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Boosting energy transfer between quantum devices through spectrum engineering
in the dissipative ultrastrong coupling regime
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The coherent energy transfer between two quantum devices (a quantum charger and a quantum battery)
mediated by a photonic cavity is investigated, in presence of dissipative environments, with particular focus
on the ultrastrong coupling regime. Here, very short transfer times and high charging power can be achieved
in comparison with the usually addressed weak coupling case. Such phenomenology is further magnified
by the presence of level crossings appearing in the energy spectrum and which reveal very robust against
dissipative environmental effects. Moreover, by carefully controlling the physical parameters of the model, e.g.,
the matter-radiation coupling and the frequencies of the system, it is possible to tune these crossings making
this device more flexible and experimentally feasible. Finally to broaden our analysis, we assume the possibility
of choosing between a Fock and a coherent initial state of the cavity, with the latter showing better energetic
performances.
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I. INTRODUCTION

The starting of the second quantum revolution [1] has
been one of the most relevant scientific event of the last
decades, opening the way to the development of quantum
technologies. In fact, while the first quantum revolution dealt
with the attempt of theoretically explaining the fundamental
idea of wave-particle duality [2], the second has taken the
rules of quantum physics and is using them to develop new
technologies [3–11]. Among them are quantum metrology,
quantum communication, quantum computation and, in the
last years, also quantum thermodynamics [12–14]. Here, the
progressive and increasingly fast miniaturization of devices
such as quantum thermal machines [15–18] imposed that the
classical laws of thermodynamics could no longer be applied
and it has been necessary to reconsider them in a regime
where quantum effects cannot be neglected. In this context,
exploiting the effects of quantum correlations, coherences and
entanglement, new devices suitable for energy storage at the
quantum level were considered. In 2013, Alicki and Fannes
introduced the theoretical concept of quantum battery (QB)
[19], a device that allows us to store, transfer, and release
energy with better performances compared with the classical
batteries, thanks to quantum effects [20,21]. In the last ten
years several theoretical works have been devoted to study
realistic models and possible experimental implementations
[22] based on simple quantum systems, mostly collections of
two-level systems (TLSs), also known as qubits [20,23,24]. In
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fact, exploiting two states allows us to simply identify the QB
as empty when the system is in the ground state and as full
when the system is in the excited state. Different scenarios
have been considered to charge the QB, i.e., allowing transi-
tions between the empty and full QB. Particular interest has
been devoted to classical external fields [25–28], but mostly
to quantum chargers, e.g., other TLSs [23,29] or photons
trapped in a resonant cavity [30–32]. In this direction, possible
implementable models have been based on the well-known
platforms already used for quantum computations, such as
artificial atoms [29,33–37] and circuit quantum electrodynam-
ics [30,38,39]. First experimental QB works only started to
appear in the last two years, the first being the experiment
reported in Ref. [40], where fluorescent molecules, approx-
imated as TLSs, are placed into a resonant cavity, acting as
the quantum charger. Only later, experimental works based
on superconducting qubits [41] and quantum dots [42] have
been proposed, increasing even more the interest in the field
of QBs. Moreover, recently implementations in the framework
of the IBM quantum machines have been presented, providing
another example of functioning QBs [43,44].

So far, the research on QBs has been mainly focused on
finding efficient ways to store and release energy on de-
mand, used to locally supply it to other miniaturized devices
[23,29,30,45]. At the moment only few works have been de-
voted to the study of the relevant problem of coherent energy
transfer [23,24], and only last year the topic of mediated
energy-transfer processes has been considered with particular
focus on off-resonant conditions, i.e., when the frequencies
of each part of the system are not identical [46,47]. How-
ever, these works only considered a weak coupling regime
(where the matter-radiation interaction does not exceed 10%
of the frequencies of the qubits [48–50]) between each part
of the system, leaving the regime of stronger matter-radiation
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couplings (>10% of the frequencies of the qubits), the so-
called strong and ultrastrong coupling (USC) regimes [50,51],
completely unexplored. The latter regimes have been inves-
tigated in the state-transfer literature [52–54], proving that
higher couplings could lead to a faster transfer of the quan-
tum state from one qubit to the other. In the framework of
the circuit quantum electrodynamics, this USC regime can
be engineered by capacitively coupling two superconducting
qubits to a waveguide or resonator. Here, the matter-radiation
coupling can reach a considerable fraction of the cavity fre-
quency. This configuration is well described by the so-called
two-qubit Rabi model [55–57], namely, a system where two
qubits are coupled to the same photonic cavity, but not with
each other. In particular, working in the USC regime, despite
the additional computational issues related to the failure of
the rotating wave approximation (RWA) [58–60], the present
model shows interesting features such as a sudden population
inversion of the photons [53,54] which can lead to a complete
and very fast state transfer between the qubits. Other than
being theoretically interesting, this model has been experi-
mentally implemented in several scenarios, e.g., on resonance
with a Fock state in the photonic cavity [61] and off-resonance
with a coherent state in the photonic cavity [62].

Moved by this great interest, in this work we study the
mediated energy-transfer performances between two quantum
devices: a quantum charger and a QB, working in the USC
regime, both on and off-resonance. In our description the
cavity acts as the mediator of the energy transfer and, to follow
the experimental works, both Fock and coherent state will be
taken under analysis. A peculiarity of the USC regime is that,
in this case, it is possible to obtain level crossings in the energy
spectrum that can be engineered to realize the best working
setup. In fact, by changing the initial state of the system it is
possible to choose which one of the different crossings in the
energy spectrum is the more relevant for the dynamics of the
system. Instead, by tuning the coupling between the different
parts of the system or working in the off-resonant condition, it
is possible to shift the crossings of the spectrum towards lower
values of the coupling strength, moving it from the far USC
regime to a more experimentally feasible strong coupling. In
general, with the two-qubit Rabi model, working in the USC
regime leads to better performances compared with what can
be obtained with a weak coupling. Indeed, the presence of
the crossings lead to a sudden jump in the transfer times
and consequently in the average charging power, namely, the
ratio between the transferred energy and the minimal time
needed to achieve a complete transfer. To make the analysis
complete and experimentally relevant, we also consider the
effects of two external environments (thermal baths) at the
same temperature. In fact, in real setups it is not possible to
neglect the effects of dissipation, which needs to be taken into
account. In particular, in our analysis dissipation is taken into
consideration in the framework of the conventional Caldeira-
Legget picture [63–66], where one bath is coupled to the
cavity and the other bath to the QB, to prove the stability
of the model. In this direction, it has also been demonstrated
that it does not always have detrimental effects on the energy
transfer performances of devices [28,67–69]. Here, we prove
that, even in presence of dissipation, where the dynamics is
described by the Lindblad formalism [70,71], it is possible

to get optimal performances in the USC regime, where the
model still presents a sudden jump in charging power. Notice
that the majority of the theoretical works about QB assume
unitary dynamics and neglect dissipative effects associated
with the coupling with external environments. This approach
is usually justified by considering a scale separation between
the relevant time evolution of the system and the typical relax-
ation and dephasing times associated with the coupling with
external degrees of freedom [27,72,73]. Despite this condi-
tion is sometimes fulfilled in simple experimental proposals
[43,44], it is necessary to include dissipative effects to make
the description more realistic and experimentally relevant.

The paper is organized as follows: In Sec. II we introduce
the model for the cavity-mediated energy-transfer process,
and couplings to the thermal baths, with a particular focus
on the initial states. Moreover, the Lindblad formalism is
introduced to solve the dynamics in the presence of dissipa-
tion. Also, the relevant figures of merit for the energy-transfer
process are introduced. Section III is devoted to the analysis of
the results obtained for the closed-system dynamics. For the
system, we consider the energy spectrum to show its crossings
in the USC regime. In addition, we analyze both Fock and
coherent initial states, spanning coupling constant from the
weak to the USC regimes. At the end of the section, a possible
engineered scheme of the energy spectrum in the off-resonant
case is presented. In Sec. IV the stability to dissipation of
the previous results is demonstrated for an initial coher-
ent state. Section V is devoted to conclusions. Finally, the
Appendix shows the stability of the results in the presence of
dissipation for the Fock state.

