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Quantum simulations of time-dependent Hamiltonians beyond the quasistatic approximation
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Existing approaches to analog quantum simulations of time-dependent quantum systems rely on perturbative
corrections to quantum simulations of time-independent quantum systems. We overcome this restriction to per-
turbative treatments with an approach based on flow equations and a multimode Fourier expansion. The potential
of the quantum simulations that can be achieved with our approach is demonstrated with the pedagogical example
of a � system and the quench in finite time through a quantum phase transition of a Chern insulator in a
driven noninteracting Hubbard system. The example of the � system demonstrates the ability of our approach
to describe situations beyond the validity of adiabatic approximations.
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I. INTRODUCTION

There is an abundance of open questions in quantum
physics that we will most likely not be able to solve with
classical computational means. Only the use of quantum
simulators seems to allow us to overcome the computa-
tional complexity of many quantum mechanical many-body
problems [1,2].

The hardware that is required to accurately mimic the
dynamics induced by a given Hamiltonian is sufficiently
advanced to use quantum simulators for problems that are
outside the reach of classical computational hardware. No-
table platforms include atomic gases in optical lattices [3],
crystals of trapped ions [4], arrays of Rydberg atoms [5–7],
and superconducting qubits [8] that can be used to quantum
simulate strongly interacting Hubbard models [3], topologi-
cally nontrivial phases of matter [9], interacting quantum spin
models [4,10], and quantum chemistry [11]. While many such
problems are defined in terms of a time-independent Hamilto-
nian, there is also a broad range of problems resultant from
time-dependent Hamiltonians, such as laser-driven dynamics
of electrons in molecules [12], quenches across boundaries
between quantum phases [13], time crystals [14], diabatic
switching between different Hamiltonians [15,16], or cycles
of quantum thermodynamical machines [17].

The theory and experiments on quantum simulation, so
far, have mostly focused on time-independent Hamiltonians
[18,19]. A crucial reason for this restriction in theoretical
work is the rigorous footing that Floquet theory provides for
the definition of effective, time-independent Hamiltonians,
whereas the definition of an effective time-dependent Hamil-
tonian in a driven quantum system is much more problematic.
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While generalizations of the Floquet theorem to aperiod-
ically driven systems have proven difficult to find, they are
also not necessary for purposes of time-dependent quantum
simulations. An effective Hamiltonian can be defined in terms
of any finite interval of system dynamics and flow equa-
tions [20–22] provide a solid basis for this [23]. In particular,
they allow one to ensure that the system dynamics is covered
exactly by the effective Hamiltonian at periodic instances,
even though the time dependence of the actual system has no
such periodicity.

Despite the solid foundations that the flow equations pro-
vide for the definition of a time-dependent effective Hamilto-
nian [23,24], any practical construction requires a separation
of time scales, with fast time dependencies resulting in de-
sired effective processes and a slow time scale for the time
dependence of the effective Hamiltonian. This, in turn, implies
either very fast and strong driving or long duration of an
experiment. The former unavoidably induces undesired pro-
cesses, such as heating in the case of atomic gases [25–27]
or leakage beyond the levels that define individual qubits
[28,29], and the latter typically results in conflicts with co-
herence time [30].

The goal of this paper is thus to develop a framework that
allows for quantum simulations of time-dependent quantum
systems without the requirement of such a separation of time
scales.

II. FORMAL FRAMEWORK

Hardly any Hamiltonian that one would want to quantum
simulate can be exactly realized experimentally. It is rather
necessary to realize a time-dependent Hamiltonian H (t ) that
induces dynamics which approximates the dynamics of in-
terest. The central, underlying mechanism is the fact that a
Hamiltonian

HU (t ) = U (t )H (t )U †(t ) − iU (t )U̇ †(t ) (1)

defined in terms of a time-dependent unitary transforma-
tion U (t ) can describe different physics than the underlying
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Hamiltonian H (t ). It can thus be possible to realize a Hamil-
tonian in the frame defined by U (t ), even if this Hamiltonian
is practically out of reach in the laboratory frame [9,31,32].

