in 〈1〉(λ)
even when 〈1〉(λ) is small [in contrast with L(λ), in which
〈1〉(λ) is the denominator]. In the second stage, we take the
value λ determined in the first stage as the initial value and
minimize L′(λ). We obtain our numerical results with the
two-stage method.

We set the barrier at x = 0.1, 0.2, . . . , 0.9. Then the
denominator 〈1〉(λ) is confined in the 〈1〉(λ) > x regime,
respectively. For each value of x, we repeat the numerical
experiment 10 times. The results are shown in Fig. 8. We can
find that the error decreases when we reduce the value of x,
which illustrates the power-cost trade-off. In Figs. 7 and 8,
the VQCMC method achieves a loss value L(λ) very close to
−1, in contrast to the conventional VQE’s result of ∼0.95 in
Fig. 6. This numerical result demonstrates the advantage of
the proposed VQCMC method.

IV. THEORETICAL RESULTS
ON THE EXPRESSIVE POWER

In this section, we present a few theoretical results on the
expressive power of the random-circuit approach. First of all,
let us introduce the ways of characterizing expressive power
and time cost.

We characterize the expressive power in two straightfor-
ward ways: the subset of variational wave functions and the
error in the ground-state energy. Discussions based on the
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FIG. 7. The two-stage training in the barrier method. (a) In the
first stage, we minimize the loss function Lb, and it ends when
〈1〉(λ) > x is satisfied. Here, we take x = 0.2, 0.4, and 0.8 as ex-
amples. (b) In the second stage, we take the resulting value of λ

trained in the first stage as the initial value, then we minimize the
loss function L′(λ). L(λ) decreases with the training times. The color
bar represents the value of 〈1〉(λ). In both stages, we take z = 5,
y = 1, and we use a gradient descent algorithm Adam to minimize
loss functions.

subset are general for various VQA tasks. When focusing on
VQE, we employ the energy error.

We define the variational–wave function subset of the
|ψ (λ)〉 as

V =
{

|ψ̃ (λ)〉 = |ψ (λ)〉√〈1〉(λ)

∣∣∣∣λ ∈ �

}
, (30)

where � denotes the space of parameters [λ =
(w, b,wA, bA,wB, bB) has N = KL + 3L + 2 real parameters;
w ∈ RL×K ; b,wA,wB ∈ RL; and bA, bB ∈ R; therefore,
� = RN ]. Notice that states in this subset are normalized.
The normalization factor 〈1〉(λ) is related to the sample size
M (see Theorem 1). Given a finite permitted run time, the
sample size is finite, and we can only utilize a subset of V in
VQAs: We cannot evaluate a state to adequate accuracy when

FIG. 8. The ground-state energy estimated in the random-circuit
approach with different barriers. Each point represents the final value
of L(λ) in a numerical experiment. For each value of x, the ex-
periment is repeated 10 times. The dashed line indicates the global
minimum energy in the deterministic-circuit approach.

〈1〉(λ) is too small. To reflect this time cost constraint, we
define

Vx = {|ψ̃ (λ)〉|〈1〉(λ) � x}. (31)

For a larger subset Vx, its expressive power is higher. As
shown in Appendix D, there is a simple relation between the
variational–wave function subset and the covering number of
the hypothesis space (a measure of expressive power).

For the variational–wave function subset Vx, we define the
minimum error in the ground-state energy as

εg(Vx ) = min
|ψ̃ (λ)〉∈Vx

〈ψ̃ (λ)|H |ψ̃ (λ)〉 − Eg. (32)

The aim of VQE is to find the ground state of a Hamiltonian.
The error εg describes how well the variational wave function
can approximate the ground state.

We characterize the time cost with x. According to Theo-
rem 1, the sample size M (i.e., time cost) is proportional to
1/〈1〉(λ)2. When a larger M is taken, we can search for the
solution in a subset Vx [Eq. (31)] with a smaller x. Specifically,
according to Thereom 1, given the sample size M, an upper
bound of the statistical error ε, and failure probability 2κ , we
can search for the solution in Vx with

x = χ

ε
√

κM
. (33)

Therefore, the number of measurements M, quantifying the
time cost, is directly proportional to 1/x2. In short, when the
time cost is larger, x is smaller, and vice versa.

A. Low-cost limit

The time cost of evaluating a state in the random-circuit
approach is determined by the normalization factor 〈1〉(λ).
The largest value that 〈1〉(λ) can take is one, i.e., 〈1〉(λ) = 1
corresponds to the low-cost limit.

Our first theoretical result is that 
 is a subset of the closure
of Vx (for all x < 1). In other words, we can express all states
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FIG. 9. (a) The values of artificial neural network (ANN) parameters when approximating |φ(θ )〉 with the random-circuit variational wave
function. (b) The values of ANN parameters when considering Hamiltonian Ansatz to approximate the ground state.

|φ(θ )〉 ∈ 
 to arbitrary accuracy with the random-circuit vari-
ational wave function |ψ (λ)〉, and the normalization factor
〈1〉(λ) approaches one. Therefore, the expressive power of
|ψ (λ)〉 in the low-cost limit is not lower than |φ(θ )〉.