II. MODEL

In this work, we analyze the energy transfer between two
TLSs in terms of the two-qubit Rabi model [55,56], where the
first qubit, the quantum charger (C), and the second one, the
QB (B) are coupled by means of the photons in the cavity,
which play the role of a mediator (M) of the energy transfer
(see Fig. 1). We also consider dissipation in the framework
of the conventional Caldeira-Legget picture [63–66], by cou-
pling the QB and the photons in the cavity with two different
reservoirs (thermal baths) at the same temperature, modeled
as ensembles of harmonic oscillators. The total Hamiltonian
can be written as

Htot (t ) = H (t ) + HR1 + HR2 + HRI1 + HRI2. (1)

Here, the first term H (t ) represents the Hamiltonian of the
closed system, composed by the quantum charger, the QB
and the cavity. In particular, assuming the conventional dipole
interaction between the qubit and the cavity radiation [60], it
reads (hereafter we set h̄ = 1)

H (t ) = ωC

2
σ C

z + ωB

2
σ B

z + ωMa†a

+ gf (t )(a† + a)
(
σ C

x + σ B
x

)
, (2)

where ωC,B are the energy gaps between the ground |0C,B〉
and the excited states |1C,B〉 of the two qubits and σ C,B

x,z are the
Pauli matrices along the x̂, ẑ directions referred to the quantum
charger and QB Hilbert spaces, respectively. Moreover, ωM is
the frequency of the photons inside the cavity and a (a†) is the
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FIG. 1. Scheme of the two-qubit Rabi model in presence of two
dissipative baths. Here, two TLSs with level spacings ωC and ωB

are coupled to a photonic cavity with frequency ωM. The baths are
modeled as collections of harmonic oscillators with frequencies �

(1)
j

and �
(2)
j , respectively. The first reservoir is coupled to the QB, while

the second to the photonic cavity. Both baths are assumed to have
Ohmic spectral densities J1(ω) and J2(ω) [see Eq. (7)].

annihilation (creation) operator of the photons. The quantum
charger or QB and the photons in the cavity are coupled by
means of a coupling strength g with an interaction modulated
in time by the switch on and off function

f (t ) = θ (t ) − θ (t − τ ). (3)

Here, θ (t ) is the Heaviside step function and τ is the time
interval for which the coupling is turned on. This kind of
dynamics can be realized for example by introducing addi-
tional elements in the circuit which play the role of quantum
couplers [74–76].

The baths Hamiltonians are written in terms of bosonic
creation (annihilation) operators b†(i)

j (b(i)
j ) as

HRi =
∑

j

�
(i)
j b†(i)

j b(i)
j , (4)

where �
(i)
j are the harmonic oscillator frequencies and i =

1, 2 indicates the two different baths. Notice that we can
neglect dissipative effects on the quantum charger dynamics
since the energy-transfer process to the QB happens in a very
short time. Conversely, it is very important to understand how
the loss of photons in the cavity influences the energy-transfer
performances and to characterize the stability of the energy
storing in the QB in presence of dissipation, once the matter-
radiation coupling is switched off. To do so we consider the
interaction Hamiltonians, which couple the first bath to the
QB and the second bath to the photons, namely,

HRI1 = σ B
x

∑
j

λ j
(
b†(1)

j + b(1)
j

)
,

HRI2 = (a† + a)
∑

j

κ j
(
b†(2)

j + b(2)
j

)
. (5)

The spectral properties of these thermal baths are character-
ized by the spectral functions [63]

J1(ω) =
∑

j

λ2
jδ

(
ω − �

(1)
j

)
,

J2(ω) =
∑

j

κ2
j δ

(
ω − �

(2)
j

)
. (6)

These equations can be written in the continuum limit and, as-
suming Ohmic dissipation, they become [63,65,66] (i = 1, 2)

Ji(ω) = αiωe− ω
ωcut . (7)

Here, α1 and α2 are dimensionless parameters that quantify
the dissipation strength and ωcut is the high-frequency cut-
off of the baths [63,77,78], which for simplicity is assumed
identical for both and considered as the greater energy scale
present in the model.

We now comment on the initial state of the system-bath
configuration. First, we assume that, at time t = 0, the system
and the baths are decoupled and described by the factorized
total density matrix

ρtot (0) = ρ(0) ⊗ ρR1(0) ⊗ ρR2(0). (8)

As demonstrated in Refs. [23,79], the choice of the initial state
of the system can have a great impact on the performances
of QBs. Therefore, it is important to properly address this
point also for more general energy-transfer devices. Within
this paper, the initial states of the qubits, at t = 0, will be

|ψC(0)〉 = |1C〉, |ψB(0)〉 = |0B〉 (9)

for all considered configurations. This corresponds to the
reasonable assumption of a completely full quantum charger
and a completely empty QB at the beginning of the energy-
transfer process. Different is the situation for the cavity. Here,
most of the experimental works in literature have studied a
coherent state as initial condition for the photons [62,80,81].
Conversely, great part of the theoretical papers addressing QB
based on matter-radiation coupling have considered a Fock
state in the cavity [30,31,46]. In the present work, for sake
of generality, we take into consideration both cases, following
Refs. [61] and [62]. In particular, the initial state of the cavity
state is assumed to be

|ψM(0)〉 =
∑

n

ζn|n〉, (10)

where |n〉 represents a state with n photons and ζn are the
associated probability amplitudes. A Fock state with exactly
N photons and a coherent state with an averaged number N̄ of
photons are then characterized respectively by

ζ F
n = δn,N , ζ C

n = e− N̄
2

N̄
n
2√
n!

. (11)

Summarizing, the initial state of the system can be written as

|ψ (0)〉 = |1C, 0B〉 ⊗ |ψM(0)〉, (12)

with the density matrix

ρ(0) = |ψ (0)〉〈ψ (0)|. (13)
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Moreover, the reservoirs are at thermal equilibrium with
density matrices given by

ρRi(0) = e−βHRi

Tr{e−βHRi} , (14)

with β = 1/(kBT ) the inverse temperature.
To solve the complete dynamics associated with the

Hamiltonian in Eq. (1) we apply the routinely used Lind-
blad equation [70,71], which can be applied in the case of
weak coupling between system and reservoirs, i.e., α1,2 � 0.1,
and within a Markov approximation [82]. This means that
the characteristic times associated with the dynamics of the
reservoirs, τR1, τR2, must be much shorter with respect to
the one for the system, τS, such that τR1, τR2 � τS. Under the
above conditions it is possible to derive the time evolution of
the reduced density matrix ρ(t ) ≡ TrR{ρtot (t )} (R stands for
the trace over the reservoirs). We have [70,71]

d

dt
ρ(t ) = −i[H (t ), ρ(t )] + 1

2

∑
j=1,2

× [2Cjρ(t )C†
j − ρ(t )C†

j Cj − C†
j Cjρ(t )]. (15)

Here, Cj = √
γ jA j ( j = 1, 2) are the so-called collapse oper-

ators with A1 = σ B
x and A2 = a† + a, written in terms of the

QB and cavity decay rates

γ1,2 = πα1,2ω
2
B,M√

g2 + ω2
B,M

coth

⎛
⎜⎝

β
√

g2 + ω2
B,M

2

⎞
⎟⎠, (16)

which are proportional to α1 and α2 introduced in Eq. (7) [83].
Notice that we have used the numerical tool of the

PYTHON toolbox QuTiP [84] to solve the dynamics of the
system.