The propagator VU (t ) induced by HU (t ) reads VU (t ) =
U (t )VH (t ) in terms of the propagator VH (t ) induced by H (t ).
Since the propagators VU (t ) and VH (t ) differ by a factor U (t ),
it is essential for U (t ) to reduce to the identity 1 when obser-
vations are being taken. The identification of a transformation
U (t ) that achieves this reduction periodically is formalized
in terms of the Floquet theory for time-independent effec-
tive Hamiltonians [18,33]. In the case of aperiodically driven
systems, the unitary U (t ) will typically not be periodic, but
it is essential that it reduces to the identity at well-defined
points in time. This can be achieved with the framework of
flow equations [22,23] that considers a family of unitaries
Us(t ) parametrized by a parameter s in terms of the differential
equation ∂Us (t )

∂s = iηs(t )Us(t ) with a Hermitian generator ηs(t ).
Associated with each such unitary Us(t ) is a Hamiltonian
Hs(t ) [following Eq. (1)] that satisfies the differential equa-
tion [21,22]

∂Hs(t )

∂s
= i[ηs(t ), Hs(t )] − ∂ηs(t )

∂t
. (2)

The generator ηs(t ) is typically an explicit function of the
flowing Hamiltonian Hs(t ), such that Eq. (2) is actually non-
linear in Hs(t ). It typically has a stationary solution in the limit
s → ∞ and the flowing Hamiltonian Hs(t ) with the initial
condition Hs=0 = H (t ) approaches the effective Hamiltonian
in this limit.

Through the explicit choice of generator ηs(t ) one can
specify general properties that the effective Hamiltonian shall
have. While typically the effective Hamiltonian is expected
to be time independent, we will require that the effective
Hamiltonian does not have any time dependence associated
with a fundamental driving frequency, but that it can still have
time dependence associated with some other frequencies.

The definition of the generator ηs(t ) is facilitated in terms
of a multimode Fourier series [34–37] Hs(t ) = ∑

m hm
s eim·ωt

for the flowing Hamiltonian Hs(t ), where m is a vector of
integers, ω is a vector of mutually incommensurate frequen-
cies (i.e., frequencies whose ratios are not rational numbers),
and the operators hm

s are generalized Fourier coefficients. The
number of frequencies, i.e., the dimension of m and ω, can
be chosen in accordance with the problem to be quantum
simulated; subsequent examples in this paper are based on
driving with two fundamental frequencies.

The generator

η(s, t ) = − i

ω1

∑
m

fm hm
s eim0·ω0t (eim1ω1t − 1), (3)

with m0 = [0, m2, m3, . . .], ω0 = [0, ω2, ω3, . . .], and real
scalars fm contains the operators hm

s and is thus a function
of the flowing Hamiltonian Hs(t ). The factor (eim1ω1t − 1)
ensures that the generator η(s, t ) vanishes at any time t that
is an integer multiple of the period 2π/ω1. This, in turn,
guarantees that the unitary U (t ) in Eq. (1) periodically reduces
to the identity.

Besides the condition fm = − f−m that ensures that the gen-
erator ηs(t ) is Hermitian, and the condition fm0 = 0 required
for convergence, there is substantial freedom in the choice

of the scalars fm and this freedom of choice can be used to
specify which of the frequencies in ω are contained in the
effective Hamiltonian and which frequencies are meant to
play the role of driving in order to realize effective processes.
In the following, we will use ω1 as driving frequency such that
all the other elements of ω correspond to time dependencies
in the effective Hamiltonian.

In order to construct the effective Hamiltonian explicitly,
it is helpful to express the flow equation (2) in terms of the
generalized Fourier amplitudes hm

s . The explicit equation of
motion for the terms hm0

s and for hm
s with m1 �= 0 read

dhm0
s

ds
= m0 · ω

ω1

∑
m1 �=0

fmhm
s +

∑
n

n1 �=0

fn

ω1

[
hn

s , hm0−n
s − hm0−n0

s

]
,

dhm
s

ds
= −m · ω

ω1
fmhm

s + 1

ω1

∑
n

n1 �={0,m1}

fm−n
[
hm−n

s , hn
s

]

+ 1

ω1

∑
n

n1 �=0

fn
[
hm−n0

s , hn
s

]+ 1

ω1

∑
n

fm−n0

[
hm−n0

s , hn0
s

]
,

(4)

with n0 = [0, n2, n3, . . .]. They can be solved in the well-
established high-frequency expansion [23,38] with the expan-
sion coefficient 1/ω1.