We assume that |φ(θ )〉 has a finite gradient with respect to
θ . Let n be a unit vector in the space of θ . We assume there
exists a positive number ξ such that, for all n and θ ,

‖n · ∇|φ(θ )〉‖2 � ξ . (34)

Here, ‖ • ‖2 denotes the �2 norm. This assumption is true for
all Ansatz circuits to the best of our knowledge. For example,
if each parameter component ϑi is the angle of a rotation gate
exp(−iσiϑi ), ‖ ∂

∂ϑi
|φ(θ )〉‖2 = 1; then ‖n · ∇|φ(θ )〉‖2 �

√
K

(K is the dimension of θ ). Under this assumption, we have
the following theorem.

Theorem 3. Suppose the guiding function α is
parametrized as a rectifier ANN, the hidden layer has
L � 2K neurons, W (A) = e−A, and F (θ ) = 1. Then for all
|φ(θ )〉 ∈ 
 and x < 1,

inf
|ψ̃ (λ)〉∈Vx

‖|ψ̃ (λ)〉 − |φ(θ )〉‖2 = 0. (35)

The proof is given in Appendix E. To approximate |φ(θ )〉
with the random-circuit variational wave function, we con-
sider values of ANN parameters as follows [see Fig. 9(a)]. We
use θ ′ to denote the input to the neural network for clarity): (i)
For the jth hidden neuron, we take w j,i = δ j,2i−1 − δ j,2i and
b j = −∑

i(δ j,2i−1 − δ j,2i )ϑi. (ii) For the output neuron A, we
take wA, j = τ and bA = K ln(2/τ ). (iii) For the output neuron
B, we take wB, j = bB = 0. With these parameters, hidden

neurons realize the modulus calculation, i.e., x2i−1 + x2i =
|ϑ ′

i − ϑi|. Outputs of the neural network are A = τ
∑

i |ϑ ′
i −

ϑi| + K ln(2/τ ) and B = 0. Here, τ is a positive number. Then
the corresponding random-circuit variational wave function is

|ψ (λ)〉 =
(τ

2

)K
∫

dθ ′exp(−τ‖θ ′ − θ‖1)|φ(θ ′)〉. (36)

In the limit τ → +∞, |ψ (λ)〉 [as well as the normalized state
|ψ̃ (λ)〉] approaches |φ(θ )〉, and the distance between the two
states vanishes.

We remark that, when |ψ (λ)〉 approaches |φ(θ )〉, the cor-
responding value of 〈1〉(λ) approaches one. Therefore, we can
approximate |φ(θ )〉 with |ψ (λ)〉 in the low-cost limit.

B. Power-cost trade-off

Our second theoretical result is a simple observation that
justifies the trade-off between expressive power and time cost.
The following proposition is straightforward, and we present
it without proof. It shows that the variational–wave function
subset Vx enlarges monotonically when x decreases. There-
fore, the expressive power increases monotonically with the
time cost.

Proposition 1. For all x1 � x2, Vx1 ⊇ Vx2 .

C. High-cost limit: Universal approximation theorem

Now we discuss the extreme case of expressive power in
the random-circuit approach. We ask whether all states in the
Hilbert space can be approximated with the random-circuit
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variational wave function when an arbitrarily large time cost
is allowed.

Suppose 
 is a spanning set of the entire Hilbert space. All
states can be expressed in the form:

|ϕ〉 =
∫

dθβ(θ )|φ(θ )〉. (37)

If we can approximate β(θ ) with the guiding function α(θ ; λ),
we can approximate |ϕ〉 with the variational wave function
|ψ (λ)〉. Owing to the universal approximation theorem of
ANNs, we can approximate an arbitrary continuous function
to arbitrary accuracy [82]. Therefore, we have the following
theorem. The proof is in Appendix F.

Theorem 4. Suppose the guiding function α is
parametrized as a rectifier neural network, the hidden layer
has L neurons, W (A) = e−A, and F (θ ) = 1. Under conditions
(i) 
 is a spanning set of the Hilbert space H, (ii) the circuit
parameter space � is compact, and (iii) |φ(θ )〉 has a finite
gradient with respect to θ , for all normalized states |ϕ〉 ∈ H
and ε > 0, there exist L ∈ N and λ ∈ � such that

‖|ψ̃ (λ)〉 − |ϕ〉‖2 < ε. (38)

The compact condition holds when each component is a
rotation angle of a single-qubit gate, i.e., its value is in the
interval [0, 2π ]. The spanning-set condition holds for many
Ansatz circuits, for example, a circuit with one layer of single-
qubit rotation gates on the initial state |0〉⊗n.

D. Hamiltonian Ansatz: Energy error vs time cost

In what follows, we discuss the trade-off feature taking
the ground-state problem and the Hamiltonian Ansatz as an
example. We take the error in the ground-state energy εg(Vx )
as the measure of the expressive power. We show that (1) an
upper bound of εg(Vx ) decreases with 1/x, and (2) the error
upper bound approaches zero in the limit 1/x → ∞. It is
noteworthy that the error upper bound approaches zero for
Hamiltonian Ansätze with any circuit depth.