Before concluding this section, we briefly recall the def-
initions of the quantities of interest to characterize the
energy-transfer performances of the device. The energy trans-
ferred from the quantum charger to the QB can be written as

EB(t ) ≡ TrS{ρ(t )HB} − TrS{ρ(0)HB}, (17)

where

HB = ωB

2
σ B

z (18)

is the QB Hamiltonian, S stands for the trace over the system,
ρ(0) is the initial density matrix of the system in Eq. (13),
and ρ(t ) is its time evolved according to Eq. (15). Since in
realistic situations it is important to transfer as much energy
as possible from the quantum charger to the QB in the shortest
time, it is also useful to define

EB,max ≡ EB(tB,max), (19)

which corresponds to the maximum of the stored energy in the
QB, occurring at the transfer time tB,max. It is also interesting
to characterize how much power can be obtained from the QB.
In this direction, another two relevant figures of merit are the
charging power and the corresponding power evaluated at the

maximum transferred energy, defined as

PB(t ) ≡ EB(t )

t
, PB,max ≡ EB,max

tB,max
. (20)

III. CLOSED SYSTEM RESULTS IN THE ULTRASTRONG
COUPLING REGIME

In the following we present the main results, starting by
considering the case where no dissipation is present (α1 =
α2 = 0). The stability of the presented results in presence
of dissipative effects will be discussed in the next section.
Here, we analyze the results concerning the advantages of
entering into the USC regime, i.e., g ≈ ωB, in order to
improve the performances of energy-transfer devices. No-
tice that previous works have addressed the weak coupling
regime [46], where the rotating-wave approximation allows
us to neglect the counter-rotating terms of the Hamiltonian
in Eq. (1), i.e., the terms of the form aσ− and a†σ+ [85].
Despite very convenient from the computational point of view,
this approximation limits the coupling strength to an upper
bound of g � 0.1ωB, leading to a constraint on the energy-
transfer times [46]. To improve the present knowledge about
coherent energy-transfer processes and widen the perspectives
in terms of future applications, we consider a broader range
of coupling spanning from weak coupling up to USC, namely,
0 � g � 0.5ωB. The upper bound on the coupling strength is
dictated by the Lindblad approximation, which starts to fail
for g � 0.5ωB [52,86,87]. Note that, in the regime of parame-
ters investigated in this paper (with g � 0.5ωB) and limited to
time windows relevant for the considered figures of merits, the
results obtained with the Lindblad equation and the one ob-
tained with the Bloch-Redfield master equation (not shown),
a less constraining approximation [82], are almost indistin-
guishable. However, for stronger matter-radiation interaction
the Lindblad formalism fails since the counter-rotating terms
of the interaction Hamiltonian starts to become relevant. As a
consequence, other approaches need to be taken into account,
as done, for example, in Ref. [87]. However, in absence of
dissipative effects, higher couplings can be also addressed
[53]. For the sake of clarity, the results will be reported in
the resonant regime ωC = ωM = ωB. This configuration is
characterized by the better performances in terms of energy
transfer and can be realized experimentally [61]. However,
at the end of the section a comment on how to engineer the
spectrum of the system by working in the off-resonant regime
will be given.

Before analyzing the other figures of merit, it is convenient
to study the spectrum of the system of the Hamiltonian in
Eq. (2). Notice that the dimension of the Hilbert space of the
system grows with the number of photons initially present
into the cavity. Therefore, despite some helpful constraints
imposed by conservation laws [30,88], the Hamiltonian in
Eq. (2) cannot be diagonalized analytically and consequently
the eigenvalues and eigenstates need to be evaluated numeri-
cally. Also in this case the numerical calculations have been
performed by means of the Phython toolbox QuTiP [84]. To
constrain the dimension of the Hilbert space, without affecting
the reliability of the results, we need to carefully fix a cutoff
number of photons considered in the dynamics Nmax = 10N ,
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FIG. 2. Eigenvalues Ek of the Hamiltonian in Eq. (2) (in units of
ωB) for f (t ) = 1 as a function of the coupling constant g/ωB. The
model shows level crossings in the USC regime. The crossing at the
red circle will be discussed later (see Sec. III). For the sake of clarity
we have reported only the first six eigenvalues. Other parameters are
ωC = ωM = ωB, Nmax = 10N .

with N being the number of photons in the cavity. Within
this framework it is possible to obtain the energy spectrum in
Fig. 2. We notice that, as g increases entering the USC regime,
one observes some level crossing [54]. In the present work we
want to show that it is possible to engineer such crossings in
order to obtain better energy-transfer performances. In fact,
by varying the frequencies of the different parts of the system
or by considering different couplings between the cavity and
the quantum charger or QB, it is possible to shift the crossings
toward a smaller value of g. Moreover, by changing the initial
state of the system, it is possible to make relevant one of the
different crossings in the energy spectrum for the dynamics of
the system. Notice that the number of photons plays no role
in determining the energy spectrum. Indeed, the eigenvalues
only depend on the chosen Hamiltonian [Eq. (2)] and not on
the initial state of the system. We now consider the impact of
such interesting energy spectrum at the level of the different
figures of merit. The behavior of the maximum of the energy

transferred from the quantum charger to the QB as a function
of the coupling strength is reported in Fig. 3, considering
both a Fock and a coherent state as initial state of the cavity.
As a representative case and to guarantee a fair comparison
between the two cases we choose N = 8 as photon number in
the Fock state and N̄ = 8 as the average number of photons in
the coherent state. However, similar qualitative results can be
obtained for different values. Notice that throughout this sec-
tion we use the superscript “0” to indicate that no dissipation
is taken into account. Moreover, if not specified differently,
the results shown correspond to the choice τ = t0

B,max in the
switch on and off function f (t ) in Eq. (3).

As a first remark, in Fig. 3 we observe that, in the weak
coupling regime, the Fock state allows a complete energy
transfer [Fig. 3(a)]. However, as soon as the coupling is in-
creased, the transferred energy drops, reaching its minimum
for g ≈ 0.34ωB. By further increasing the coupling one has a
partial recovery of the transferred energy. A similar qualitative
behavior is obtained for the coherent state. However, as can
be seen in Fig. 3(b), this scenario is more stable against the
variation of the coupling constant, with a fluctuation of only
a few percent in the considered range of interaction. It is
important to note that both cases present an abrupt change
of behavior for the value g ≈ 0.34ωB (see insets of Fig. 3).
This corresponds to the value at which the eigenvalues of the
model present the crossing highlighted in Fig. 2. This can
be better understood by writing the time-evolved state of the
system in terms of the eigenvalues Ek and eigenstates |ϕk〉 of
the Hamiltonian in Eq. (2) as follows:

|ψ (t )〉 =
∑

k

ck (t )|ϕk〉 =
∑

k

ck (0)e−iEkt |ϕk〉, (21)

where we have introduced the probability amplitudes ck (0) =
〈ϕk|ψ (0)〉 and we have only considered the time interval 0 <

t < τ , where the function f (t ) = 1. By a careful analysis of its
elements, it is indeed possible to determine which eigenvalue
gives the dominant contribution to the energy transfer.