Crucially, however, the factors m0 · ω/ω1 and m · ω/ω1

do not need to be taken into account perturbatively. While
the frequency ω1 needs to be large as compared to the am-
plitudes in the system Hamiltonian for the high-frequency
expansion to be valid, it does not need to be large as compared
to the frequencies ω j ( j > 1). Provided that the inequality
m · ω fm > 0 is satisfied for m1 �= 0, the components hm

s with
m �= m0 will suffer from an exponential attenuation in the
dynamics described by Eq. (4), such that they vanish in the
limit s → ∞. The resulting effective Hamiltonian He, thus
only has components hm0

e = hm0
s→∞, i.e., time dependence in

terms of ω1 is no longer present.
Similar to time-independent effective Hamiltonians, the

high-frequency expansion of solutions of Eq. (4) can be speci-
fied in terms of nested commutators of the generalized Fourier
amplitudes hm = hm

s=0 of the system Hamiltonian. The lowest
order hm0

e,0 of the effective Hamiltonian He reads

hm0
e,0 = m0 · ω0

∑
m1 �=0

hm

m · ω
+ hm0 (5)

and it is independent of the choice of the constants fm. The
next order that also shares this independence is specified in
Eq. (A1) in Appendix A.

III. EXAMPLES

A. Driven � system

A pedagogical example for the present framework is given
by the realization of a time-dependent effective coupling be-
tween two low-lying states in a � system with driving of two
fundamental frequencies ω1 and ω2.

The system Hamiltonian reads

H�(t ) = [�(t ) + �(t )eiω1t ]|3〉〈+| + H.c., (6)
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with the balanced superposition |+〉 = (|1〉 + |2〉)/
√

2 of two
degenerate ground states, and each of the driving functions
�(t ) and �(t ) is a Fourier sum with fundamental frequency
ω2.

At the lowest order in the high-frequency expansion, the
effective Hamiltonian reads

H (0)
e =

∑
p

(
pη

1 + pη
�p + �p

)
eipω2t |3〉 〈+| + H.c., (7)

with the Fourier coefficients �p and �p of �(t ) and �(t ) and
the ratio η = ω2/ω1 of the two driving frequencies. The de-
pendence of H (0)

e on η reflects the fact that ω1 is not assumed
to be large as compared to the second driving frequency ω2. If
this assumption was made, the leading order of the effective
Hamiltonian would be independent of η (in the quasistatic
approximation) or it would contain perturbative corrections
in η (beyond the quasistatic approximation), in contrast to the
actual dependence in Eq. (7).

Resulting from the non-negligible variations in the Rabi
frequency, there is a direct coupling between the low-lying
state |+〉 and the excited state |3〉, in contrast to the regular
case of the monochromatically driven � system. This regular
Floquet result is naturally contained in Eq. (7) in the limit
η → 0 and in the absence of any resonant driving, i.e.,
�(t ) = 0.

The explicit dependence of H (0)
e on the driving parameters

can also be used to identify driving profiles that ensure that
no undesired excitations to the excited state |3〉 occur. For any
component �m of the off-resonant drive, the corresponding
component �m of the resonant drive can be chosen such that
H (0)

e vanishes.
Given this choice, the first order contribution to the effec-

tive Hamiltonian reads

H (1)
e (t ) = �e(t )(|3〉〈3| − |+〉〈+|) , (8)

with the effective Rabi frequency

�e(t ) =
∑
p,q

[1 + (2p − q)η] exp(iqω2t )

(1 − q2η2)(1 + pη)[1 + (p − q)η]

�p�
∗
p−q

ω1
.

(9)
In the limit η → 0, the effective Rabi frequency reduces to

�qs(t ) =
∑
p,q

�p�
∗
p−q

exp(iqω2t )

ω1
= |�(t )|2

ω1
, (10)

i.e., to the quasistatic solution.
Equation (9) permits one to identify driving profiles �(t )

that realize a desired time-dependent effective Rabi frequency
�e(t ). Figure 1 depicts the exemplary case of a Gaussian
time dependence for the effective coupling between the two
low-lying states. Insets (a) and (b) correspond to the parame-
ter values η = 1/(5

√
3) and η = 1/

√
7, i.e., in one case the

adiabatic approximation is expected to hold approximately,
while in the other the adiabatic approximation is expected to
be violated. The thin dashed green line depicts the desired
time dependence; the actual effective Rabi frequency �e(t )
can be made to approximate the desired time dependence
arbitrarily well, but a restriction to a finite number of seven
Fourier components �m results in a small deviation from the
desired behavior.