1. Hamiltonian Ansatz

The Hamiltonian Ansatz is a parametrized Trotterization
circuit [58]. Suppose that H = ∑NH

j=1 h jσ j , where σ j are Pauli
operators, hj are real coefficients, and NH is the number of
terms. The Hamiltonian Ansatz reads

U (θ ) = R(ωNT ) · · · R(ω2)R(ω1)R0, (39)

where R0 is a unitary operator that prepares the initial state
|�0〉 = R0|0〉⊗n,

R(ωi ) = exp(−iσNH ωi,NH ) · · · exp(−iσ2ωi,2)exp(−iσ1ωi,1)

(40)

is the unitary operator of one Trotter step, ωi, j is the angle
of the jth rotation gate in the ith Trotter step, and NT is
the number of Trotter steps. We take the circuit parameter
vector as θ = (t, ω1, ω2, . . . , ωNT ), in which t is a redundant
real parameter. The usage of the redundant parameter will be
shown later.

2. ANN configuration and prior guiding function

We use a rectifier ANN with L � 2 hidden-layer neurons
to parametrize the guiding function, and we take W (A) =
exp(− 1

2 A2). We choose a nontrivial prior guiding function
F (θ ) inspired by the Pauli-operator-expansion formula of
real-time evolution [83]; see Appendix G. The prior guiding
function has the following property:∫

dω1 · · · dωNT F (θ )R(ωNT ) · · · R(ω1) = exp(−iHNT t ).

(41)

To approximate the ground state, we consider values of ANN
parameters as follows [see Fig. 9(b)]: (i) We suppose that
ϑ1 = t is the first input neuron. (ii) For the jth hidden neuron,
we take w j,i = (δ j,1 − δ j,2)δi,1NT and b j = 0, such that only
the first two hidden neurons are nontrivial. (iii) For the output
neuron A, we take wA, j = (δ j,1 − δ j,2)τ−1 and bA = 0. (iv)
For the output neuron B, we take wB, j = (δ j,1 − δ j,2)Eg and
bB = 0. Here, τ is a positive number.

With the above configuration of parameters, outputs are
A = τ−1NT t and B = EgNT t . Then the corresponding varia-
tional wave function is

|ψ (λ)〉 = 1

C(λ)

∫
dθexp

(
−N2

T t2

2τ 2

)
× exp(iEgNT t )F (θ )U (θ )|0〉⊗n

= τ
√

2π

C(λ)NT
exp

[
−1

2
(H − Eg)2τ 2

]
|�0〉. (42)

The operator exp[− 1
2 (H − Eg)2τ 2] is a result of the integral

over t [84], and it projects the initial state onto the ground
state in the limit τ → +∞.

3. Projection onto the ground state

The operator exp[− 1
2 (H − Eg)2τ 2] partially projects the

initial state onto the ground state when τ is finite. Let � be the
energy gap between the ground state |�g〉 and the first excited
state. When � � (

√
2τ )−1, the error in the energy decreases

exponentially with τ ; otherwise, the error is inversely propor-
tional to τ .

Lemma 1. Let E (λ) be the energy of the state in Eq. (42).
Then the error in the energy has the upper bound:

E (λ) − Eg � 1 − pg

pg
exp(−�̃2τ 2)�̃, (43)

where pg = |〈�g|�0〉|2 and �̃ = max{�, (
√

2τ )−1}.
The proof is given in Appendix H.

4. Monotonic dependence on the time cost

First, we give a lower bound of the normalization factor
〈1〉(λ), which determines the time cost. See the following
lemma, and the proof is in Appendix I.

Lemma 2. Let 〈1〉(λ) be the normalization factor of the
state in Eq. (42). Then the normalization factor has the lower
bound:

〈1〉(λ) � 2π pg

c(τ )2
, (44)
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where

c(τ ) =
∫

duexp

(
−u2

2

)
×
[

2exp

(
htotτ

NT
|u|

)
− 1 − 2

htotτ

NT
|u|

]NT

, (45)

and htot = ∑NH
j=1 |h j |. When NT > 4h2

totτ
2,

c(τ ) �
√

2π

1 − 4h2
totτ

2/NT
. (46)

Then with the lower bound in Eq. (44), we can conclude
that the state in Eq. (42) with τ = c−1(

√
2π pg/x) is in the

subset Vx. Here, we have used that c(τ ) is strictly monotonic,
and c−1(•) denotes the inverse function. Then we can apply
the error upper bound in Eq. (43) to Vx. We have the following
result (which holds for all NT ), and the proof is straightfor-
ward.

Theorem 5. Take the Hamiltonian Ansatz circuit. Suppose
the guiding function α is parametrized as a rectifier neural
network, the hidden layer has L � 2 neurons, and W (A) =
exp(− 1

2 A2). With a proper prior guiding function F (θ ), the
error in the energy satisfies

εg(Vx ) � 1 − pg

pg
exp(−�̃2τ 2)�̃, (47)

where τ = c−1(
√

2π pg/x). The error upper bound decreases
monotonically with 1/x and approaches zero (τ approaches
∞) in the limit 1/x → ∞.

According to Eq. (33), 1/x ∝ √
M. Therefore, the error

upper bound decreases monotonically with the time cost. We
remark that a condition of the above result is pg > 0, which is
a requirement on the initial state |�0〉.

E. Hamiltonian Ansatz: Scaling with the circuit depth

In Theorem 5, the monotonic relation between the error
upper bound and the time-cost factor 1/x holds for all circuit
depths NT . It raises the question: What is the advantage of
using a more powerful quantum computer that can realize
quantum circuits with more gates? We answer the question
in this section. We show that, for all x < pg, the error upper
bound decreases with the circuit depth and vanishes in the
limit of a large depth.