Indeed, in the present model, as we can see in Fig. 2, there
are three crossings in the interval 0 � g � 0.5ωB. They are

FIG. 3. Behavior of (a)E 0
B,max (in units of ωB) as a function of g/ωB for a Fock state with N = 8 and (b) a coherent state with averaged

number of photons N̄ = 8. Insets show zooms near the value g∗ = 0.34ωB, where the data show a cusp. Other parameters are ωC = ωM = ωB,
Nmax = 10N , τ = t0

B,max, and α1 = α2 = 0.
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FIG. 4. Behavior of (a) the energy transfer time ωBt0
B,max as function of g/ωB for the Fock state at N = 8 and (b) for the coherent state

with averaged number of photons N̄ = 8. Insets show zooms near the critical value g∗ = 0.34ωB, where the transfer time has a jump. Other
parameters are ωC = ωM = ωB, Nmax = 10N , τ = t0

B,max, and α1 = α2 = 0.

due to the intersections of different eigenvalues. For exam-
ple, the one occurring at g = 0.34ωB depends on E3 and E5,
while the one at g = 0.47ωB on E3 and E4. The relevance of
the probability amplitudes in Eq. (21) crucially depends on
the initial state of the system. For the one chosen in Eq. (12),
one has, for example, that the weight of the fourth eigenvalue
and eigenvector is negligible in the sum in Eq. (21), therefore
the crossing at g = 0.47ωB has no role in the energy-transfer
performances. Conversely, the crossing occurring the critical
value g∗ = 0.34ωB is the most relevant (from now on we are
going to use the superscript “∗” to indicate this peculiar value
of the coupling). The role of this energy-level crossing is to
realize a sudden population inversion of the photons, with
important impact at the level of state transfer, making it faster.
This is a consequence of the crossover between the strong
coupling and the USC regime. In the latter case indeed, due
to the reduction of the symmetry of the system, the accessible
part of the Hilbert space becomes unbounded. Therefore, the
system can explore a greater number of states leading to a
complete and faster transfer [53].

Here, we address for the first time the consequences of this
peculiar feature at the level of energy transfer. Notice that,
by changing the initial condition of the system [|ψ (0)〉] the
coefficients ck (0) change. As a consequence, also the weight
of the different crossings in the dynamics of the system may
vary with a consequent lowering of the critical value of g
(not shown). This can be a great incentive in engineering
the system to obtain the optimal performances of the energy
transfer.

To further deepen our analysis, we now demonstrate that
this phenomenology has a relevant impact on the energy-
transfer times and consequently at the level of the power.

The time required to transfer energy from the quantum
charger to the QB gets smaller by increasing the coupling
g [23,79], as shown in Fig. 4, and consequently it is very
short in the USC regime. Moreover, the energy transfer in
the Fock state [Fig. 4(a)] is typically considerably slower with
respect to the one in the coherent case [Fig. 4(b)]. Apart from

these general considerations, it is interesting to look closely
at what happens near the critical value g∗ = 0.34ωB. Here, an
abrupt reduction of the energy-transfer times occurs for both
the Fock and coherent state, as can be seen in the insets of
Fig. 4. It is quite remarkable to see how this quantity shows a
sudden drop in the USC regime, in correspondence of the level
crossing, meaning that the proper engineering of the spectrum
can lead to improvements at the level of the transfer times.
In an energetic perspective, such a sudden decrease of the
transfer times can be directly related to an enhancement of
the average charging power.

Before addressing this relevant point, it is useful to bet-
ter clarify why this reduction occurs. This can be done by
analyzing the time evolution of the energy transferred from
the quantum charger to the QB, shown in Fig. 5. We only
report the case of the Fock state, but an analogous behav-
ior is observed also for the coherent state. Notice that, to
better enlighten the behavior of the maximum of the trans-
ferred energy, we have considered τ 
 t0

B,max in Eq. (3),
corresponding to a situation where the matter-radiation cou-
pling is switched on for a longer time with respect to the
one needed to reach the maximum of the transferred energy.
With the aim of discussing the behavior of the transferred
energy across g∗ = 0.34ωB, we compare the cases of coupling
constants near g∗. By doing so it is possible to observe that
the first two maxima of the transferred energy progressively
exchange their role. In fact, while for g < g∗ [Fig. 5(a)] the
second maximum is the most pronounced, when the critical
value is reached the two maxima have exactly the same value
[Fig. 5(b)]. Finally, for a greater coupling g > g∗ [Fig. (c)],
the first maximum is always the most pronounced and the
energy transfer occurs in a shorter time. This justifies the
jump in the transfer time in Fig. 4, observed at g = g∗. Notice
that this phenomenology is a peculiarity of the USC regime,
further strengthening the interest in exploring this range of
parameters.

Let us now analyze how the behavior observed in t0
B,max

influences the average charging power. In Fig. 6 we show the
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FIG. 5. Behavior of EB(t ) (in units of ωB) as function of ωBt for a Fock states with N = 8. We consider three different values of the
coupling: (a) g = 0.3ωB, (b) g = g∗ = 0.34ωB, and (c) g = 0.38ωB. The black dashed lines represent the positions of the maximum of the
transferred energy tB,max. Other parameters are ωC = ωM = ωB, Nmax = 10N , and α1 = α2 = 0.

evolution of the maximum of the average charging power as a
function of the coupling, defined in Eq. (20), for both a Fock
and a coherent initial state. At g∗ = 0.34ωB we observe in
both cases a sudden enhancement in the value of P0

B,max.
Due to the previous considerations, one has that the Fock

state is less performant compared with the coherent state.
Indeed, the former [Fig. 6(a)] jumps from P0

B,max ≈ 0.22ω2
B

to P0
B,max = 0.36ω2

B across the critical coupling while the lat-
ter [Fig. 6(b)], shows a discontinuity from P0

B,max ≈ 0.40ω2
B

to P0
B,max = 1.17ω2

B. Here, the power increases by almost a
factor of three by slightly changing the coupling constant.
Even more interestingly, the average charging power grows
almost linearly in g after the critical value. This leads to a
remarkable improvement of the average charging power in the
USC regime with respect to what observed at weak coupling.

Before concluding this analysis, it is useful to consider how
it is possible to engineer the position of the level crossings,
which play a crucial role in the power performance. Among
the different possibilities discussed previously, the most rel-
evant from an experimental point of view is to consider an
off-resonant regime. This also because it is not always possi-
ble to obtain exactly identical qubits or to have photons with
the same frequencies as the energy separation of the TLSs.

In this direction, we now consider the off-resonant regime
ωC = ωM = 0.8ωB, proposed in the experiment in Ref. [61]
and also discussed in Ref. [46]. Here, it useful to understand
how the energy spectrum of the Hamiltonian in Eq. (2) is
modified. As we can see from Fig. 7(a) the eigenvalues of
the Hamiltonian are different from those in Fig. 2, with the
system on resonance. In particular, the crossings are shifted
at lower values of the coupling, where the circled one, rep-
resenting the critical values for this scenario is obtained for
g∗

off = 0.26ωB compared with the previous one g∗ = 0.34ωB.
Notice that, by going even further off-resonance (e.g., when
ωC = ωM = 0.3ωB), it is possible to shift the crossing to very
small values of the coupling constant. However, in such a
regime the value of the energy transferred to the QB and
consequently the associated power is very small, making this
regime not convenient for energetic applications. In this direc-
tion, we analyze the charging performances in the off-resonant
regime ωC = ωM = 0.8ωB. We focus on the coherent state
since we have shown that it is more performant compared
with the Fock state. Moreover, as the relevant figure of merit,
we analyze the maximum of the average charging power,
reported in Fig. 7(b), and we give a comparison between the
off-resonant and resonant regimes.

FIG. 6. Behavior of (a) P0
B,max (in units of ω2

B) as a function of g/ωB for a Fock state at N = 8 and (b) for a coherent state with average
number of photons N̄ = 8. Other parameters are ωC = ωM = ωB, Nmax = 10N , τ = t0

B,max, and α1 = α2 = 0.
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FIG. 7. (a) Eigenvalues Ek of the Hamiltonian in Eq. (2) (in units of ωB) when the system is off-resonance ωC = ωM = 0.8ωB in the interval
0 < t < τ as function of the coupling constant g/ωB. The red circle indicates the critical coupling g∗

off = 0.26ωB. For sake of clarity we have
reported only the first six eigenvalues. (b) Behavior of P0

B,max (in units of ω2
B) as a function of g/ωB for a coherent state with average number

of photons N̄ = 8 for the off-resonance regime ωC = ωM = 0.8ωB (full magenta squares) compared with the resonant case ωC = ωM = ωB

(opened black squares). Other parameters are Nmax = 10N , τ = t0
B,max, and α1 = α2 = 0.