(a) (b)

FIG. 1. Time-dependent effective Rabi frequency �e(t ) of the
effective Hamiltonian H (1)

e (t ) and underlying driving profile �(t ).
Insets (a) and (b) correspond to parameter values η = 1/(5

√
3) and

η = 1/
√

7, respectively. The thin dashed green line depicts a normal-
ized Gaussian profile as targeted time dependence. The solid red line
depicts the actual effective Rabi frequency (normalized) following
Eq. (9) realized with seven Fourier components (between −3 and 3);
the solid blue line depicts the quasistatic approximation (η → 0) of
the effective Rabi frequency. The dotted dark red and dashed dotted
dark green lines depict the real and imaginary part of the driving
profile �(t ).

The solid orange-red line depicts the quasistatic approxi-
mation �qs(t ); in inset (a), this approximation is indeed good,
but inset (b) shows that a clear separation of time scales (i.e.,
η 	 1) is required for the quasistatic approximation to hold.

The dotted dark red and dashed dotted dark green lines de-
pict the real and imaginary parts of the actual driving function
�(t ) in Eq. (6). Given the validity of the quasistatic approxi-
mation [Fig. 1(a)], the driving function �(t ) is approximately
mirror symmetric/antisymmetric around the midpoint of the
depicted time window and, in the quasistatic limit, this sym-
metry of the targeted Gaussian dependence is given exactly.
Outside the regime of validity of the quasistatic approxima-
tion [Fig. 1(b)] this symmetry is clearly violated by �(t ),
highlighting that a diabatic increase of �(t ) requires different
driving than a diabatic decrease.

B. Quench across phase transitions of a Chern insulator

A more involved example is given by the problem of
crossing of a phase transition in a Chern insulator [13,39]. It
is defined by a driven noninteracting Hubbard Hamiltonian
H = HB + HS with

HB = −J (t )
∑
〈i, j〉

c†
i c j +

∑
i

	ic
†
i ci, HS =

∑
i

Vi(t )c†
i ci.

(11)
c†

j and ci are creation and annihilation operators on a hexago-
nal lattice and 〈. . .〉 denotes the nearest neighbors. This lattice
is given by a triangular Bravais lattice and two-site basis or,
equivalently, by two triangular sublattices, depicted in Fig. 2
by red empty (sublattice A) and black full (sublattice B)

023097-3



BOYUAN SHI AND FLORIAN MINTERT PHYSICAL REVIEW RESEARCH 6, 023097 (2024)

FIG. 2. Geometry of a honeycomb lattice (left) and quenches
through a phase diagram (right). The honeycomb lattice is com-
prised of two triangular sublattices, consisting of black and hollow
red dots. Directions of nearest-neighbor and next-nearest-neighbor
tunneling processes are depicted with black and dashed red vectors.
An exponential decrease of the tunneling rate J (t ) satisfying the
conditions of Eq. (14) allows exploration of the two-dimensional
phase diagram spanned by J2κ+/ω1	 and J2κ−/ω1	. Gray regions
correspond to the Chern number being zero, while purple and blue
regions correspond to C = ±1. Three quenches’ profiles in dashed
lines are plotted based on three solutions of Eq. (14) with the se-
quence {qk, ωk, δk − δ′

k} inherited from [43].

circles, respectively. The on-site energies 	i are chosen
such that all sites on sublattice A have the same on-site-
energy 	 and all sites on sublattice B have the opposite
on-site-energy −	. There are three inequivalent directions
of nearest-neighbor tunneling processes depicted by a1, a2,
and a3. The tunneling rate J (t ) for those processes does not
depend on the direction in real space, but it is time depen-
dent. All tunneling processes beyond nearest neighbors are
neglected. The Hamiltonian HS in Eq. (11) describes shaking
[9,40–42] in terms of time-dependent on-site energies

Vi(t ) =
N∑

k=1

qkωk[cos(ωkt − δk )xi + cos(ωkt − δ′
k )yi], (12)

with driving amplitudes qk , driving frequencies ωk and phases
δk and δ′

k [43], and the positions [xi, yi] of the lattice sites.
In the frame defined by the shaking term HS, the result-
ing effective Hamiltonian has the same type of tunneling
processes as HB in Eq. (11), but the tunneling rates are renor-
malized and they are generally complex. For suitable phase
relations between the different tunneling processes, the effec-
tive Hamiltonian captures the Haldane model [9,44] with two
topological nontrivial phases (with Chern number +1 and −1)
and one topologically trivial phase (with Chern number 0).
Deviations from these phase relations result in a deformation
of the system’s phase diagram [43] (typically depicted in
terms on on_ site energy and phase of next-nearest-neighbor
tunneling rate), but, they do not affect the existence of several
phases with different topological properties.