The upper bound of c(τ ) in Eq. (46) implies a lower bound
of τ = c−1(

√
2π pg/x). When x < pg,

c−1

(√
2π pg

x

)
� 1

2htot

√
NT

(
1 − x

pg

)
. (48)

Therefore, the upper bound of εg(Vx ) in Eq. (47) decreases
with NT . In the limit NT → ∞, the error upper bound
approaches zero.

Let ε be the permissible error in the ground-state energy.
According to Lemma 1, we can approximate the ground state

and satisfy the permissible error ε by taking

τ =

⎧⎪⎨⎪⎩
1−pg√
2epgε

, ε >
1−pg√

epg
�,

1
�

√
ln (1−pg)�

pgε
, ε � 1−pg√

epg
�.

(49)

This value of τ determines the required circuit depth. Substi-
tuting τ into τ = c−1(

√
2π pg/x) and considering Eq. (48), we

can work out NT .
Theorem 6. Take the same setup as in Theorem 5. For all

ε > 0 and all x < pg, εg(Vx ) � ε holds when

NT =
⌈

4h2
totτ

2

1 − x/pg

⌉
= O

(
1

ε2

)
. (50)

Here, τ is given by Eq. (49).
Because the gate number is proportional to NT , the gate

number scales as O(1/ε2).

V. CONCLUSIONS AND OUTLOOK

In this paper, we have presented a method of realizing a
variational wave function with randomized quantum circuits
in VQAs. This method can systematically increase the expres-
sive power without changing the gate number. The cost is an
enlarged time for evaluating a quantity in the Monte Carlo
calculation. The trade-off between the expressive power and
time cost is analyzed theoretically and illustrated numerically.
Especially in VQE, we have shown that the energy error
that is due to the finite expressive power decreases with the
time cost and eventually vanishes. These results demonstrate
the viability and potential advantages of the random-circuit
approach in VQAs, providing a pathway for improving the
performance of quantum computing with the constraints of
gate numbers and associated errors.

Further research directions include applying the random-
circuit approach to other VQAs, not just VQE. In addition to
sampling from different gate parameters, it is interesting to
construct the sample space 
 with varying circuit structure
[85]. Additionally, we foresee the possibility of refining our
algorithm by incorporating more advanced neural networks
and optimization methods.

The source codes for the numerical simulation are available
at Ref. [86].
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APPENDIX A: HADAMARD TEST

In this section, we review two methods for measuring Xθ,θ ′

on a quantum computer: the Hadamard test with and without
ancilla qubit. In the methods, we analyze the variance of X̂θ,θ ′

in the ancilla-qubit Hadamard test in detail.
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FIG. 10. (a) Hadamard test with an ancilla qubit. The rotation
gate RZ (ν j ) = exp(−iZν j/2). (b) Hadamard test without ancilla
qubit. UGHZ = ∏m−1

i=1 �i,i+1H1, where �i, j is a controlled-NOT gate
with the ith qubit as the control qubit and the jth qubit as
the target qubit, and H1 is a Hadamard gate on the first qubit.
The gate UGHZ prepares a Greenberger-Horne-Zeilinger (GHZ)
state |GHZ〉 = 1√

2
(|0〉⊗m + |1〉⊗m ).

1. Ancilla-qubit Hadamard test

The conventional Hadamard test circuit requires an an-
cilla qubit [81], as shown in Fig. 10(a). In the final state of
the circuit, the expected value of the ancilla-qubit Z Pauli
operator is

〈ZA〉 = Re[exp(iν j )〈φ(θ ′)|Vj |φ(θ )〉]. (A1)

Therefore, at the end of the circuit, we measure the ancilla
qubit in the computational (i.e., Z) basis. For each circuit shot,
we obtain a measurement outcome μ = ±1, and 〈ZA〉 = E[μ].

The measurement protocol depends on the property of op-
erator O. The simplest case is that O is unitary and Hermitian.
In this case, we have

Xθ,θ ′ = Re[eiν〈φ(θ ′)|O|φ(θ )〉], (A2)

where ν = γ (λ, θ ) − γ (λ, θ ′). This quantity can be measured
by taking Vj = O and ν j = ν. If the number of circuit shots is
MQ, the variance of X̂θ,θ ′ has the upper bound σ 2

O = 1/MQ.
When O is Hermitian, e.g., the Hamiltonian H in VQE,

we can evaluate Xθ,θ ′ with the Hadamard test incorporating
Monte Carlo. First, we express the operator O as a linear
combination of unitary operators, O = ∑

j a jVj . Here, a j are
complex coefficients, and Vj are unitary operators. Then we
can express Xθ,θ ′ as

Xθ,θ ′ = CO

∑
j

Pj Re[exp(iν j )〈φ(θ ′)|Vj |φ(θ )〉], (A3)

where Pj = |a j |/CO is the probability, CO = ∑
j |a j | is the

normalization factor, and ν j = γ (λ, θ ) − γ (λ, θ ′) + arg a j .
Finally, in each circuit shot, we randomly choose Vj and
ν j according to the probability Pj . With the measurement
outcomes, we evaluate Xθ,θ ′ according to Xθ,θ ′ = CO E[μ].
Therefore, the variance of X̂θ,θ ′ has the upper bound σ 2

O =
C2

O/MQ.