First, it is possible to observe that the two scenarios
have the same qualitative behavior, again P0

B,max has a sud-
den boost at the critical value of the coupling. However,
in the off-resonant regime this happens for a lower value
of the coupling (g∗

off = 0.26ωB), meaning that, in the inter-
val 0.26ωB � g < 0.34ωB, this configuration has much better
performances compared with the resonant one. For the other
values of the coupling the two scenarios have almost the same
performances, with the off-resonant regime showing slightly
higher values of P0

B,max, since the transfer times are in general
shorter when the system is off-resonance [46].

From the above results, it is evident that the structure
of the eigenvalues of the Hamiltonian in Eq. (2) (especially
their crossings) has a great impact on the energy-transfer
performances of the device. To be flexible and to optimize
the performance we have shown that the level crossings can
be engineered by changing the parameters of the system.
In the considered cases, the crossings at g∗ = 0.34ωB and
g∗

off = 0.26ωB (in the USC regime) lead to a reduction of the
energy transfer time and to a consequent enhancement of the
average charging power. Moreover, these effects are further
enlighten by considering a coherent states as initial state for
the photonic cavity.

IV. STABILITY TO DISSIPATIVE EFFECTS

We now study the stability of the different figures of merit
in a more realistic case, in presence of dissipation. For sake
of simplicity, we assume the two baths to have the same
temperature βωB = 10, compatible with experimental values
[61,62]. We underline that the temperature of the bath is a
relevant parameter that influences the QB and cavity decay
rates γ1 and γ2 in Eq. (16). In fact, if one chooses a smaller
value of β (high temperature) the performances of the device
are strongly affected by dissipative effects, leading to a very
poor energy transfer.

Here, the results are presented only for the coherent state
which, in absence of dissipation, has shown the best perfor-
mances. The results for the Fock states are commented in the
Appendix.

It is interesting to analyze the stability with respect to dis-
sipation for different values of the couplings ranging from the
weak to the USC regime. In this direction, in Fig. 8(a)–8(c),
the behavior of EB(t ) is reported for three relevant examples
g = 0.05ωB, g = 0.2ωB, and g = 0.5ωB, respectively. While
the cavity is supposed to have the same dissipation strength α2

throughout the whole analysis, consistently with the possibil-
ity to realize very stable cavities [61,89], the QB is supposed
to be more affected by the action of the environment and
consequently we analyze the effects of having different α1.
Notice that the coupling between the baths and the QB and
cavity are chosen within the regime of validity of the Lindblad
equation, i.e., 0 � α1,2 � 0.1 [82]. Moreover, all the results
are compared with the case where no dissipation is present
(α1 = α2 = 0).

First of all, we observe that the energy-transfer process is
strongly affected by dissipation in the weak coupling regime
[Fig. 8(a)], even for very small dissipation strength α1 = 0.03
and α2 = 0.01. This gets progressively worse by increasing
the coupling α1 between the bath and the QB. However, when
the system approaches the USC regime, the dissipative effects
become less important.

In fact, at g = 0.2ωB [Fig. 8(b)], it is possible to obtain
up to ≈80% of the total energy transferred to the QB, at
α1 = 0.03, compared with ≈90% without dissipation. Even
better is the case where g = 0.5ωB [Fig. 8(c)], where dissipa-
tive effects have only a marginal impact on the energy-transfer
process, even considering different dissipative rates for the
QB. In general, it is also worth to note that choosing different
α1 implies that, after reaching the maximum of the transferred
energy and switching off the coupling between the parts of
the system, the energy approaches the thermal equilibrium
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FIG. 8. Behavior of EB (in units of ωB) as function of ωBt for a coherent state with average number of photons N̄ = 8 and three different
values of the coupling: (a) g = 0.05ωB, (b) g = 0.2ωB, and (c) g = 0.5ωB. We consider, at fixed α2 = 0.01, different values of α1: α1 = 0.03
(full green curves), α1 = 0.07 (dotted blue curves) and α1 = 0.1 (full magenta curves). The dashed black curves are the reference case in
absence of dissipation (α1 = α2 = 0). Other parameters are ωC = ωM = ωB, Nmax = 10N , βωB = 10, and ωcut = 500ωB.

value at different times, since with higher α1 comes a faster
decay rate.

This analysis demonstrates that it is better to work in
the USC regime, where dissipation only plays a minor role.
This is a consequence of the fact that at USC the timescales
associated with the energy-transfer processes are very short
with respect to the dynamics induced by the coupling with the
external environment. Moreover, it is obviously convenient to
have a low dissipative rate associated with the QB to obtain a
more stable storing of the energy into the QB.

We now discuss the dissipative effects on the average
charging power. In particular, we focus on the representative
case with α1 = 0.07 and α2 = 0.01 and compare it with the
nondissipative case (see Fig. 9).

As a general remark it is possible to see that, for these
values of the parameters, dissipation has only marginal effects
on the value of the PB,max. In particular, at weak couplings and
in the USC regime the data almost coincide with the nondissi-
pative case, while in the regime 0.1ωB � g � 0.25ωB there is

FIG. 9. Behavior of PB,max (in units of ω2
B) as function of g/ωB

for a coherent state with average number of photons N̄ = 8, for
the dissipative case at α1 = 0.07 and α2 = 0.01 (magenta square)
in comparison with the case with no dissipation at α1 = α2 = 0
(blue square). Other parameters are ωC = ωM = ωB, Nmax = 10N ,
βωB = 10, and ωcut = 500ωB.

a discrepancy between the dissipative and nondissipative case.
Moreover the more relevant feature of the average charging
power, namely, the jump at g∗ = 0.34ωB discussed above,
remains unaffected. It is important to notice that these results
are a consequence of the small values of dissipative rates
consistent with the Lindblad formalism and motivated by state
of the art experiments [61,89]. However, one would expect
that, if higher values of dissipation are considered it should be
possible to realize an avoided crossing in the eigenvalues and
consequently lose the sudden jump in the power [54], leading
to a loss in the performances of the device.

In conclusion, the coherent state shows optimal energy-
transfer performances also in the presence of dissipation,
particularly in the USC regime, adding another motivation
to engineer devices in such conditions by controlling and
mitigating dissipative effects.

V. CONCLUSION

The present work has been devoted to the analysis of a co-
herent energy transfer between two quantum devices, namely,
a quantum charger and a quantum battery, mediated by a
photonic cavity. The analysis is brought out in a wide range
of coupling strengths, ranging from the weak coupling to the
ultrastrong coupling regime. In the latter case the model shows
crossing in the energy spectrum, which we demonstrated can
be engineered in order to optimize the performance of the
energy transfer. Indeed, this peculiar behavior has a great
impact on the different figures of merit. In particular, in the
presence of level crossings, the transfer time has a sudden
jump at the critical value of the coupling, which also impacts
the average charging power, which doubles in the ultrastrong
coupling regime compared with the weak coupling regime.
Moreover, choosing different initial states has a great impact
on the performance. In fact, we have shown that a coherent
state for the cavity has better performance compared with the
Fock state. In addition, we proved the robustness of the model
to dissipation. In fact, especially considering a coherent state
for the cavity, the presence of two environments, coupled to
the cavity and to the quantum battery, does not have strong
detrimental impact on the dynamics, mostly in the ultra-
strong coupling regime. This analysis opens the possibility of
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FIG. 10. Behavior of EB(t ) (in units of ωB) as a function of ωBt for a Fock state at N = 8 and three different values of the coupling:
(a) g = 0.05ωB, (b) g = 0.2ωB, and (c) g = 0.5ωB. We consider, at fixed α2 = 0.01, different values of α1: α1 = 0.03 (full green curves),
α1 = 0.07 (dotted blue curves), and α1 = 0.1 (full magenta curves). The dashed black curves are the reference case in absence of dissipation
(α1 = α2 = 0). Other parameters are ωC = ωM = ωB, Nmax = 10N , βωB = 10, and ωcut = 500ωB.