An effective Hamiltonian with time-dependent on-site en-
ergy can be used to investigate the creation of topological
defect generations [13] as the system is quenched through
the phase boundary between topological trivial and nontrivial

phases. In addition to the effective on-site energies 	̃(t ) and
−	̃(t ) for sublattices A and B, the effective Hamiltonian
has nearest-neighbor tunneling rates J̃k (t ) [from sublattices
A to B along ak (k = 1, 2, 3) in Fig. 2] and the rates G̃k (t )
[−G̃k (t )] of next-nearest-neighbor tunneling processes [along
bk (k = 1, 2, 3) in Fig. 2] within sublattice A (B). All these
quantities can be obtained without assuming the separation of
time scales discussed above, but, for the sake of clarity, the
following discussion is focused on the dominant corrections
to the quasistatic approximation.

The effective Hamiltonian in the frame induced by the
shaking Hamiltonian HS(t ) is characterized by the system
parameters

	̃(t ) = 	 − 1

ω1
(J2(t )C	 + J̇ (t )J (t )C̃	),

J̃k (t ) = J (t )Dk − 1

ω1
J̇ (t )D̃k,

G̃k (t ) = − 1

ω1
(J2(t )Ek + J̇ (t )J (t )Ẽk ), (13)

where C	, C̃	, Dk , D̃k , Ek , and Ẽk [given in Eq. (B2) and
Eq. (B4)] are time-independent scalars that are specific to the
hexagonal lattice geometry and that depend on the amplitudes
qk , frequencies ωk , and phases δk , δ′

k of the shaking profile in
Eq. (12). With a suitable time dependence of the tunneling rate
J and the shaking profile, one can realize a broad range of time
dependencies in the effective Hamiltonian, as exemplified in
the following.

The lattice of the underlying Hamiltonian [Eq. (11)], and
many lattice models of interest such as the Haldane model or
the Kitaev model [45], are invariant under a rotation of 2π/3.
The shaking necessarily breaks this invariance so that the
resulting effective Hamiltonian does not satisfy this symmetry
for general driving patterns. The symmetry can, however,
be partially recovered with suitably chosen shaking profiles.
For the given time-dependent tunneling rate J (t ) = J0e−γ t for
example, the condition

D1 + γ

ω1
D̃1 = D2 + γ

ω1
D̃2 = D3 + γ

ω1
D̃3 (14)

ensures the desired symmetry for the nearest-neighbor tun-
neling, i.e., J̃1 = J̃2 = J̃3 (though next-to-nearest tunnelings
are still anisotropic) and this condition can indeed be sat-
isfied for the trichromatic shaking profile, i.e., N = 3 in
Eq. (12). The Chern number of the resultant system is
given by C = 1

2 [sgn(h+) − sgn(h−)] [46] with h± = 	̃ +
2

∑
k |G̃k| cos(αk ± 2π/3), where αk (k = 1, 2, 3) are the

phases of complex NNN hopping rates [47]. The param-
eters h± that the Chern number depends on can also
be expressed as h± = 	 − J2(t )κ±/ω1, where κ± = τ1 +
2

∑
k τ̃k cos(αk ± 2π/3), with τ1 and τ̃k given in Eq. (B6)
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(a) (b) (c)

FIG. 3. Gate infidelity [Eq. (17)] for the driven spin chain, (a) and (c), and Fermi-Hubbard model (b) as a function of η = ω2/ω1 for
different values of γ [defined in Eq. (18)]. The dynamics in the Fermi-Hubbard model takes place in the zero-quasi-momentum subspace of
five fermions with two spin up and three spin down. Dashed blue lines indicate the rational values 1/4, 1/3, 1/2, 2/3, 3/4 for η around which
the multimode Floquet theory is expected to break down.

in Appendix B are time independent. The system can thus
be characterized in terms of a phase diagram spanned by
J2κ+/ω1	 and J2κ−/ω1	, as depicted in the right panel of
Fig. 2.