A similar approach applies to a general operator O. In
general, Xθ,θ ′ has real and imaginary parts, i.e.,

Xθ,θ ′ = CO

∑
j

Pj

(
Re[exp(iν j )〈φ(θ ′)|Vj |φ(θ )〉]

+ i Re

{
exp

[
i
(
ν j − π

2

)]
〈φ(θ ′)|Vj |φ(θ )〉

})
. (A4)

We can measure the two parts separately. If we measure each
part with MQ circuit shots, the variance of X̂θ,θ ′ has the upper
bound σ 2

O = 2C2
O/MQ.

2. Ancilla-free Hadamard test

For certain models, the Hadamard test can be implemented
without the ancilla qubit, e.g., fermion models with parti-
cle number conservation [62,88,89]. The ancilla-free circuit
with particle number conservation is illustrated in Fig. 10(b).
Suppose that the fermion system in states |φ(θ )〉 contains
m particle. If we take the Jordan-Wigner transformation for
encoding fermions into qubits, qubit states |0〉 and |1〉 de-
note unoccupied and occupied fermion modes, respectively.
Then the number of ones is the same as the number of
particles. Let us introduce an m-particle state as the initial
state, |m〉 = |1〉⊗m ⊗ |0〉⊗(n−m). Given this m-particle initial
state, we can prepare |φ(θ )〉 via a particle-number-preserving
transformation on |m〉. Let Ū (θ ) = U (θ )

∏m
i=1 Xi, where Xi

is the X Pauli operator on the ith qubit. It can be verified
that |φ(θ )〉 = Ū (θ )|m〉. The ancilla-free Hadamard test works
under the condition that all Ū (θ ) and Vj are particle-number-
preserving operators. In the final state, we have

〈Z ⊗ |0〉〈0|⊗(n−1)〉 = Re[exp(iν j )〈φ(θ ′)|Vj |φ(θ )〉]. (A5)

Accordingly, we measure all qubits in the computational ba-
sis. The measurement outcome takes three values μ = 0,±1:
The outcome is the eigenvalue of the first-qubit Z Pauli oper-
ator subjected to the condition that all other qubits are in the
state |0〉; otherwise, the outcome is zero.

APPENDIX B: PROOF OF THEOREM 1

Proof. Suppose the sample size is M for both ˆ〈O〉 and ˆ〈1〉.
Let εO =

√
1

Mκ
(‖O‖2 + σ 2

O) and ε1 =
√

1
Mκ

(1 + σ 2
1 ). Then

using Eq. (16), we have Var( ˆ〈O〉) � κε2
O and Var( ˆ〈1〉) � κε2

1.
According to Chebyshev’s inequality,

Pr (|δO| � εO) � 1 − κ, (B1)

Pr (|δ1| � ε1) � 1 − κ. (B2)

Therefore,

Pr (|δO| � εO and |δ1| � ε1) � 1 − 2κ. (B3)

When M satisfies the condition in Eq. (18), the following
two inequalities hold:

ε1 � 〈1〉, (B4)

〈1〉εO + |〈O〉|ε1
〈1〉(〈1〉 − ε1)

� ε. (B5)
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Then when |δO| � εO and |δ1| � ε1,∣∣∣∣∣ ˆ〈O〉
ˆ〈1〉 − 〈̃O〉

∣∣∣∣∣ =
∣∣∣∣ 〈O〉 + δO

〈1〉 + δ1
− 〈O〉

〈1〉
∣∣∣∣

� 〈1〉|δO| + |〈O〉||δ1|
〈1〉(〈1〉 − |δ1|)

� ε. (B6)

�

APPENDIX C: PROOF OF THEOREM 2

Proof. According to Chebyshev’s inequality,

Pr[| ˆ〈1〉 − 〈1〉| � κ−1/2
√

Var( ˆ〈1〉)] � κ. (C1)

Because κ−1/2
√

Var( ˆ〈1〉) � η1,

Pr(| ˆ〈1〉 − 〈1〉| � η1) � κ. (C2)

Similarly,

Pr(| ˆ〈H〉 − 〈H〉| � ηH ) � κ. (C3)

Therefore,

Pr(| ˆ〈1〉 − 〈1〉| � η1 and | ˆ〈H〉 − 〈H〉| � ηH ) � 1 − 2κ.

(C4)

In what follows, we focus on the case that | ˆ〈1〉 − 〈1〉| � η1
and | ˆ〈H〉 − 〈H〉| � ηH are true.

Because 〈1〉 > 0, 〈1〉 + 2η1 � ˆ〈1〉 + η1 > 0. Therefore,

〈H〉
ˆ〈1〉 + η1

� L̂′′ � 〈H〉 + 2ηH

ˆ〈1〉 + η1
. (C5)

When 〈H〉 � 0,

〈H〉
ˆ〈1〉 + η1

� 〈̃H〉. (C6)

When 〈H〉 > 0,

〈H〉
ˆ〈1〉 + η1

> 0. (C7)

Therefore,

L̂′′ � min{〈̃H〉, 0}. (C8)

When 〈H〉 � −2ηH ,

〈H〉 + 2ηH

ˆ〈1〉 + η1
� 〈H〉 + 2ηH

〈1〉 + 2η1

� 〈̃H〉 + 2
ηH + ‖H‖η1

〈1〉 . (C9)