engineering an energy-transfer setup for quantum batteries,
where working in the ultrastrong coupling regime allows us
to obtain better results compared with the conventional ones
obtained in the weak coupling scenario. Moreover, being the
two-qubit Rabi model experimentally established, this should
pave the way for the implementation of our model in the very
near future.
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APPENDIX: DISSIPATIVE EFFECTS ON FOCK STATES

In this Appendix we consider the effects of the two thermal
baths, when as initial state of the cavity it is considered a Fock
state. The qualitative behavior is in general identical to the
one obtained in the main text for the coherent state. However,
the Fock state is more unstable in the presence of dissipation.
This can be seen from Fig. 10, where the behavior of EB(t ) is
reported for the three couplings considered in Sec. IV.

In fact, it is possible to observe that, when the coupling
between each part of the system is weak, the energy is sup-
pressed, even for very low dissipation strengths (α1 = 0.03
and α2 = 0.01). Increasing the coupling strength allows us to
get better results compared with the case without dissipation,
reaching the best stability in the USC regime at g = 0.5ωB

[see Fig. 10(c)]. However, we recall that at such high cou-
plings the Fock state has poor performances even without
dissipation when one considers the maximum of the trans-
ferred energy, i.e., E0

B,max ∼ 0.50ωB.
To conclude the analysis we also consider the dissipative

effects of the two thermal baths on the average charging

power, focusing on the representative case with α1 = 0.07ωB

and α2 = 0.01ωB and comparing it with the nondissipative
case (see Fig. 11). Again, the qualitative behavior is com-
pletely analogous to the one obtained for the coherent state.
However, being the energy transferred from the quantum
charger to the QB lower in the latter case and having longer
transfer times, the average charging power is considerably
lower. Moreover, it is still possible to observe the jump of
the value at g∗ = 0.34ωB, meaning that this important feature
is not suppressed by dissipation also with the Fock state in
the considered range of parameters. Finally, we see that the
dissipation has a slightly higher impact on the value of PB,max.
In fact, a relevant discrepancy can be seen in the regimes
0.05ωB � g � 0.3ωB. Then, around the critical value the data
almost coincide with the nondissipative case, while for higher
couplings the two start to differ again.

This allows us to state that dissipation has more impact
on the performances of the Fock state, proving the interest in
engineering coherent state for future devices.

FIG. 11. Behavior of Pd
B,max (in units of ω2

B) as a function of
g/ωB for a Fock state at N = 8, for the dissipative case at α1 = 0.07
and α2 = 0.01 (magenta squares) in comparison with the case with
no dissipation at α1 = α2 = 0 (blue squares). Other parameters are
ωC = ωM = ωB, Nmax = 10N , βωB = 10, and ωcut = 500ωB.
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technologies, Nat. Photonics 3, 687 (2009).

[4] M. F. Riedel, D. Binosi, R. Thew, and T. Calarco, The
european quantum technologies flagship programme, Quantum
Sci. Technol. 2, 030501 (2017).

[5] A. Acín et al., The quantum technologies roadmap: A european
community view, New J. Phys. 20, 080201 (2018).

[6] Q. Zhang, F. Xu, L. Li, N.-L. Liu, and J.-W. Pan, Quantum in-
formation research in China, Quantum Sci. Technol. 4, 040503
(2019).

[7] M. G. Raymer and C. Monroe, The US national quantum initia-
tive, Quantum Sci. Technol. 4, 020504 (2019).

[8] G. Dolcetto, F. Cavaliere, D. Ferraro, and Maura Sassetti, Gen-
erating and controlling spin-polarized currents induced by a
quantum spin Hall antidot, Phys. Rev. B 87, 085425 (2013).

[9] T. L. Schmidt, G. Dolcetto, C. J. Pedder, K. Le Hur, and
P. P. Orth, Mechanical resonances of mobile impurities in a
one-dimensional quantum fluid, Phys. Rev. Lett. 123, 075302
(2019).

[10] S. Porta, F. Cavaliere, M. Sassetti, and N. Traverso Ziani, Topo-
logical classification of dynamical quantum phase transitions in
the xy chain, Sci. Rep. 10, 12766 (2020).

[11] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Inte-
grated photonic quantum technologies, Nat. Photonics 14, 273
(2020).

[12] S. Vinjanampathy and J. Anders, Quantum thermodynamics,
Contemp. Phys. 57, 545 (2016).

[13] M. Campisi and J. Goold, Thermodynamics of quantum infor-
mation scrambling, Phys. Rev. E 95, 062127 (2017).

[14] M. N. Bera, A. Riera, M. Lewenstein, Z. B. Khanian, and
A. Winter, Thermodynamics as a consequence of information
conservation, Quantum 3, 121 (2019).

[15] M. Campisi and R. Fazio, Dissipation, correlation and lags in
heat engines, J. Phys. A: Math. Theor. 49, 345002 (2016).

[16] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Fundamen-
tal aspects of steady-state conversion of heat to work at the
nanoscale, Phys. Rep. 694, 1 (2017).

[17] M. Carrega, M. Sassetti, and U. Weiss, Optimal work-to-work
conversion of a nonlinear quantum Brownian duet, Phys. Rev.
A 99, 062111 (2019).

[18] F. Vischi, M. Carrega, P. Virtanen, E. Strambini, A. Braggio,
and F. Giazotto, Thermodynamic cycles in Josephson junctions,
Sci. Rep. 9, 3238 (2019).

[19] R. Alicki and M. Fannes, Entanglement boost for extractable
work from ensembles of quantum batteries, Phys. Rev. E 87,
042123 (2013).

[20] F. Campaioli, F. A. Pollock, and S. Vinjanampathy, in Ther-
modynamics in the Quantum Regime, edited by F. Binder, L. A.
Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Berlin,
2018).

[21] F. Campaioli, F. A. Pollock, F. C. Binder, L. Celeri, J. Goold, S.
Vinjanampathy, and K. Modi, Enhancing the charging power of
quantum batteries, Phys. Rev. Lett. 118, 150601 (2017).

[22] F. Campaioli, S. Gherardini, J. Q. Quach, M. Polini, and G. M.
Andolina, Colloquium: Quantum batteries, arXiv:2308.02277.

[23] G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V.
Giovannetti, and M. Polini, Charger-mediated energy transfer
in exactly solvable models for quantum batteries, Phys. Rev. B
98, 205423 (2018).

[24] D. Farina, G. M. Andolina, A. Mari, M. Polini, and V.
Giovannetti, Charger-mediated energy transfer for quantum bat-
teries: An open-system approach, Phys. Rev. B 99, 035421
(2019).

[25] Y.-Y. Zhang, T.-R. Yang, L. Fu, and X. Wang, Powerful har-
monic charging in a quantum battery, Phys. Rev. E 99, 052106
(2019).

[26] J. Chen, L. Zhan, L. Shao, X. Zhang, Y.-Y. Zhang, and X. Wang,
Charging quantum batteries with a general harmonic driving
field, Ann. Phys. (Berlin, Ger.) 532, 1900487 (2020).

[27] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Charging
and energy fluctuations of a driven quantum battery, New J.
Phys. 22, 063057 (2020).