Also shown are three exemplary solutions for quenches
with exponential time dependence that can be realized in
terms of suitably modulated lattice shaking. The quenches de-
picted by dashed brown and dotted magenta lines correspond
to initial conditions in topologically nontrivial phases, and a
final point in a topologically trivial phase, whereas the start
and the end point of the quench depicted with a solid green
line lies in domains of a topologically trivial phase, but the
quench takes the system through an ordered phase. In all these
cases, the rate γ in the tunneling rate J (t ) can be varied from
a regime of adiabatic to diabatic quenches.

IV. RANGE OF APPLICABILITY

In order to gauge the range of applicability of the involved
approximations, this section provides a comparison with nu-
merically exact simulations utilizing the QuSpin package
[48,49].

A. Frequency regime

The present expansion is derived under the premise of the
high-frequency expansion (i.e., ω1 exceeds all relevant rates in
the Hamiltonian and the inequalities ω1 � ω j . Since the time
dependence in the underlying Hamiltonian H (t ) can include
higher harmonics of the frequencies ω j , this implies that there
can be frequency components in the time-dependent effective
Hamiltonian that exceed the fundamental driving frequency
ω1. This is corroborated in Fig. 3 that depicts the infidelity of
the dynamics induced by the time-dependent effective Hamil-
tonian for a spin chain comprised of 16 interacting spins and
for a one-dimensional Fermi-Hubbard system with 16 sites.

The underlying Hamiltonian for the spin chain reads

H (t ) = dx(t )
∑

i

σ i
x + dzz(t )

∑
i

σ i
zσ

i+1
z + dyy(t )

∑
i

σ i
yσ

i+1
y ,

(15)

with the time-dependent functions dx(t ), dzz(t ), and dyy(t ).
The underlying Hamiltonian for the Fermi-Hubbard chain
with L sites reads

H (t ) = −J (t )
L−1∑
i=0

∑
σ=↓,↑

(c†
i+1,σ ci,σ + H.c.)

+ UI (t )
L−1∑
i=0

c†
i,↑ci,↑c†

i,↓ci,↓, (16)

with annihilation operator ci,σ of a fermion of spin σ at
site i and corresponding creation operator c†

i,σ , and with
time-dependent tunneling amplitude J (t ) and interaction rate
UI (t ). Both models are understood with periodic boundary
conditions. The resulting translational invariance implies con-
servation of quasimomentum and the following discussion is
focused on the subspace with zero quasimomentum.

With the propagator U0(t ) induced by the underlying
Hamiltonian and the propagator Ue(t ) induced by the time-
dependent effective Hamiltonian in first order in 1/ω1, the
fidelity of the effective dynamics at t = 2π/ω1 is defined
as [50]

F (U0,Ue) = Re[Tr(U †
0 Ue)]/dim(H), (17)

where the factor dim(H) in terms of the dimension of the
Hilbert space ensures a maximal value of 1 of the fidelity. Fig-
ure 3 depicts the infidelity 1 − F (in log scale) as a function
of η = ω2/ω1.

The data shown in Fig. 3 is based on random choices of the
driving functions dx(t ), dzz(t ), dyy(t ), J (t ), and UI (t ) in terms
of bichromatic Fourier sums

γ ω1

M1∑
p=−M1

M2∑
q=−M2

Apqei(pω1+qω2 )t , (18)

where the real parameter γ is the ratio between driving
strength and driving frequency ω1; i.e., the high-frequency
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(a) (b)

FIG. 4. Stroboscopic dynamics of energy expectation of the driven spin-chain system with 16 sites (left) and driven Fermi-Hubbard model
(right) with 16 sites with the same filling information as in Fig. 3 up to the 19 × 2π/ω1. The dots represent numerical data, while lines
connecting them should help to distinguish between the dynamics of the driven system (solid) and effective dynamics (dashed).

approximation is valid for γ 	 1. The integers M1 and M2

specify the spectral width of the driving functions and the
complex numbers Apq are chosen at random from within the
interval [−0.5, 0.5]. All the driving parameters are available
on [51].