Here, we have used that |〈̃H〉| � ‖H‖. When 〈H〉 > −2ηH ,

〈H〉 + 2ηH

ˆ〈1〉 + η1
� 〈̃H〉 + 2ηH

〈1〉 . (C10)

Therefore,

L̂′′ � 〈̃H〉 + 2
ηH + ‖H‖η1

〈1〉 . (C11)

�

APPENDIX D: COVERING NUMBER

The covering number has been introduced as an efficient
measure for the expressivity of VQAs [40]. Let A be a set of
variational wave functions. Following the reference, we define
the hypothesis space:

H(A) = {〈ψ̃ |O|ψ̃〉||ψ̃〉 ∈ A}. (D1)

We use N (H, ε, ‖ · ‖) to denote the covering number of H
with the scale ε and norm ‖ · ‖. Then the larger N (H, ε, ‖ · ‖)
is, the more expressive H is.

For two sets of variational wave functions A1 and A2,
assuming A1 ⊆ A2, it is obvious that H(A1) ⊆ H(A2).
Therefore, N (H(A1), ε, ‖ · ‖) � N (H(A2), ε, ‖ · ‖).

APPENDIX E: PROOF OF THEOREM 3

Proof. For all |φ(θ ′)〉, |φ(θ )〉 ∈ 
,

‖|φ(θ ′)〉 − |φ(θ )〉‖2 � ξ‖θ ′ − θ‖2. (E1)

Then for the random-circuit variational wave function in
Eq. (36):

‖|ψ (λ)〉 − |φ(θ )〉‖2

�
(τ

2

)K
∫

dθ ′exp
(−τ‖θ ′ − θ‖1

)
ξ‖θ ′ − θ‖2

�
(τ

2

)K
∫

dθ ′exp
(−τ‖θ ′ − θ‖1

)
ξ‖θ ′ − θ‖1

= Kξ

τ
. (E2)

Because ‖|φ(θ )〉‖2 = 1,

〈1〉(λ) �
(

1 − Kξ

τ

)2

, (E3)

i.e., |ψ̃ (λ)〉 ∈ Vx, where x = (1 − Kξ

τ
)2.

Taking the limit τ → +∞, we have |ψ̃ (λ)〉 ∈ Vx for all
x < 1, and

lim
τ→+∞ ‖|ψ (λ)〉 − |φ(θ )〉‖2

= lim
τ→+∞ ‖|ψ̃ (λ)〉 − |φ(θ )〉‖2 = 0. (E4)

�

APPENDIX F: PROOF OF THEOREM 4

Proof. Let {|φ(θ1)〉, |φ(θ2)〉, . . . , |φ(θd )〉} ⊂ 
 be a basis
of H. Here, d is the dimension of H. Then there exist coeffi-
cients β1, β2, . . . , βd ∈ C such that

|ϕ〉 =
d∑

i=1

βi|φ(θi)〉. (F1)

Accordingly, we can express |ϕ〉 as an integral, as given in
Eq. (37), in which

β(θ ) =
d∑

i=1

βiδ(θ − θi ). (F2)
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Now inspired by the wave function in Eq. (36), we approx-
imate β(θ ) with a continuous function:

βτ (θ ) =
(

τ

2

)K d∑
i=1

βiexp (−τ‖θ − θi‖1). (F3)

The corresponding state is

|ϕτ 〉 =
∫

dθβτ (θ )|φ(θ )〉 =
d∑

i=1

βi|φτ (θi )〉, (F4)

where

|φτ (θi )〉 =
(

τ

2

)K ∫
dθexp (−τ‖θ − θi‖1)|φ(θ )〉. (F5)

This approximation introduces an error:

‖|ϕτ 〉 − |ϕ〉‖2 � Kξ

τ

d∑
i=1

|βi|. (F6)

Here, we have used that

‖|φτ (θi )〉 − |φ(θi)〉‖2 � Kξ

τ
, (F7)

which can be proved the same as in Appendix E.
To apply the universal approximation theorem [82], we

map βτ (θ ) to two real functions ln |βτ (θ )| and arg βτ (θ ).
When βτ (θ ) is continuous, ln |βτ (θ )| and arg βτ (θ ) are con-
tinuous functions. According to the universal approximation
theorem, for all εAB > 0, there exist L ∈ N and λ ∈ � such
that

‖A(•) − ln |βτ (•)|‖∞ � εAB, (F8)

and

‖B(•) − arg βτ (•)‖∞ � εAB. (F9)

Here, ‖ f (•) − g(•)‖∞ = supx | f (x) − g(x)|. With L and λ,
we have

‖α(θ ; λ) − βτ (•)‖∞ � εβ, (F10)

where

εβ = [exp(εAB) − 1 + |exp(iεAB) − 1|]
d∑

i=1

|βi|, (F11)

This error in the function leads to an error in the state:

‖|ψ (λ)〉 − |ϕτ 〉‖2 � εβ

∫
dθ. (F12)

Notice that |βi| and
∫

dθ (θ ∈ �, and � is compact)
are finite. Therefore, there exists τ such that ‖|ϕτ 〉 −
|ϕ〉‖2 � ε/2, and there exist L ∈ N and λ ∈ � such that
‖|ψ (λ)〉 − |ϕτ 〉‖2 � ε/2. When |ψ (λ)〉 approaches |ϕ〉, it is
also normalized. �

APPENDIX G: PRIOR GUIDING FUNCTION

We consider a prior guiding function related to the real-
time evolution operator exp(−iHtNT ). Before giving the prior
guiding function, we introduce some relevant notations: (i)

Lk = {�l = (l1, l2, . . . , lk ) | lq = 1, 2, . . . , NH } is a set of k-
dimensional vectors; (ii) for a vector �l ∈ Lk ,

m(�l, j) =
k∑

q=1

δlq, j (G1)

is the number of j in components of �l; (iii)

S(�l ) = σlk · · · σl2σl1 (G2)

and

T (�l ) = σ
m(�l,NH )
NH

· · · σ m(�l,2)
2 σ

m(�l,1)
1 (G3)

are Pauli operators depending on the vector; and (iv)

a(�l ) = Tr[S(�l )T (�l )†]

Tr(1)
. (G4)

Because two Pauli operators are either commutative or an-
ticommutative, S(�l ) = a(�l )T (�l ) and a(�l ) = ±1. We remark
that computing m(�l, j) and a(�l ) on a classical computer is
efficient, and the resource cost increases polynomially with
the vector dimension k.

The prior guiding function reads

F (θ ) =
NT∏
i=1

f (t, ωi ), (G5)

where

f (t, ωi ) =
NH∏
j=1

δ(ωi, j − h jt ) +
∞∑

k=2

∑
�l∈Lk

∏k
q=1(−ihlq t )

k!
[a(�l ) − 1]

NH∏
j=1

im(�l, j)δ

[
ωi, j − m(�l, j)

π

2

]
. (G6)

The property of the above prior guiding function is given by Eq. (41). We can prove it as follows. We only have to consider
the integral over one ωi:∫

dωi f (t, ωi )R(ωi ) = exp (−iσNH hNH t ) · · · exp (−iσ2h2t )exp (−iσ1h1t ) +
∞∑

k=2

∑
�l∈Lk

∏k
q=1(−ihlqt )

k!
[a(�l ) − 1]T (�l ). (G7)

The second line in the above equation corresponds to the first term of f (t, ωi ) in Eq. (G6), i.e., taking ωi, j = h jt in the Hamil-

tonian Ansatz. Here,T (�l ) corresponds to taking ωi, j = m(�l, j)π
2 : Taking this value of ωi, j , we have R(ωi) = ∏NH

j=1 i−m(�l, j)T (�l ),
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and the phase is canceled by
∏NH

j=1 im(�l, j) in f (t, ωi ). Using S(�l ) = a(�l )T (�l ), we have∫
dωi f (t, ωi )R(ωi ) = exp (−iσNH hNH t ) · · · exp (−iσ2h2t )exp (−iσ1h1t ) +

∞∑
k=2

∑
�l∈Lk

∏k
q=1(−ihlq t )

k!
[S(�l ) − T (�l )]. (G8)

Then applying the Taylor expansion, we have

exp (−iσNH hNH t ) · · · exp (−iσ2h2t )exp (−iσ1h1t )

= 1 +
∞∑

k=1

∑
�l∈Lk

∏k
q=1

(−ihlq t
)

k!
T (�l ) (G9)

and

e−iHt = 1 +
∞∑

k=1

∑
�l∈Lk

∏k
q=1

(−ihlq t
)

k!
S
(
�l
)
. (G10)

Notice that S(�l ) = T (�l ) for all �l ∈ L1. Therefore,∫
dωi f (t, ωi )R(ωi ) = e−iHt . (G11)

APPENDIX H: PROOF OF LEMMA 1

Proof. We consider the spectral decomposition of the
Hamiltonian H = ∑2n

l=1 El |ϕl〉〈ϕl |. Here, E1 � E2 � · · · �
E2n are eigenenergies in ascending order, and |ϕl〉 are eigen-
states. Also, E1 = Eg is the ground-state energy, |�1〉 = |�g〉
is the ground state, and � = E2 − E1 is the energy gap.
Without loss of generality, we suppose |�0〉 = ∑2n

l=1
√

pl |ϕl〉,
where pl is the probability of the eigenstate |ϕl〉, and p1 = pg.
Then

E (λ) =
∑2n

l=1 exp[−(El − Eg)2τ 2]pl El∑2n

l=1 exp[−(El − Eg)2τ 2]pl

= Eg +
∑2n

l=2 exp[−(El − Eg)2τ 2]pl (El − Eg)

pg + ∑2n

l=2 exp[−(El − Eg)2τ 2]pl

� Eg + 1 − pg

pg
Q, (H1)

where

Q = max
2�l�2n

exp[−(El − Eg)2τ 2](El − Eg). (H2)

We derive two upper bounds of Q. First, notice that the
maximum value of exp(−x2τ 2)x is exp(− 1

2 )(
√

2τ )−1 at x =
(
√

2τ )−1. Then

exp[−(El − Eg)2τ 2](El − Eg) � exp

(
−1

2

)
(
√

2τ )−1,

(H3)

for all l . Therefore, Q � exp(− 1
2 )(

√
2τ )−1. Second, we sup-

pose that � � (
√

2τ )−1. Under this condition,

Q = exp[−(E2 − Eg)2τ 2](E2 − Eg)

= exp(−�2τ 2)�. (H4)

�

APPENDIX I: PROOF OF LEMMA 2

Proof. The normalization factor of the state in Eq. (42) is

〈1〉(λ) =
[

τ
√

2π

C(λ)NT

]2

〈�0|exp[−(H − Eg)2τ 2]|�0〉

�
[

τ
√

2π

C(λ)NT

]2

pg. (I1)

Here,

C(λ) =
∫

dθexp

(
−N2

T t2

2τ 2

)
|F (θ )|

=
∫

dtexp

[
−N2

T t2

2τ 2

][∫
dωi| f (t, ωi )|

]NT

. (I2)

The contribution of each Trotter step is

∫
dωi| f (t, ωi )| � 1 + 2

∞∑
k=2

∑
�l∈Lk

∏k
q=1(|hlqt |)

k!