[28] M. Carrega, A. Crescente, D. Ferraro, and M. Sassetti, Dissi-
pative dynamics of an open quantum battery, New J. Phys. 22,
083085 (2020).

[29] T. P. Le, J. Levinsen, K. Modi, M. M. Parish, and F. A. Pollock,
Spin-chain model of a many-body quantum battery, Phys. Rev.
A 97, 022106 (2018).

[30] D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, and M.
Polini, High-power collective charging of a solid-state quantum
battery, Phys. Rev. Lett. 120, 117702 (2018).

[31] G. M. Andolina, M. Keck, A. Mari, V. Giovannetti, and M.
Polini, Quantum versus classical many-body batteries, Phys.
Rev. B 99, 205437 (2019).

[32] A. Crescente, M. Carrega, M. Sassetti, and D. Ferraro, Ultrafast
charging in a two-photon Dicke quantum battery, Phys. Rev. B
102, 245407 (2020).

[33] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and
M. Polini, Quantum advantage in the charging process of
Sachdev-Ye-Kitaev batteries, Phys. Rev. Lett. 125, 236402
(2020).

[34] D. Rosa, D. Rossini, G. M. Andolina, M. Polini, and
M. Carrega, Ultra-stable charging of fast-scrambling
SYK quantum batteries, J. High Energy Phys. 11 (2020)
067.

[35] J. Q. Quach and W. J. Munro, Using dark states to charge and
stabilize open quantum batteries, Phys. Rev. Appl. 14, 024092
(2020).

[36] A. C. Santos, Quantum advantage of two-level batteries
in the self-discharging process, Phys. Rev. E 103, 042118
(2021).

[37] L. Peng, W.-B. He, S. Chesi, H.-Q. Lin, and X.-W. Guan, Lower
and upper bounds of quantum battery power in multiple central
spin systems, Phys. Rev. A 103, 052220 (2021).

[38] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti,
and M. Polini, Extractable work, the role of correlations, and
asymptotic freedom in quantum batteries, Phys. Rev. Lett. 122,
047702 (2019).

[39] F.-Q. Dou, Y.-J. Wang, and J.-A. Sun, Highly efficient charging
and discharging of three-level quantum batteries through short-
cuts to adiabaticity, Front. Phys. 17, 31503 (2022).

[40] J. Q. Quach, K. E. Mcghee, L. Ganzer, D. M. Rouse, B. W.
Lovett, E. M. Gauger, J. Keeling, G. Cerullo, D. G. Lidzey, and
T. Virgili, Superabsorption in an organic microcavity: Toward a
quantum battery, Sci. Adv. 8, eabk3160 (2022).

023092-11

https://doi.org/10.1098/rsta.2003.1227
https://doi.org/10.1007/BF01397477
https://doi.org/10.1038/nphoton.2009.229
https://doi.org/10.1088/2058-9565/aa6aca
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/2058-9565/ab4bea
https://doi.org/10.1088/2058-9565/ab0441
https://doi.org/10.1103/PhysRevB.87.085425
https://doi.org/10.1103/PhysRevLett.123.075302
https://doi.org/10.1038/s41598-020-69621-8
https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1080/00107514.2016.1201896
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.22331/q-2019-02-14-121
https://doi.org/10.1088/1751-8113/49/34/345002
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1103/PhysRevA.99.062111
https://doi.org/10.1038/s41598-019-40202-8
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevLett.118.150601
https://arxiv.org/abs/2308.02277
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevE.99.052106
https://doi.org/10.1002/andp.201900487
https://doi.org/10.1088/1367-2630/ab91fc
https://doi.org/10.1088/1367-2630/abaa01
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevB.99.205437
https://doi.org/10.1103/PhysRevB.102.245407
https://doi.org/10.1103/PhysRevLett.125.236402
https://doi.org/10.1007/JHEP11(2020)067
https://doi.org/10.1103/PhysRevApplied.14.024092
https://doi.org/10.1103/PhysRevE.103.042118
https://doi.org/10.1103/PhysRevA.103.052220
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1007/s11467-021-1130-5
https://doi.org/10.1126/sciadv.abk3160


CRESCENTE, FERRARO, AND SASSETTI PHYSICAL REVIEW RESEARCH 6, 023092 (2024)

[41] C.-K. Hu et al., Charging and self-discharging process of a
quantum battery in composite environments, Quantum Sci.
Technol. 7, 045018 (2022).

[42] I. Maillette de Buy Wenniger, S. E. Thomas, M. Maffei, S. C.
Wein, M. Pont, N. Belabas, S. Prasad, A. Harouri, A. Lemaître,
I. Sagnes, N. Somaschi, A. Auffèves, and P. Senellart, Experi-
mental analysis of energy transfers between a quantum emitter
and light fields, Phys. Rev. Lett. 131, 260401 (2023).

[43] G. Gemme, M. Grossi, D. Ferraro, S. Vallecorsa, and M.
Sassetti, IBM quantum platforms: A quantum battery perspec-
tive, Batteries 8, 43 (2022).

[44] G. Gemme, M. Grossi, S. Vallecorsa, M. Sassetti, and D.
Ferraro, Qutrit quantum battery: Comparing different charging
protocols, arXiv:2306.14537.

[45] F. Centrone, L. Mancino, and M. Paternostro, Charging batter-
ies with quantum squeezing, Phys. Rev. A 108, 052213 (2023).

[46] A. Crescente, D. Ferraro, M. Carrega, and M. Sassetti, Enhanc-
ing coherent energy transfer between quantum devices via a
mediator, Phys. Rev. Res. 4, 033216 (2022).

[47] A. Crescente, D. Ferraro, M. Carrega, and M. Sassetti, An-
alytically solvable model for qubit-mediated energy transfer
between quantum batteries, Entropy 25, 758 (2023).

[48] T. Niemczyk et al., Circuit quantum electrodynamics
in the ultrastrong-coupling regime, Nat. Phys. 6, 772
(2010).

[49] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Superconducting qubitoscillator circuit beyond the
ultrastrong-coupling regime, Nat. Phys. 13, 44 (2017).

[50] A. F. Kockum, A. Miranowiez, S. De Liberato, S. Savasta, and
F. Nori, Ultrastrong coupling between light and matter, Nat.
Rev. Phys. 1, 19 (2019).

[51] O. Di Stefano, A. Settineri, V. Macrí, L. Garziano, R. Stassi,
S. Savasta, and F. Nori, Resolution of gauge ambiguities
in ultrastrong-coupling cavity quantum electrodynamics, Nat.
Phys. 15, 803 (2019).

[52] F. Beaudoin, J. M. Gambetta, and A. Blais, Dissipation and
ultrastrong coupling in circuit QED, Phys. Rev. A 84, 043832
(2011).

[53] S. Felicetti, G. Romero, D. Rossini, R. Fazio, and E. Solano,
Photon transfer in ultrastrongly coupled three-cavity arrays,
Phys. Rev. A 89, 013853 (2014).

[54] J. Peng, Z. Ren, D. Braak, G. Guo, G. Ju, X. Zhang, and X.
Guo, Solution of the two-qubit quantum Rabi model and its
exceptional eigenstates, J. Phys. A: Math. Theor. 47, 265303
(2014).

[55] S. A. Chilingarayan and B. M. Rodríguez-Lara, The quantum
Rabi model for two qubits, J. Phys. A: Math. Theor. 46, 335301
(2013).

[56] P. Qu and Z. Yan, Numerical calculation of two-qubit
Rabi model, IOP Conf. Ser.: Mater. Sci. Eng. 964, 012014
(2020).

[57] G. De Filippis, A. de Candia, G. Di Bello, C. A. Perroni, L. M.
Cangemi, A. Nocera, M. Sassetti, R. Fazio, and V. Cataudella,
Signatures of dissipation driven quantum phase transition in
Rabi model, Phys. Rev. Lett. 130, 210404 (2023).