The leftmost data points (for η = 0) in each of the
three panels correspond to the regular Floquet case with
a time-independent effective Hamiltonian and the infideli-
ties obtained for η = 0 give an idea of what infidelity one
can reasonably expect for a given value of γ . In large
parts of the parameter space, the infidelities obtained for
the time-dependent effective Hamiltonian are comparable or
even lower than in the regular Floquet case. Only when η

is approximated well by a rational number p/q with small
integers p and q is there a sizable increase of the infidelity,
i.e., a decrease in fidelity, as expected from the breakdown
of multimode Floquet theory that requires incommensurate
frequencies. The increase in infidelity is most pronounced
for η  1/2 and for η  1, but also visible for η  1/4,
η  1/3, η  2/3, and η  3/4 in insets (a) and (b). Inset (c)
shows fewer instances of increased infidelity, since it is based
on driving patterns with fewer ω2 frequency components
[M1 = 4 and M2 = 1 as opposed to M1 = 3 and M2 = 2 in
insets (a) and (b)], highlighting that the accuracy of effective
Hamiltonians at given values of η can be controlled through
the spectral properties of the driving functions and a care-
ful design of driving functions is essential for a challenging
quantum simulation such as the quench dynamics discussed in
Sec. III B.

B. Long-time dynamics and heating

A crucial issue with driven quantum systems is heating
and as shown in the following the heating resultant from the

present driving schemes is comparable to the heating obtained
in regular Floquet engineering of time-independent effective
Hamiltonians.

Heating is most suitable characterized in terms of a com-
parison between the energy expectations of the driven system
and the quantum-simulated system over several driving peri-
ods. The expectation value of the driven Hamiltonian for both
of these dynamics is shown in Fig. 4 for the spin chain and
the Fermi-Hubbard chain (with the same system parameters
as above in Sec. IV A and with the system initialized in the
ground state of the bare Hamiltonian for η = 0 at t = 0 and
γ = 0.06). The spectral width of the driving functions are
characterized by M1 = 3 and M2 = 1 for both the spin chain
and the Fermi-Hubbard model.

Energy expectation values are depicted by dots (with dif-
ferent colors for different values of η). The dots are connected
with straight lines to guide the eye and to distinguish be-
tween energy expectations of the driven system (solid) and
the quantum-simulated system (dashed).

In both insets one can see that the energy difference be-
tween the driven and quantum-simulated systems are small as
compared to the energy expectations and that these differences
do not grow noticeably with time or with η. This suggests that
the heating caused by polychromatic driving is sufficiently
low over several driving periods that do not jeopardize an
accurate quantum simulation.

V. CONCLUSIONS

While the field of quantum simulations of time-
independent quantum systems has demonstrated the readiness
of quantum mechanical hardware for problems that are far
outside the range of classically achievable simulations, ideas
for quantum simulations of time-dependent Hamiltonians [23]
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are only in their infancy. The ability to realize time dependen-
cies that do not need to be slow as compared to the driving
time scale and that can be designed with several fundamental
frequencies enables the experimental realization of quantum
simulations of a broad range of physical problems with ex-
plicit time dependence in numerous state of the art platforms,
such as sweeping between different quantum phases in the
lattice Z2 gauge theories [52] and the Hofstadter model [33]
or realizing time-dependent Hamiltonians that exhibit Floquet
symmetry-protected topological phases [53,54].
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APPENDIX A: HIGH-FREQUENCY EXPANSIONS OF THE FLOW EQUATION UP TO O(1/ω1) ORDER

The first-order component of the effective Hamiltonian is

1

ω1
hm0

e,1 = −
∑

n1 �=0,n0

n1ω1

[n0 · ω0 + n1ω1](m0 · ω0 + n1ω1)
[hn, hm0−n0 ]

−
∑

n1 �=0,m1 �=0,n0

m1ω1 (m0 − n0) · ω0 + (m0 · ω0)2

[(m0 − n0) · ω0 + m1ω1]n · ω m · ω
[hn, h(m1,m0−n0 )]

− 1

2

∑
n1 �=0,n0

n2
1ω

2
1[(m0 − 2n0) · ω0 − n1ω1]

n · ω
[
(m0 · ω0)2 − n2

1ω
2
1

]
[(m0 − n0) · ω0 − n1ω1]

[hn, h(−n1,m0−n0 )]