= 1 + 2[exp(htot|t |) − 1 − htot|t |]
= 2exp(htot|t |) − 1 − 2htot|t |
� exp

(
2h2

tott
2
)
. (I3)

Therefore,

C(λ) �
∫

dtexp

(
−N2

T t2

2τ 2

)
[2exp(htot|t |) − 1 − 2htot|t |]NT

= τ

NT
c(τ ). (I4)

When NT > 4h2
totτ

2,

τ

NT
c(τ ) �

∫
dtexp

(
−N2

T t2

2τ 2

)
exp

(
2NT h2

tott
2
)

= τ
√

2π

NT

1√
1 − 4h2

totτ
2

NT

. (I5)

Substituting the upper bound of C(λ), we prove the lower
bounds of 〈1〉(λ). �

023098-15



YANG, ZHANG, WANG, XU, WANG, AND LI PHYSICAL REVIEW RESEARCH 6, 023098 (2024)

[1] J. W. Z. Lau, K. H. Lim, H. Shrotriya, and L. C. Kwek, NISQ
computing: Where are we and where do we go? AAPPS Bull.
32, 27 (2022).

[2] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S.
Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio
et al., Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[3] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A varia-
tional eigenvalue solver on a photonic quantum processor, Nat.
Commun. 5, 4213 (2014).

[4] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[5] J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A.
de Jong, Hybrid quantum-classical hierarchy for mitigation of
decoherence and determination of excited states, Phys. Rev. A
95, 042308 (2017).

[6] O. Higgott, D. Wang, and S. Brierley, Variational quantum
computation of excited states, Quantum 3, 156 (2019).

[7] K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search
variational quantum eigensolver for excited states, Phys. Rev.
Res. 1, 033062 (2019).

[8] R. M. Parrish, E. G. Hohenstein, P. L. McMahon, and T. J.
Martínez, Quantum computation of electronic transitions using
a variational quantum eigensolver, Phys. Rev. Lett. 122, 230401
(2019).

[9] W. J. Huggins, J. Lee, U. Baek, B. O’Gorman, and K. B.
Whaley, A non-orthogonal variational quantum eigensolver,
New J. Phys. 22, 073009 (2020).

[10] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth et al., The variational
quantum eigensolver: A review of methods and best practices,
Phys. Rep. 986, 1 (2022).

[11] Y. Li and S. C. Benjamin, Efficient variational quantum simu-
lator incorporating active error minimization, Phys. Rev. X 7,
021050 (2017).

[12] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X.
Yuan, Variational ansatz-based quantum simulation of imagi-
nary time evolution, npj Quantum Inf. 5, 75 (2019).

[13] X. Yuan, S. Endo, Q. Zhao, Y. Li, and S. C. Benjamin,
Theory of variational quantum simulation, Quantum 3, 191
(2019).

[14] S. Endo, J. Sun, Y. Li, S. C. Benjamin, and X. Yuan, Variational
quantum simulation of general processes, Phys. Rev. Lett. 125,
010501 (2020).

[15] P. J. Ollitrault, S. Jandura, A. Miessen, I. Burghardt, R.
Martinazzo, F. Tacchino, and I. Tavernelli, Quantum algorithms
for grid-based variational time evolution, Quantum 7, 1139
(2023).

[16] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[17] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Quantum
approximate optimization algorithm for MaxCut: A fermionic
view, Phys. Rev. A 97, 022304 (2018).

[18] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin,
Quantum approximate optimization algorithm: Performance,
mechanism, and implementation on near-term devices, Phys.
Rev. X 10, 021067 (2020).

[19] L. Li, M. Fan, M. Coram, P. Riley, and S. Leichenauer, Quan-
tum optimization with a novel Gibbs objective function and
ansatz architecture search, Phys. Rev. Res. 2, 023074 (2020).

[20] M. M. Wauters, E. Panizon, G. B. Mbeng, and G. E. Santoro,
Reinforcement-learning-assisted quantum optimization, Phys.
Rev. Res. 2, 033446 (2020).

[21] S. H. Sack and M. Serbyn, Quantum annealing initialization of
the quantum approximate optimization algorithm, Quantum 5,
491 (2021).

[22] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[23] E. Farhi and H. Neven, Classification with quantum neural
networks on near term processors, arXiv:1802.06002.

[24] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional
neural networks, Nat. Phys. 15, 1273 (2019).

[25] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R.
Salzmann, D. Scheiermann, and R. Wolf, Training deep quan-
tum neural networks, Nat. Commun. 11, 808 (2020).

[26] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S.
Woerner, The power of quantum neural networks, Nat. Comput.
Sci. 1, 403 (2021).

[27] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).
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