[58] S. Schweber, On the application of Bargmann Hilbert spaces to
dynamical problems, Ann. Phys. (NY) 41, 205 (1967).

[59] R. Graham and M. Höhnerbach, Two-state system coupled to a
boson mode: Quantum dynamics and classical approximations,
Z. Phys. B: Condens. Matter 57, 233 (1984).

[60] W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH,
Berlin, 2021).

[61] M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coher-
ent quantum state storage and transfer between two phase
qubits via a resonant cavity, Nature (London) 449, 438
(2007).

[62] P. Harvey-Collard, J. Dijkema, G. Zheng, A. Sammak, G.
Scappucci, and L. M. K. Vandersypen, Coherent spin-spin cou-
pling mediated by virtual microwave photons, Phys. Rev. X 12,
021026 (2022).

[63] U. Weiss, Quantum Dissipative Systems, 4th ed. (World
Scientific, Singapore, 2012).

[64] A. O. Caldeira and A. Leggett, Path integral approach to quan-
tum Brownian motion, Phys. A (Amsterdam, Neth.) 121, 587
(1983).

[65] A. J. Leggett, S. Chakravarty, A. Dorsey, M. P. Fisher, A. Garg,
and W. Zwerger, Dynamics of the dissipative two-state system,
Rev. Mod. Phys. 59, 1 (1987).

[66] G. L. Ingold, Path Integrals and Their Application to Dissipative
Quantum Systems Coherent Evolution in Noisy Environments
(Springer, Berlin, 2002), pp. 1–53.

[67] R. H. Rodriguez, F. D. Parmentier, D. Ferraro, P. Roulleau, U.
Gennser, A. Cavanna, M. Sassetti, F. Portier, D. Mailly, and
P. Roche, Relaxation and revival of quasiparticles injected in
an interacting quantum Hall liquid, Nat. Commun. 11, 2426
(2020).

[68] J. Dias, C. W. Wächtler, V. M. Bastides, K. Nemoto, and W. J.
Munro, Reservoir-assisted energy migration through multiple
spin domains, Phys. Rev. B 104, L140303 (2021).

[69] J. Dias, C. W. Wächtler, K. Nemoto, and W. J. Munro, En-
tanglement generation in never interacting spins via reservoir
engineering, Phys. Rev. Res. 5, 043295 (2023).

[70] G. Lindblad, Completely positive maps and entropy inequali-
ties, Commun. Math. Phys. 40, 147 (1975).

[71] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[72] M. H. Devoret and R. J. Schoelkopf, Coupling superconducting
qubits via cavity bus, Science 339, 1169 (2013).

[73] G. Wendin, Quantum information processing with supercon-
ducting circuits: A review, Rep. Prog. Phys. 80, 106001
(2017).

[74] E. A. Sete, A. Q. Chen, R. Manenti, S. Kulshreshtha,
and S. Poletto, Floating tunable coupler for scalable quan-
tum computing architectures, Phys. Rev. Appl. 15, 064063
(2021).

[75] D. L. Campbell, A. Kamal, L. Ranzani, M. Senatore, and M. D.
LaHaye, Modular tunable coupler for superconducting circuits,
Phys. Rev. Appl. 19, 064043 (2023).

[76] L. Heunisch, C. Eichler, and M. J. Hartmann, Tunable coupler
to fully decouple superconducting qubits, Phys. Rev. Appl. 20,
064037 (2023).

[77] M. Sassetti and U. Weiss, Universality in the dissipative two-
state system, Phys. Rev. Lett. 65, 2262 (1990).

[78] M. Grifoni, M. Sassetti, and U. Weiss, Exact master equations
for driven dissipative tight-binding models, Phys. Rev. E 53,
R2033(R) (1996).

[79] A. Delmonte, A. Crescente, M. Carrega, D. Ferraro, and M.
Sassetti, Characterization of a two-photon quantum battery:
Initial conditions, stability and work extraction, Entropy 23, 612
(2021).

023092-12

https://doi.org/10.1088/2058-9565/ac8444
https://doi.org/10.1103/PhysRevLett.131.260401
https://doi.org/10.3390/batteries8050043
https://arxiv.org/abs/2306.14537
https://doi.org/10.1103/PhysRevA.108.052213
https://doi.org/10.1103/PhysRevResearch.4.033216
https://doi.org/10.3390/e25050758
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.89.013853
https://doi.org/10.1088/1751-8113/47/26/265303
https://doi.org/10.1088/1751-8113/46/33/335301
https://doi.org/10.1088/1757-899X/964/1/012014
https://doi.org/10.1103/PhysRevLett.130.210404
https://doi.org/10.1016/0003-4916(67)90234-5
https://doi.org/10.1007/BF01318416
https://doi.org/10.1038/nature06124
https://doi.org/10.1103/PhysRevX.12.021026
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1038/s41467-020-16331-4
https://doi.org/10.1103/PhysRevB.104.L140303
https://doi.org/10.1103/PhysRevResearch.5.043295
https://doi.org/10.1007/BF01609396
https://doi.org/10.1007/BF01608499
https://doi.org/10.1126/science.1231930
https://doi.org/10.1088/1361-6633/aa7e1a
https://doi.org/10.1103/PhysRevApplied.15.064063
https://doi.org/10.1103/PhysRevApplied.19.064043
https://doi.org/10.1103/PhysRevApplied.20.064037
https://doi.org/10.1103/PhysRevLett.65.2262
https://doi.org/10.1103/PhysRevE.53.R2033
https://doi.org/10.3390/e23050612


BOOSTING ENERGY TRANSFER BETWEEN QUANTUM … PHYSICAL REVIEW RESEARCH 6, 023092 (2024)

[80] N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and
H. de Riedmatten, Photonic quantum state transfer between
a cold atomic gas and a crystal, Nature (London) 551, 485
(2017).

[81] P. Kurpiers et al., Deterministic quantum state transfer and re-
mote entanglement using microwave photons, Nature (London)
558, 264 (2018).

[82] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2002).

[83] Y. Makhlin, G. Schón, and A. Shnirman, Dissipative effects in
Josephson qubits, Chem. Phys. 296, 315 (2004).

[84] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python
framework for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[85] Notice that the terms (a + a†)σx in the Hamiltonian in
Eq. (1) can be rewritten as (a + a†)(σ+ + σ−) = (aσ+ + aσ− +
a†σ+ + a†σ+). Here, the so-called counter-rotating terms aσ−
and a†σ+ does not conserve the number of excitations, and

are the ones that can be neglected in the rotating-wave
approximation.

[86] M. Stramacchia, A. Ridolfo, G. Benenti, E. Paladino, F. M. D.
Pellegrino, D. Maccarrone, and G. Falci, Speedup of adiabatic
multiqubit state-transfer by ultrastrong coupling of matter and
radiation, Proceedings 12, 35 (2019).

[87] M. Lednev, F. J. García-Vidal, and J. Feist, A Lindblad mas-
ter equation capable of describing hybrid quantum systems in
the ultra-strong coupling regime, Phys. Rev. Lett. 132, 106902
(2024).

[88] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,
Introduction to the Dicke model: From equilibrium to nonequi-
librium, and vice versa, Adv. Quantum Technol. 2, 1800043
(2019).

[89] P. Scarlino et al., Coherent microwave-photon-mediated cou-
pling between a semiconductor and a superconducting qubit,
Nat. Commun. 10, 3011 (2019).

023092-13

https://doi.org/10.1038/nature24468
https://doi.org/10.1038/s41586-018-0195-y
https://doi.org/10.1016/j.chemphys.2003.09.025
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.3390/proceedings2019012035
https://doi.org/10.1103/PhysRevLett.132.106902
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1038/s41467-019-10798-6