− 1

2

∑
n1 �={0,m1},

m1 �=0,n0

(m1 − n1)n1ω
2
1

m0 · ω0[(2n0 − m0) · ω0 − (m1 − n1)ω1] + m1ω1n0 · ω0

m · ω n · ω (m − n) · ω (m0 · ω0 + n1ω1)[m0 · ω0 + (m1 − n1)ω1]
[hn, hm−n]. (A1)

If we treat |ω0|/ω1 as the same order as |H (t )|/ω1, then Eq. (A1) turns to

1

ω1
hm0

e,1 = 1

ω1

∑
n1 �=0,n0

1

n1
[hn, hm0−n0 ] + 1

2ω1

∑
n1 �=0,n0

1

n1
[hn, h(−n1,m0−n0 )], (A2)

which, along with the zeroth-order expression in the same limit,

hm0
e,0 = m0 · ω0

∑
m1 �=0

hm

n1ω1
+ hm0 , (A3)

would be identical to the results using the framework in [23] in the Floquet gauge by further decomposing h(n1 )(t ) =∑
m0

h(n1,m0 )eim0·ω0t . This shows that the flow equation in the main text is consistent with the flow equation constructed in [23]
under the same limit.

APPENDIX B: EXPLICIT EXPRESSIONS OF C�, C̃�, Dk, D̃k, Ek, Ẽk, τ1, AND τ̃k

Taylor expanding Eq. (5) and Eq. (A1) to the first order in ω/ω1 ≡ η yields

hm0
e = hm0 + 1

ω1

∑
n1 �=0,n0

1

2n1
[hn, h(−n1,m0−n0 )] − 1

ω1

∑
n1 �=0,n0

1

n1
[hn, hm0−n0 ] +

∑
n1 �=0

m0 · η

n1
h(n1,m0 )

+ 1

ω1

∑
n1 �=0,n0

(m0 + n0) · η

n2
1

[hn, hm0−n0 ] + 1

ω1

∑
n1 �=0,m1 �=0,n0

(m0 − n0) · η

m1n1
[hn, h(m1,m0−n0 )]

+ 1

2ω1

∑
n1 �={0,m1},

m1 �=0,n0

(m1 − n1)m0 · η − m1n0 · η

m1n1(m1 − n1)
[hn, h(m1−n1,m0−n0 )]. (B1)
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Equation (B1) then yields the explicit form of the coefficients

C	 =
∑
n1 �=0

v(n1, 0) − v(n1,−n1)/2

n1
,

C̃	 = i

ω1

⎛
⎜⎝∑

n1 �=0

3v(n1, 0)

n2
1

+
∑
n1 �=0,

m1 �=0

v(m1, n1)

m1n1
+

∑
n1 �={0,m1},

m1 �=0

v(n1, m1 − n1)

m1n1

⎞
⎟⎠,

Dk = l (0)
k − 2	

ω1

∑
n1 �=0

l (n1 )
k

n1
,

D̃k = i
∑
n1 �=0

l (n1 )
k

n1

(
1 + 4	

n1ω1

)
,

Ek =
∑
n1 �=0

pk (n1, 0) − pk (n1,−n1)/2

n1
,

Ẽk = i

ω1

⎛
⎜⎝∑

n1 �=0

3pk (n1, 0)

n2
1

+
∑
n1 �=0,

m1 �=0

pk (m1, n1)

m1n1
+

∑
n1 �={0,m1},

m1 �=0

pk (n1, m1 − n1)

m1n1

⎞
⎟⎠,

(B2)

with

v(n1, m1) =
∑

k=1,2,3

l (−n1 )∗
k l (m1 )

k − l (n1 )
k l (−m1 )∗

k (B3)

and

pk (n1, m1) = l (m1 )
i l (−n1 )∗

j − l (n1 )
i l (−m1 )∗

j , (B4)

where the triple of indices k, i, j adopts the values 1,2,3 and the cyclic permutations 2,3,1 and 3,1,2.
The coefficients l (m)

k ’s are the Fourier components of exp[iqlat(t ) · ak] with

qlat(t ) =
3∑

a=1

qa[sin(ωat − δa)ex + sin(ωat − δ′
a)ey]. (B5)

With the definitions in (B2), this yields

τ1 = C	 − γ C̃	, τ̃k = |Ek − γ Ẽk|, αk = arg(Ek − γ Ẽk ). (B6)
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